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Homological localizations preserve 1-connectivity

Carles Casacuberta and Jérôme Scherer

Abstract. Every generalized homology theory E yields a localization func-
tor LE that sends the E-equivalences to homotopy equivalences. We prove

that if X is any 1-connected space, then LEX is also 1-connected, for every

generalized homology theory E. This is deduced from a result by Hopkins and
Smith stating that if K(Z, 2) is E-acyclic then E is trivial.

Introduction

A number of results in the literature suggest that idempotent functors in the
homotopy category of spaces preserve 1-connectivity, although no proof of this fact
has so far been given. One of the earliest examples is localization with respect to
ordinary homology, which in fact preserves n-connectivity for all n; see [1].

In the same article [1], Bousfield proved the existence of localization with re-
spect to any generalized homology theory E; that is, a functor LE which assigns
to every space X a space LEX together with a natural map X → LEX which
is terminal in the homotopy category among E-equivalences with source X. (An
E-equivalence is a map X → Y inducing isomorphisms En(X) ∼= En(Y ) for all n.)

In [9], Mislin showed that K-theory localization does not preserve n-connec-
tivity in general, since for example π3(LKS2p+2; Z/p) 6= 0 for every odd prime p.
However, Mislin also proved in [9] that the K-localization of every 1-connected
space is 1-connected. Further evidence of the fact that 1-connectivity could be
preserved by arbitrary idempotent functors in the homotopy category was given by
Neisendorfer in [10] and by Tai in his detailed study of the problem in [11].

It is therefore natural to address the question of whether or not localizations
with respect to generalized homology theories preserve 1-connectivity. Such lo-
calizations were thoroughly discussed by Bousfield in [2], where a description was
given of their effect on abelian Eilenberg–Mac Lane spaces. The main tool was an
arithmetic square, already exploited by Mislin in [9], allowing one to determine the
E-localization of a space (with some restrictions on the fundamental group) from
its EZ/p-localizations and rational coherence data.
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Our main result is that LEX is 1-connected if X is 1-connected, for any gen-
eralized homology theory E. This follows by combining the methods of Bousfield
in [2] with a result proved by Hopkins and Smith in [8], according to which a
K(Z, 2) is never E-acyclic if E is nontrivial. We note, however, that K(Z, 3) is
KZ/p-acyclic for all p, by [9, Corollary 2.3]. It is known that, if L is any homotopy
idempotent functor, then LK(Z, n) is necessarily a K(A,n) where A is either zero
or a commutative ring with 1, for all n; see [5]. If L = LE for some nontrivial
homology theory E, then the possibility that A = 0 has been discarded for n = 2
in [8], and this opens the way to substantial improvements of earlier results or to
new results as in this article.
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1. Torsion homology theories

Throughout the paper we denote by E a spectrum or the associated homology
theory. For an abelian group R, the corresponding spectrum with coefficients in R is
defined as ER = E ∧SR where SR is the Moore spectrum of type (R, 0). The only
cases of interest in this article are R = Z/p and R a subring of Q. A spectrum E
is called torsion if EQ is contractible. The ordinary Eilenberg–Mac Lane spectrum
with coefficients in R is denoted by HR. We denote by Z∧p the p-adics, by Z(p∞) the
Prüfer group

⋃∞
n=1 Z/pn and, for a set of primes P , we denote by ZP the integers

localized at P .
In this first section we concentrate on mod p homology theories, where p is any

prime. Using the Atiyah–Hirzebruch spectral sequence, one sees that if E is any
homology theory, then every HZ/p-equivalence is an EZ/p-equivalence; details are
given in [9, § 1]. Hence, all EZ/p-local spaces are HZ/p-local and there is a natural
transformation of functors µ : LHZ/p → LEZ/p.

We next prove that, if X is connected, then the induced homomorphism

µ∗ : π1(LHZ/pX) → π1(LEZ/pX)

is surjective. This result is essentially contained in the proof of Proposition 7.1
in [2], as we next recall for the sake of completeness. The argument is based on
Bousfield’s version of the Whitehead theorem (cf. [2, Theorem 5.2]), stating that
if R is Z/p or a subring of Q, and f : X → Y is a map inducing isomorphisms
Hi(X;R) ∼= Hi(Y ;R) for i < n and an epimorphism Hn(X;R) � Hn(Y ;R), where
n ≥ 1, then f also induces isomorphisms πi(LHRX) ∼= πi(LHRY ) for i < n and an
epimorphism πn(LHRX) � πn(LHRY ).

Theorem 1.1. Let E be any homology theory and p any prime. Then, for every
connected space X, the natural homomorphism µ∗ : π1(LHZ/pX) → π1(LEZ/pX) is
surjective.

Proof. The claim is obvious if EZ/p is trivial. If EZ/p is not trivial, then
K(Z/p, 1) is not EZ/p-acyclic, as shown in [2, Proposition 2.2]. Since the natural
map µ : LHZ/pX → LEZ/pX is an EZ/p-equivalence, we obtain an isomorphism

(1.1) µ∗ : H1(LHZ/pX; Z/p) ∼= H1(LEZ/pX; Z/p)
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using [2, Proposition 2.1] or [5, Theorem 1.3], according to which K(Z/p, 1) is
EZ/p-local. By the generalized Whitehead theorem stated above, µ induces then
an epimorphism π1(LHZ/pX) � π1(LEZ/pX), since LEZ/pX is HZ/p-local. �

Corollary 1.2. If E is any torsion homology theory and X is 1-connected,
then LEX is also 1-connected.

Proof. As in [2], we denote by PE the set of primes p such that π∗(E) is not
uniquely p-divisible. By [2, Proposition 7.1], for each torsion homology theory E
and every 1-connected space X, we have a homotopy equivalence

LEX '
∏

p∈PE

LEZ/pX.

Now recall from [1] that LHZ/pX is 1-connected if X is 1-connected. Therefore,
Theorem 1.1 tells us that LEX is 1-connected. �

Before discussing non-torsion homology theories, we need to study the second
homotopy group π2(LEZ/pX) when X is 1-connected. The following result is the
main input in our discussion.

Theorem 1.3. Let E be a homology theory and p any prime. Suppose that
EZ/p is nontrivial. Then either K(Z/p, 2) or K(Z∧p , 2) is EZ/p-local.

Proof. The classification of acyclicity patterns for Eilenberg–Mac Lane spaces
given by Bousfield in [2, § 4] implies that LEZ/pK(Z, n) = K(A,n) for each n ≥ 1,
where the group A can be Z∧p , or Z/pi for some i ≥ 1, or zero. In [8], it is shown
that if a reduced homology theory vanishes on K(Z, 2), then it is trivial. (Thus,
nontrivial mod p homology theories of type IV-1 as defined in [2, § 4] do not exist.)
Therefore, if LEZ/p is nontrivial, then the localization LEZ/pK(Z, 2) is necessarily
K(Z∧p , 2) or K(Z/pi, 2) for some i ≥ 1. In the latter case, K(Z/p, 2) cannot be
EZ/p-acyclic, as one sees by induction using the fibre sequences

K(Z/p, 2) → K(Z/pi, 2) → K(Z/pi−1, 2).

Hence, K(Z/p, 2) is EZ/p-local, by [2, Proposition 2.1] or [5, Lemma 1.4]. �

If K(Z/p, 2) is EZ/p-local and X is 1-connected, then, using the fact that
µ : LHZ/pX → LEZ/pX is an EZ/p-equivalence, we obtain as in (1.1) an isomor-
phism

(1.2) µ∗ : H2(LHZ/pX; Z/p) ∼= H2(LEZ/pX; Z/p).

Thus, the homomorphism π2(LHZ/pX) → π2(LEZ/pX) induced by µ is surjective,
by the generalized Whitehead theorem.

Now suppose that K(Z∧p , 2) is EZ/p-local and X is 1-connected. Similarly as
in the previous case, since µ is an EZ/p-equivalence, we have an isomorphism

(1.3) µ∗ : Hom(π2(LEZ/pX), Z∧p ) ∼= Hom(π2(LHZ/pX), Z∧p ).

In order to use this information, we recall the following concept from [4, VI.3]
and [7]. An abelian group A is called Ext-p-complete if the natural homomorphism
A → Ext(Z(p∞), A) derived from the short exact sequence

0 → Z → Z[1/p] → Z(p∞) → 0

is an isomorphism. Equivalently, an abelian group A is Ext-p-complete if and only
if both Hom(Z[1/p], A) = 0 and Ext(Z[1/p], A) = 0. As explained in [4, VI.4],
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Ext-p-complete abelian groups are uniquely q-divisible for primes q 6= p, and they
admit a canonical Z∧p -module structure.

An Ext-p-complete abelian group A is called adjusted if the quotient A/TA
of A by its torsion subgroup TA is p-divisible (hence divisible). Thus, A is adjusted
if and only if A does not admit any torsion-free Ext-p-complete quotients other
than zero. Since TA ⊗ Z(p∞) = 0, it also follows that an Ext-p-complete abelian
group A is adjusted if and only if A⊗ Z(p∞) = 0.

Theorem 1.4. Let E be a homology theory and p a prime. Suppose that EZ/p
is nontrivial. Then, for every 1-connected space X, the cokernel of the natural
homomorphism µ∗ : π2(LHZ/pX) → π2(LEZ/pX) is an adjusted Ext-p-complete
abelian group, which is zero if K(Z/p, 2) is EZ/p-local.

Proof. The spaces LHZ/pX and LEZ/pX are HZ/p-local. The abelian groups
π2(LHZ/pX) and π2(LEZ/pX) are thus Ext-p-complete, by [1, Theorem 5.5]. Hence,
Cokerµ∗ is Ext-p-complete, since the cokernel of any homomorphism between
Ext-p-complete abelian groups is Ext-p-complete. If K(Z/p, 2) is EZ/p-local, then
we already proved, by means of (1.2), that Cokerµ∗ is zero. Thus, we assume that
K(Z∧p , 2) is EZ/p-local. In this case, the isomorphism displayed in (1.3) shows that
Hom(Cokerµ∗, Z∧p ) = 0. For an abelian group A, if Hom(A, Z∧p ) = 0 then we have
Hom(A⊗Z(p∞), Z(p∞)) = 0 by adjunction. Since A⊗Z(p∞) is a p-torsion divisible
abelian group, we may infer that A ⊗ Z(p∞) = 0 and this implies that A/TA is
p-divisible, as we needed. (In fact, an Ext-p-complete abelian group A is adjusted
if and only if the condition Hom(A, Z∧p ) = 0 holds. This has also been pointed out
in [3, Lemma 7.7].) �

2. Non-torsion homology theories

In this section we deal with non-torsion homology theories. In this case, there is
an arithmetic square allowing one to compute E-localizations of 1-connected spaces
by combining mod p data and rational data. Specifically, the following diagram is
a homotopy pull-back square if X is 1-connected (and also under less restrictive
conditions; see [2, Proposition 7.2]). Recall that PE denotes the set of primes p
such that π∗(E) is not uniquely p-divisible.

LEX //

��

∏
p∈PE

LEZ/pX

��

LHQX // LHQ

 ∏
p∈PE

LEZ/pX

 .

We also need the following remark.

Lemma 2.1. Suppose given a set of primes P and an adjusted Ext-p-complete
abelian group Ap for all p ∈ P . The rationalization

∏
p∈P Ap →

(∏
p∈P Ap

)
⊗ Q

is then an epimorphism.

Proof. Fix any prime q ∈ P . Then we have Aq ⊗ Z(q∞) = 0 since Aq is

adjusted, and
(∏

p6=q Ap

)
⊗Z(q∞) = 0 as well, since

∏
p6=q Ap is uniquely q-divisible.
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Therefore,
(∏

p∈P Ap

)
⊗Z(q∞) = 0. This shows that

(∏
p∈P Ap

)
⊗Q/Z = 0, which

proves our claim. �

Our main result is the following.

Theorem 2.2. Let E be any homology theory and let X be 1-connected. Then
LEX is also 1-connected.

Proof. By Corollary 1.2, we may assume that E is not torsion. Our strategy
is to compare the arithmetic squares for E and ordinary homology HZPE . The
natural maps µ : LHZ/pX → LEZ/pX yield a commutative diagram

Y //

��

F ′ //

��

F

��

F ′′ //

��

∏
p∈PE

LHZ/pX

��

µ //
∏

p∈PE

LEZ/pX

��

LHQF ′′ // LHQ

 ∏
p∈PE

LHZ/pX

 // LHQ

 ∏
p∈PE

LEZ/pX


where each row and each column is a fibre sequence. The four spaces in the lower
right square are 1-connected by Corollary 1.2. Therefore, all the fibres except per-
haps Y are connected. The group π1(F ′′) is the product of the cokernels of the
homomorphisms µ∗ : π2(LHZ/pX) → π2(LEZ/pX), so it is a product of adjusted
Ext-p-complete groups, by Theorem 1.4. Hence, Lemma 2.1 tells us that the in-
duced homomorphism π1(F ′′) → π1(LHQF ′′) is surjective. This implies that Y is
connected as well, so the homomorphism π1(F ′) → π1(F ) is surjective.

From the arithmetic square for E we see that LEX is 1-connected if and only
if the boundary homomorphism π2(LHQX) → π1(F ) is surjective. Consider now
the fibre sequence F ′ → LHZPE

X → LHQX appearing in the arithmetic square
for HZPE . Since we know that LHZPE

X is 1-connected, the homomorphism
π2(LHQX) → π1(F ′) is surjective. The composite π2(LHQX) → π1(F ′) → π1(F )
is thus also surjective, as we needed. �

References

[1] A. K. Bousfield, The localization of spaces with respect to homology, Topology 14 (1975),

133–150.
[2] A. K. Bousfield, On homology equivalences and homological localizations of spaces, Amer. J.

Math. 104 (1982), 1025–1042.

[3] A. K. Bousfield, On the telescopic homotopy theory of spaces, Trans. Amer. Math. Soc.
(to appear).

[4] A. K. Bousfield and D. M. Kan, Homotopy Limits, Completions and Localizations, Lecture

Notes in Math. vol. 304, Springer-Verlag, Berlin Heidelberg New York, 1972.
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