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We prove that every homotopical localization of the circle S1 is an aspherical space
whose fundamental group A is abelian and admits a ring structure with unit such
that the evaluation map End(A)→ A at the unit is an isomorphism of rings. Since
it is known that there is a proper class of nonisomorphic rings with this property,
and we show that all occur in this way, it follows that there is a proper class of
distinct homotopical localizations of spaces (in spite of the fact that homological
localizations form a set). This answers a question asked by Farjoun in the nineties.

More generally, we study localizations Lf K(G, n) of Eilenberg–Mac Lane spaces
with respect to any map f , where n ≥ 1 and G is any abelian group, and show that
many properties of G are transferred to the homotopy groups of Lf K(G, n). Among
other results, we show that, if X is a product of abelian Eilenberg–Mac Lane spaces
and f is any map, then the homotopy groups πm(Lf X) are modules over the ring
π1(Lf S1) in a canonical way. This explains and generalizes earlier observations
made by other authors in the case of homological localizations.
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Introduction

Preliminary versions of this article have circulated for a long time and parts of it were
reported in a survey article [19]. Since then, some of the ideas contained in it have
triggered a considerable amount of work about the preservation of algebraic structures
by localizations in homotopy theory and group theory; references are given below.
A stable analogue was developed in [20, 43]. Thus, the presentation of results in the
present paper predates a number of sequels that have been published in the meantime.
We have kept the core of the paper in its original form, although the present version is

http://www.ams.org/mathscinet/search/mscdoc.html?code=55P60, 55P20,(16S10)
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more detailed and much more self-contained than earlier drafts, partly due to pertinent
comments of referees, to whom we are indebted.

One of the initial motivations of the article was the following question posed by
Farjoun: For a fixed space X , do the distinct homotopy types of the form Lf X form a
set or instead a proper class if f ranges over all maps? Here Lf denotes homotopical
localization with respect to a given map f between spaces—the essentials of this theory
can be found in [8, 27, 47]. Although it is known that localizations with respect to
homology theories form a set [34, 56], we discovered that there is a proper class of
distinct homotopy types of the form Lf S1 , where S1 denotes the circle. Similarly, as
was later shown in [20], there is a proper class of nonequivalent localizations of the
Eilenberg–Mac Lane spectrum HZ in the homotopy category of spectra.

In Section 1 we give a new proof, based on a study of the interaction of localizations
with certain monads, of the fact—first described by Farjoun in [27]—that, for every
abelian group G, every map f and n ≥ 1, there are abelian groups A and B such that

Lf K(G, n) ' K(A, n)× K(B, n + 1).

Following a personal communication by Bousfield, we prove that B = 0 when the
group G is reduced, i.e., when it does not contain any nonzero divisible subgroups. In
fact we prove that the group B is determined by a torsion divisible direct summand
of G. Hence, if G is torsion-free then B = 0 as well.

It follows that for every map f there is an abelian group A such that

Lf S1 ' K(A, 1),

and A admits a unique commutative ring structure with 1 such that the unit morphism
Z → A induces an isomorphism of rings End(A) ∼= A. (The elements of End(A) are
endomorphisms of A as an abelian group, operating under addition and composition.)

Rings A with this property are called rigid in this article, although they are called
E-rings elsewhere, a name first used by Schultz in [70]. Correspondingly, rings A
such that the multiplication map A ⊗ A → A is bijective were called T -rings in [12],
although T -rings are normally called solid rings by topologists [5, 11].

Besides the fact that solid rings are rigid (as shown in Theorem 3.6 below or already in
[12] with a different naming), we have chosen this terminology in order to emphasize
that rigid rings have as few additive endomorphisms as possible. A further justification
comes from the fact that a ring is rigid if and only if its underlying abelian group admits
only one multiplication with a fixed left identity element; see Theorem 3.3.
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The rigid rings turn out to be precisely the localizations of Z in the category of groups,
while the solid rings are the Z-epimorphs, i.e., rings for which the unit morphism
Z → A is an epimorphism of rings. The p-adics Ẑp or a product Z[1/p] × Z[1/q]
with p 6= q are examples of rigid rings which are not solid. Torsion-free rigid rings of
finite rank are well understood [60].

More generally, if R is any commutative ring, we say that an R-algebra A with 1 is
rigid if evaluation at 1 yields an isomorphism of R-algebras EndR(A) ∼= A. Some basic
properties of rigid R-algebras are described in Section 3, where we generalize earlier
results of Bowshell and Schultz [12, 70]. An updated presentation of results about rigid
R-algebras can be found in [41, Chapter 13], where they are named E(R)-algebras.
See also [36, 42].

Neither the field of reals R nor the p-adic field Q̂p for any prime p admit a rigid ring
structure. Thus, there is no analogue of a rationalization functor where Q is replaced
by R, nor a completion functor taking values in Q̂p .

It is known that there exist rigid rings of arbitrarily large cardinality [33, 42]. Since
every rigid ring A occurs as the fundamental group of Lf S1 for a certain map f (namely,
the map f : S1 → K(A, 1) induced by the inclusion of 1 into A), we infer that there is
a proper class of distinct homotopy types of the form Lf S1 , where f ranges over all
possible maps. This answers Farjoun’s question referred to above.

The knowledge of the ring A = π1(Lf S1) gives important information about the effect
of the functor Lf on other spaces. Specifically, as we show in Theorem 7.1, the
homotopy groups of the f -localization of any GEM (that is, any product of abelian
Eilenberg–Mac Lane spaces) are then A-modules. If A is finite, then the f -localization
of any GEM is a K(G, 1). In this context, a problem remains unsolved at the time of
publication of this article, in spite of the efforts made by several people: to prove or
disprove that if π1(Lf S1) is finite then every f -local space is a K(G, 1).

On the other hand, if A is not cyclic, then there is a set of primes P such that the higher
homotopy groups of the f -localization of any GEM are either P-local (when A/Z is
torsion) or Ext-P-complete otherwise. To prove this, we rely on [8, Lemma 5.5]; the
set P consists of those primes p such that multiplication by p is an automorphism
of A/Z. This result sheds additional light on earlier calculations by Bousfield [7] and
Mislin [54] of homological localizations of Eilenberg–Mac Lane spaces.

Possibly the main conceptual finding of this article, which has proved to be fruitful
in subsequent work, is that many kinds of algebraic structures are preserved by local-
izations. This came from observing that, if G is any abelian group (not necessarily
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finitely generated), then the group A = πn(Lf K(G, n)) can be described as a localiza-
tion of G in the category of groups with respect to a certain homomorphism; indeed,
A ∼= LαG where α is the homomorphism G → A induced by the localization map
K(G, n) → Lf K(G, n). In this article, we use this fact to show that A inherits many
properties of G and it does so in a unique way. For instance, if R is a commutative
ring, then the nth homotopy group of every localization of a K(R, n) admits a unique
compatible structure of a rigid R-algebra. Some of our results about rigid algebras
were used and extended in Strüngmann’s thesis [72], as well as in [13, 36, 40].

Classes of groups that are closed under localizations (or fail to be closed) were studied in
[3, 49, 57, 66, 67, 68]. Special cases were worked out in [65] for torsion abelian groups
and in [30, 31] for torsion-free abelian groups. In [37, 39] it was proved that every
nonabelian finite simple group admits a proper class of nonisomorphic localizations.
Other results about localizations of finite simple groups were obtained in [58].

Dual results relating cellularization of spaces with colocalization of groups or modules
were first obtained by Rodrı́guez and Scherer in [63, 64]. The study of cellular covers of
groups and modules, as well as the preservation of algebraic structures by such functors,
has been an active subject of research; see [4, 15, 16, 24, 28, 29, 32, 35, 38, 69] or the
thorough survey contained in [42, Part VI].

Cellularizations of stable structures were discussed in [45]. In [20] it was shown
that, for similar reasons as in this article, exact f -localizations in the stable homotopy
category convert ring spectra (in the homotopical sense) into ring spectra, and module
spectra into module spectra, although connectivity assumptions are required in the
case of nonexact localizations, i.e., those not commuting with suspension. The same
facts are actually true for strict rings and strict modules in monoidal model categories
of spectra, as shown in [21]. This stronger phenomenon is closely related to the
preservation of loop spaces by localizations—first proved in [8, 27]—and is explained
by the interaction of homotopical localizations with certain operads [21].
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1 Localizations of Eilenberg–Mac Lane spaces

All spaces in this article are meant to be pointed CW-complexes, except for auxiliary
occurrences of mapping spaces. Maps preserve base points, and [X,Y] denotes the set
of pointed homotopy classes of maps X → Y .

Let f : W → V be any map. A space X is called f -local if the induced map of unpointed
mapping spaces

map(f ,X) : map(V,X) −→ map(W,X)

is a weak homotopy equivalence. If X is connected, then it is f -local if and only if the
induced map of pointed mapping spaces

map∗(f ,X) : map∗(V,X) −→ map∗(W,X)

is a weak homotopy equivalence. As observed in [8, Lemma 2.1], this follows by
applying the functor map∗(−,X) to the cofibre sequences S0 → W+ → W and
S0 → V+ → V , where the subscript + denotes a disjoint base point.

A map g : Y → Z is called an f -equivalence if

map(g,X) : map(Z,X) −→ map(Y,X)

is a weak homotopy equivalence for each f -local space X . It follows from the definition
that, for every f , the class of f -local spaces is closed under homotopy limits (in
particular, ΩX is f -local whenever X is f -local), and the class of f -equivalences is
closed under homotopy colimits.

An f -localization of a space X is a map ηX : X −→ Lf X which is an f -equivalence
and where Lf X is f -local. Such a map exists for all X and for every choice of f , and it
is unique up to homotopy. Proofs are given, using different techniques, in [6, 27, 47].
The map ηX is initial in the pointed homotopy category among maps from X into
f -local spaces, and terminal among f -equivalences going out of X . Thus, (Lf , η) is
an idempotent monad on the pointed homotopy category. The natural transformation
Lf Lf → Lf is an isomorphism and hence it is omitted from the notation. From
general properties of idempotent monads [19] it follows, among other things, that a
map g : Y → Z is an f -equivalence if and only if Lf (g) : Lf Y → Lf Z is a homotopy
equivalence, and if and only if it induces a bijection [Z,X] ∼= [Y,X] for every f -local
space X . Similarly, a space X is f -local if and only if every f -equivalence g : Y → Z
induces a bijection [Z,X] ∼= [Y,X]. It also follows that every homotopy retract of
an f -local space is f -local, and every homotopy retract of an f -equivalence is an
f -equivalence.
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As explained in [73], Lf sends connected spaces to connected spaces. Moreover, if the
induced map π0(f ) of connected components is not bijective, then Lf X is contractible
for all nonempty spaces X .

If the map f is of the form W → ∗ (where ∗ denotes a one-point space and W is
connected), then f -local spaces are called W -null. Thus, Y is W -null if and only if
the pointed mapping space map∗(W,Y) is weakly contractible. For f : W → ∗, it is
customary to use the notation PW instead of Lf , and call it W -nullification (the choice
of the letter P was due to the fact that Postnikov sections are special cases).

From now on, K(G, n) will denote an Eilenberg–Mac Lane space where G is assumed
abelian if n = 1. The departure point of this article is the fact that, if f is any map,
then

(1–1) Lf K(G, n) ' K(A, n)× K(B, n + 1)

for some abelian groups A and B. This was shown by Farjoun in [27, 4.B]. In Theo-
rem 1.3 below we give an alternative proof of (1–1) using general properties of algebras
over monads, and strengthen the result by showing that to each map f one can asso-
ciate functorially a homomorphism g of commutative topological monoids such that
Lf K(G, n) ' LgK(G, n) for every K(G, n). We are indebted to an anonymous referee
for indicating this fact. It is interesting to note the analogy with [44, Proposition 3.2]
in the stable homotopy category.

The infinite symmetric product SP∞X of a pointed CW-complex X is the colimit of
the quotients SPkX = Xk/Σk , where Xk denotes the product of k copies of X (with the
compactly generated topology) and Σk is the symmetric group on k elements acting
by permutations of the factors. The inclusion SPkX ⊂ SPk+1X is given by placing the
base point in the additional component.

The space SP∞X is a commutative topological monoid (operating by juxtaposition),
and it is free as such on X . Therefore, SP∞ may be viewed as the composite of a
free-forgetful adjoint pair between the category of pointed spaces and the category of
commutative topological monoids with the unit element as base point. In fact, there are
natural transformations ι : Id → SP∞ (corresponding to the inclusion of X = SP1X
into SP∞X for each X ) and µ : SP∞SP∞ → SP∞ defining a monad on spaces.

Recall that, if (T, ι, µ) is a monad on any category [50], a T -algebra structure on an
object X is a morphism ρ : TX → X such that ρ ◦ ιX = idX and ρ ◦ µX = ρ ◦ Tρ. As
pointed out in [51, §3], the algebras over SP∞ are the algebras over the commutative
operad, namely commutative topological monoids. Thus the free-forgetful adjunction
is the Eilenberg–Moore factorization of SP∞ as a monad on spaces.
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Since the functor SP∞ preserves homotopy equivalences, the monad (SP∞, ι, µ) de-
scends to the homotopy category. In what follows, we shall be interested in the
Eilenberg–Moore factorization of SP∞ as a monad on the pointed homotopy category.
Let us denote by [−,−]SP∞ the corresponding morphism set. The adjunction yields
bijections

(1–2) [SP∞X,Y]SP∞ ∼= [X,UY]

for every space X and every SP∞ -algebra Y , where U is the forgetful functor.

A generalized Eilenberg–Mac Lane space (in short, a GEM) is a pointed connected
space X with π1(X) abelian and such that X '

∏∞
n=1 K(πn(X), n). Here and below, we

mean the weak product (i.e., the direct limit of products of a finite number of factors),
although this does not change the homotopy type.

As shown by Dold–Thom [26], πn(SP∞X) ∼= Hn(X) for n ≥ 1. Therefore, if M(G, n)
is a Moore space with G abelian and Hn(M(G, n)) ∼= G, then SP∞M(G, n) = K(G, n).
This implies the following (so, in particular, SP∞X is a GEM for all connected
spaces X ).

Proposition 1.1 A pointed connected space X is a GEM if and only if it is the
underlying space of an SP∞ -algebra in the pointed homotopy category, which is then
unique up to isomorphism.

Proof Let ρ : SP∞X → X be an SP∞ -algebra structure on a space X . Then X is a
retract of SP∞X and consequently π1(X) is abelian. For each n ≥ 1, choose a map
αn : M(πn(X), n)→ X inducing an isomorphism on πn . These yield together a map

α : ∨∞n=1 M(πn(X), n) −→ X,

corresponding by (1–2) to an SP∞ -algebra map β :
∏∞

n=1 K(πn(X), n) → X , namely
β = ρ◦SP∞α , whose underlying map of spaces is a homotopy equivalence. Moreover,
β is an isomorphism of SP∞ -algebras, since any homotopy inverse of β is also an
SP∞ -algebra map. This proves that the space X is a GEM (compare with [27, 4.B.2.1],
[46, 4.K.7], or [52, Theorem 24.5]), and it also proves that the SP∞ -algebra structure
on X is unique up to isomorphism.

Conversely, every GEM X is homotopy equivalent to
∏∞

n=1 K(πn(X), n), which admits
a (componentwise) commutative monoid structure, hence an SP∞ -algebra structure in
the category of spaces, which passes to the homotopy category.
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For an idempotent monad (L, η) on a category, the morphisms ϕ such that Lϕ is an
isomorphism are called L-equivalences and the objects isomorphic to LX for some
X are called L-local. A functor T is said to preserve L-equivalences if Tϕ is an
L-equivalence whenever ϕ is an L-equivalence.

Theorem 1.2 Let (T, ι, µ) be a monad on a category and let (L, η) be an idempotent
monad on the same category. If the functor T preserves L-equivalences, then for every
T -algebra structure ρ : TX → X on an object X there is a unique T -algebra structure
on LX such that ηX : X → LX is a morphism of T -algebras.

Proof Since ηX : X → LX is an L-equivalence, the morphism TηX is an L-equivalence
by assumption. Therefore, there is a unique morphism σ : TLX → LX such that

(1–3) σ ◦ TηX = ηX ◦ ρ.

As we next check, σ is a T -algebra structure on LX , and (1–3) says then that ηX is a
morphism of T -algebras. The fact that σ ◦ ιLX = idLX follows from the equalities

σ ◦ ιLX ◦ ηX = σ ◦ TηX ◦ ιX = ηX ◦ ρ ◦ ιX = ηX

and from the fact that two morphisms LX → LX coincide if and only if their composites
with ηX : X → LX are equal. Similarly, one proves that σ ◦µLX = σ ◦Tσ by checking
that the composites of both members of this expression with TTηX coincide:

σ ◦ µLX ◦ TTηX = σ ◦ TηX ◦ µX = ηX ◦ ρ ◦ µX

= ηX ◦ ρ ◦ Tρ = σ ◦ TηX ◦ Tρ = σ ◦ Tσ ◦ TTηX,

and then using the fact that TTηX is an L-equivalence, since T preserves L-equivalences
by assumption.

Now we can prove the following result, in which part 4 is new, while the rest is
essentially contained in [27, 4.B]. The preservation of GEMs by localizations was also
discussed by Badzioch in [2] and by Bousfield in [9, Corollary 2.11].

Theorem 1.3 The following claims are true for every map f of pointed spaces:

(1) SP∞ preserves f -equivalences.

(2) Lf sends GEMs to GEMs.

(3) For every abelian group G and n ≥ 1 there are abelian groups A and B such
that Lf K(G, n) ' K(A, n)× K(B, n + 1).

(4) If X is a GEM, then Lf X ' LSP∞f X .
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Proof As shown in [27, 1.G], the functor Lf commutes with finite products up to
homotopy. Hence, if g : X → Y is any f -equivalence, then the k-fold product gk is an
f -equivalence for all k . In order to show that SPkg is also an f -equivalence for all k ,
one may argue as in [27, 4.A], as follows. For each space X , the symmetric product
SPkX = Xk/Σk is a colimit of the diagram from Σk (viewed as a category with one
object) to the category of spaces sending the single object to Xk and each element of
Σk to the corresponding automorphism of Xk . This diagram is not free. However,
SPkX is also the colimit of the diagram indexed by the opposite of the category of
orbits of Σk sending each quotient Σk/H to the fixed-point subspace (Xk)H and each
translation self-map of Σk/H to the corresponding automorphism. Now this diagram
is free, and therefore SPkX is its homotopy colimit. Note that this diagram takes values
in fixed-point subspaces of actions of subgroups of Σk on Xk , and each such subspace
is homeomorphic to Xn for some n ≤ k (compare with [2, 3.1]). This shows that the
map SPkg is a homotopy colimit of a diagram taking values in gn with n ≤ k . Since
the class of f -equivalences is closed under homotopy colimits, we may infer that SPkg
is an f -equivalence for all k . Finally, note that SP∞g is not only the colimit of the
sequence SPkg, but it is in fact a homotopy colimit, since all the arrows in the sequence
are inclusions. Therefore, SP∞g is an f -equivalence.

In order to prove (2) and (3), we may use Theorem 1.2 to endow Lf K(G, n) with an
SP∞ -algebra structure in the pointed homotopy category such that the localization map
η : K(G, n)→ Lf K(G, n) is an algebra map. By Proposition 1.1, Lf K(G, n) is a GEM,
hence isomorphic (as an SP∞ -algebra) to

∏∞
i=1 K(Ai, i) where Ai = πi(Lf K(G, n)).

As a special case of (1–2), we have a bijection

(1–4) [K(G, n),Lf K(G, n)]SP∞ ∼= [M(G, n),Lf K(G, n)],

where the algebra structure of Lf K(G, n) is neglected in the right-hand term. The set
[M(G, n),Lf K(G, n)] is the product of the sets [M(G, n),K(Ai, i)], which are possibly
nonzero only for

Hn(M(G, n); An) ∼= Hom(G,An) and Hn+1(M(G, n); An+1) ∼= Ext(G,An+1).

Therefore, the map M(G, n) → Lf K(G, n) corresponding to the localization map η

under (1–4) has M(G, n)→ K(An, n)×K(An+1, n+1) as a homotopy retract. From the
fact that the projections Lf K(G, n) → K(Ai, i) are SP∞ -algebra maps it then follows
that η has a retract

ξ : K(G, n) −→ K(An, n)× K(An+1, n + 1).

Forgetting the SP∞ -algebra structure, we conclude that ξ is an f -localization, since
every homotopy retract of an f -equivalence is an f -equivalence, and every homotopy
retract of an f -local space is f -local. This proves (3).
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In order to prove (4), since both Lf and LSP∞f preserve GEMs, it is sufficient to check
that a GEM is f -local if and only if it is SP∞f -local. Note first that, by (1), SP∞f
is an f -equivalence, and this implies that every f -local space is SP∞f -local. For the
converse, let X be a GEM and choose a structure map ρ : SP∞X → X . Suppose
that X is SP∞f -local, that is, map(SP∞f ,X) is a weak equivalence. Observe that the
composite

map(f ,X) −→ map(SP∞f , SP∞X) −→ map(SP∞f ,X),

where the second arrow is induced by ρ, is a homotopy right inverse of the map induced
by the unit ιf : f → SP∞f . Hence map(f ,X), as a homotopy retract of map(SP∞f ,X),
is a weak equivalence too, so X is f -local. This concludes the proof.

One consequence of Theorem 1.3 is that nullifications of GEMs can be explicitly de-
scribed in terms of classical localizations and completions at primes, since nullifications
with respect to Moore spaces are well understood [10, Theorem 7.5].

Corollary 1.4 If W is any connected space and X is a GEM, then there is a wedge
M = ∨∞i=1M(Gi, i) of Moore spaces such that PWX ' PMX .

Proof Write SP∞W '
∏∞

i=1 K(Gi, i) for a family of abelian groups Gi , and choose
M = ∨∞i=1M(Gi, i). Then SP∞M ' SP∞W and hence, by part 4 of Theorem 1.3,

PWX ' PSP∞WX ' PSP∞MX ' PMX,

as claimed.

Hence, for example, there are very few homotopy types of the form PWS1 , where W
is any space (in fact, either PWS1 ' S1 or PWS1 ' ∗; cf. Corollary 5.10). However,
as we show next, f -localizations of GEMs are more involved if f : W → V is a map
where neither W nor V are contractible. Among other features, there is a proper class
of distinct homotopy types of the form Lf S1 .

Part 1 of Theorem 1.3, stating that SP∞ preserves f -equivalences for every f , can be
generalized as follows. If E is any (homotopy) ring spectrum, then X 7→ E∧X defines
a monad on the homotopy category of spectra and X 7→ Ω∞(E∧Σ∞X) defines a monad
on the pointed homotopy category of spaces, where the functor Σ∞ sends each space to
its suspension spectrum and Ω∞ is its left adjoint. If E is chosen to be the Eilenberg–
Mac Lane spectrum HZ, then each connected component of Ω∞(HZ ∧ Σ∞X) is a
GEM for all X (cf. [9, §2] or [20, Proposition 5.3]) and the natural map

SP∞X −→ Ω∞(HZ ∧ Σ∞X)

induces isomorphisms of πn for n ≥ 1.
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Theorem 1.5 Let f be any map and R a ring with 1. Then the following hold:

(a) The monad X 7→ Ω∞(HR ∧ Σ∞X) preserves f -equivalences.

(b) If X is a GEM and each of the homotopy groups of X is equipped with a left
R-module structure, then the homotopy groups of Lf X also admit left R-module
structures.

Proof The functor Σ∞ sends f -equivalences of spaces to Σ∞f -equivalences of spec-
tra, while smashing with HR preserves Σ∞f -equivalences (see [9, 20]), and Ω∞ sends
Σ∞f -equivalences to f -equivalences since Lf Ω

∞E ' Ω∞LΣ∞f E for every spec-
trum E , as shown in [9, Theorem 2.10] for nullifications and in [22] in full generality.
This proves (a).

In order to prove (b), recall from [20, §5] that the connected algebras over the monad
X 7→ Ω∞(HR∧Σ∞X) are precisely the GEMs equipped with a left R-module structure
on each of their homotopy groups. Since this monad preserves f -equivalences by
part (a), Theorem 1.2 implies our claim.

2 Algebraic formulas

From part 3 of Theorem 1.3, in this section we derive algebraic formulas involving the
homotopy groups of an arbitrary localization of a K(G, n). For an abelian group G, an
integer n ≥ 1 and a map f , let

η : K(G, n) −→ K(A, n)× K(B, n + 1)

be the f -localization map. Then η is determined, up to homotopy, by its composites
with the projections onto the two factors, which correspond to elements α ∈ Hom(G,A)
and β ∈ Ext(G,B). Not all elements of Hom(G,A) and Ext(G,B) can occur, but the
following conditions are necessary and sufficient. For each element β ∈ Ext(G,B),
we choose a representing exact sequence

(2–1) 0 −→ B −→ E −→ G −→ 0

and consider the connecting homomorphism δ : Hom(B,B)→ Ext(G,B).

Theorem 2.1 Let G be an abelian group and let n ≥ 2. Let A and B be abelian groups
and suppose given elements α ∈ Hom(G,A) and β ∈ Ext(G,B). Then there exists a
map f such that the f -localization Lf K(G, n) is determined by α and β if and only if
α and the connecting homomorphism δ associated with β induce isomorphisms
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(1) Hom(A,A) ∼= Hom(G,A),

(2) Hom(A,B) ∼= Hom(G,B),

(3) Ext(A,B)⊕ Hom(B,B) ∼= Ext(G,B).

If n = 1, then the same claim is true if we add the condition that α induces

(4) Hom(H2(A),B) ∼= Hom(H2(G),B).

Proof Suppose first that Lf K(G, n) ' K(A, n)×K(B, n + 1) for a map f , and suppose
that η : K(G, n) → Lf K(G, n) is determined by α and β . Then, since the class of
f -local spaces is closed under loops and retracts, each of K(A, n), K(B, n + 1) and
K(B, n) is f -local. Since η is an f -equivalence, the fact that K(A, n) is f -local tells us
that η induces an isomorphism

Hn(K(A, n)× K(B, n + 1); A) ∼= Hn(K(G, n); A),

which yields the isomorphism (1). Similarly, the fact that K(B, n) is f -local implies
that α induces (2). The fact that K(B, n + 1) is f -local yields

(2–2) Hn+1(K(A, n)× K(B, n + 1); B) ∼= Hn+1(K(G, n); B).

Here we need to recall from [75, Theorem V.7.8] that Hn+1(K(G, n)) = 0 for every
abelian group G if n ≥ 2. Hence, if n ≥ 2, then (2–2) is equivalent to (3), where the
isomorphism is induced by α on the first summand and is equal to δ on the second
summand. If n = 1, then (2–2) is equivalent to (3) together with (4).

Conversely, assume that conditions (1)–(3) hold, and that condition (4) also holds if
n = 1. Let X = K(A, n)× K(B, n + 1), and let f : K(G, n)→ X be given by α and β .
Then map∗(K(G, n),X) is a group-like space whose only possibly nonzero homotopy
groups are Hom(G,A) ⊕ Ext(G,B) in dimension 0 and Hom(G,B) in dimension 1,
while if n ≥ 2 then map∗(X,X) has

Hom(A,A)⊕ Ext(A,B)⊕ Hom(B,B)

in dimension 0 and Hom(A,B) in dimension 1. Thus, the given conditions ensure that
X is f -local. Since f is indeed an f -equivalence, it follows that X ' Lf K(G, n). The
case n = 1 is treated analogously using (4).

Lemma 2.2 Suppose given α ∈ Hom(G,A) and β ∈ Ext(G,B), where G, A and B
are abelian groups. Let N be the kernel of α and let δ : Hom(B,B) → Ext(G,B) be
the connecting homomorphism associated with β . If α and δ induce isomorphisms

(1) Hom(A,B) ∼= Hom(G,B) and
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(2) Ext(A,B)⊕ Hom(B,B) ∼= Ext(G,B)

then

(1′ ) Hom(N,B) = 0, and

(2′ ) i∗ ◦ δ : Hom(B,B) → Ext(N,B) is an isomorphism, where i : N → G denotes
the inclusion.

Furthermore, (1′ ) and (2′ ) imply (1) and (2) if α is surjective.

Proof Consider the exact sequence

0 −→ N i−→ G α−→ Q −→ 0,

where Q = Imα , and the associated long exact sequence

0 −→ Hom(Q,B) −→ Hom(G,B) −→ Hom(N,B)(2–3)

−→ Ext(Q,B) −→ Ext(G,B) −→ Ext(N,B) −→ 0.

Consider also the factorization

(2–4) Hom(A,B)→ Hom(Q,B) � Hom(G,B)

of α∗ , where the second arrow is injective, and, similarly,

(2–5) Ext(A,B) � Ext(Q,B)→ Ext(G,B),

where the first arrow is surjective. From the isomorphism Hom(A,B) ∼= Hom(G,B) it
follows that each arrow in (2–4) is an isomorphism, and hence the connecting homomor-
phism Hom(N,B)→ Ext(Q,B) in (2–3) is injective. On the other hand, (2) implies that
α∗ : Ext(A,B)→ Ext(G,B) is injective and therefore the arrow Ext(A,B)→ Ext(Q,B)
is an isomorphism in (2–5). This forces that Hom(N,B) = 0, as in (1′ ). Furthermore,
Ext(N,B) is the cokernel of α∗ : Ext(A,B) → Ext(G,B), which, in view of (2), is
isomorphic to Hom(B,B) via δ . Hence i∗ ◦ δ is an isomorphism, as claimed in (2′ ).

If α is surjective, then Q = A, so (1) follows from (1′ ). Moreover, (2′ ) implies that
the epimorphism i∗ : Ext(G,B)→ Ext(N,B) splits, yielding (2).

As a crucial example, we consider Lf K(Z, n) for an arbitrary map f and n ≥ 1. In this
case, we infer from part 3 of Theorem 2.1 that B = 0, since Ext(Z,B) = 0 implies
that Hom(B,B) = 0. Furthermore, if α : Z→ A is induced by η : K(Z, n)→ K(A, n),
then part 1 of Theorem 2.1 yields an isomorphism

(2–6) Hom(A,A) ∼= Hom(Z,A) ∼= A
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sending each endomorphism ϕ of A to ϕ(α(1)). Hence we may define a multiplication
in A corresponding to composition in Hom(A,A), and in this way A acquires a ring
structure with a unit element, namely α(1). This ring structure is of a very special
kind, which we discuss next.

Definition 2.3 A ring A with 1 is rigid if the evaluation map Hom(A,A)→ A given
by ϕ 7→ ϕ(1) is bijective.

(The zero ring is viewed as a ring with 1 = 0, so it is rigid.)

Theorem 2.4 For any map f and any integer n ≥ 1, we have Lf K(Z, n) ' K(A, n),
where A admits a structure of a rigid ring and the induced homomorphism Z → A is
a ring map. Moreover, all rigid rings occur in this way.

Proof The first assertion follows from (2–6). To prove the second claim, note that if
A is a rigid ring and α : Z → A is its unit map, then the map f : K(Z, n) → K(A, n)
induced by α is an f -localization.

From this fact it follows, for example, that πn(Lf K(Z, n)) cannot be isomorphic to
Z/p∞ nor to Z[1/p]× Z[1/p]. However, it can be isomorphic to Z[1/p]× Z[1/q] if
p and q are distinct primes.

Rigid rings are also called E-rings, due to the fact that they satisfy A ∼= End(A). All
rigid rings are commutative (see Theorem 3.2 below for a more general result), and, if A
is a commutative ring such that A ∼= End(A) as rings, then it follows from Theorem 3.5
that the evaluation map End(A) → A is an isomorphism, so A is rigid. This remark
goes back to [70]; see also [41, Proposition 13.1.9].

The basic examples of rigid rings are the rings Z/m, the subrings of Q, and the ring Ẑp

of p-adic integers, for any p. If A, B are rigid rings and Hom(A,B) = 0 = Hom(B,A),
then the product A × B is rigid. Other less obvious examples of rigid rings are the
products ∏

p∈P

Z/p,
∏
p∈P

Z(p),
∏
p∈P

Ẑp,

where P is an arbitrary set of primes, possibly infinite, and Z(p) denotes the integers
localized at p. In fact, as observed in [12, p. 200], if {Ai}i∈I is any set of rigid rings
such that Hom(

∏
i6=j Ai,Aj) = 0 for all j, then

∏
i∈I Ai is rigid. A classification of rigid

rings which are torsion-free of finite rank was achieved in [60].

As shown in [33] or in [42, Chapter 30], there are rigid rings of arbitrarily large
cardinality. This implies the following.
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Corollary 2.5 The collection of homotopy types of the form Lf S1 , where f ranges
over all maps, is a proper class (i.e., not a set).

Proof According to Theorem 2.4, the distinct homotopical localizations of S1 are
in one-to-one correspondence with the rigid rings. Since, according to [33, Corol-
lary 4.10], there is a proper class of nonisomorphic rigid rings, our claim follows.

This result is striking, since the distinct homological localizations of S1 are listed in [7]
and certainly form a set. Furthermore, Ohkawa proved in [56] that the stable Bousfield
equivalence classes of spectra form a set—another proof of this fact was given later
in [34]. This implies that the nonequivalent homological localization functors form a
set, both in the stable and in the unstable homotopy categories, while there is a proper
class of distinct f -localizations. We thank Neil Strickland for bringing Ohkawa’s
article to our attention.

The ring A = π1(Lf S1) carries important information about the higher homotopy
groups of f -local spaces. As we show next, this can be made particularly explicit in
the case of GEMs.

Theorem 2.6 If X is an f -local GEM for a certain map f and A denotes the commu-
tative ring π1(Lf S1), then the homotopy groups πi(X) admit A-module structures.

Proof If X is an f -local GEM, then each K(πi(X), i) is f -local because it is a homotopy
retract of X . Since K(πi(X), 1) ' Ωi−1K(πi(X), i), each K(πi(X), 1) is f -local as well.
Hence from the fact that η : S1 → K(A, 1) is an f -equivalence we obtain isomorphisms

πi(X) ∼= Hom(A, πi(X)),

endowing each πi(X) with an A-module structure.

We will show in Section 7 that the A-module structures stated in Theorem 2.6 are in fact
unique. Moreover, the A-modules G such that G ∼= Hom(A,G) are of a special kind,
which have also been studied in the literature [59]. Other consequences of Theorem 2.6
are discussed in Section 7.

The algebraic relations displayed in Theorem 2.1 impose strong restrictions on the
group B = πn+1(Lf K(G, n)), which is zero in many cases, as we show next. Recall that
an abelian group is called reduced if it does not contain nonzero divisible subgroups.

Theorem 2.7 For every abelian group G, every map f and every n ≥ 1, the group
πn+1(Lf K(G, n)) is reduced.
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Proof Write πn+1(Lf K(G, n)) = D⊕ R where D is divisible and R is reduced. Then
the composite of η : K(G, n)→ Lf K(G, n) with the projection onto K(D, n + 1) is null,
since it corresponds to an element of Ext(G,D), which is zero since D is divisible.
Hence, the universal property of η implies that D = 0.

Theorem 2.8 For an abelian group G, let Lf K(G, n) ' K(A, n) × K(B, n + 1) for a
map f and n ≥ 1, and let N be the kernel of the homomorphism G → A induced by
the localization map K(G, n)→ Lf K(G, n). If TN denotes the torsion subgroup of N ,
then:

(1) There is a map g such that LgK(TN, n) ' K(B, n + 1).

(2) If TN is reduced, then B = 0.

Proof If we denote F = N/TN , then the exact sequence

0 −→ TN −→ N −→ F −→ 0,

together with the fact that Hom(N,B) = 0 by part 1′ of Lemma 2.2, yields an exact
sequence

(2–7) 0 −→ Hom(TN,B) −→ Ext(F,B) −→ Ext(N,B) −→ Ext(TN,B) −→ 0.

Since F is torsion-free, Ext(F,B) is divisible by [55, Theorem 4.5]. According to
Theorem 2.7, the group B is reduced and therefore Hom(B,B) is also reduced. Hence
Ext(N,B) is reduced because it is isomorphic to Hom(B,B) by part 2′ of Lemma 2.2.
It follows that the homomorphism Ext(F,B) → Ext(N,B) in (2–7) is zero. This has
two consequences. First, since Hom(TN,B) is reduced and isomorphic to the divisible
group Ext(F,B), we infer that Hom(TN,B) = 0. Second,

Hom(B,B) ∼= Ext(N,B) ∼= Ext(TN,B).

These two facts together imply that the composite g of the arrows

K(TN, n) −→ K(N, n) −→ K(G, n) −→ K(B, n + 1)

is a g-localization if n ≥ 2. Thus LgK(TN, n) ' K(B, n + 1) if n ≥ 2.

In the case n = 1, we need to check that, in addition, Hom(H2(TN),B) = 0, as in
part 4 of Theorem 2.1. This follows from the vanishing of Hom(TN,B), since for every
abelian group G there is an epimorphism G ⊗ G � H2(G) (see [14, V.6.4(iii)]), and
Hom(G,B) = 0 implies Hom(G⊗ G,B) = 0 since there is a homomorphism from G
to G⊗ G given by x 7→ x⊗ g for every element g ∈ G. This ends the proof of (1).

Next, we show that (1) implies (2). For each prime p, let Tp be the p-torsion subgroup
of TN . Then Tp is a direct summand of TN and hence LgK(Tp, n) ' K(C(p), n + 1)
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where C(p) ⊆ B. If C(p) = 0 for all primes p, then LgK(Tp, n) is contractible for
every p and this implies, by [27, 1.D.2], that LgK(TN, n) is contractible, so B = 0 as
claimed. Otherwise, choose a prime p such that C(p) 6= 0. If K(Z/p, n) is g-local,
then Hom(Tp,Z/p) = 0, and hence p Tp = Tp . This tells us that Tp is p-divisible
and hence Hom(Z/p∞,Tp) 6= 0, contradicting the assumption that TN is reduced.
Therefore, LgK(Z/p, n) is contractible by part 1 of Lemma 6.2 and LgK(Z/pm, n) is
also contractible for every m by part 2 of Lemma 6.2.

Write Tp as a filtered colimit of its finitely generated subgroups {Sλ}λ∈Λ . Since f -loc-
alizations preserve finite products, each LgK(Sλ, n) is contractible. Since homotopy
groups commute with filtered homotopy colimits, K(Tp, n) ' hocolimλ∈Λ K(Sλ, n).
Using again [27, 1.D.2], we infer that LgK(Tp, n) is contractible and this contradicts
our choice of p.

Corollary 2.9 Suppose that Lf K(G, n) ' K(A, n)×K(B, n+1) for an abelian group G,
a map f , and n ≥ 1. If G is torsion-free or reduced, then B = 0.

Proof Let N be the kernel of the induced homomorphism G→ A. If G is torsion-free,
then N is also torsion-free and from part 1 of Theorem 2.8 it follows that B = 0. If G
is reduced, then N is also reduced and part 2 of Theorem 2.8 implies that B = 0.

The fact that B = 0 when G is reduced was first proved by Bousfield in an unpublished
manuscript. We are indebted to him for passing this information on to us. His argument
was outlined with permission in [43, Teorema 6.4.1] in the stable case.

Corollary 2.10 If G is a finitely generated abelian group, then for every map f and
each integer n ≥ 1 there is an abelian group A such that Lf K(G, n) ' K(A, n).

The group B need not be zero if G is not reduced. For example, if Lf is ordinary
homological localization with Z/p coefficients, then it follows from Lemma 6.1 below
applied to the fibre sequence

K(Z[1/p], n) −→ K(Z/p∞, n) −→ K(Z, n + 1)

that Lf K(Z/p∞, n) ' Lf K(Z, n + 1) ' K(Ẑp, n + 1). This case yields an example
where both A 6= 0 and B 6= 0, namely

Lf K(Z⊕ Z/p∞, n) ' K(Ẑp, n)× K(Ẑp, n + 1).

Theorem 2.11 Let G be any abelian group, f any map, and n ≥ 1. If Lf K(G, n) '
K(A, n) × K(B, n + 1), then there is a torsion divisible direct summand T ⊆ G such
that Lf K(T, n) ' K(B, n + 1) and Hom(B,B) ∼= Ext(T,B).
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Proof Write G ∼= D⊕R where D is divisible and R is reduced, and let TD denote the
torsion subgroup of D. Thus, D ∼= TD⊕F where F is torsion-free. Now Corollary 2.9
tells us that πn+1(Lf K(F, n)) = 0 and πn+1(Lf K(R, n)) = 0. Therefore, since Lf

preserves finite products, we conclude that Lf K(TD, n) ' K(A′, n) × K(B, n + 1) for
some A′ ⊆ A.

Let P denote the set of primes p such that K(Z/p∞, n) is f -local, and let P′ denote the
complementary set of primes. Let L be the P-torsion subgroup of TD and let T be the
P′ -torsion subgroup, so TD ∼= L⊕T . Thus, by the structure theorem of divisible abelian
groups [61, 4.1.5], L ∼= ⊕p∈P ⊕κp Z/p∞ for some cardinals κp , which embeds into∏

p∈P
∏
κp
Z/p∞ and hence it is a direct summand in it, since every divisible subgroup

splits. Therefore K(L, n) is f -local since it is a retract of a product of f -local spaces.
Hence, Lf K(TD, n) ' K(L, n) × Lf K(T, n) and Lf K(T, n) ' K(A′′, n) × K(B, n + 1)
for some A′′ ⊆ A′ . Suppose that A′′ 6= 0 and let α : T → A′′ be the homomorphism
induced by the localization map, which is nonzero by part 1 of Theorem 2.1, so there
is a prime p ∈ P′ and a direct summand S ⊆ T isomorphic to Z/p∞ whose image
in A′′ is nonzero. Then K(Z/p∞, n) is a retract of K(A′′, n) and this implies that
K(Z/p∞, n) is f -local, contradicting the fact that p ∈ P′ . This proves that A′′ = 0, as
we wanted to show. The isomorphism Hom(B,B) ∼= Ext(T,B) follows from part 3 of
Theorem 2.1.

Corollary 2.12 For a given map f , a prime p and an integer n ≥ 1, either K(Z/p∞, n)
is f -local or Lf K(Z/p∞, n) ' K(B, n + 1) where B satisfies

Hom(B,B) ∼= Ext(Z/p∞,B).

For a set of primes P, an abelian group B is called Ext-P-complete if

Hom(Z[P−1],B) = 0 = Ext(Z[P−1],B),

or, equivalenty, if the natural homomorphism

(2–8) B ∼= Hom(Z,B) −→ Ext(Z[P−1]/Z),B) ∼=
∏
p∈P

Ext(Z/p∞,B)

is an isomorphism. Thus, for a single prime p, an abelian group B is Ext-p-complete
if the natural homomorphism B → Ext(Z/p∞,B) is an isomorphism. The only
examples that we know of abelian groups B such that Hom(B,B) ∼= Ext(Z/p∞,B) are
the rigid rings whose underlying abelian group is Ext-p-complete. According to [12,
Corollary 3.5], these are necessarily isomorphic to Ẑp or Z/pk for some k .
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3 Rigid rings and rigid algebras

In this section, all rings are assumed to be associative and have an identity element,
which we denote by 1 if no confusion can arise.

Recall from Section 2 that a ring A is called rigid if the evaluation map Hom(A,A)→ A
given by ϕ 7→ ϕ(1) is bijective. We shall in fact discuss a more general notion, namely
rigid algebras. Most of the following results generalize basic properties of rigid rings
that can be found in [12, 70]. Some observations are new, notably Theorem 3.3. A more
detailed study of rigid algebras and their modules was undertaken by Strüngmann
in [72]. Rigid R-algebras are also called E(R)-algebras elsewhere. The book [41]
by Göbel and Trlifaj contains a chapter devoted to them (Chapter 13), and they are
discussed in greater detail in [42].

In the rest of this section, R will be supposed to be a commutative ring. By an R-algebra
we mean a ring A equipped with a central ring homomorphism R→ A.

Definition 3.1 An R-algebra A will be called rigid if the evaluation map

HomR(A,A) −→ A

given by ϕ 7→ ϕ(1) is bijective.

Theorem 3.2 If an R-algebra A is rigid, then A is commutative.

Proof Fix any element a ∈ A. Then the R-endomorphisms ϕ1 , ϕ2 of A given by

ϕ1(x) = ax, ϕ2(x) = xa

satisfy ϕ1(1) = ϕ2(1) and hence coincide.

If A is any R-algebra, then left multiplication defines a map µ : A → HomR(A,A).
Both µ and the evaluation map ε : HomR(A,A) → A are R-module homomorphisms
and the composition ε ◦ µ is the identity map. Therefore, ε is surjective and µ is
injective for every R-algebra A. It follows that an R-algebra is rigid if and only if the
evaluation map ε is injective.

Theorem 3.3 An R-algebra A is rigid if and only if the underlying R-module admits
only one compatible multiplication where 1 acts as a left identity.
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Proof Suppose first that A is rigid, and denote by ◦ an arbitrary multiplication in A
which is compatible with the R-module structure and where 1 ◦ a = a for all a. Then,
for any fixed element a ∈ A, the R-endomorphisms ϕ1 , ϕ2 given by ϕ1(x) = xa and
ϕ2(x) = x ◦ a satisfy ϕ1(1) = ϕ2(1) and hence coincide. This proves one implication.

Conversely, suppose that the multiplication in A is unique with the prescribed condi-
tions. If ψ is an R-endomorphism of A such that ψ(1) = 1, then the multiplication
defined by a ◦ b = ψ(a)b endows A with an R-algebra structure where 1 is a left
identity. By assumption, a ◦ b = ab for all a, b ∈ A, which implies that ψ = id.
Now, if ϕ1 and ϕ2 are two R-endomorphisms of A such that ϕ1(1) = ϕ2(1), then
ψ = id−ϕ1 +ϕ2 satisfies ψ(1) = 1, and hence ϕ1 = ϕ2 . This proves that A is rigid,
as claimed.

Example 3.4 The abelian group Z ⊕ Z admits a two-parameter family of distinct
multiplications for which (1, 1) is a two-sided identity. Each of these is determined by
a 2× 2 matrix with integer entries, representing left multiplication by (1, 0) in Z⊕Z.
Thus, if we impose the condition that the product of this matrix with (1, 1) equals
(1, 0), we obtain the family of solutions

(x, y) ◦ (z, t) = (λxz + (1−λ)xt + (1−λ)yz− (1−λ)yt, µxz−µxt−µyz + (1 +µ)yt),

where λ and µ are arbitrary integers. These multiplications are all associative and
commutative.

The following theorem extends results proved by Schultz [70] in the case R = Z.
Essentially the same statements can be found in [41, Proposition 13.1.9]. We supply a
proof for completeness.

Theorem 3.5 For an R-algebra A, the following statements are equivalent:

(1) A is rigid.

(2) The map µ : A→ HomR(A,A) given by µ(a)(x) = ax is bijective.

(3) HomR(A/〈1〉,A) = 0, where 〈1〉 is the R-submodule of A generated by 1.

(4) Every ϕ ∈ HomR(A,A) is an A-module endomorphism.

(5) The evaluation map ε : HomR(A,A)→ A is an isomorphism of R-algebras.

(6) The endomorphism ring HomR(A,A) is commutative.
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Proof The equivalence of (1) and (2) follows from the fact that µ is right inverse to ε.
Next, observe that the inclusion of the submodule 〈1〉 into A gives rise to a short exact
sequence of R-modules

0 −→ HomR(A/〈1〉,A) −→ HomR(A,A) −→ HomR(〈1〉,A) −→ 0,

where the third arrow coincides with the evaluation map ε and hence it is surjective.
This proves that (1) and (3) are equivalent. Next we prove that (1) ⇒ (4). Let ϕ be
an R-endomorphism of A. Fix any element a ∈ A. Then the endomorphisms ϕ1 , ϕ2

given by
ϕ1(x) = xϕ(a), ϕ2(x) = ϕ(xa)

satisfy ϕ1(1) = ϕ2(1) and hence coincide. This shows that ϕ is an A-module endo-
morphism, as required. The implication (4) ⇒ (1) is immediate, since under (4) any
ϕ ∈ HomR(A,A) is completely determined by its value on 1. We can now infer that
(4)⇒ (5), since

ε(ψ ◦ ϕ) = ψ(ϕ(1)) = ϕ(1) ψ(1) = ψ(1) ϕ(1) = ε(ψ) ε(ϕ).

The fact that (5) ⇒ (6) follows from Theorem 3.2, and we conclude by showing
that (6) ⇒ (4). Thus, assume that HomR(A,A) is a commutative ring, and pick any
ϕ ∈ HomR(A,A). Then, by assumption, ϕ commutes with µ(a) for any a ∈ A, which
yields

ϕ(ax) = [ϕ ◦ µ(a)](x) = [µ(a) ◦ ϕ](x) = aϕ(x)

for all x ∈ A, as we wanted to prove.

Recall from [11] that a ring A with 1 is called solid if the multiplication map

m : A⊗ A −→ A, m(a⊗ b) = ab,

is bijective. Such rings were called T -rings in [12] and Z-epimorphs in [25]. Indeed,
by [71, XI.1.2], a ring A is solid if and only if the unit map Z→ A is an epimorphism
of rings.

More generally, if R is any commutative ring, an R-algebra A will be called solid if
the multiplication map m : A ⊗R A → A is bijective or, equivalently, if the structure
map R→ A is an epimorphism of rings.

The fact that an R-algebra A is solid forces that a⊗b = ab⊗1 = 1⊗ab in A⊗R A, for
all a and b. Therefore, if A is solid, then, for every ϕ ∈ HomR(A,A), we can consider
the homomorphism Φ : A⊗R A→ A given by Φ(a⊗ b) = aϕ(b) and infer that

ϕ(ax) = Φ(1⊗ ax) = Φ(a⊗ x) = aϕ(x).

Hence, every ϕ ∈ HomR(A,A) is an A-module endomorphism, and Theorem 3.5 yields
the following result, which generalizes [12, Corollary 1.8].
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Theorem 3.6 Every solid R-algebra is rigid.

The following comparison makes the distinction between solid R-algebras and rigid
R-algebras clearer. By definition, an R-algebra A is solid if and only if the structure
map R → A is a ring epimorphism, and A is rigid if and only if the structure map
R → A is a localization, in the sense that every R-module homomorphism from R to
A can be uniquely extended to an endomorphism of A. Such “discrete localizations”
are analyzed further in the next sections.

The p-adic integer ring is rigid as a Z-algebra, but not solid. Solid rings have been
classified in [11, 12, 25, 76]. As stated in [12, Proposition 1.10], a ring A is solid
if and only if A/T(A) is isomorphic to a subring of Q and, if p is a prime such that
Tp(A) 6= 0, then Tp(A) is cyclic and A/T(A) is p-divisible. Here T(A) denotes the
torsion subgroup of A and Tp(A) is its p-primary component.

Proposition 3.7 The solid rings are precisely the rigid rings of rank at most 1.

Proof The fact that solid rings have rank at most 1 is deduced from their classification.
Conversely, according to [70, Lemma 2 and Lemma 3], if A is rigid then for every
prime p the group Tp(A) is cyclic and A = Tp(A)⊕ Ap where Ap is p-divisible.

We warn the reader that, while the class of solid rings is closed under quotients, the
class of rigid rings is not. For example, the quotient of A = Z[1/2] × Z[1/3] by the
ideal 5A is isomorphic to Z/5× Z/5.

4 Algebraic structures preserved by localizations

In this section we deal with localization in the category of groups with respect to a
group homomorphism ϕ : W → V , as in [18, §3] or [23, §1]. A group X is said to be
ϕ-local if the induced map

Hom(ϕ,X) : Hom(V,X) −→ Hom(W,X)

is a bijection of sets. A ϕ-equivalence of groups is a homomorphism ψ such that
Hom(ψ,X) is a bijection for every ϕ-local group X . Since the category of groups is
locally presentable [1], for every group G there is a ϕ-equivalence ηG : G → LϕG
into a ϕ-local group LϕG, with universal properties analogous to those mentioned in
Section 1; thus, (Lϕ, η) is an idempotent monad on the category of groups. We call
LϕG the ϕ-localization of G.
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It is well known that every localization of an abelian group is abelian. The following
argument is due to Farjoun.

Proposition 4.1 Let (L, η) be any idempotent monad on the category of groups. If A
is any abelian group, then LA is also abelian.

Proof For any element a ∈ A, conjugation by ηA(a) is the identity homomorphism
on ηA(A) and hence it is the identity homomorphism on LA. In particular, for each
x ∈ LA, conjugation by x is the identity on ηA(A) and hence it is the identity on LA.
This shows that LA is indeed abelian.

The following consequence is analogous to part 4 of Theorem 1.3.

Proposition 4.2 Let ϕ : W → V be a group homomorphism and ϕab : Wab → Vab its
abelianization. Then there is a natural isomorphism LϕA ∼= LϕabA for every abelian
group A.

Proof Since both Lϕ and Lϕab send abelian groups to abelian groups, it suffices to
observe—directly from the definition—that an abelian group is ϕab -local if and only
if it is ϕ-local.

In the rest of this section, we fix a (not necessarily commutative) ring R with 1 and
an arbitrary idempotent monad (L, η) on the category of abelian groups. Most of
the results given below are part of the Ph.D. thesis of the second-named author [62],
and some of them were also collected in [41, §13.1]. However, here we remove the
unnecessary assumption that the ring R be commutative.

If A is a ring or a module over some ring, we denote by LA the localization of the
underlying abelian group. Since the functor L is left adjoint to an additive functor, it
follows that L itself is additive [50, p. 83]; that is, the natural map

Hom(A,B) −→ Hom(LA,LB)

is a group homomorphism for all abelian groups A and B. In the case when A = B,
this map is in fact a ring homomorphism (under composition). Thus, if M is a left
R-module with structure map R → Hom(M,M), then LM inherits a left R-module
structure such that ηM : M → LM is an R-module map, by composing

R −→ Hom(M,M) −→ Hom(LM,LM).
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Moreover, the R-module structure on LM is unique if we impose that ηM be an
R-module map, since each endomorphism r : M → M induces a unique r̃ : LM → LM
such that r̃ ◦ ηM = ηM ◦ r , by the universal property of L . Thus we have proved the
following.

Theorem 4.3 If M is a left R-module, then LM admits a unique left R-module
structure such that the localization map ηM : M → LM is an R-module map.

There are other ways of proving the same result. Note that TA = R ⊗ A defines a
monad on abelian groups, whose algebras are precisely the left R-modules. Then
Theorem 1.2 applies to yield another proof of Theorem 4.3. The fact that T preserves
L-equivalences is a direct consequence of the hom-tensor adjunction. More generally,
the following is true.

Lemma 4.4 The tensor product of any two L-equivalences is an L-equivalence.

Proof If f : A → B and g : C → D are L-equivalences and Y is L-local, then f and
g induce isomorphisms

Hom(B⊗ D,Y) ∼= Hom(B,Hom(D,Y)) ∼= Hom(B,Hom(C,Y))
∼= Hom(C,Hom(B,Y)) ∼= Hom(C,Hom(A,Y)) ∼= Hom(A⊗ C,Y),

so f ⊗ g is also an L-equivalence.

Corollary 4.5 If F is a field and V is a vector space over F , then LV = 0 or LV ∼= V .

Proof By Theorem 4.3, LV is a vector space over F and hence isomorphic to a direct
sum of copies of F . Since every retract of an L-local group is L-local, it follows that
F is L-local (unless LV = 0) and hence V is L-local as well, since it is a retract of a
product of copies of F .

Lemma 4.6 If M is any R-module, then the natural map HomR(LR,LM) → LM
induced by the localization map ηR : R→ LR is an isomorphism.

Proof The universal property of L gives rise to an isomorphism of abelian groups
Hom(LR,LM) ∼= Hom(R,LM), which restricts to a monomorphism

(4–1) HomR(LR,LM) −→ HomR(R,LM) ∼= LM.

Now, given an R-module map ψ : R→ LM , it follows again from the universal property
of L that the induced homomorphism ψ̃ : LR→ LM is an R-module map, since

ψ̃(rηR(s)) = ψ̃(ηR(rs)) = ψ(rs) = rψ(s) = rψ̃(ηR(s))

for all r, s ∈ R. This shows that (4–1) is in fact bijective.
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Theorem 4.7 If R is a ring, then LR admits a unique ring structure such that the
localization map ηR : R→ LR is a ring homomorphism. If R is commutative, then LR
is commutative and it is rigid as an R-algebra.

Proof We can use (4–1) with M = R to endow LR with a ring structure, where
the multiplication is induced by composition in HomR(LR,LR). It follows from this
definition that ηR is a ring homomorphism, and, if R is commutative, then LR is rigid
as an R-algebra. As such, the multiplication in LR is commutative by Theorem 3.2
and unique by Theorem 3.3.

If R is not necessarily commutative, then the uniqueness of the multiplication can be
inferred from Lemma 4.4, since a ring structure on LR can be viewed as an abelian
group homomorphism LR ⊗ LR → LR, and there is only one compatible with the
multiplication R⊗ R→ R, since

ηR ⊗ ηR : R⊗ R −→ LR⊗ LR

is an L-equivalence.

A similar strategy can be used to prove other results, such as the following one.

Lemma 4.8 If f : R → S is a ring homomorphism, then Lf : LR → LS is also a ring
homomorphism.

Proof If µR : R ⊗ R → R and µS : S ⊗ S → S denote the respective multiplications,
then Lf is a ring homomorphism if and only if Lf ◦ µR = µS ◦ (Lf ⊗ Lf ), and this
is checked by composing with ηR ⊗ ηR on the right and next using, once more, the
universal property of L .

As a consequence, it follows that, if R is commutative and A is any R-algebra (i.e., a
ring homomorphism f : R→ A), then LA admits, not only a unique R-algebra structure
such that ηA : A→ LA is a homomorphism of R-algebras, but also a unique compatible
LR-algebra structure, given by the ring homomorphism Lf : LR→ LA. As shown next,
the same happens with R-modules.

Theorem 4.9 If M is a left R-module, then the R-module structure of LM can be
extended uniquely to a left LR-module structure.

Proof For this, use that ηR ⊗ ηM : R⊗M → LR⊗ LM is an L-equivalence.
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We conclude this section with a less straightforward consequence of Theorem 4.3.

Theorem 4.10 If R = Z/pr for some prime p and r ≥ 1, then LR ∼= Z/pi for some
i ≤ r , and ηR : R→ LR is mod pi reduction. Moreover, all exponents i ≤ r can occur.

Proof By Theorem 4.3, LR has an R-module structure, and hence it is annihilated
by pr . Since every abelian group of finite exponent is a direct sum of cyclic groups (as
shown in [48, Theorem 6] or [61, 4.3.5]), LR is isomorphic to a direct sum of copies
of Z/pj with j ≤ r . Since ηR : R→ LR induces an isomorphism

Hom(LR,LR) ∼= Hom(R,LR),

we infer that LR ∼= Z/pi for some i ≤ r and ηR is indeed mod pi reduction. To prove
the last claim, note that, if L is localization with respect to the projection Z/pr → Z/pi ,
then L(Z/pr) ∼= Z/pi .

5 Relating discrete and homotopical localizations

Let G be any abelian group and n ≥ 1. Then, as discussed in Section 1, for any map f
the f -localization of a K(G, n) takes the form

η : K(G, n) −→ K(A, n)× K(B, n + 1).

If we denote by α : G → A the homomorphism induced by η on the nth homotopy
group, then part 1 of Theorem 2.1 says precisely that the group A is α-local. Since
α is of course an α-equivalence, the group A is the α-localization of G. Moreover,
part 2 of Theorem 2.1 tells us that B is α-local as well. Therefore:

Theorem 5.1 Given any abelian group G, any n ≥ 1 and any map f , there exists a
group homomorphism α such that

Lf K(G, n) ' K(LαG, n)× K(B, n + 1),

and the group B is α-local.

This is relevant because the group A = πn(Lf K(G, n)) therefore inherits from G all the
properties that are preserved by idempotent monads on abelian groups.

Theorem 5.1 can be improved if the source and target of f are (n−1)-connected spaces.
In that case, as stated in Theorem 5.4 below, the homomorphism α can be chosen to
be equal to πn(f ).
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First of all, observe that, if f is a map between (n − 1)-connected spaces, then the
localization PSn with respect to Sn → ∗ (i.e., the n − 1 Postnikov section) turns f
trivially into a homotopy equivalence. This implies that, for all spaces X , the f -local-
ization map X → Lf X induces a homotopy equivalence PSnX ' PSnLf X ; cf. [73, §3].
From this fact we derive a generalization of [8, Corollary 4.4] and [73, §8]. We are
thankful to Jeff Smith for making this result evident to us.

Theorem 5.2 Let f : W → V be any map in which W and V are (n − 1)-connected
spaces. Then, for all connected spaces X , the natural map of (n− 1)-connected covers
X〈n−1〉 → (Lf X)〈n−1〉 is an f -localization, that is, it induces a homotopy equivalence

Lf (X〈n− 1〉) ' (Lf X)〈n− 1〉.

Proof Apply fibrewise f -localization [27, 1.F] to the homotopy fibration

X〈n− 1〉 −→ X −→ PSnX,

thus obtaining a homotopy fibration

Lf (X〈n− 1〉) −→ Y −→ PSnX

together with a map h : X → Y which is an f -equivalence; cf. [27, 1.F.1]. Since, by
our assumption, the mapping spaces map∗(V,PSnX) and map∗(W,PSnX) are weakly
contractible, we infer that map∗(V,Y)→ map∗(W,Y) is a weak homotopy equivalence,
and hence Y is f -local. This means of course that Y ' Lf X . Since PSnX ' PSnLf X ,
our claim follows.

Using this observation and the same arguments as in [18, Proposition 3.3], we find
that for an arbitrary map f : W → V between (n− 1)-connected spaces, if we denote
by ϕ : πn(W)→ πn(V) the induced homomorphism of nth homotopy groups, then the
following hold:

(1) A group G is ϕ-local if and only if a K(G, n) is f -local.

(2) If g is any f -equivalence of connected spaces, then the homomorphism πn(g) is
a ϕ-equivalence of groups.

(To prove (2), notice that if g is an f -equivalence then so is the lifting of g to the
(n− 1)-connected covers, by Theorem 5.2.)

In particular, since ηX : X → Lf X is an f -equivalence, it follows from (2) that for every
connected space X there is a natural homomorphism

πn(Lf X) −→ Lϕπn(X)

which is a ϕ-equivalence and therefore it is an isomorphism if and only if πn(Lf X) is
ϕ-local. This yields the following improvement of [23, Theorem 2.1]:
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Theorem 5.3 Let f : W → V be a map where W is a wedge of copies of Sn with
n ≥ 1, and V has one 0-cell and further cells in dimensions n and n + 1 only. Let
ϕ = πn(f ). Then πn(Lf X) ∼= Lϕπn(X) for all connected spaces X .

Proof We only need to prove that πn(Lf X) is ϕ-local. The assumption made on W
ensures that, given any group homomorphism ψ : πn(W) → πn(Lf X), there exists a
map g : W → Lf X inducing ψ on the nth homotopy groups. Since Lf X is f -local, there
is a map g′ : V → Lf (X) such that g′ ◦ f ' g, yielding a homomorphism ψ′ : πn(V)→
πn(Lf X) such that ψ′ ◦ϕ = ψ , as desired. If ψ′′ is any other homomorphism with this
property, then it is induced by some map g′′ : V → Lf X . Then g′′ ◦ f and g induce
the same homomorphism on the nth homotopy groups and hence they are homotopic,
since W is a wedge of copies of Sn . It follows that g′′ ' g′ and therefore ψ′′ = ψ′ , as
needed.

Theorem 5.4 For any abelian group G and any map f between (n − 1)-connected
spaces, where n ≥ 1, we have

Lf K(G, n) ' K(LϕG, n)× K(B, n + 1),

where ϕ = πn(f ). Moreover, the group B is ϕ-local.

Proof Let A and B be the homotopy groups of Lf K(G, n). Then the localization map
η : K(G, n) → Lf K(G, n) induces a homomorphism πn(η) : G → A. Since the map
η is an f -equivalence, the homomorphism πn(η) is a ϕ-equivalence. Moreover, the
space K(A, n) is f -local, and hence the group A is ϕ-local. This proves that A ∼= LϕG.
From the fact that K(B, n + 1) is f -local it follows that K(B, n) is also f -local and
therefore the group B is ϕ-local.

As a consequence of Proposition 4.2, we can replace LϕG with LφG in Theorem 5.4,
where φ = Hn(f ), for any n ≥ 1.

Corollary 5.5 Suppose that f is a map between (n − 1)-connected spaces such that
the homomorphism πn(f ) is surjective. Then, for any abelian group G, the natural
homomorphism G→ πn(Lf K(G, n)) is surjective.

Proof This follows from the fact that if ϕ is an epimorphism, then the localization
map η : G → LϕG is an epimorphism for all groups G. To prove this claim, check
that the image of η is ϕ-local and its inclusion in LϕG is a ϕ-equivalence, hence an
isomorphism.
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The next example shows that the assumption that f is a map between (n−1)-connected
spaces cannot be removed from Theorem 5.4 and Corollary 5.5. Consider the map
f : M(Z[1/p], 1)→ ∗, where M stands for a Moore space. Then πn(Lf K(Z, n)) is the
ring Ẑp of p-adic integers if n ≥ 2; cf. [23]. However, any homomorphism induced
by f on homotopy groups will be surjective and Ẑp cannot be obtained by localizing
Z with respect to any epimorphism.

Example 5.6 Let f : X → Y be any map inducing the projection φ : Z→ Z/m on the
first homology group, where m is any integer. Then an abelian group A is φ-local if
and only if mA = 0. Therefore,

π1(Lf K(G, 1)) ∼= LφG ∼= G/mG

for every abelian group G. In fact, we shall see in Corollary 7.2 that π2(Lf K(G, 1))
vanishes and hence Lf K(G, 1) ' K(G/mG, 1).

Similarly, if g : X → Y is any map where H1(X) = 0 and H1(Y) ∼= Z/pr , where p is
a prime and r ≥ 1, then π1(LgK(G, 1)) ∼= G/TpG, where TpG denotes the p-torsion
subgroup of G, for any abelian group G.

We next specialize to the case G = Z. Let f be any map between connected spaces.
Let ϕ = π1(f ) be the homomorphism induced by f on fundamental groups, and denote
by φ = H1(f ) its abelianization. The following result follows from Theorem 2.1 and
Proposition 4.2.

Theorem 5.7 For any given map f between connected spaces, we have

Lf S1 ' K(LϕZ, 1) ' K(LφZ, 1),

where ϕ = π1(f ) and φ = H1(f ).

Corollary 5.8 Suppose that H1(f ) is surjective. Then π1(Lf S1) is cyclic.

The next result summarizes in a simple form some of the main facts discovered in this
article. It has kindly been included in [42, §26.2].

Theorem 5.9 For an abelian group A, the following statements are equivalent:

(1) A admits a rigid ring structure.

(2) There is a group homomorphism φ such that LφZ ∼= A.

(3) There is a map f such that Lf S1 ' K(A, 1).
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Proof We first prove that (1) ⇒ (2). If A is any rigid ring, then it follows directly
from the definition (Definition 2.3) that A is φ-local, where φ : Z → A is the unit
map. Since φ is obviously a φ-equivalence, we obtain that A ∼= LφZ. The implication
(2) ⇒ (3) is a consequence of Theorem 5.7, and the implication (3) ⇒ (1) has been
proved in Theorem 2.4.

Theorem 5.7 has the following consequence. Recall that PW denotes localization with
respect to W → ∗.

Corollary 5.10 Let W be any space.

(1) If H1(W) = 0, then PWS1 ' S1 .

(2) If H1(W) 6= 0, then PWX ' ∗ for every connected space X .

Proof If H1(W) = 0, then Hom(π1(W),Z) is trivial. This implies that π0map∗(W, S1)
is trivial and therefore map∗(W, S1) is weakly contractible, i.e., S1 is W -null. On the
other hand, if H1(W) 6= 0, then it follows from Theorem 5.7 that PWS1 ' ∗. This
means that the map S1 → ∗ is a PW -equivalence and hence all PS1 -equivalences are
PW -equivalences. Therefore, PWX ' PWPS1X ' ∗ for all connected spaces X .

As noticed by a referee, part (2) can also be inferred from the fact that the condition
H1(W) 6= 0 implies that S1 is a homotopy retract of W .

6 Transitional dimensions and heights

This section contains a more detailed discussion of f -localizations of K(G, n) when G
is a finite abelian group. We will need the following version of the Zabrodsky Lemma,
which is discussed in [27, 1.H.1] and [74]. A space X is called f -acyclic if Lf X is
contractible.

Lemma 6.1 For any fibration F → E → X with E and X connected, if F is f -acyclic,
then the map E → X is an f -equivalence.

This implies in particular that, for any connected space X , if the loop space ΩX is
f -acyclic then so is X .

Lemma 6.2 Let p be a prime and let n and r be any two positive integers. Then the
following statements hold for every map f :
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(1) K(Z/p, n) is either f -local or f -acyclic.

(2) K(Z/pr, n) is f -acyclic if and only if K(Z/p, n) is f -acyclic.

(3) If K(Z/pr, n) is f -local, then K(Z/pj, n) is f -local for each j ≤ r .

Proof Write Lf K(Z/p, n) ' K(A, n)×K(B, n + 1) for some abelian groups A and B.
By Theorem 5.1, A is a localization of Z/p, and Corollary 4.5 tells us that either
A = 0 or A ∼= Z/p. If A ∼= Z/p, then K(Z/p, n) was already f -local. If A = 0,
then part 2 of Theorem 2.1 says that Hom(Z/p,B) = 0 and hence B is p-torsion free.
Furthermore, part 3 of Theorem 2.1 implies that Hom(B,B) ∼= Ext(Z/p,B) ∼= B/pB,
and, since Hom(B,B) has to be p-torsion free, it follows that Hom(B,B) = 0, so
B = 0. The same conclusion follows in fact from Corollary 2.10. Hence, Lf K(Z/p, n)
is contractible, as claimed in (1).

To prove (2), suppose that K(Z/p, n) is f -acyclic and apply Lemma 6.1 and induction
to the fibrations

K(Z/p, n) −→ K(Z/pj, n) −→ K(Z/pj−1, n),

where j ≤ r , to infer that K(Z/pr, n) is f -acyclic. Conversely, suppose that K(Z/pr, n)
is f -acyclic and K(Z/p, n) is not. Then, by (1), K(Z/p, n) is f -local. If we apply
Lemma 6.1 to the fibration

K(Z/pr, n) −→ K(Z/p, n) −→ K(Z/pr−1, n + 1),

we obtain that Lf K(Z/pr−1, n + 1) ' K(Z/p, n), which is impossible.

Finally, suppose that K(Z/pr, n) is f -local. Then it follows from (2) that K(Z/p, n) is
not f -acyclic and hence it is f -local. In order to prove that K(Z/pj, n) is f -local for
each j ≤ r , argue by downward induction using the fibrations

K(Z/pj−1, n) −→ K(Z/pj, n) −→ K(Z/p, n),

and the fact that the homotopy fibre of any map between f -local spaces is f -local.

For each prime p, let np(f ) denote the supremum of the positive integers n such
that K(Z/p, n) is f -local. If no such integer exists, then we set np(f ) = 0. If all
integers n fulfill this condition, then we write np(f ) = ∞. This is called the mod p
transitional dimension of f . Thus, for any map f , we have np(f ) = n if and only if
the homomorphism Hi(f ;Z/p) is an isomorphism for i ≤ n but not for i = n + 1.
Likewise, np(f ) =∞ if and only if f is a mod p equivalence.

For a space W , we denote by np(W) the dimension np(f ) where f : W → ∗. Using the
natural isomorphism Hj(W;Z/p) ∼= Hom(Hj(W;Z/p),Z/p) for all j, we see that, for
a space W , the following statements are equivalent:
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(1) np(W) = n;

(2) H̃j(W;Z/p) = 0 for j ≤ n and Hn+1(W;Z/p) 6= 0;

(3) H̃j(W;Z/p) = 0 for j ≤ n and Hn+1(W;Z/p) 6= 0.

Note that np(Σf ) = np(f ) + 1 for every map f , and, for two maps f and g, if there is a
natural transformation Lg → Lf compatible with the units Id→ Lf and Id→ Lg , then
every f -local space is g-local [73, §3], and this implies that np(f ) ≤ np(g).

A space A is said to be a universal f -acyclic space if the two conditions Lf X ' ∗
and PAX ' ∗ are equivalent for each space X . It was proved in [10, Theorem 4.4]
that universal f -acyclic spaces exist for each map f ; however, such a space A is not
homotopy unique in general with the given property—instead, it is determined up to
nullity equivalence in the sense of [9].

Corollary 6.3 For a map f : W → V , if C denotes the homotopy cofibre of f and A
is a universal f -acyclic space, then

np(f ) = np(A) ≤ np(C) ≤ np(f ) + 1.

Moreover, np(f ) = np(C) if and only if Hn+1(C;Z/p) 6= 0, where n = np(f ).

Proof This follows from the sequence of natural transformations

LΣf −→ PC −→ PA −→ Lf

together with the mod p homology long exact sequence associated with the cofibre
sequence W → V → C .

Lemma 6.4 For a map f , if n < np(f ), then K(Z/pr, n) is f -local for every r .

Proof By assumption, both K(Z/p, n) and K(Z/p, n + 1) are f -local. Hence we may
argue by induction, using the fibrations

K(Z/pj, n) −→ K(Z/pj−1, n) −→ K(Z/p, n + 1).

Now we can associate another number to each map f . For any prime p, let ip(f ) be the
supremum of all integers i such that the space K(Z/pi, np(f )) is f -local. If all integers
i fulfill this condition, then ip(f ) = ∞. Thus, if n = np(f ) (implying that Hn(f ;Z/p)
is an isomorphism) then ip(f ) = i if and only if Hn(f ;Z/pj) is an isomorphism for
j ≤ i but not for j = i + 1. We call this number ip(f ) the height of f at the mod p
transitional dimension.

By Lemma 6.2, if n > np(f ) then K(Z/p, n) is f -acyclic, and so is K(Z/pr, n) for
every r . If n < np(f ), then it follows from Lemma 6.4 that K(Z/pr, n) is f -local for
all r . The general result, including the case n = np(f ), reads as follows.
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Theorem 6.5 For any map f and arbitrary integers n, r ≥ 1, we have

Lf K(Z/pr, n) '


∗ if n > np(f );
K(Z/pip(f ), n) if n = np(f ) and r ≥ ip(f );
K(Z/pr, n) otherwise.

Proof After our previous remarks, only the case n = np(f ) requires a proof. Write
Lf K(Z/pr, n) ' K(A, n)× K(B, n + 1). Corollary 2.10 tells us that B = 0. If A = 0,
then K(Z/p, n) is f -acyclic, contradicting our choice of n. Thus, Theorem 5.1 implies
that A is a localization of Z/pr and Theorem 4.10 tells us that A = Z/pj for some
j ≤ r . We want to prove that j = ip(f ). For this, suppose instead that j < ip(f ). Then
K(Z/pj+1, n) is f -local. This yields an isomorphism

Hom(Z/pj,Z/pj+1) ∼= Hom(Z/pr,Z/pj+1),

where the left-hand side equals Z/pj and the right-hand side equals Z/pj+1 . This
contradiction completes the argument.

Moreover, when n = np(f ) and r > i = ip(f ), the localization map

η : K(Z/pr, n) −→ K(Z/pi, n)

coincides, up to homotopy, with the map induced by the projection Z/pr → Z/pi , by
Theorem 4.10 and Theorem 5.1.

Example 6.6 If the map f is of the form W → ∗, then ip(f ) =∞. Therefore, for any
space W , we have

PWK(Z/pr, n) '
{
∗ if n > np(W);
K(Z/pr, n) otherwise.

This result was communicated to us by Chachólski and was in fact one of the starting
points of our study.

Example 6.7 Let f : K(Z, n)→ K(Z/pi, n) be the map induced by the projection of Z
onto Z/pi , where n ≥ 1. Then K(Z/p, n) is f -local but K(Z/p, n + 1) is not. Hence,
np(f ) = n. Likewise, K(Z/pi, n) is f -local but K(Z/pi+1, n) is not, which implies
that ip(f ) = i. This shows that all heights can occur in practice, and it follows from
Theorem 6.5 that Lf K(Z/pr, n) ' K(Z/pi, n) for r ≥ i.

The following additional remark was pertinently suggested by a referee. The rational
transitional dimension n0(f ) of a map f is defined, similarly as in the mod p case, as
the supremum of the positive integers n such that K(Q, n) is f -local. If there is no
such n, then n0(f ) = 0.
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Theorem 6.8 Let A = πn(Lf (K(Z, n)) for a map f and n ≥ 1.

(1) If n0(f ) ≥ n, then A is a solid ring.

(2) If n0(f ) < n− 1, then Hom(Q,A) = 0 and Ext(Q,A) = 0.

Proof If n0(f ) ≥ n, then K(Q, n) is f -local. This implies that Hom(A,Q) ∼= Q and
therefore A is a rigid ring whose underlying abelian group has rank 1. According to
Proposition 3.7, this implies that A is solid.

If n0(f ) < n − 1, then neither K(Q, n) nor K(Q, n − 1) is f -local and hence they are
necessarily f -acyclic by Corollary 2.9, Theorem 5.1, and Corollary 4.5. This implies
that [K(Q, n),K(A, n)] = 0 and [K(Q, n − 1),K(A, n)] = 0, from which the claim in
part (2) follows.

The rigid rings A such that Hom(Q,A) = 0 and Ext(Q,A) = 0 (which is to say that A
is reduced and cotorsion) were classified in [12, Corollary 3.5], where it was shown that
they are precisely those of the form

∏
p∈U Z/pk(p)⊕

∏
q∈V Ẑq for disjoint sets of primes

U , V and nonnegative integers k(p). Therefore, the rigid ring A = πn(Lf (K(Z, n)) can
have arbitrarily large cardinality only in the case when n0(f ) = n− 1.

7 Effect of localizations on higher homotopy groups

In this last section, we explain how knowledge of Lf K(Z, n) or Lf K(Z/pr, n) provides
highly relevant information about the homotopy groups of Lf X for other spaces X .
The following result improves Theorem 2.6.

Theorem 7.1 Let f be any map and let A = πn(Lf K(Z, n)), where n ≥ 1. Let X be
a GEM. For m ≥ n, consider the group G = πm(Lf X). Then the following hold:

(1) G ∼= Hom(A,G).

(2) G admits a unique A-module structure.

(3) If m > n, then Ext(A,G) = 0.

Proof If X is a GEM and G = πm(Lf X) where m ≥ 1, then K(G,m) is a homotopy
retract of Lf X and hence it is f -local. If m ≥ n, then K(G, n) ' Ωm−nK(G,m) and
hence K(G, n) is f -local too. Hence (1) follows from the fact that the localization map
η : K(Z, n)→ K(A, n) is an f -equivalence and therefore it induces an isomorphism

(7–1) Hom(A,G) ∼= Hom(Z,G).
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This isomorphism says precisely that G is α-local where α : Z→ A is induced by η .
By Lemma 4.4, α ⊗ G : Z ⊗ G → A ⊗ G is an α-equivalence, and this implies that
there is a unique A-module structure A⊗ G→ G, namely the one given by (7–1).

If m > n, then K(G, n + 1) is f -local and this fact yields (3).

The A-modules G that satisfy (7–1), or equivalently

(7–2) Hom(A,G) = HomA(A,G),

were called E-modules by Pierce in [59]; cf. also [12, §2]. This notion was generalized
and studied further in [72] for algebras A over any commutative ring R.

Of course, (7–1) or (7–2) do not impose any restriction on G if A = Z or more
generally if Z → A is a ring epimorphism (i.e., if the ring A is solid). Indeed, if
Z→ A is a ring epimorphism, then (7–2) holds by [71, XI.1.2] for every A-module G.
However, if Z → A is not a ring epimorphism, then there is at least one ring G and
two distinct ring homomorphisms A→ G such that the composites Z→ G coincide.
Then G becomes an A-module which violates (7–1). Hence, condition (7–1) imposes
a nonvoid restriction on the A-module G precisely when the ring A is rigid but not
solid. For example, if A = Ẑp and G = Q̂p , then (7–1) does not hold.

Corollary 7.2 Suppose that Lf K(Z, n) ' K(Z/t, n), where t is any positive integer
and n ≥ 1. If X is a GEM, then πm(Lf X) = 0 for m > n.

Proof From Theorem 7.1 we know that each of the homotopy groups πm(Lf X) is
a Z/t-module for m ≥ n. However, if an abelian group G satisfies tG = 0 and
Ext(Z/t,G) = 0, then G = 0.

The conclusion of Corollary 7.2 seems to hold for a much broader class of spaces,
not necessarily products of Eilenberg–Mac Lane spaces. Perhaps the answer to the
following question is affirmative. Many unsuccessful attempts have been made to find
an answer, so it seems to be a difficult problem.

Question 7.3 Let t be any positive integer. If f : S1 → K(Z/t, 1) is a map inducing
the projection Z → Z/t on fundamental groups, is it true that πm(Lf X) = 0 for all
spaces X and m ≥ 2?

Observe that, if A is a rigid ring and the unit map Z→ A is not injective, then A ∼= Z/t
for some integer t . Indeed, if the identity element of A has finite order, then tA = 0 for
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some integer t and, for a rigid ring, this implies that A is cyclic; this fact was already
noted in [70]. Therefore, if Lf K(Z, n) ' K(A, n), then either A is cyclic or the induced
map Z→ A is a proper monomorphism. We next address the latter case.

We recall from [5] and [8, Lemma 5.5] that, given an abelian group B, if P denotes
the set of primes p for which the map x 7→ px is an automorphism of B, then the class
of abelian groups G such that Hom(B,G) = 0 and Ext(B,G) = 0 consists precisely
of the P-local groups if B is torsion, and it consists of the Ext-P-complete abelian
groups (2–8) otherwise.

Theorem 7.4 Suppose that Lf K(Z, n) ' K(A, n), where n ≥ 1 and A is not cyclic.
Let X be any GEM, and let P be the set of primes p such that multiplication by p is an
automorphism of A/Z. If A/Z is torsion, then πm(Lf X) is P-local if m > n. If A/Z
has elements of infinite order, then πm(Lf X) is Ext-P-complete if m > n.

Proof Let G = πm(Lf X) with m > n. By Theorem 7.1 we have Ext(A,G) = 0 and
Hom(A,G) ∼= Hom(Z,G). Hence, by applying the functor Hom(−,G) to the short
exact sequence 0→ Z→ A→ A/Z→ 0 we infer that

Hom(A/Z,G) = 0 = Ext(A/Z,G),

so that our claim follows from [8, Lemma 5.5].

Theorem 7.4 is conveniently illustrated by ordinary homological localization with
coefficients in Z(p) or Z/p, and even better by localization with respect to Morava
K -theories; see [7, Examples 7.4 and 7.5].

Theorem 7.5 Let f be any map and p a prime. Suppose that the transitional dimension
np(f ) is finite. If X is any GEM, then:

(1) The group πm(Lf X) is a Z[1/p]-module if m ≥ np(f ) + 2 and πm(Lf X) is
p-torsion free if m = np(f ) + 1.

(2) If the height ip(f ) is finite, then πm(Lf X) is a Z[1/p]-module if m ≥ np(f ) + 1
and the p-torsion subgroup of πm(Lf X) is annihilated by pip(f ) if m = np(f ).

Proof If m ≥ np(f ) + 1 and we write G = πm(Lf X), then K(Z/p,m) is f -acyclic and
K(G,m) is f -local. It follows that Hom(Z/p,G) = 0 and hence G is p-torsion free.
If m ≥ np(f ) + 2, then we also have Ext(Z/p,G) = 0, which, together with the fact
that G is p-torsion free, guarantees that G is a Z[1/p]-module.
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If i = ip(f ) is finite, then it follows from Theorem 6.5 that the natural map

K(Z/pr+1, np(f )) −→ K(Z/pr, np(f ))

is an f -equivalence for r ≥ i. If m = np(f ) + 1, then Ext(Z/pr,G) ∼= Ext(Z/pr+1,G)
for r ≥ i. Hence, Ext(Z/p,G) = 0 and we infer again that G is a Z[1/p]-module.
Finally, if m = np(f ), then we deduce that Hom(Z/pi,G) ∼= Hom(Z/pr,G) for r ≥ i,
from which it follows that the p-torsion subgroup of G is a Z/pi -module.

Example 7.6 For the map f : K(Z/p, 1) → ∗ we have np(f ) = 0, which implies, by
Theorem 7.4, that the homotopy groups of any f -local GEM are Z[1/p]-modules in
dimensions higher than 1. Indeed, from the fibration

K(Z/p∞, n− 1) −→ K(Z, n) −→ K(Z[1/p], n)

it follows that Lf K(Z, n) ' K(Z[1/p], n) for n ≥ 2; cf. [17, §7]. A similar argument
shows that Lf K(G, n) ' K(G⊗Z[1/p], n) for every abelian group G and each n ≥ 2.
On the other hand, all finite-dimensional CW-complexes are f -local by Miller’s main
theorem in [53], yet their homotopy groups need not be Z[1/p]-modules. This shows
that the above theorems are false if we omit the assumption that X is a GEM.

Example 7.7 Let f be any map such that Lf is localization with respect to complex
K -homology. Since K(Z/p, 1) is K -local and K(Z/p, 2) is K -acyclic for all primes p
(see [7] or [54]), it follows that np(f ) = 1 for every p. Thus, Theorem 7.5 tells us
that if X is any GEM, then the homotopy groups πm(XK) of the K -localization of X
are Q-vector spaces if m ≥ 3, and π2(XK) is torsion-free. This observation sheds
new light on [54, Theorem 3.2]. Indeed, if X is any 2-connected GEM then XK is a
2-connected rational GEM. Since the class of K -equivalences with rational coefficients
coincides with the class of ordinary rational homology equivalences [54, Lemma 1.8],
the rationalization X0 is K -local. From this fact it follows directly that XK ' X0 if X
is any 2-connected GEM.

References
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Basel, 2001, 357–374.

[64] J. L. Rodrı́guez and J. Scherer, A connection between cellularization for groups and
spaces via two-complexes, J. Pure Appl. Algebra 212 (2008), 1664–1673.

[65] J. L. Rodrı́guez, J. Scherer, and L. Strüngmann, On localizations of torsion abelian
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