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Abstract

Our object of study is the natural tower which, for any given map f : A → B

and each space X, starts with the localization of X with respect to f and converges

to X itself. These towers can be used to produce approximations to localization

with respect to any generalized homology theory E∗, yielding e.g. an analogue of

Quillen’s plus-construction for each E∗. We discuss in detail the case of ordinary

homology with coefficients in Z/p or Z[1/p]. Our main tool is a comparison theo-

rem for nullification functors (that is, localizations with respect to maps of the form

f : A → pt), which allows us, among other things, to generalize Neisendorfer’s ob-

servation that p-completion of simply-connected spaces coincides with nullification

with respect to a Moore space M(Z[1/p], 1).

0 Introduction

If E∗ is any generalized homology theory, then, as shown by Bousfield in [4], one can con-

struct an idempotent functor ( )E on the pointed homotopy category of CW-complexes

Ho, which renders invertible precisely the class of E-equivalences. Thus, a map X → Y

induces an isomorphism E∗(X) ∼= E∗(Y ) if and only if it induces a homotopy equiva-

lence XE ' YE. This functor is referred to as (unstable) E-localization, and it is fully

understood only in a few special cases, often restricted to suitable subcategories of Ho.
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In the case when E = HR, ordinary homology with coefficients in a commutative ring

R with unit, the HR-localization functor is closely related with the R-completion functor

R∞ defined by Bousfield and Kan in [9]. Specifically, there is a natural map XHR → R∞X

which is a homotopy equivalence in many cases, e.g. whenever X is nilpotent or, more

generally, whenever XHR is nilpotent. In fact, HR-localization is the best idempotent

approximation to R-completion, in the sense that they render invertible precisely the

same class of maps.

The present paper originated from the observation, made from various sources, that in-

verting one single easy map often produces the same effect —or almost the same effect— as

inverting a whole family of homology equivalences. With the phrase “inverting one map”

we allude to the recently developed theory of homotopical localization, which started from

the work of Bousfield [6], [7] and Dror Farjoun [13]. One first instance is Neisendorfer’s

remark [21] that inverting a map of the form M(Z[1/p], 1) → pt (where “pt” denotes a

one-point space and the letter M stands throughout for Moore spaces) has the same effect

as HZ/p-localization on simply-connected spaces. Similarly, by inverting the pth power

map p : S1 → S1, one obtains a functor which is closely related to HZ[1/p]-localization,

and in fact agrees with HZ[1/p]-localization on nilpotent spaces [11]. Almost the same

effect is obtained by killing the homotopy cofibre of p, that is, by inverting the map

M(Z/p, 1) → pt; see [2], [10]. Now, by inverting the suspension Σp one obtains exactly

the same result as by inverting all HZ[1/p]-equivalences which are suspensions, namely

a functor which preserves the fundamental group and tensors with Z[1/p] the higher ho-

motopy groups. If we continue this process of successively suspending p and killing the

corresponding homotopy cofibres, we obtain a tower of localizations with increasingly

weaker effect and converging to X. Of course, this makes sense for every map f : A→ B,

and we call the resulting tower the f -tower associated to each space X. In the special

case when f is the map S0 → pt, the f -tower is precisely the Postnikov tower. Sufficient

motivation for the study of such f -towers was offered in [7] and [15]. Note that, if we

choose f to be a vn-map for n ≥ 1, then the outcome is a family of approximations to

localization with respect to certain Morava K-theories. In particular, it would be inter-

esting to decide how closely inverting a v1-map approximates localization with respect to

mod p complex K-theory; see [13].
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It is important to retain the above suggested duality between Z/p and Z[1/p], which

is very much in the spirit of some parts of the book by Bousfield and Kan [9]. Indeed, the

most substantial part of our discussion involves reducing the study of certain localization

functors to the study of their effect on the fundamental group of spaces. Thus we are led

to comparing, for specific classes of groups, the effect of dividing out p-torsion (resp. all

infinitely p-divisible elements) with the effect of dividing out the Z[1/p]-perfect radical

(resp. the Z/p-perfect radical).

Acknowledgements: We are indebted to Emmanuel Dror Farjoun, Ian Leary, Ran Levi,

and Joe Neisendorfer for several enlightening discussions.

1 Preliminaries

We assume that all spaces are pointed, and all maps and homotopies preserve basepoints.

The space of based maps from X to Y is denoted by map∗(X, Y ).

Let f : A → B be any map. We follow the terminology of [7], [13], by calling f -local

those spaces X for which the induced map

f ∗ : map∗(B,X)→ map∗(A,X)

is a weak homotopy equivalence. Likewise, a map h: X → Y is an f -equivalence if

h∗ : map∗(Y, Z)→ map∗(X,Z)

is a weak homotopy equivalence for every f -local space Z.

We recall from [6], [13] that, replacing if necessary the map f with a cofibration, one

may construct a functor Lf on the pointed category of CW-complexes, together with a

natural transformation l: id→ Lf , such that, for every space X, the map lX : X → LfX

is an f -equivalence and the space LfX is f -local. Moreover, Lf also defines a functor on

the pointed homotopy category Ho, and, if so viewed, then it is idempotent. As such,

Lf is left adjoint to the inclusion of the full subcategory of f -local spaces in Ho. It

also follows that a map h : X → Y is an f -equivalence if and only if the induced map

Lfh : LfX → LfY is a homotopy equivalence, and this is the same as asserting that

f ∗ : [Y, Z]→ [X,Z] is bijective for all f -local spaces Z; cf. [1].
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For simplicity, we use the term “idempotent functor” (in any category) to denote a

functor L which is part of an idempotent monad (L, l), as in [1]. All natural transforma-

tions θ: L2 → L1 between idempotent functors are implicitly assumed to satisfy θ · l2 = l1.

If L is an idempotent functor, we call L-local those objects X such that X ∼= LX and

L-equivalences those morphisms ϕ such that Lϕ is invertible. There is a natural trans-

formation θ : L2 → L1 of idempotent functors if and only if the class of L2-equivalences

is contained in the class of L1-equivalences, or, equivalently, the class of L1-local objects

is contained in the class of L2-local objects; in this case, the natural transformation θ is

unique. As a special case of this general situation, we infer the following.

Proposition 1.1 Let f1, f2 be any two maps between spaces. Then there is a natural

transformation θ : Lf2 → Lf1 in Ho if and only if f2 is an f1-equivalence. Moreover, in

this case, the natural transformation θ is unique. 2

We emphasize another elementary fact which will be useful in the analysis of diagrams

(4.1) and (4.2) below.

Proposition 1.2 Let L3
β→ L2

α→ L1 be natural transformations of functors, where at

least L3 and L2 are idempotent. Suppose that, for a certain object X, the composite arrow

L3X → L1X is an isomorphism. Then both αX and βX are isomorphisms.

Proof. From the assumption made, it follows that L3X is a retract of L2X and therefore

L3X is L2-local. Hence the arrow βX : L3X → L2X is an isomorphism, and so is also

αX : L2X → L1X. 2

If the target space B of the map f : A → B is contractible, then f -local spaces

have been called A-periodic [7] or A-null [8]. The corresponding f -localization functor is

referred to as A-periodization or A-nullification, and denoted by PA. Thus, a space X

is A-null if and only if map∗(A,X) is weakly contractible, or, equivalently, if [ΣkA,X]

consists of a single element for all k ≥ 0.

Proposition 1.3 [7], [14] Let F → E → X be a homotopy fibration and A any space.

If X is A-null and connected, then PAF → PAE → X is a homotopy fibration. 2

4



Most of the above machinery can be paralleled in the category of groups. In fact, as

explained in [6], homotopy localization with respect to a map (or a set of maps —there

is no increase in generality in saying this, provided that coproducts exist in our category)

makes sense in every cocomplete closed simplicial model category [22] satisfying certain

mild conditions. Thus the category of groups (endowed with the discrete simplicial model

structure) fits into this framework very well. Specifically, if ϕ : G → K is any group

homomorphism, we say that a group L is ϕ-local if the induced map

ϕ∗ : Hom(K,L)→ Hom(G,L)

is a bijection of sets. Then, by [6] or [12], one may construct, for every group π, a

homomorphism lπ : π → Lϕπ which is initial among all homomorphisms from π into

ϕ-local groups. Thus (Lϕ, l) may be viewed as an idempotent monad on the category

of groups. We shall refer to it as ϕ-localization. In the special case when the target K

of ϕ : G → K is the trivial group, we preferably use the term G-reduction instead of

ϕ-localization, and call the corresponding ϕ-local groups G-reduced , motivated by the

special case considered in [7, § 5]. The G-reduction map will be denoted, as proposed

in [7], by π → π//G. This is always an epimorphism [10, Theorem 3.2], and its kernel

is called the G-radical of π. Thus, the G-radical of a group π is the (unique) maximal

subgroup of π among those whose own G-reduction is trivial. The basic examples are the

standard p-radical, where p is a prime (this case corresponds to G = Z/p, and coincides

with the p-torsion subgroup whenever such a subgroup exists), and the perfect radical (for

which G can be chosen as the free product of a set of representatives of all isomorphism

classes of countable perfect groups [3]).

The analogue of Proposition 1.1 is also true in the category of groups. Moreover, the

following stronger result holds in the case of G-reductions:

Proposition 1.4 Given two groups G1, G2, consider the homomorphisms ϕi : Gi → {1},
i = 1, 2. Then the following assertions are equivalent:

(a) There is a natural transformation θ: Lϕ2 → Lϕ1.

(b) ϕ2 is a ϕ1-equivalence.
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(c) G2//G1 is the trivial group.

(d) For every group π, the G2-radical of π is contained in the G1-radical of π.

(e) The class of groups annihilated by Lϕ2 is contained in the class of groups annihilated

by Lϕ1.

Moreover, if these equivalent assertions hold, then the natural transformation θ is unique,

and θπ is surjective for every group π. 2

2 On π1-compatible nullifications

Let f : A → B be any map between connected spaces, and let f∗ : π1A → π1B be the

induced homomorphism of fundamental groups. Then, as shown in [10, § 3], for every

connected space X the natural homomorphism π1X → π1(LfX) is an f∗-equivalence of

groups and hence there is a natural transformation of functors

π1Lf → Lf∗π1. (2.1)

We say that Lf is π1-compatible if (2.1) is an isomorphism for all connected spacesX. That

is, Lf is π1-compatible if and only if the group π1(LfX) is f∗-local for every connected

space X.

If both A and B are (possibly infinite) wedges of circles, then, for every connected

space X, the sets [A,LfX] and [B,LfX] are in natural bijective correspondence with

the sets Hom(π1A, π1(LfX)) and Hom(π1B, π1(LfX)), respectively. It follows that the

group π1(LfX) is f∗-local and therefore the functor Lf is π1-compatible. This observation,

together with Theorem 3.5 in [10], yields

Theorem 2.1 If f : A→ B is any map between wedges of circles, then the functor Lf is

π1-compatible. If A is a CW-complex of dimension 1 or 2, then the A-nullification functor

PA is π1-compatible. 2

However, if A = K(Z/p, 1), then PA is not π1-compatible; see Example 3.4 in [10].
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The properties of π1-compatible nullification functors turn out to be particularly pleas-

ant. For example, such functors are essentially determined by their effect on the funda-

mental group and their behaviour on simply-connected spaces. In the rest of this section,

this claim is made more precise.

Theorem 2.2 Let L be any idempotent functor on Ho. Suppose given a π1-compatible

nullification functor PA together with a natural transformation θ : PA → L which is an

equivalence on simply-connected spaces. Then θ is an equivalence on the class of spaces

whose fundamental group is annihilated under π1A-reduction.

Proof. Let X be any space such that π1X//π1A is trivial. Then PAX is simply-

connected, and therefore the lower horizontal arrow in the commutative diagram

PAX
θ−→ LX

↓ ↓
PA(PAX)

θ−→ L(PAX)

is a homotopy equivalence. By the idempotence of PA, the left-hand vertical arrow is also

a homotopy equivalence. Finally, the existence of θ ensures that every PA-equivalence is

an L-equivalence, so that the right-hand vertical arrow is a homotopy equivalence as well,

from which our claim follows. 2

This provides us with a good method to decide whether two π1-compatible nullification

functors are isomorphic or not. Namely, we infer the following criterion, which will be

used strongly in the special cases discussed in Section 4; cf. Theorem 4.5 below.

Theorem 2.3 Assume given two spaces A1, A2 together with a natural transformation

θ: PA2 → PA1. Suppose further that both PA2 and PA1 are π1-compatible, and that θ is an

equivalence on simply-connected spaces. Then, for a space X, the map θX : PA2X → PA1X

is a homotopy equivalence if and only if the π1A1-radical and the π1A2-radical of π1X

coincide.

Proof. Suppose that θX is a homotopy equivalence. Then the induced homomorphism

π1(PA2X) → π1(PA1X) is an isomorphism. Since PA1 and PA2 are π1-compatible, this
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means that π1X//π1A2
∼= π1X//π1A1, from which it follows that the π1A1-radical and

the π1A2-radical of π1X coincide.

Conversely, suppose that the radicals coincide. Let π = π1(PA2X) ∼= π1(PA1X) and

let X̃ be the homotopy fibre of the natural map X → Bπ. Since Hom(π1A1, π) and

Hom(π1A2, π) are trivial, the space Bπ is A1-null and A2-null. By Proposition 1.3, the

rows of the commutative diagram

PA2X̃ −→ PA2X −→ Bπ

↓ θX̃ ↓ θX ↓ =

PA1X̃ −→ PA1X −→ Bπ

are homotopy fibrations. By Theorem 2.2, θX̃ is a homotopy equivalence. Therefore, θX

is also a homotopy equivalence. 2

Essentially the same argument proves the next result. This is in fact a broad gener-

alization of Theorem 4.4 of [10], according to which, for every connected space X and

every prime p, there is a homotopy fibration (Z[1/p])∞X̃ → PM(Z/p,1)X → Bπ, where π

is the quotient of π1X by its p-radical, and X̃ is the homotopy fibre of the map X → Bπ.

Another important instance of Theorem 2.4 is the case when L is ordinary homology

localization and PA is the associated plus-construction (see Section 3 below).

Theorem 2.4 Let L be any idempotent functor on Ho. Suppose given a π1-compatible

nullification functor PA together with a natural transformation θ : PA → L which is an

equivalence on simply-connected spaces. For a given space X, write π = π1X//π1A, and

let X̃ be the homotopy fibre of the natural map X → Bπ. Then there is a commutative

diagram

X̃ −→ X −→ Bπ

↓ ↓ ↓ =

LX̃ −→ PAX −→ Bπ

in which the lower row is also a homotopy fibration. 2
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3 Generalized Postnikov towers

Let f : A → B be any map (which we replace with a cofibration, if necessary). We

consider the cofibre sequence

A
f→ B → C → ΣA

Σf→ ΣB → ΣC → Σ2A→ . . . .

Thus we may view

A
f−→ B

↓ ↓
pt

g−→ C

C
g′−→ pt

↓ ↓
ΣA

Σf−→ ΣB

as homotopy cofibre squares, showing that g is an f -equivalence and Σf is a g′-equivalence.

In this situation, Proposition 1.1 yields natural transformations LΣf → PC → Lf . There-

fore, one obtains, for every space X, an inverse system

LfX ← PCX ← LΣfX ← PΣCX ← LΣ2fX ← . . . , (3.1)

which we call the f -tower associated to X. It is very often convenient to regard it, not

as a single tower, but as two towers whose terms alternate, namely

LfX ← LΣfX ← LΣ2fX ← . . . (3.2)

and

PCX ← PΣCX ← PΣ2CX ← . . . . (3.3)

Of course, if the target B of f is contractible, then (3.3) is just a shift of (3.2). In the

special case f : S0 → pt, one obtains, up to homotopy, the Postnikov tower of X. Indeed,

if we consider the map σn+1 : Sn+1 → pt, then the class of σn+1-equivalences is precisely

the class of maps X → Y inducing isomorphisms πkX ∼= πkY for k ≤ n.

If f : A → B is any map between n-connected spaces, then f is a σn+1-equivalence.

Therefore, according to our preliminary remarks in Section 1, every f -equivalence is a

σn+1-equivalence. This gives an easy proof of the following statement (which is quite

well-known, and could, in fact, be inferred from the construction of Lf described in [13]

as well).
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Proposition 3.1 Let f : A → B be any map between n-connected spaces, n ≥ 1. Then,

for any connected space X, the f -localization map l: X → LfX induces isomorphisms

πkX ∼= πk(LfX) for k ≤ n. 2

In addition, if A is n-connected and B is contractible, then we have an epimorphism

πn+1X→→ πn+1(LfX),

as deduced from the fact that the A-nullification of a space X is constructed by attaching

copies of A and its suspensions ΣkA to X; cf. [7, Proposition 2.9].

As a consequence of Proposition 3.1, for every space X and every map f : A → B,

the f -tower of X converges to X, in the sense that the homotopy inverse limit of (3.1) is

homotopy equivalent to X.

Theorem 3.2 Let f1, f2 be two maps, and assume that f2 is an f1-equivalence. Then

there is a unique commutative diagram of idempotent functors

Lf1 ← PC1 ← LΣf1 ← PΣC1 ← LΣ2f1 ← . . .

↑ ↑ ↑ ↑ ↑
Lf2 ← PC2 ← LΣf2 ← PΣC2 ← LΣ2f2 ← . . . . 2

Our main examples of f -towers involve homology localizations and certain “approxi-

mations” to these, as discussed in the next section. For a commutative ring R with unit

and a space X, we denote by XHR the localization of X with respect to ordinary homology

with R coefficients; see [4]. More generally, let E∗ be any homology theory satisfying the

limit axiom. Let c be the smallest infinite cardinal which is at least equal to the cardi-

nality of E∗(pt). Let h: A → B be the wedge of a set of representatives of all homotopy

classes of CW-inclusions which are E-equivalences and for which the cardinality of the set

of cells of B is less than or equal to c. Then Lh is precisely E-localization; see [4, § 11] or

[15]. Moreover, if C is the cofibre of h, then the following statements are equivalent:

• X is E-acyclic.

• XE is contractible.
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• PCX is contractible.

We shall use the notation X+
E for PCX, and call it a generalized plus-construction.

Indeed, if E = HZ, then X+
E is homotopy equivalent to the Quillen plus-construction

on X; cf. [3]. More generally, if E = HR for a commutative ring R with unit, then X+
HR

is homotopy equivalent to the partial R-completion of X defined in [9, VII.6]; see also

[19], [20]. Recall that a group π is called R-perfect if H1(π;R) = 0, and that every group G

contains a unique maximal R-perfect normal subgroup PRG, which we call the R-perfect

radical of G. The map X → X+
HR is an HR-equivalence and induces the projection

π1X → π1X/PR(π1X) on the fundamental group [9, VII.6.3].

Proposition 3.3 For every commutative ring R with unit, the functors ( )HR and

( )+
HR are π1-compatible.

Proof. Let h: A→ B be any map for which Lh is HR-localization. Then h∗ : π1A→ π1B

induces an isomorphism on H1( ;R) and an epimorphism on H2( ;R), so that from [4,

Lemma 7.3] it follows that π1(XHR) is h∗-local for every X. This means precisely that the

functor ( )HR is π1-compatible. Similarly, let C be the homotopy cofibre of h. Then π1C

is R-perfect. Hence, for every space X, the image of any homomorphism π1C → π1X is

contained in PR(π1X), which implies that π1(X+
HR) is π1C-reduced, as required. 2

It would be very interesting to decide if ( )E and ( )+
E are π1-compatible for other

homology theories E∗, in particular for complex K-theory. Another challenging, closely

related problem, is to find a purely group-theoretical description of the homomorphism

π1X → π1(X+
E ) in general.

In what follows, we shall use the notation

XE ← X+
E ← XΣE ← X+

ΣE ← XΣ2E ← . . . (3.4)

for the tower (3.1) in the case of E-localization.
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4 Approximating ordinary homology towers

For any abelian group G, we may pick a space M(G, 1) as in [2, § 2]. Thus we choose a

free abelian presentation

0→ F0 → F1 → G→ 0

together with a map w: W0 → W1 between suitable wedges of circles inducing the inclusion

F0 → F1 on homology, and define M(G, 1) to be the homotopy cofibre of w. Of course,

if n > 1, then Σn−1M(G, 1) is a Moore space M(G, n) in the usual sense. If we apply the

functor [ , X] to the cofibre sequence associated with w, we obtain the following result;

cf. [2] or [7, § 5].

Proposition 4.1 Let G be any abelian group, and choose w: W0 → W1 as above. Then,

for a connected space X and n > 1, we have:

(a) X is Σn−1w-local if and only if Ext(G, πmX) = Hom(G, πmX) = 0 for m ≥ n.

(b) X is M(G, n)-null if and only if Ext(G, πmX) = Hom(G, πmX) = 0 for m > n and

πnX is G-reduced.

Moreover, assertion (b) is true for n = 1 if π1X is abelian, and assertion (a) is true for

n = 1 if X is simply-connected. 2

Let M(Z/p, 1) be the homotopy cofibre of the standard map f : S1 → S1 of degree p.

On the other hand, by writing

Z[1/p] = 〈x1, x2, . . . , xn, . . . | xi = xpi+1 for all i〉,

we have presented Z[1/p] as the cokernel of a specific homomorphism between free groups.

Let g : ∨iS1 → ∨iS1 induce this homomorphism, and denote by M(Z[1/p], 1) the homo-

topy cofibre of g. Observe that the fundamental group of this space M(Z[1/p], 1) is

precisely Z[1/p], so that it is a “true” Moore space in the sense of [24]. From now on, the

letters f and g will consistently denote the two maps which we have just considered.

Remark 4.2 When G = Z/p, the condition that an abelian group A be Z/p-reduced

amounts to A being p-torsionfree, and the condition Ext(Z/p,A) = Hom(Z/p,A) = 0
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says precisely that A is a p′-local group [17], where p′ denotes the complement of p (thus,

a p′-local abelian group is just a Z[1/p]-module). In the case G = Z[1/p], for an abelian

group A, the condition Ext(Z[1/p], A) = Hom(Z[1/p], A) = 0 says precisely that A is

Ext-p-complete; see [9, VI.3.4] or [23].

Taking into account the fact that, in any category, two idempotent functors with the

same image class are necessarily isomorphic, we have just shown the following.

Theorem 4.3 Assume that X is connected and n > 0, or that X is simply-connected

and n ≥ 0. Then, if f and g denote the maps above defined, we have natural homotopy

equivalences

(a) LΣnfX ' XΣnHZ[1/p].

(b) LΣngX ' XΣnHZ/p.

(c) PM(Z/p,n+1)X ' X+
ΣnHZ[1/p].

(d) PM(Z[1/p],n+1)X ' X+
ΣnHZ/p. 2

This result can be conveniently depicted as follows. Since

H̃∗(M(Z/p, 1); Z[1/p]) = 0,

Theorem 3.2 yields, for every space X, a homotopy commutative diagram of towers

Z[1/p]∞X ← XHZ[1/p] ← X+
HZ[1/p] ← XΣHZ[1/p] ← X+

ΣHZ[1/p] ← . . .

↑ θ ↑ θ+ ↑ ' ↑ '
LfX ← PM(Z/p,1)X ← LΣfX ← PM(Z/p,2)X ← . . . .

(4.1)

Similarly, the fact that H̃∗(M(Z[1/p], 1); Z/p) = 0 gives

(Z/p)∞X ← XHZ/p ← X+
HZ/p ← XΣHZ/p ← X+

ΣHZ/p ← . . .

↑ ζ ↑ ζ+ ↑ ' ↑ '
LgX ← PM(Z[1/p],1)X ← LΣgX ← PM(Z[1/p],2)X ← . . . .

(4.2)
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According to Theorem 4.3, all vertical arrows in (4.1) and (4.2) are homotopy equiv-

alences if X is simply-connected. In fact, in order to infer that θ+ and ζ+ are homotopy

equivalences it suffices to impose that π1X be abelian.

The extent to which LfX approximates XHZ[1/p] when X is not simply-connected was

carefully discussed in [11]. Among other things, it was shown that if X is nilpotent (or,

more generally, if LfX is nilpotent) then θ is a homotopy equivalence [11, Proposition 8.1].

It seems very likely that similar results could be proved for the arrow ζ in (4.2), but this

has not been done so far.

Theorem 4.4 Let X be a connected space.

(a) If π1X//(Z/p) = {1}, then the map PM(Z/p,1)X → Z[1/p]∞X is a homotopy equiv-

alence.

(b) If π1X//Z[1/p] = {1}, then the map PM(Z[1/p],1)X → (Z/p)∞X is a homotopy

equivalence.

Proof. We give the argument only for (b). By Theorem 2.1, the functor PM(Z[1/p],1) is

π1-compatible. Hence, from Theorem 2.2 it follows that the arrows PM(Z[1/p],1)X → LgX

and ζ+ : PM(Z[1/p],1)X → X+
HZ/p are homotopy equivalences. Since, by assumption, the

space PM(Z[1/p],1)X is simply-connected, so is also X+
HZ/p, and hence X+

HZ/p → XHZ/p

is also a homotopy equivalence. This ensures that X is Z/p-good, so that the arrow

XHZ/p → (Z/p)∞X is also a homotopy equivalence. 2

This result improves substantially Lemma 1.2 in [21]. We devote the rest of this paper

to giving other sufficient conditions onX under which θ+ or ζ+ are homotopy equivalences,

and explicit counterexamples showing that sometimes they are not. The analysis turns

out to be of a purely group-theoretical nature, due to the following facts. By Theorem 2.1

and Proposition 3.3, all idempotent functors in (4.1) and (4.2) are π1-compatible. Hence,

by Theorem 2.3, θ+ and ζ+ will be homotopy equivalences if and only if they induce

isomorphisms on the fundamental group. In other words,

Theorem 4.5 The map θ+ is a homotopy equivalence if and only if the Z/p-radical and

the Z[1/p]-perfect radical of π1X coincide. The map ζ+ is a homotopy equivalence if and

only if the Z[1/p]-radical and the Z/p-perfect radical of π1X coincide. 2
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The assumptions of Theorem 4.5 are satisfied in many cases. We record the following

instances.

Theorem 4.6 Suppose that π is free or nilpotent. Then:

(a) For every prime p, the Z/p-radical and the Z[1/p]-perfect radical of π coincide.

(b) For every prime p, the Z[1/p]-radical and the Z/p-perfect radical of π coincide.

Proof. In case (a), if π is free, then both radicals are trivial; if π is nilpotent, then

both radicals are equal to the p-torsion subgroup of π. In case (b), if π is free, then

both radicals are again trivial. Now suppose that π is nilpotent. By Proposition 1.4, the

existence of ζ+ ensures that the Z[1/p]-radical of π is contained in the Z/p-perfect radical.

Conversely, suppose that π contains a nontrivial subgroup G such that H1(G; Z/p) = 0.

We shall prove that G//Z[1/p] is trivial. Suppose the contrary, and write Q = G//Z[1/p]

for shortness. Since Q is an epimorphic image of G, we have H1(Q; Z/p) = 0, and this

implies that H1(Q) is a p-divisible abelian group. If c is the nilpotency class of Q and Γ

stands for the lower central series, then Γc−1Q is nonzero and it is an epimorphic image

of ⊗cH1(Q); see [17, p. 44]. This implies that Γc−1Q is p-divisible, in contradiction with

the fact that Q is Z[1/p]-reduced. 2

It follows, of course, that θ+ and ζ+ are homotopy equivalences whenever the funda-

mental group of X is free or nilpotent. Note that, if π is nilpotent, then the Z[1/p]-radical

of π is precisely the kernel of the Ext-p-completion map π → Ext(Z/p∞, π), as defined

in [9, VI.3.7].

Theorem 4.7 Suppose that π is finite. Then:

(a) For every prime p, the Z[1/p]-radical and the Z/p-perfect radical of π coincide.

(b) The Z/2-radical and the Z[1/2]-perfect radical of π coincide.

Proof. In case (a), By Proposition 1.4, it suffices to prove that a finite group π is

Z[1/p]-reduced (i.e., Hom(Z[1/p], π) = 0) if and only if it contains no nontrivial Z/p-

perfect subgroup. But both conditions are obviously equivalent to π being a p-group.
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In case (b), the existence of θ+ ensures that the Z/p-radical of π is contained in the

Z[1/p]-perfect radical for all primes p (cf. Proposition 1.4). To prove the converse for

p = 2, let Q be the quotient of π by its Z/2-radical. Then Q has odd order. Suppose

that Q contains a subgroup H which is Z[1/2]-perfect. Then, since H has odd order, it is

in fact Z-perfect. On the other hand, by the Feit–Thompson theorem [16], H is solvable.

This forces H to be trivial. Therefore, the Z/2-radical of π contains all Z[1/2]-perfect

subgroups of π. 2

Example 4.8 Let π be any torsionfree perfect group. Then, for any prime p, the Z/p-

radical of π is trivial, while the Z[1/p]-perfect radical is the whole of π. If p 6= 2, then we

may even find examples of finite groups for which the Z/p-radical and the Z[1/p]-perfect

radical are distinct, hence showing that part (b) of Theorem 4.7 fails for primes other

than 2 in general. Namely, it suffices to pick a finite simple group whose order is not

divisible by p (such groups are indeed available for all primes p 6= 2).

Example 4.9 For any fixed prime p, let π be an infinite perfect group of exponent pr for

some r ≥ 1. Since π cannot contain any infinitely p-divisible element, it is Z[1/p]-reduced,

and hence the Z[1/p]-radical of π is trivial. However, the Z/p-perfect radical of π is the

whole of π.

One might ask if such groups actually exist! We next indicate a source, which was

suggested to us by Ian Leary. Let

B(m,n) = Fm/(Fm)n

be a free Burnside group of exponent n, where Fm denotes a free group of rank m. For any

prime p and any m ≥ 2, we may choose n = pr big enough so that B(m,n) is infinite [18].

After this choice, let π be the minimal normal subgroup of finite index in B(m,n); see

[25], [26]. Then π does not contain any proper normal subgroup of finite index, and hence

the commutator subgroup of π has to be π itself. This shows that π is a perfect group of

exponent a power of p, as desired.
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