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Abstract

To every variety of groups W one can associate an idempotent
radical PW by iterating the verbal subgroup. The basic example is
the perfect radical, which is the intersection of the transfinite derived
series. We prove that each such radical PW is generated by a single
locally free group F , in the sense that, for every group G, the subgroup
PWG is generated by images of homomorphisms F → G.

Our motivation comes from algebraic topology. In fact we show
that every variety of groups W determines a localization functor in
the homotopy category, which kills the radical PW of the fundamental
group while preserving homology with certain coefficients.

0 Introduction

Radicals have been broadly studied in abelian categories; see e.g. [15, VI.1].
However, they have received less attention in the category of groups, where
the fundamentals of radical theory were first investigated by Kurosh; see [13,
1.3]. We say that a functor R is a radical if RG is a normal subgroup of G
and R(G/RG) = 1 for all groups G.

Radicals are useful in localization theory. Given a family Φ of group ho-
momorphisms ϕα:Aα → Bα, a group K is called Φ-local if the induced map
of sets Hom(ϕα, K): Hom(Bα, K) → Hom(Aα, K) is bijective for all α. Under
mild assumptions (e.g., if Φ is a set, or also if each ϕα is surjective), every
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group G admits a Φ-localization G→ LG, which is initial among homomor-
phisms from G into Φ-local groups. The main examples are localizations at
sets of primes and homological localizations [2].

As we explain in Section 2, there is a bijective correspondence between
radicals and surjective localizations in the category of groups, and there
is also a bijective correspondence between idempotent radicals (that is, such
that RRG = RG for all G) and localizations with respect to homomorphisms
whose target is the trivial group (such localizations will be called reductions).
In particular, the projection onto an arbitrary variety of groups determines
a radical R, and to this radical we can associate by standard methods an
idempotent radical and hence a reduction. The basic example isRG = [G,G],
the commutator subgroup, whose associated idempotent radical R∞G is the
perfect radical.

Our motivation comes from [1], where a universal locally free group F
was constructed with the property that localization with respect to the ho-
momorphism F → 1 has the effect of dividing out the perfect radical. In
Theorem 3.3 below we generalize the construction of Example 5.3 in [1] so
that it applies to any other idempotent radical associated with a variety.

Furthermore, every radical R associated with a variety gives rise to a
localization functor in the homotopy category of CW-complexes. When
applied to a space X, this functor kills the subgroup Rπ1(X) of the fun-
damental group and preserves homology with certain coefficients. Quillen’s
plus-construction [12] is the special case corresponding to the perfect radical.

1 Radicals in group theory

We shall work in the category G of groups. A radical R is a subfunctor of the
identity (i.e., a functor assigning to each group G a subgroup RG in such a
way that every homomorphism G → K induces RG → RK by restriction),
with the property that RG is normal in G and R(G/RG) = 1 for all groupsG.
A radical R is said to be idempotent if RRG = RG for all groups G. These
notions are standard in abelian categories (see e.g. [15, Ch. VI]), although
the terminology varies slightly depending on the authors; cf. [7], [8], [9], [13].

Example 1.1 The best-known example of a (nonidempotent) radical is the
commutator subgroup RG = [G,G]. Two idempotent examples are the per-
fect radical (i.e., the largest perfect subgroup, where a group G is called
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perfect if [G,G] = G), and the torsion radical (i.e., the smallest normal
subgroup τ(G) such that G/τ(G) is torsion-free). In fact, for each set of
primes J there is a J-torsion radical, and there is also a largest J-perfect
subgroup, where a group G is called J-perfect if the first mod p homology
group H1(G;Z/p) is zero for p ∈ J .

Given any radical R, the class of groups G such that RG = G is closed un-
der quotients and free products, and the class of groups G such that RG = 1
is closed under subgroups and cartesian products. The proof is the same as
the one given in [15, VI.1.2] for abelian categories. It follows that, if two
groups G and K satisfy RG = G and RK = 1, then Hom(G,K) is trivial.

Proposition 1.2 Let R be any radical in the category of groups. Then every
group G contains a unique subgroup R∞G maximal with the property that
RR∞G = R∞G. Moreover, R∞G is normal in G and it is contained in RG.

Proof. Let R∞G be the product of all subgroups H of G such that RH = H.
Then R∞G is a quotient of the free product of all such subgroups H, and
this family of subgroups is closed under conjugation. Hence, RR∞G = R∞G
and R∞G is normal. Finally, since R is a subfunctor of the identity, we have
RR∞G ⊆ RG, that is, R∞G ⊆ RG. ]

It follows, similarly as in [15, VI.1.6], that R∞ is also a radical and it is
in fact the largest idempotent radical which is a subfunctor of R. There is
another standard way of constructing R∞ from R by transfinite induction.
Namely, if α is a successor ordinal, define Rα = RRα−1, with R0 = R, and
if α is a limit ordinal, then let Rα be the intersection of Rβ for all β < α.
Finally, take R∞G to be RαG for the smallest α such that Rα+1G = RαG.

Proposition 1.3 Every family of groups C determines a radical R, by defin-
ing RG to be the intersection of the kernels of all epimorphisms f :G → C
where C is in C.

We omit the details since this is a classical construction. Note that every
radical R arises this way, by taking C to be the class of groups G such
that RG = 1.

There is another important source of radicals. Namely, the same argu-
ment as in [9, 2.2] proves the following.
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Proposition 1.4 Let G be the category of groups and D any category. Sup-
pose given an adjoint pair of functors L:G → D and E:D → G, where L is
the left adjoint. Then we obtain a radical by defining RG to be the kernel of
the unit map G→ ELG, for each group G.

2 Localizations

A full subcategory D of the category of groups is called reflective if the inclu-
sion E:D → G has a left adjoint L. In this case, for every group G we have
a group homomorphism G → LG which is initial among homomorphisms
from G into groups in D. Then the groups in D are called L-local and
the homomorphisms G → K inducing isomorphisms LG ∼= LK are called
L-equivalences. The functor L will be called a localization or a reflection
onto the subcategory D. It will be called an epireflection if, for all groups G,
the localization homomorphism G→ LG is surjective.

If L is any reflection in the category of groups, and RG denotes the
kernel of the localization homomorphism G → LG, then it follows from
Proposition 1.4 that R is a radical. In fact, there is a bijective correspondence
between radicals and epireflections in the category of groups.

Given any family of group homomorphisms ϕα:Aα → Bα, we can consider
the subcategory D of all groups D which are orthogonal to ϕα for all α, that
is, such that the induced map

Hom(ϕα, D): Hom(Bα, D) → Hom(Aα, D)

is bijective for all α. If the family {ϕα} is a set, then we can form the free
product ϕ of all homomorphisms in the family, and it follows by standard
methods that the orthogonal subcategory D is reflective. For further details
and applications to homotopy theory, see [1], [4], [5], [14]. If ϕ is a surjective
homomorphism, then the ϕ-localization functor Lϕ is an epireflection. In the
special case when ϕ is of the form A→ 1 for some group A, the orthogonal
groups are called A-reduced . Thus, a group G is A-reduced if and only if
Hom(A,G) is trivial. In this case, the ϕ-localization of a group G will be
called A-reduction and denoted by G//A. It is the largest quotient of G
admitting no nontrivial homomorphisms from A.

If the given class of homomorphisms {ϕα} is proper (i.e., not a set), then
we cannot infer in general that the orthogonal subcategory D is reflective.

4



However, there is a special situation where it can be proved that the subcat-
egory orthogonal to a (possibly proper) class of homomorphisms is reflective.

Proposition 2.1 The subcategory D orthogonal to any class of group epi-
morphisms is reflective.

Proof. Let TG be the intersection of all kernels of epimorphisms from G onto
groups in D. By Proposition 1.3, T is a radical, and hence G → G/TG is
a reflection. Thus, it suffices to check that a group G belongs to D if and
only if TG = 1. If G is in D, then the identity homomorphism G → G is
an epimorphism onto a group in D and hence TG is indeed trivial. To prove
the converse, suppose that TG = 1 and let γ:G→ Ĝ be the inverse limit of
all epimorphisms from G onto groups in D. Our assumption ensures that γ
is injective. Since D is closed under subgroups and inverse limits, it follows
that G is in D. ]

In the special case where the targets of all homomorphisms ϕα are trivial,
the associated localization will be called a reduction. This terminology is
consistent with our previous use of the same word. The same arguments as
in [14, Theorem 2.7] lead to the following characterization.

Theorem 2.2 Let L be a localization in the category of groups and let D be
the class of L-local groups. Then L is an epireflection if and only if D is
closed under subgroups, and L is a reduction if and only if D is closed under
subgroups and formation of extensions.

Finally, we prove that the bijection between epireflections and radicals
makes reductions correspond with idempotent radicals.

Theorem 2.3 There is a bijective correspondence between idempotent radi-
cals and reduction functors in the category of groups.

Proof. We show that, given an idempotent radical R, the functor LG =
G/RG is a reduction. Consider the family of all homomorphisms A → 1
where LA = 1, and let L′ denote the corresponding reduction. From the fact
that all such homomorphisms are L-equivalences it follows that there is a
natural transformation L′ → L. Conversely, let G be L′-local. Then we have
LRG = RG/RRG = 1 and this implies that the homomorphism RG → 1
is an L′-equivalence. Therefore Hom(RG,G) is trivial, from which it follows
that RG = 1 and G is L-local. Thus we have proved that L′ = L, as desired.
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The kernel R of any reduction with respect to a class ϕα:Aα → 1 can
be described as a possibly transfinite direct limit, as in [4, Theorem 3.2],
where the first step is the subgroup generated by the images of all homomor-
phisms from Aα for all α. From this description one sees that R is in fact an
idempotent radical. ]

3 Varieties of groups

Let W be the variety of groups defined by a set of words W . That is, W is a
set of elements of the free group F∞ on a countably infinite set of generators
{x1, x2, x3 . . .}, and W is the family of groups G with the property that every
homomorphism f :F∞ → G satisfies f(w) = 1 for all w ∈ W ; see [11]. For an
arbitrary group G, the verbal subgroup WG of G is the subgroup generated
by all the images of words in W under homomorphisms F∞ → G.

Proposition 3.1 A group G is in the variety W if and only if G is orthog-
onal to the natural homomorphism ϕ:F∞ → F∞/WF∞.

Proof. A group G is orthogonal to ϕ if and only if every homomorphism
f :F∞ → G satisfies f(WF∞) = 1. But this condition is equivalent to
WG = 1, and this means that G is in the variety W . ]

Let ϕ be as in Proposition 3.1. Then the ϕ-localization functor Lϕ is the
projection onto the variety W , sending each group G onto G/WG. Thus,
the verbal subgroup is a radical, which we denote by the same letter W . It
is not idempotent in general; indeed, WWG need not be equal to WG.

The groups G such that WG = G will be called W-perfect . That is, G is
W-perfect if and only if LϕG = 1. This notion specializes to ordinary perfect
groups when WG is the commutator subgroup of G.

It follows from Proposition 1.2 that every group G has a largestW-perfect
subgroup. We call it the W-perfect radical of G, and denote it by PWG.
This radical PW is idempotent. Thus, we can consider the reduction functor
assigning to each group G the quotient G/PWG; cf. Theorem 2.3. We say
that a group F generates the radical PW if G//F = G/PWG for all groups G.
Our main result in this section (Theorem 3.3) states that each radical PW is
generated by some locally free group.

In the case where W consists of the word xm alone, where m is a non-
negative integer, the W-perfect radical of a group G is the largest subgroup
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H such that H = Hm, where Hm denotes the subgroup generated by all
m-powers of elements of H. We call this radical the Burnside radical of ex-
ponent m. The Burnside radical of exponent 0 is the trivial subgroup and
the Burnside radical of exponent 1 is the whole group. Note that the Burn-
side radical of exponent m coincides with the radical generated by Z[1/m]
on commutative groups, but not on other groups in general.

Recall from [11, 12.12] that every word w is equivalent to a power word xm

together with a commutator word c, in the sense that w is a law in a group G
if and only if the words xm and c are both laws in G. (A commutator word is
any element of [F∞, F∞].) Thus, given a variety W , we can assume without
loss of generality that W is defined by a set of words of the form

W = {xm, c1, c2, c3, . . .},

where each ci is a commutator word and m is a nonnegative integer, called
the exponent of the variety.

If a variety W is defined by commutator words only, then the W-perfect
radical is contained in the ordinary perfect radical. Indeed, the inclusion
WG ⊆ [G,G] yields an epimorphism G/WG → G/[G,G] and hence all
W-perfect groups are perfect. However, the inclusion of theW-perfect radical
into the perfect radical can be proper, as the following example shows.

Example 3.2 Let W be the variety defined by the word c = [x, y]m, where
m is any integer greater than 2. Then there exist perfect groups which are
not W-perfect; it suffices to pick any perfect group G such that G 6= Gm.

We next prove that, for every variety W , the reduction G → G/PWG
coincides with F -reduction (that is, localization with respect to F → 1), for
some locally free group F . To this aim, we shall generalize the construction
described in Example 5.3 of [1].

Theorem 3.3 Let W be any variety of groups. Then there exists a locally
free, W-perfect group F such that, for all groups G, the radical PWG is
generated by images of homomorphisms F → G.

Proof. Let W = {w1, w2, . . .} be a set of words defining the variety W . In
order to simplify the notation, we will assume, as we may (by reordering the
words in W and inserting the trivial word as many times as needed), that
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wj is a word on a subset of the generators x1, . . . , xj of the free group F∞.
Thus we write wj = wj(x1, . . . , xj).

We shall construct a countable, locally free group Fn for each sequence
n = (n1, n2, n3, . . .) of positive integers, and define F to be the free product
of the groups Fn for all increasing sequences n. The group Fn is defined as
the colimit of a directed system (Fn,r, ϕr) of free groups and homomorphisms.
For r = 0, the group Fn,0 is infinite cyclic with a generator x0. For r ≥ 1,
the group Fn,r is the free group on the symbols

xr(δ1, . . . , δr; ε1, . . . , εr; i1, . . . , ir),

where 1 ≤ εk ≤ δk ≤ nk and 1 ≤ ik ≤ nk, for k = 1, . . . , r. The homomor-
phism ϕr:Fn,r → Fn,r+1 is determined by letting

ϕr (xr(δ1, . . . , δr; ε1, . . . , εr; i1, . . . , ir))

be the product
nr+1∏

ir+1=1

w̄1(ir+1) w̄2(ir+1) · · · w̄nr+1(ir+1)

in which w̄j(ir+1) denotes the value of the word wj on the symbols

xr+1(δ1, . . . , δr, j; ε1, . . . , εr, εr+1; i1, . . . , ir, ir+1),

where εr+1 runs from 1 to j.
The image of ϕr is contained in the verbal subgroup of Fn,r+1. Hence,

Fn = WFn for each sequence n, so that F = WF as well; i.e., F isW-perfect.
Since every epimorphic image of a W-perfect group is W-perfect, it follows
that the image of every homomorphism F → G is contained in the W-perfect
radical of G. Thus the argument will be complete if we show that, for every
element x ∈ PWG, there is an increasing sequence n and a homomorphism
Fn → G whose image contains the element x. To see this, pick the minimum
n1 such that x can be written as a product of n1 values (or less) of some of
the words w1, . . . , wn1 (possibly repeated and in any order), and choose one
such decomposition of x to continue the process. Consider all the elements of
G which appear in the chosen expression of x as arguments in the words wj;
pick the minimum n2 which is greater than or equal to the lengths of the
expressions of these elements as products of values of words inW , and greater
than or equal to the subindices of the words involved. Replace n2 with
1+n1 if necessary, in order that the sequence n be increasing. By continuing
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this way, one obtains a sequence n = (n1, n2, . . .) of positive integers and a
homomorphism ψ:Fn → G sending x0 to x. (In order to illustrate how ψ
is defined, suppose e.g. that x = w3(a, b, c)w2(d, e), so that n1 = 3. Then
ψ sends x1(3; 1; 1) 7→ a, x1(3; 2; 1) 7→ b, x1(3; 3; 1) 7→ c, x1(2; 1; 2) 7→ d,
x1(2; 2; 2) 7→ e, and it sends all the other generators x1(δ; ε; i) of Fn,1 to 1.
Then one proceeds similarly by choosing decompositions of a, b, c, d, e as
products of values of words in W , and so on.) ]

4 Applications to homotopy theory

For a map f :A → B between CW-complexes, a space X is called f -local if
the induced map of function spaces

map(f,X): map(B,X) → map(A,X)

is a weak homotopy equivalence. Each map f determines a localization func-
tor Lf in the homotopy category of CW-complexes; see [6]. Thus, for every
CW-complex X there is a map X → LfX which is homotopy initial among
maps from X into f -local spaces.

Let W be any variety of groups. Let F be the locally free W-perfect
group constructed in the proof of Theorem 3.3 (or any other locally free
group generating the same radical). Since F is a direct limit of free groups, its
classifying space K(F, 1) is a homotopy colimit of wedges of circles and hence
it is two-dimensional. It then follows from [5, Theorem 2.1] that localization
with respect to f :K(F, 1) → ∗ is π1-compatible; that is,

π1(LfX) ∼= Lϕπ1(X) for all spaces X,

where ϕ denotes the homomorphism F → 1 induced by f on the fundamental
group; thus, the localization functor Lϕ has the efect of dividing out the
W-perfect radical. Therefore, the functor Lf assigns to each space X a space
for which the W-perfect radical of the fundamental group is trivial. The
following theorem ensures that such localizations are not trivial themselves,
since they preserve homology with certain coefficients. The steering example
is Quillen’s plus-construction; cf. [1].

Recall once more that, by [11, 12.12], every variety W can be defined by
a power word together with commutator words.
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Theorem 4.1 Let W be any variety of groups of exponent m ≥ 0. Let F
be any locally free group generating the W-perfect radical. Consider the map
f :K(F, 1) → ∗. Then, for each space X, the natural map X → LfX kills
the W-perfect radical from the fundamental group of X, and it induces an
isomorphism in homology with coefficients in Z/m.

Proof. By assumption, we have F = WF ; that is, every element of F can
be written as a product of commutators and power words of the form am

with a ∈ F . If m = 0, then F is perfect and, since it is is locally free, it is
in fact acyclic. Therefore, the map f :K(F, 1) → ∗ is an integral homology
equivalence and hence all maps X → Y inducing a homotopy equivalence
LfX ' LfY are integral homology equivalences. In particular, the natural
map X → LfX is an integral homology equivalence for all spaces X. If
m ≥ 2, then the abelianization of F is a group A such that A = mA; that
is, A is p-divisible for all primes p dividing m. Hence, H1(F ;Z/m) = 0 and,
since F is locally free, F is mod m acyclic. In other words, the map f is
a mod m homology equivalence. It then follows, as above, that the natural
map X → LfX is a mod m homology equivalence for all X. ]

Plus-constructions for homology with mod m coefficients have long been
known; see [3, VII.6] or [10]. These occur in our framework, up to homotopy,
by choosing the variety defined by the words xm and [x, y]; what they kill is
the J-perfect radical of the fundamental group, where J is the set of prime di-
visors of m. The word xm alone yields a localization which kills the Burnside
radical of exponent m from the fundamental group, while preserving homol-
ogy with mod m coefficients. This localization does not alter, for example,
spaces whose fundamental group is a finite perfect group of exponent m.

References

[1] A. J. Berrick and C. Casacuberta, A universal space for plus-constructions,
Topology , to appear.

[2] A. K. Bousfield, Homological localization towers for groups and π-modules,
Mem. Amer. Math. Soc. vol. 10, no. 186, Providence, 1977.

[3] A. K. Bousfield and D. M. Kan, Homotopy Limits, Completions and Local-
izations, Lecture Notes in Math. vol. 304, Springer-Verlag, Berlin Heidelberg
New York, 1972.

10



[4] C. Casacuberta, Anderson localization from a modern point of view, in: The
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