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Given an integer n > 1 and any set P of positive integers, one can assign to each

topological space X a homotopy universal map X(P,n) → X where X(P,n) is an
(n − 1)-connected CW-complex whose homotopy groups are P -torsion. We analyze

this construction and its properties by means of a suitable closed model category

structure on the pointed category of topological spaces.

§0. Introduction

This article aims to link recent work of Blanc [Bl], Chachólski [Ch], Dror Farjoun

[DF96], Hirschhorn [Hir], and Nofech [N93] with parallel advances by Elvira–Her-

nández [E-H] and Extremiana–Hernández–Rivas [E-H-R]. We exploit a closed model

category structure [Q67] on the category Top∗ of pointed topological spaces, for each

n ≥ 2 and each set of positive integers P , in which the class of weak equivalences is

the class of maps X → Y inducing isomorphisms of homotopy groups with mod m

coefficients,

πr(X ; Z/m) ∼= πr(Y ; Z/m), for r ≥ n + 1 and m ∈ P.

By suitably factoring, in this closed model category, each map of the form ∗ → X

into a cofibration followed by a trivial fibration, ∗ → X(P,n) → X , one obtains a

colocalization functor which we call a (P, n)-CW-approximation. It is indeed remi-

niscent from the usual CW-approximation, where one associates with any space X

a CW-complex K together with a map K → X inducing isomorphisms of homotopy

groups. The space X(P,n) is built from torsion Moore spaces of type M(Z/m, r),
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with r ≥ n and m ∈ P , by means of a countable sequence of push-outs. Approxi-

mations of spaces using Moore spaces as building blocks have also been discussed

by Blanc in [Bl], where interesting applications have been given.

The closed model category structure used in our article is directly inspired by

the one given in [E-H-R] for the case of ordinary homotopy groups. It does not

coincide with the structure studied by Hirschhorn [Hir] and Nofech [N95], [N96],

although the associated homotopy categories are indeed equivalent.

Of course, it is also possible to factor each map X → ∗ into a cofibration fol-

lowed by a trivial fibration, X → X(P,n) → ∗. This yields a localization functor

assigning to each X a space whose homotopy groups are uniquely P -divisible in di-

mensions r ≥ n+1 and P -torsion-free in dimension n. (An abelian group A is said

to be uniquely P -divisible if multiplication by m is an automorphism of A for every

m ∈ P , and an element a ∈ A is said to be P -torsion if there are integers m1, . . . , mr

in P , not necessarily distinct, such that m1 · · ·mra = 0.) Those functors are vari-

ants of the classical localization of spaces at sets of primes. We shall not insist

in their analysis, as they have been previously discussed by Bousfield [B94], [B96],

and Casacuberta–Rodŕıguez [C-R]. However, we emphasize that the study of such

localizations in the framework of abstract homotopy theory is more naturally asso-

ciated with a different closed model category structure, in which a functorial model

for the localization of a space X is obtained by suitably factoring the map X → ∗
into a trivial cofibration followed by a fibration. This is precisely the point of view

adopted by Quillen in his pioneering work on rational homotopy theory [Q69]; it

was exploited further by Bousfield [B75] in connection with homological localiza-

tion, and by several other authors since then.

This paper intends to be largely self-contained, except for standard input from

homotopical algebra. Thus we supply alternative, direct proofs of earlier results

due to Blanc [Bl] and Dror Farjoun [DF92], and improve some of them. Notably,

Theorem 5.2 below shows that the homotopy groups of X(P,n) coincide with those

of the homotopy fibre of the localization map X → X(P,n) in all dimensions except

possibly in dimension n; this gives a positive answer to a question raised in [DF92].

Using this fact, we compute K(A, d)(P,n) for any abelian group A and every d ≥ 1.

Acknowledgements. We are indebted to D. Blanc, A. K. Bousfield, W. Chachólski,

E. Dror Farjoun, P. G. Goerss, P. S. Hirschhorn, and A. Nofech for kindly sending

us their preprints and for further correspondence. The suggestions of the referee

led to an improvement of the first version submitted.

§1. Preliminaries

We shall work in the pointed category Top∗ of topological spaces. Thus, all maps
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will preserve basepoints and [X, Y ] will denote the set of pointed homotopy classes

of maps from X to Y .

Given any space M , a space X is called M -cellular [DF96], or an M -CW-

complex [Bl], if X belongs to the smallest class of spaces which contains M and

is closed under pointed homotopy colimits and homotopy equivalences. A map

f : X → Y is said to be an M -equivalence if the induced map of based mapping

spaces

map∗(M, X)→ map∗(M, Y )

is a weak homotopy equivalence. As explained in [DF96, 2.B], for every space X

there exists an M -equivalence CWM (X) → X where CWM (X) is an M -CW-

complex; see also [Ch]. This map is called an M -CW-approximation to X . On

the other hand, a space X is said to be M -null if the space map∗(M, X) is weakly

contractible. For every space X there is a homotopy universal map X → PMX

into an M -null space; see [B94], [Ch], [DF96, § 1]. This is called an M -nullification

of X .

We shall analyze further these concepts in an important special case. For any

positive integer m and n ≥ 2, let M(Z/m, n) denote the homotopy cofibre of the

standard self-map of Sn of degree m, which is an (n+1)-dimensional CW-complex

such that Hn(M(Z/m, n)) ∼= Z/m and H̃r(M(Z/m, n)) = 0 for r �= n. We shall

adhere to Neisendorfer’s notation [Ne] for homotopy groups with coefficients, by

writing

πr(X ; Z/m) = [M(Z/m, r − 1), X ],

which is a group if r ≥ 3. It follows that, if n ≥ 2, then a map f : X → Y is an

M(Z/m, n)-equivalence if and only if the induced homomorphisms

f∗: πr(X ; Z/m)→ πr(Y ; Z/m)

are isomorphisms for r ≥ n + 1. A space X is M(Z/m, n)-null if πr(X ; Z/m) = 0

for r ≥ n + 1; this amounts to saying that multiplication by m is a monomorphism

in πn(X) and an automorphism of πr(X) for r ≥ n+1, since the following sequence

is exact [Ne, § 1]:

(1.1) · · · → πr(X) m→ πr(X)→ πr(X ; Z/m)→ πr−1(X) m→ πr−1(X)→ · · · .

The machinery developed by Quillen in [Q67] and [Q69] provides a suitable

framework to discuss CW-approximations and nullifications, yielding explicit mod-

els which are functorial in Top∗. Recall that a closed model category C is a category

endowed with three distinguished families of maps called cofibrations, fibrations,
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and weak equivalences, satisfying certain axioms. For details, properties, and fur-
ther terminology we refer the reader to [Q67] and [Q69]. See also the recent survey
by Dwyer and Spalinsky [D-S].

A map which is a weak equivalence and a fibration will be called a trivial fi-
bration, and a map which is a weak equivalence and a cofibration will be called a
trivial cofibration. Given a commutative diagram

A −−−−→ X

i

⏐⏐�
⏐⏐�p

B −−−−→ Y,

the map i: A → B is said to have the left lifting property (LLP) with respect to
p: X → Y if a map B → X exists making both triangles commute. In this situation,
one also says that p has the right lifting property (RLP) with respect to i.

§2. A generalization

If X and Y are arbitrary pointed spaces, we denote by X � Y the half-smash
product X ∧Y +, where Y + denotes the union of Y with a disjoint basepoint. Thus
X � I is the ordinary pointed cylinder.

In [E-H-R], the following closed model category structures were considered on
the category Top∗ of pointed topological spaces, for each n ≥ 1. A map f : X → Y

is said to be an n-fibration if f has the RLP with respect to the family of inclusions

(Dn+r
� {0}) ∪ (Sn+r−1

� I)→ Dn+r
� I, for r ≥ 0;

a map f is a weak n-equivalence if the induced homomorphisms πr(X) → πr(Y )
are isomorphisms for r ≥ n; f is an n-cofibration if it has the LLP with respect
to all trivial n-fibrations. As explained in [E-H-R], the corresponding homotopy
category is equivalent to the ordinary homotopy category of (n − 1)-connected
CW-complexes.

These closed model category structures can be generalized in the following way.
Let M = ΣM ′ be any space which is the pointed suspension of a CW-complex M ′.
Consider the following families of maps in the category Top∗ of pointed topological
spaces.

Definition 2.1. Let f : X → Y be a map. We say that

(i) f is a weak M -equivalence if the induced homomorphisms

f∗: [ΣrM, X ]→ [ΣrM, Y ]

are isomorphisms for r ≥ 0;
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(ii) f is an M -fibration if it has the RLP with respect to the family of maps

(CΣrM ′
� {0}) ∪ (ΣrM ′

� I)→ CΣrM ′
� I for r ≥ 0,

where C denotes the pointed cone functor,

(iii) f is an M -cofibration if it has the LLP with respect to every trivial fibration.

Since each map in (ii) is both a CW-inclusion and a homotopy equivalence,
every Serre fibre map is an M -fibration. However, in contrast with [Hir] or [N95],
an M -fibration need not be a Serre fibre map (for instance, every map between non-
connected spaces with the same basepoint component is an M -fibration). As usual,
a space X will be called M -fibrant if the map X → ∗ is an M -fibration (hence, all
spaces are M -fibrant) and X will be called M -cofibrant if the map ∗ → X is an
M -cofibration.

Proposition 2.2. A map f : X → Y is a trivial M -fibration if and only if it has
the right lifting property with respect to the family C of inclusions

∗ →M, ΣrM → CΣrM, r ≥ 0.

Proof. Note that, if a map f : X → Y has the RLP with respect to ΣrM → CΣrM ,
then in particular every diagram of the following form (where the upper arrow is
the constant map) admits a lifting

ΣrM
∗−−−−→ X⏐⏐�

⏐⏐�f

CΣrM −−−−→ Y.

Therefore, f has the RLP with respect to ∗ → Σr+1M as well. As a consequence, if a
map f has the RLP with respect to the maps in C, then the induced homomorphisms
[ΣrM, X ]→ [ΣrM, Y ] are isomorphisms for all r, so that f is a weak M -equivalence.
In order to check that f is an M -fibration, we use the fact that by glueing together
two copies of (CΣrM ′

�{0})∪(ΣrM ′
�I) one obtains a space which is homeomorphic

to Σr+1M ′, while CΣr+1M ′ is homeomorphic to the space obtained by glueing
together two copies of CΣrM ′

� I in the same way.
Conversely, let f : X → Y be a trivial M -fibration. Suppose given a commutative

diagram of the form
ΣrM

u−−−−→ X

i

⏐⏐�
⏐⏐�f

CΣrM −−−−→
v

Y
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with r ≥ 0. Then we may argue as follows; cf. [E-H, 2.4]. Since f is a weak

M -equivalence, there is a map w: CΣrM → X such that wi = u and fw 
 v.

Let H: CΣrM � I → Y be a homotopy with H∂0 = fw and H∂1 = v, where ∂0,
∂1 denote the face maps. Using the fact that f is an M -fibration, we can find

a homotopy F : CΣrM � I → X such that fF = H, extending both w and the

constant map (x, t) �→ u(x) for x ∈ ΣrM and t ∈ I. Then w′ = F∂1 satisfies

fw′ = v and w′i = u, as desired. A similar argument shows that f has the RLP

with respect to the map ∗ →M , hence completing the proof. �

Theorem 2.3. For every space M which is the suspension of a CW-complex, the
category of pointed topological spaces together with the above families of weak M -

equivalences, M -fibrations, and M -cofibrations, has the structure of a closed model

category. �

We denote by TopM
∗ this closed model category structure on the category Top∗,

and thus by Ho(TopM
∗ ) the category obtained from TopM

∗ by formally inverting the

family of weak M -equivalences. For pointed spaces X and Y , the set of morphisms
from X to Y in the category Ho(TopM

∗ ) will be denoted by [X, Y ]M .

The routine verification of the Quillen axioms CM1 to CM5 in order to prove

Theorem 2.3 proceeds as in [D-S, § 8], [E-H-R, § 2], or [Q67, II.3]; compare with
the approaches of Hirschhorn [Hir] and Nofech [N95]. In order to construct the

factorizations stated in axiom CM5, we resort to Quillen’s “small object argument”

(see [Q67, II.3.3] or [D-S, 7.12]), using the maps given in Proposition 2.2 above.

Hence, the resulting factorizations are functorial.

Notice that, in the process of constructing such factorizations, it suffices to take

the colimit of a countable sequence whenever the space M is compact. Otherwise

it will normally require transfinite sequences, as in [B75], [Hir], or [J]. However, if

the space M is a (possibly infinite) wedge
∨

α∈Λ Mα where each Mα is compact,
then one can still avoid the use of transfinite sequences by replacing the family C
in Proposition 2.2 by the family consisting of ∗ → Mα and ΣrMα → CΣrMα for

r ≥ 0 and all α ∈ Λ; further details are given in the next section.

§3. Localization and colocalization

If one considers the M -cofibrant space XM constructed by factoring a map
∗ → X into an M -cofibration followed by a trivial M -fibration,

∗ → XM → X,

by means of the “small object argument”, what one has is a functor (−)M : Top∗ →
Top∗ together with a natural transformation ε: (−)M → Id. This is in fact a
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model for an M -CW-approximation in the sense of [DF96]. On the other hand, by

factoring each map X → ∗ into an M -cofibration followed by a trivial M -fibration,

X → XM → ∗,

one obtains a functor (−)M : Top∗ → Top∗ together with a natural transformation

η: Id→ (−)M , yielding a model for M -nullification. The canonical maps XM → X

and X → XM will be called colocalization and localization, respectively. In this

section we describe some basic properties of colocalization.

Since M -cofibrations are ordinary cofibrations and Serre fibre maps are M -

fibrations, it follows from standard arguments (see e.g. Theorem 9.7 in [D-S]) that

for all spaces X and Y there is a natural bijection

(3.1) [X, Y ]M ∼= [XM , Y ],

that is, the functor (−)M is left adjoint to the “identity” functor from Ho(Top∗)

to Ho(TopM
∗ ).

If we suppose in addition that X is M -cofibrant, then, since all spaces are M -

fibrant, the set [X, Y ]M is in one-to-one correspondence with the set of homotopy

classes maps from X to Y in TopM
∗ ; see [Q67, 1.16]. Now, arguing as in [D-S, 4.15]

and [D-S, 9.10], we infer from (3.1) that if X is M -cofibrant and Y is any space

then there is a natural bijection [X, Y ]M ∼= [X, Y ]. Since weak M -equivalences are

isomorphisms in Ho(TopM
∗ ), we have the following.

Theorem 3.1. If f : Y → Z is a weak M -equivalence, then f induces a bijection

[X, Y ] ∼= [X, Z] for every M -cofibrant space X. �

As an immediate consequence, one obtains a broad generalization of the classical

Whitehead theorem; see also [DF96, 2.E].

Theorem 3.2. If X and Y are M -cofibrant spaces, then a map f : X → Y is a

homotopy equivalence if and only if it is a weak M -equivalence. �

Corollary 3.3. For every space Y , the colocalization map Y M → Y has the fol-

lowing universal properties:

(1) It is homotopy initial among weak M -equivalences f : X → Y .

(2) It is homotopy terminal among maps f : X → Y where X is M -cofibrant. �

Corollary 3.4. If X is M -cofibrant, then the colocalization map XM → X is a

homotopy equivalence. �
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Corollary 3.5. The adjoint pair

Ho(TopM
∗ )

(−)M

−−−−−→←−−−−−
Id

Ho(Top∗)

sets up an equivalence of categories between Ho(TopM
∗ ) and the full subcategory of

Ho(Top∗) whose objects are the M -cofibrant spaces. �

The M -cofibrant spaces are precisely the retracts of M -CW-complexes, since for
every cofibrant X the map ∗ → X has the LLP with respect to XM → X . A more
explicit description of M -cofibrant spaces is given in the next section in the special
case where M is a wedge of torsion Moore spaces.

Let F be the homotopy fibre of the localization map X → XM . Since XM → ∗
is a weak M -equivalence, the map F → X is a weak M -equivalence as well. Hence,
FM → XM is a weak M -equivalence and we infer the following result, which will
be used for calculations in Section 5.

Theorem 3.6. Let X be any space and let F be the homotopy fibre of the localiza-
tion map X → XM . Then FM 
 XM . �

If the space M is an infinite wedge
∨

α∈Λ Mα, where each Mα is compact, but M

itself is not compact, then the construction of XM described above will require the
use of transfinite sequences in general. However, we can obtain a model for XM

whose construction stops at the first infinite ordinal by proceeding as follows.
Notice that a map f : X → Y is a trivial M -fibration if and only if it has the

RLP with respect to the family C′ of inclusions ∗ →Mα and ΣrMα → CΣrMα with
r ≥ 0 and α ∈ Λ; cf. Proposition 2.2. Hence, for each space X , we can construct a
suitable model for XM by means of the “small object argument” using the family
C′ instead of the family C displayed in Proposition 2.2. For convenience, we next
recall the details of the process used to decompose a given map f : A→ X into an
M -cofibration followed by a trivial M -fibration.

Firstly, we consider all maps of the form g: Mα → X , with α ∈ Λ, and use them
to construct a space X0 = A∨ (

∨
g,α Mα) equipped with a map p0: X0 → X which

coincides with f on A and with g on the wedge summand labelled with g, for each g.
This map p0: X0 → X has the RLP with respect to ∗ → Mα for all α ∈ Λ. Next,
we construct inductively a sequence

X0 j1

−−−−→ X1 j2

−−−−→ X2 −−−−→ · · ·
together with maps pr: Xr → X such that prjr = pr−1. Assuming that the map
pr−1 has been constructed, we take all commutative diagrams D of the form

(3.2)

ΣrMα
uD−−−−→ Xr−1

⏐⏐�
⏐⏐�pr−1

CΣrMα −−−−→
vD

X
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with r ≥ 0 and α ∈ Λ, and define jr: Xr−1 → Xr by the push-out

(3.3)

∨
D ΣrMα −−−−→ Xr−1

⏐⏐�
⏐⏐�jr

∨
D CΣrMα −−−−→ Xr.

The map pr: Xr → X is the sum of pr−1 and all the maps vD in diagram (3.2).
Passage to the direct limit yields a trivial M -fibration p: X∞ → X and the desired
factorization of f as

A→ X∞ → X,

where X∞ is M -cofibrant. In particular, if we choose A to be a point, then X∞ 

XM , by Theorem 3.2.

This construction can be modified in order to obtain substantially smaller (al-
though possibly non-functorial) models for XM . For instance, it suffices to pick
one representative within each pointed homotopy class of maps at each step of the
process. Thus, if f : A → X is a map of CW-complexes and we use cellular maps
in the construction above, then we obtain a factorization A → X̄ → X , where
A → X̄ is an M -cofibration, X̄ → X is a weak M -equivalence (which need not be
an M -fibration) and X̄ is a CW-complex.

§4. The case of torsion Moore spaces

In the rest of the paper we specialize to the case where M is a wedge of certain
compact, torsion Moore spaces. Thus let P be any set of positive integers, not
necessarily prime, and n ≥ 2 a fixed integer. Let M =

∨
m∈P M(Z/m, n). We

shall use the notation Top(P,n)
∗ for the associated closed model category structure,

and refer to the corresponding families of maps as weak (P, n)-equivalences, (P, n)-
fibrations, and (P, n)-cofibrations, respectively. Likewise, we denote the localization
(−)M by (−)(P,n) and the colocalization (−)M by (−)(P,n).

Thus, a map f : X → Y is a weak (P, n)-equivalence if and only if the induced
homomorphisms f∗: πr(X ; Z/m) → πr(Y ; Z/m) are isomorphisms for r ≥ n + 1
and each m ∈ P . Note that, if P1 ⊆ P2 and n1 ≥ n2, then every weak (P2, n2)-
equivalence is a weak (P1, n1)-equivalence.

Our first aim is to provide an algebraic characterization of (P, n)-cofibrant spaces.
We shall discuss primarily the cases when P = {pk} or P = {p, p2, p3, . . .},
where p is a prime and k ≥ 1. In fact, Theorem 4.4 and Theorem 4.5 below
will demonstrate that this is sufficiently general. Thus, let M = M(Z/pk, n) or
M =

∨∞
i=1 M(Z/pi, n), where p is a prime, k ≥ 1, and n ≥ 2.

Recall from [K-M, 3.10] that every torsion abelian group is the direct sum of its
primary components, and every abelian p-group of finite exponent is a direct sum
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of cyclic groups. For a torsion abelian group G and a prime p, we denote by Gp

the p-primary component of G.

Lemma 4.1. Let f : X → Y be a map between 1-connected spaces with torsion
homotopy groups. Suppose that πr(X)p = 0 and πr(Y )p = 0 for r ≤ n− 1, where p

is a prime. Then f induces isomorphisms πr(X ; Z/pk) ∼= πr(Y ; Z/pk) for r ≥ n+1
if and only if the induced maps πr(X)p → πr(Y )p are isomorphisms for r ≥ n + 1
and Tor(πn(X), Z/pk)→ Tor(πn(Y ), Z/pk) is an isomorphism as well.

Proof. In order to prove the first implication, let F be the homotopy fibre of f .
The homotopy groups of F are torsion and πr(F )p = 0 for r ≤ n−2. Moreover, the
assumption made implies that πr(F ; Z/pk) = 0 if r ≥ n+1. Hence, πr(F ; Z/pk) = 0
for all r, except perhaps for r = n and r = n−1. Now we exploit the exact sequence
derived from (1.1),

(4.1) 0→ πr(F )⊗ Z/pk → πr(F ; Z/pk)→ Tor(πr−1(F ), Z/pk)→ 0,

together with the fact that the homotopy groups of F are torsion, to infer that
πr(F )p = 0 for r �= n−1. Thus, the map f induces isomorphisms πr(X)p

∼= πr(Y )p

for all r, except perhaps for r = n, and the homomorphism f∗: πn(X)p → πn(Y )p

is injective. This implies that Tor(πn(X), Z/pk) → Tor(πn(Y ), Z/pk) is injective
as well. In order to prove that the latter is surjective, consider the commutative
diagram

(4.2)

πn+1(X ; Z/pk) −−−−→ Tor(πn(X), Z/pk)

∼=
⏐⏐�

⏐⏐�
πn+1(Y ; Z/pk) −−−−→ Tor(πn(Y ), Z/pk),

in which the horizontal maps are epimorphisms, and hence the right-hand map is
an epimorphism too. The converse is proved using the exactness and naturality of
the sequence (4.1). �

Theorem 4.2. Let X be a space, p a prime, and n ≥ 2.

(1) If P = {pk} with k ≥ 1, then X has the weak homotopy type of a (P, n)-
cofibrant space if and only if X is (n− 1)-connected, πr(X) is p-torsion for
all r, and πn(X) is annihilated by pk.

(2) If P = {p, p2, p3, . . .}, then X has the weak homotopy type of a (P, n)-
cofibrant space if and only if X is (n− 1)-connected and πr(X) is p-torsion
for all r ≥ n.

Proof. In both cases, if X is (P, n)-cofibrant then the colocalization map X(P,n) →
X is a homotopy equivalence, by Corollary 3.4. In the construction of X(P,n)
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described at the end of Section 3, we see inductively that Xr is (n− 1)-connected
for all r. Hence X(P,n) is (n−1)-connected too. Since the class of p-torsion abelian
groups is a Serre class [S] and it is closed under direct limits, it follows from a Mayer–
Vietoris argument that the reduced singular homology groups Hr(X(P,n)) are p-
torsion for all r, and Serre’s version of the Hurewicz theorem [S] ensures that the
homotopy groups πr(X(P,n)) are p-torsion for all r as well. Moreover, Hn(X(P,n))
is an epimorphic image of Hn(X0); hence, in case (1) the group Hn(X(P,n)) is a
Z/pk-module and therefore πn(X(P,n)) is also a Z/pk-module.

In order to prove the converse statements in (1) and (2), we need to show that
the hypotheses made imply that the colocalization map X(P,n) → X induces iso-
morphisms πr(X(P,n)) ∼= πr(X) for all r. But this follows from Lemma 4.1. �

Notice that M(Z/p2, n) is not (P, n)-cofibrant if P = {p}.
If P = {p}, then the homotopy category Ho(Top(P,n)

∗ ) is equivalent to the homo-
topy category of (n− 1)-connected CW-complexes such that πn(X) is a Z/p-vector
space and πr(X) is p-torsion for r ≥ n + 1. This class of spaces was considered by
Bousfield in [B94]. It would be interesting to develop algebraic models for their ho-
motopy category; recent work of Goerss [G] has opened the way into this direction.

We next show that the case where P is any set of positive integers can be reduced
to the special cases discussed above. We say that a prime p has finite height in
the set P if there is a nonnegative integer h such that ph+1 does not divide any
number m ∈ P . If this is the case, then the height of p in P is the minimum of
such integers h; we shall denote it by h(p). Otherwise, we say that p has infinite
height in P . The following result generalizes Theorem 4.2.

Theorem 4.3. Let n ≥ 2 and let P be an arbitrary set of positive integers. Then a
space X has the weak homotopy type of a (P, n)-cofibrant space if and only if X is
(n− 1)-connected, πr(X) is P -torsion for all r, and πn(X)p is annihilated by ph(p)

for each prime p which has finite height h(p) in P . �

Theorem 4.4. For every space X and every set P of positive integers, let Q be
the union of the sets {p, p2, p3, . . .} for each prime p of infinite height in P , and
{ph(p)} for each prime p of nonzero finite height h(p) in P . Then X(P,n) 
 X(Q,n)

for any n ≥ 2.

Proof. By Theorem 4.3, the classes of (P, n)-cofibrant spaces and (Q, n)-cofibrant
spaces coincide. Hence, our claim follows from Corollary 3.3. �

Theorem 4.5. Let P be any set of positive integers and n ≥ 2. Suppose that P

is the union of a family of sets Pi such that the numbers in Pi are mutually prime
with the numbers in Pj whenever i �= j. Then, for each space X, we have

X(P,n) 

∨
i

X(Pi,n).
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Proof. Since every weak (P, n)-equivalence is a weak (Pi, n)-equivalence, there is a
map X(Pi,n) → X(P,n) for each i. These yield together a map

(4.3)
∨
i

X(Pi,n) −→ X(P,n).

For each index i, the inclusion of X(Pi,n) into
∨

i X(Pi,n) induces an isomorphism
in homology with coefficients in Pi. Hence, by [Ne, 3.10], it also induces an isomor-
phism in homotopy with coefficients in Pi, that is, it is a weak (Pi, n)-equivalence.
Therefore, the natural map

∨
i X(Pi,n) → X is a weak (Pi, n)-equivalence for all i,

and hence it is a weak (P, n)-equivalence. It follows that (4.3) is a weak (P, n)-
equivalence between (P, n)-cofibrant spaces, and thus it is a homotopy equiva-
lence. �

We finally address the case where M is a wedge of Moore spaces of various
dimensions. Observe that if M1 = M(Z/pk1 , n1) and M2 = M(Z/pk2 , n2) satisfy
either n1 > n2 or n1 = n2 and k1 ≤ k2, then the classes of weak (M1 ∨ M2)-
equivalences and M2-equivalences coincide, which implies that XM1∨M2 
 XM2 ,
by Corollary 3.3. In order to generalize this fact, the following notation will be
convenient. If k is an integer, then we write M(p, k, n) = M(Z/pk, n); otherwise,
M(p,∞, n) =

∨∞
i=1 M(Z/pi, n).

Let X be a space and W =
∨

n≥2

∨
m∈Pn

M(Z/m, n), where each Pn is a set of
positive integers, possibly empty. For each prime p, let n(p) be the smallest value
of n such that p divides some number in Pn, or omit p from the indexing if it does
not occur in W . Let h(p) be the height of p in the set Pn(p) (here we do not exclude
the possibility that h(p) =∞). Let M =

∨
p M(p, h(p), n(p)). Then

(4.4) XW 
 XM 

∨
p

XM(p,h(p),n(p)).

Indeed, the first homotopy equivalence follows from the fact that the classes of weak
W -equivalences and weak M -equivalences coincide, and the second equivalence is
proved as in Theorem 4.5.

Let P be any set of primes and M =
∨

p∈P M(p, kp, np), where np ≥ 2 and kp is
either a positive integer or ∞. Then one shows as in Theorem 4.2 that a space X

has the weak homotopy type of an M -cofibrant space if and only if

(1) X is 1-connected,
(2) πr(X) is P -torsion for all r ≥ 1,
(3) πr(X)p = 0 for r < np, and
(4) if kp is finite, then πnp

(X)p is annihilated by pkp .

As applications, we prove the following results.



MODELS FOR TORSION HOMOTOPY TYPES 13

Theorem 4.6. Let P be any set of primes. Let P1, . . . , Pr be a finite partition of P

into mutually disjoint subsets. Let Mi =
∨

p∈Pi
M(p, kp, np), where np ≥ 2 and kp

is either a positive integer or ∞. Then, for each space X, the inclusion

(4.5)
∨
i

XMi −→
∏

i

XMi

is a weak homotopy equivalence.

Proof. Each projection
∏

i XMi → XMi induces isomorphisms on homotopy with
coefficients in Pi and hence it is a weak (Pi, 2)-equivalence. Likewise, each inclusion

XMi → ∨
i XMi induces isomorphisms on homology with coefficients in Pi, and

hence it is also a weak (Pi, 2)-equivalence, by [Ne, 3.10]. Since the composite

XMi −→
∨
i

XMi −→
∏

i

XMi −→ XMi

is the identity for all i, the arrow (4.5) is a (Pi, 2)-equivalence for all i and hence it
is a (P, 2)-equivalence. Finally, observe that the domain of (4.5) is (P, 2)-cofibrant

and the codomain has the weak homotopy type of a (P, 2)-cofibrant space. �

This result remains true for an infinite partition of P into mutually disjoint
subsets, provided we take

∏
i XMi to be the weak product of the spaces XMi ;

thus, πn

(∏
i XMi

) ∼= ⊕
i πn(XMi) for all n. This fact, together with Theorem 4.5,

shows that every n-connected space X (where n ≥ 1) with torsion homotopy groups
decomposes, up to weak homotopy equivalence, as a wedge

∨
p Xp or also as a weak

product
∏

p Xp, where each Xp is an n-connected, p-torsion CW-complex.

Given arbitrary spaces X and Y , the natural map X(P,n) × Y (P,n) → X × Y is
a weak (P, n)-equivalence. Hence, there is a map

(4.6) (X × Y )(P,n) −→ X(P,n) × Y (P,n),

which is also a weak (P, n)-equivalence. Since the domain of (4.6) is (P, n)-cofibrant

and the codomain has the weak homotopy type of a (P, n)-cofibrant space (by
Theorem 4.3), the map (4.6) is a weak homotopy equivalence. As above, this result

remains true for infinite weak products.

§5. Calculating (P, n)-CW-approximations

Fix a set P of positive integers and an integer n ≥ 2. Recall from Theorem 3.6

that, for every space X , the colocalization X(P,n) is closely related to the homotopy

fibre of the localization map X → X(P,n). The space X(P,n) is constructed from X

by means of a sequence of push-outs involving (n − 1)-connected spaces, in the
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process of factoring the map X → ∗ into a (P, n)-cofibration followed by a trivial
(P, n)-fibration. Therefore, we have

πr(X) ∼= πr(X(P,n)) for r ≤ n− 1,

and πr(X(P,n); Z/m) = 0 for r ≥ n + 1 and m ∈ P , since X(P,n) is weakly (P, n)-
equivalent to a point. By (1.1), this implies that the homotopy groups πr(X(P,n))
are uniquely P -divisible for r ≥ n + 1 and πn(X(P,n)) is P -torsion-free. Moreover,
if we denote by Z[P−1] the smallest subring of the rationals containing 1/m for all
m ∈ P , then

(5.1) πr(X(P,n)) ∼= πr(X)⊗ Z[P−1] for r ≥ n + 1,

while πn(X(P,n)) is isomorphic to the quotient of πn(X) by its P -torsion subgroup;
cf. [B94, 5.2]. We shall use the fact that the P -torsion subgroup of an abelian
group A is isomorphic to Tor(A, Z[P−1]/Z), since Z[P−1]/Z is a direct sum of
groups Z/p∞, where p ranges over all primes dividing the numbers in P .

Theorem 5.1. The homotopy fibre F of the map η: X → X(P,n) is weakly equiva-
lent to a (P, n)-cofibrant space if and only if the two following conditions are satisfied
for every prime p which has finite height h(p) in P :

(1) The p-torsion subgroup of πn(X) is annihilated by ph(p);
(2) πn+1(X)⊗ Z/p∞ = 0.

Proof. We infer from the homotopy exact sequence associated to F → X → X(P,n)

that F is always (n− 1)-connected and its homotopy groups are P -torsion. Thus,
if no prime has finite height in P , then F is weakly equivalent to a (P, n)-cofibrant
space by Theorem 4.3. In the general case, it follows from (5.1) that there is a short
exact sequence for r ≥ n,

(5.2) 0→ πr+1(X)⊗ (Z[P−1]/Z)→ πr(F )→ Tor(πr(X), Z[P−1]/Z)→ 0,

which splits because the kernel is a divisible group. Look at the case r = n and
observe that, for any abelian group A, the group A⊗Z/p∞ is p-divisible and hence it
cannot be annihilated by any power of p unless it is zero. This proves our claim. �

Note that

(5.3) X(P,n) → X → X(P,n)

is a homotopy fibre sequence if and only if conditions (1) and (2) of Theorem 5.1
are fulfilled for every prime which has finite height in P . Of course, this restriction
disappears if all primes dividing the numbers in P have infinite height, e.g. if P

is multiplicatively closed. In that case, (5.3) is a homotopy fibre sequence for all
spaces X .

The following result answers a question left open in [DF92, 6.4], where it was
asked if F and X(P,n) differ at most in one homotopy group.
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Theorem 5.2. Let X be any space and P = {pk}, where p is a prime. Let F be the
homotopy fibre of the localization map η: X → X(P,n). Then there is a homotopy
fibre sequence

X(P,n) → F → K(π, n)

where π = πn(F )/ Tor(πn(F ), Z/pk).

Proof. Since F is (n−1)-connected, we have Hn(F ; π) ∼= Hom(πn(F ), π), and hence
we may pick a map g: F → K(π, n) inducing the natural projection πn(F )→ π. Let
F ′ be the homotopy fibre of g. Then πr(F ′) ∼= πr(F ) for r ≥ n + 1, and πn(F ′) ∼=
Tor(πn(F ), Z/pk). Therefore, the map F ′ → F is a weak (P, n)-equivalence and
F ′ has the weak homotopy type of a (P, n)-cofibrant space. This shows that F ′ is
weakly equivalent to X(P,n). �

Now the homotopy groups of X(P,n) can easily be computed in terms of the
homotopy groups of X , for any n ≥ 2 and any set P of positive integers. In the
case P = {p, p2, p3, . . .}, the homotopy groups of X(P,n) are isomorphic to those
of F , and the latter can be read directly from the split exact sequence (5.2). The
case P = {pk} is covered by Theorem 5.2. Finally, by resorting to Theorem 4.4 and
Theorem 4.5, one can compute X(P,n) for other sets P of positive integers.

Example 5.3 Let P = {pk}, where p is a prime. Then, for any abelian group A

and d ≥ 1, we have

K(A, d)(P,n) 


⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∗ if d ≤ n− 1;
K(Tor(A, Z/pk), n) if d = n;
K(B, n)×K(TpA, n + 1) if d = n + 1;
K(A⊗ Z/p∞, d− 1)×K(TpA, d) if d ≥ n + 2,

where B = Tor(A ⊗ Z/p∞, Z/pk) ∼= A/(pkA + TpA) and we denote by TpA

the p-torsion subgroup of A. To check this, consider the homotopy fibre F of
η: K(A, d)→ K(A, d)(P,n) and use Theorem 5.2. If d ≥ n + 1, then

K(A, d)(P,n) 
 K(A⊗ Z[1/p], d)

and F is in fact a product

F 
 K(A⊗ Z/p∞, d− 1)×K(TpA, d);

cf. [B82, § 4]. If d = n, then F 
 K(TpA, n).

Example 5.4 Let P = {p, p2, p3, . . .}, where p is a prime. Using similar arguments
as in the previous example, for any abelian group A and d ≥ 1, we have

K(A, d)(P,n) 


⎧⎪⎨
⎪⎩

∗ if d ≤ n− 1;
K(TpA, n) if d = n;
K(A⊗ Z/p∞, d− 1)×K(TpA, d) if d ≥ n + 1.
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