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Abstract

The existence of arbitrary cohomological localizations on the homotopy cate-
gory of spaces has remained unproved since Bousfield settled the same problem
for homology theories in the decade of 1970. This is related with another open
question, namely whether or not every homotopy idempotent functor on spaces is
an f -localization for some map f . We prove that both questions have an affirma-
tive answer assuming the validity of a suitable large-cardinal axiom from set theory
(Vopěnka’s principle). We also show that it is impossible to prove that all homotopy
idempotent functors are f -localizations using the ordinary ZFC axioms of set theory
(Zermelo–Fraenkel axioms with the axiom of choice), since a counterexample can
be displayed under the assumption that all cardinals are nonmeasurable, which is
consistent with ZFC.

Introduction

Homotopy idempotent functors appear frequently in algebraic topology. A homotopy

idempotent functor is a functor E from some model category [27] to itself that carries

weak equivalences to weak equivalences and is equipped with a natural transformation

η: Id→ E such that both ηE and Eη induce weak equivalences EX ' EEX for allX. The

first nontrivial instances of homotopy idempotent functors that were recognized as such

were localizations at sets of primes and, more generally, homological localizations [2], [5].
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In [16], Dror Farjoun developed a theory of localization with respect to any map

f :A → B. His construction associates functorially with each space X a map X → LfX

which is universal, up to homotopy, among maps from X into (fibrant) spaces Y such

that the map of function complexes

map(B, Y ) −→ map(A, Y )

induced by f is a weak equivalence. (In this article, spaces will be simplicial sets, and maps

and function complexes will be unbased.) For each map f , the functor Lf is homotopy

idempotent and continuous, that is, it induces a natural map of function complexes

map(X, Y ) −→ map(LfX, LfY )

for all X and Y , preserving composition and identity.

All examples of homotopy idempotent functors known until now on the model cate-

gory of simplicial sets are special cases of f -localizations for suitable choices of the map f ;

see [16, 1.E]. This led Dror Farjoun to ask in [14] and [16, 1.A] if every homotopy idem-

potent functor on simplicial sets is equivalent to some f -localization.

In this article we show that it is impossible to answer this question affirmatively using

the Zermelo–Fraenkel axioms of set theory and the axiom of choice (briefly, ZFC axioms).

Moreover, a negative answer to this question in ZFC is not to be expected, as it would

imply the inconsistency of certain large-cardinal axioms that are believed to be consistent

with ZFC after many years of related developments in set theory.

On one hand, we define a homotopy idempotent functor E on simplicial sets by as-

sociating with every X the nerve NPA πX, where πX is the fundamental groupoid of X

and PA is a homotopy idempotent functor on the model category of groupoids [9] which

annihilates the class A of groups of the form Zκ/Z<κ for all cardinals κ (see Section 6

for further explanation of this terminology). If there exists a map f such that E ' Lf ,

then we infer that Hom(Zκ/Z<κ, Z) 6= 0 for some cardinal κ, and it is known that the

smallest such κ is then measurable. However, the existence of measurable cardinals can-

not be proved in ZFC; see [1] or [24]. Therefore, the assertion that E 6' Lf for any f

is consistent with ZFC; in fact it can be derived from Gödel’s axiom of constructibility,

which implies that measurable cardinals do not exist.

On the other hand, if we assume Vopěnka’s principle [1], [24], then we can prove that

every homotopy idempotent functor E on simplicial sets is equivalent to f -localization

for some map f . A preliminary study in the category of groups was carried out in [13].
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Our results rely on work of Adámek–Rosický [1] and Dugas–Göbel [17]. Vopěnka’s

principle has also been used in a recent article by Rosický and Tholen [30] in order to

ensure the existence of certain model structures on locally presentable categories.

The crucial existence result is the following. Given any class D of fibrant simplicial

sets, consider the class S of maps X → Y such that the induced map

map(Y,D) −→ map(X,D)

is a weak equivalence for all D in D. Then, assuming Vopěnka’s principle, there is a map

f such that the f -localization functor Lf renders invertible precisely the maps in S.

This is a strong result, since it tells us that Vopěnka’s principle implies the existence of

localization with respect to any generalized cohomology theory; see Corollary 5.4 below.

Whether cohomological localizations can be shown to exist in ZFC or not is a long standing

open question; see [7, 2.6] and [26, Ch. 7].

In order to infer that, if Vopěnka’s principle is true, then every homotopy idempotent

functor on simplicial sets is equivalent to Lf for some map f , we need to show that if E

is homotopy idempotent (and takes fibrant values), then, for all X and Y , the map of

function complexes

map(EX,EY ) −→ map(X,EY )

induced by the natural map X → EX is a weak equivalence. This was proved by Dror

Farjoun in [15] under the additional assumption that E be continuous. We show that it is

still true if the continuity assumption is omitted. To achieve this, we replace the function

complex map(X,Y ) by the nerve of the category L(X, Y ) whose objects are diagrams

X → C ← Y where the backwards arrow is a weak equivalence, and morphisms are

commutative diagrams with X and Y fixed, as in [18], [19], [20]. Thus, every functor E

that carries weak equivalences to weak equivalences induces a functor

L(X,Y ) −→ L(EX,EY )

for all X and Y , and this is what is needed for the argument. Another possible approach

to avoid imposing continuity could be to use a result in [28, § 6], according to which every

functor on simplicial sets that carries weak equivalences to weak equivalences is naturally

equivalent to a continuous functor.

We conclude by showing that the existence of a universal acyclic space, which was

proved by Bousfield in [7] for f -localizations, cannot be proved in ZFC for homotopy
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idempotent functors in general. A universal acyclic space for a homotopy idempotent

functor E is a simplicial set U such that localization with respect to the map U → ∗ kills

the same simplicial sets as E does. (We say that a simplicial set X is killed by E if EX

is contractible.)

Acknowledgements It was Garth Warner who directed our attention to the work of

Adámek and Rosický. We were updated about cohomological localizations by Adam

Przeździecki. We also thank Joan Bagaria and Rüdiger Göbel for tutorials in set theory.

1 Locally presentable and accessible categories

Our main sources for this section were [1] and [22]. A cardinal λ is regular if it is infinite

and cannot be expressed as a sum of cardinals Σi<α λi where α < λ and λi < λ for all i.

Otherwise, λ is called singular. The first infinite cardinal ℵ0 is regular and so is every

successor cardinal. Many limit cardinals are singular; in fact, the statement that ℵ0 is

the only regular limit cardinal is consistent with ZFC.

A partially ordered set is called directed if every pair of elements has an upper bound.

More generally, for any regular cardinal λ, a partially ordered set is called λ-directed if

every subset of cardinality smaller than λ has an upper bound. Note that λ-directed

implies µ-directed if µ < λ, and, if λ is any infinite cardinal, then λ-directed implies

filtered, as in [8, XII] or in [1, 1.A]. (The latter concept is defined for more general

categories, not necessarily partially ordered sets.)

An object X of a category C is called λ-presentable, where λ is a regular cardinal, if the

functor C(X,−) preserves λ-directed colimits, that is, colimits of diagramsD: I → C where

I is a λ-directed partially ordered set. In other words, X is λ-presentable if whenever I is

λ-directed and a morphism f :X → colim ID is given, there is an object i ∈ I such that f

factorizes through D(i) and, if g and g′ are any two such factorizations X → D(i), then

there exists an object j ≥ i such that g and g′ coincide in D(j). Every µ-presentable

object is λ-presentable if µ < λ.

A category C is locally presentable if it is cocomplete and there is a regular cardinal

λ and a set X of λ-presentable objects such that every object of C is a λ-directed colimit

of objects from X . This concept was originally introduced by Gabriel and Ulmer in [22];

see also [1, 1.B]. If the assumption of cocompleteness is weakened by imposing instead

that λ-directed colimits exist in C, then C is called λ-accessible. The category C is called
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accessible if it is λ-accessible for some regular cardinal λ. If C is accessible, then there are

arbitrarily large regular cardinals λ such that C is λ-accessible; see [1, 2.14].

The category of groups is locally presentable, with λ = ℵ0 and X a set of representa-

tives of all isomorphism classes of finitely presented groups (in the usual sense of admitting

a presentation with a finite number of generators and a finite number of relations). The

category of topological spaces is not locally presentable; see [22, p. 64]. However, the cat-

egory of simplicial sets is locally presentable, with λ = ℵ0 and X a set of representatives

of all isomorphism classes of finite simplicial sets. The category of CW-complexes and

cellular maps is not locally presentable, since it is not cocomplete.

2 Idempotent functors

An idempotent monad on a category C is a pair (E, η) consisting of a functor E and a

natural transformation η: Id → E such that ηEX :EX → EEX is an isomorphism for

every object X, and ηEX = EηX for all X; cf. [2]. For simplicity, we say that a functor E

is idempotent if it is part of an idempotent monad. Then we also call it a reflection or a

localization (although other authors use the term localization in a more restrictive sense).

The natural transformation η was called a coaugmentation in [16].

An object X and a morphism f :A→ B in a category C are orthogonal if the map

C(f,X): C(B,X) −→ C(A,X)

is bijective; that is, X and f are orthogonal if for every morphism g:A → X there is a

unique morphism h:B → X such that h ◦ f = g. The class of objects that are orthogonal

to a given class S of morphisms is denoted by S⊥ and called the orthogonal complement

of S. The same notation is used by exchanging the role of objects and morphisms.

Every idempotent functor E gives rise to a class of morphisms S and a class of objects

D such that S⊥ = D and D⊥ = S, namely the class S of morphisms f :X → Y such that

Ef :EX → EY is an isomorphism (such morphisms are called E-equivalences), and the

class D of objects Z such that Z ∼= EY for some Y (objects in this class are said to be

E-local); see [2] or [10] for further details.

A class D of objects in a category C is called reflective if it is the class of E-local

objects for some idempotent functor E. (No distinction is made here between a class

of objects and the full subcategory with those objects.) A class of objects D is called
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a small-orthogonality class if there is a set M of morphisms (not a proper class) such

thatM⊥ = D. If the category C has coproducts and all hom-sets C(X, Y ) are nonempty,

then a class of objects D is a small-orthogonality class if and only if D = {ϕ}⊥ for some

morphism ϕ, since a set of morphisms and their coproduct have the same orthogonal

complement.

A detailed proof of the following fundamental theorem can be found in [1, 1.36].

Various versions of this fact have been described in the literature. It goes back essentially

to Gabriel–Ulmer [22]; see also Bousfield’s article [6].

Theorem 2.1 Every small-orthogonality class of objects in a locally presentable category

is reflective. 2

In Section 6 we will use this result in the category of groups. For a group homomor-

phism ϕ, we use the symbol Lϕ and the term ϕ-localization to denote the reflection onto

the class {ϕ}⊥, whose members are called ϕ-local groups.

3 Homotopy idempotent functors

The homotopy-theoretical version of Theorem 2.1 is the following; cf. [6], [16]. Given any

map of simplicial sets f :A → B, a simplicial set X is called f -local if X is fibrant and

the map of function complexes

map(f,X): map(B,X) −→ map(A,X) (3.1)

is a weak equivalence. As shown in [16] or [23], for every map f there is a coaugmented

functor Lf on simplicial sets, called f -localization, which carries weak equivalences to weak

equivalences and is a reflection onto the class of f -local simplicial sets in the homotopy

category. When the map f has the form A→ ∗ for some A, the notation PA is commonly

used instead of Lf . (The letter P was chosen since Postnikov sections are the basic

examples.)

We extend this terminology as follows. Given any class S of maps, a simplicial set X

will be called S-local if it is f -local for all maps f in S. Similarly, for a class D of fibrant

simplicial sets, a map f :A→ B will be called a D-equivalence if

map(f,D): map(B,D) −→ map(A,D)
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is a weak equivalence for everyD inD. This is a stronger form of orthogonality that we will

call simplicially enriched orthogonality, or, more shortly, simplicial orthogonality. Thus,

the class of D-equivalences is the simplicial orthogonal complement of D, and analogously

with the role of spaces and maps reversed. This is consistent with the term f -local

equivalences, which was used in [7], [23], and in other places, to denote the simplicial

orthogonal complement of the class of f -local spaces. For shortness, f -local equivalences

are also called f -equivalences in many places, as we will do in this article.

For each map f , the functor Lf is idempotent up to homotopy. We next make precise

the definition of a homotopy idempotent functor, with the aim of discussing, later in the

article, whether or not this notion is more general than f -localization.

Definition 3.1 A functor E on the category of simplicial sets is homotopy idempotent if

it carries weak equivalences to weak equivalences and is equipped with a natural trans-

formation η: Id→ E such that ηEX ' EηX and ηEX :EX → EEX is a weak equivalence

for all X.

We will impose, in addition, that EX be fibrant for all X. This allows to shorten

many statements and does not cause any loss of generality, since, if E has the properties

imposed in the definition, then so does any fibrant approximation to E.

Note that η is asked to be a natural transformation on the category of simplicial sets,

not only up to homotopy. We also recall from [15, Lemma 2.1.3] that, if we impose that

both ηEX and EηX be weak equivalences, then it follows automatically that ηEX ' EηX .

A functor on simplicial sets that carries weak equivalences to weak equivalences is

called a homotopy functor. Thus, every homotopy functor defines a functor on the ho-

motopy category. Definition 3.1 says that a homotopy idempotent functor is a homotopy

functor with a coaugmentation η such that (E, η) is an idempotent monad on the ho-

motopy category. Accordingly, a map g:X → Y of simplicial sets will be called an

E-equivalence if Eg:EX → EY is a weak equivalence, and a simplicial set Z will be

called E-local if it is fibrant and Z ' EY for some Y . Then the classes of E-equivalences

and E-local simplicial sets are orthogonal in the homotopy category, that is, if g:X → Y

is an E-equivalence and Z is E-local, then g induces a bijection of (unbased) homotopy

classes of maps

[Y, Z] ∼= [X,Z].

But it is crucial to emphasize that, if E is homotopy idempotent, then E-equivalences

and E-local simplicial sets are also simplicially orthogonal, that is, if g:X → Y is an
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E-equivalence and Z is E-local, then g induces a weak equivalence of function complexes

map(Y, Z) ' map(X,Z).

This fact will be proved in the next section. (All this can be formulated in the pointed

homotopy category as well; cf. [16, 1.A.7].)

4 Homotopy idempotence and function complexes

The fact that, for each homotopy idempotent functor E, the simplicial orthogonal com-

plement of the class of E-local simplicial sets coincides with the class of E-equivalences

was first proved by Dror Farjoun in [15] under the assumption that the functor E be

continuous. (A functor E is called continuous or simplicial if there is a natural map of

simplicial sets

map(X,Y ) −→ map(EX,EY )

for all X and Y , preserving composition and identity; cf. [27, II.1].) Thus, our argument

in this section shows that the continuity assumption in [15, Theorem 2.1] is not essential,

provided that the functor E carries weak equivalences to weak equivalences.

The next two lemmas are important ingredients in the proof. Let L(X, Y ) be the

category whose objects are the diagrams X → C ← Y of simplicial sets in which the map

C ← Y is a weak equivalence, and whose morphisms are commutative diagrams

X → C1 ← Y
= ↓ ↓ = ↓
X → C2 ← Y.

We denote by Lc(X, Y ) the full subcategory of L(X,Y ) whose objects are the diagrams

X → C ← Y where the backwards map C ← Y is a trivial cofibration.

Lemma 4.1 For any two simplicial sets X and Y , the inclusion J :Lc(X, Y ) ↪→ L(X, Y )

induces a homotopy equivalence of nerves.

Proof. Define a functor F :L(X, Y )→ Lc(X, Y ) in the following way. Given a diagram

X
α−→ C

β←− Y in which β is a weak equivalence, choose a functorial factorization of β
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into a trivial cofibration followed by a trivial fibration with a right inverse, as in Brown’s

lemma [23, 7.7.1]. Specifically, factor the map β ∐ id:Y
∐
C → C as

Y
∐
C

δ
∐
σ

−−−→M
γ

−−−→ C,

where M is the mapping cylinder of β ∐ id. Then the map γ:M → C comes with a

canonical section σ:C → M . The value of F on X → C ← Y is defined to be the

diagram

X
σ◦α
−−−→M

δ
←−−− Y,

where the backwards map δ is now a trivial cofibration. The commutativity of the diagram

X → M ← Y
= ↓ ↓ = ↓
X → C ← Y

yields a natural transformation from F ◦ J to the identity, and also from J ◦ F to the

identity, as needed. 2

This result requires a set-theoretical comment. Since the categories Lc(X, Y ) and

L(X, Y ) have a proper class of objects, their nerves are “large simplicial sets”, according

to the following standard convention. In this section, we adopt as an axiom the statement

that every set belongs to some universe, as defined e.g. in [4, Ch. 1]. We then fix a

universe U , in which we tacitly work. The successor universe U+ is the unique smallest

universe such that U ∈ U+. Elements of U are called small sets and elements of U+ are

called large sets or classes. A category is small if its sets of objects and morphisms are

small. The nerve of an arbitrary category C is a simplicial set in U+, which falls into U
precisely when C is small. When we speak of a “set” without any further specification, the

context should make clear whether a small set or a large set is intended. In Lemma 4.1

and in the rest of this section, nerves of categories, maps between nerves, and homotopies

between these are implicitly defined in U+ whenever it is necessary.

We emphasize, however, that NL(X, Y ) is homotopically small for all X and Y ; that

is, its set of connected components is small and its homotopy groups at every vertex are

also small. Hence, as explained in [20, 2.2], the homotopy type of a homotopically small

simplicial set is well defined within the universe U in which we agreed to work.

The following notions are dual to those introduced in [8, XI.9.1] and [8, XI.10.1]. For

a small category S, a functor Φ:S → C is right cofinal if, for each object x in C, the
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nerve of the undercategory (x ↓ Φ) is contractible (i.e., weakly equivalent to a point). A

category C is right small if there exists a right cofinal functor Φ:S → C where S is small.

If C is right small, then its nerve NC is homotopically small and weakly equivalent to

NS for any right cofinal functor Φ:S → C. Indeed, NS is the homotopy colimit of the

constant functor from S to simplicial sets sending all objects to a point, and, for a right

small category C, the homotopy type of this homotopy colimit does not depend on the

choice of S or Φ; cf. [8, XI.10.3].

For a simplicial set K, we denote by ∆K the category of simplices of K, whose objects

are the simplicial maps ∆[n]→ K with n ≥ 0, and where a morphism from σ: ∆[n]→ K

to τ : ∆[m]→ K is a simplicial map ϕ: ∆[n]→ ∆[m] with τ ◦ϕ = σ. For each K, there is

a natural weak equivalence N∆K → K from the nerve of this category onto K; see e.g.

[23, 15.1.14 and 18.9.3].

If Y is a fibrant simplicial set, then for every X there is a functor

Φ: ∆map(X, Y ) −→ Lc(X,Y )

sending each object ∆[n]→ map(X,Y ) to the diagram

X −→ Y ∆[n] ←− Y,

where we write Y ∆[n] instead of map(∆[n], Y ) for convenience. The arrow X → Y ∆[n]

corresponds to the given object by adjointness, and Y → Y ∆[n] is a trivial cofibration

induced by the unique map ∆[n]→ ∆[0].

Lemma 4.2 If Y is fibrant, then Φ: ∆map(X, Y ) −→ Lc(X,Y ) is right cofinal.

Proof. The argument is based on [20, § 6 and § 7]. For each object x in Lc(X, Y ), say

X → C ← Y , the undercategory (x ↓ Φ) has objects the commutative diagrams

X → C ← Y
= ↓ ↓ = ↓
X → Y ∆[n] ← Y,

and hence it is isomorphic to the category of simplices ∆F of the fibre F of

map(C, Y ) −→ map(Y, Y ) (4.1)
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over the identity, taken as basepoint of map(Y, Y ). Since Y → C is a trivial cofibration,

the map (4.1) is a trivial fibration and therefore F is contractible. This implies that the

nerve of (x ↓ Φ) is contractible, as claimed. 2

If Y is not fibrant, then NLc(X,Y ) still has the correct homotopy type of a function

complex, while map(X, Y ) does not, in general.

The main result in this section is the following.

Theorem 4.3 Let E be any homotopy idempotent functor on simplicial sets, with coaug-

mentation η. Then, for all simplicial sets X and Z, the map

map(EX,EZ) −→ map(X,EZ)

induced by ηX :X → EX is a weak equivalence.

Proof. Let us write Y instead of EZ for shortness, so Y denotes any E-local simplicial

set. By the previous two lemmas, since Y is fibrant, the function complex map(X, Y ) has

the same homotopy type as the nerve of the category L(X, Y ). In fact, there are natural

weak equivalences

map(X, Y )←− N∆map(X, Y ) −→ NL(X,Y ).

Since the next argument involves simplicial homotopies, we need in addition a fibrant

replacement of NL(X, Y ). We may use, for instance, the Kan functor Ex∞. To simplify

the notation, let us write M(X, Y ) as an abbreviation of Ex∞NL(X, Y ).

What we achieve by using M(X, Y ) instead of the function complex map(X,Y ) is that

the functor E gives rise to a natural map

M(X, Y )
ε

−−−→M(EX,EY )

for all X, Y , induced by the functor that sends X → C ← Y to EX → EC ← EY .

Thus, in order to prove the theorem we may check that, if Y is E-local, then the map

(ηX)∗:M(EX, Y ) −→M(X, Y )

induced by ηX :X → EX is a weak equivalence. For shortness, we denote this map by f .

Observe that it is induced by the functor F :L(EX, Y )→ L(X, Y ) given by

F
(
EX

ϕ1

−−−→ C
ϕ2

←−−− Y
)

= X
ϕ1◦ηX

−−−→ C
ϕ2

←−−− Y.
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Define another functor G:L(X,Y )→ L(EX, Y ) by

G

(
X

ψ1

−−−→ D
ψ2

←−−− Y

)
= EX

Eψ1

−−−→ ED
Eψ2◦ηY

←−−− Y,

and let g:M(X, Y ) → M(EX, Y ) be the corresponding map, that is, g = (ηY )∗ ◦ ε. We

are going to prove that g is a homotopy inverse of f .

First, from the fact that η is a natural transformation it follows that, for every object

X
ψ1−→ D

ψ2←− Y in L(X, Y ), we have equalities Eψ1◦ηX = ηD◦ψ1 and Eψ2◦ηY = ηD◦ψ2.

These yield precisely a natural transformation Id→ F ◦G, showing that f◦g is simplicially

homotopic to the identity map.

Exactly the same argument shows that the composite

M(EX, Y )
ε

−−−→M(EEX,EY )
(ηEX)∗

−−−→M(EX,EY )
(ηY )∗

−−−→M(EX, Y )

is homotopic to the identity map. Moreover, observe that the composites

M(EX, Y )
ε

−−−→M(EEX,EY )
(EηX)∗

−−−→M(EX,EY )

and

M(EX, Y )
(ηX)∗

−−−→M(X, Y )
ε

−−−→M(EX,EY )

are induced by the same functor. Finally, recall that the maps EηX and ηEX are homo-

topic, since E is assumed to be homotopy idempotent. Thus, let τ :EX → EEX∆[1] be

adjoint to a simplicial homotopy from EηX to ηEX , and consider the functor

T :L(EEX,EY ) −→ L(EX,EY )

sending each diagram EEX
ϕ1−→ C

ϕ2←− EY to EX−−−→ C∆[1]
c◦ϕ2

←−−− EY , where the first

arrow is ϕ
∆[1]
1 ◦ τ and c is adjoint to the constant homotopy at the identity. This functor

T comes equipped with natural transformations T → (EηX)∗ and T → (ηEX)∗ by means

of τ . Hence (EηX)∗ ' (ηEX)∗ after taking nerves and a fibrant approximation. Therefore,

g ◦ f = (ηY )∗ ◦ ε ◦ (ηX)∗ ' (ηY )∗ ◦ (EηX)∗ ◦ ε ' (ηY )∗ ◦ (ηEX)∗ ◦ ε ' id,

as needed. We are thankful to Oriol Raventós for his help in fixing the last details of this

proof, and to Bill Dwyer for useful comments. 2
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Corollary 4.4 Let E be a homotopy idempotent functor on simplicial sets.

(a) If f :A→ B is an E-equivalence, then all E-local simplicial sets are f -local, and all

f -equivalences are E-equivalences.

(b) The class of E-equivalences coincides with the simplicial orthogonal complement of

the class of E-local simplicial sets.

Proof. In part (a), it suffices to prove that every E-local simplicial set is f -local. Now,

for every E-local simplicial set Z, the map

map(B,Z) −→ map(A,Z)

induced by f is a weak equivalence, since Ef is a weak equivalence by assumption and,

by Theorem 4.3, the vertical arrows are weak equivalences in the commutative diagram

map(EB,Z) −→ map(EA,Z)

↓ ↓
map(B,Z) −→ map(A,Z).

To prove (b), denote by S the simplicial orthogonal complement of the class of E-local

simplicial sets. Then every map in S is an E-equivalence. Conversely, if g:X → Y is an

E-equivalence, then, by (a), all E-local simplicial sets are g-local, and this means that g

is in S. 2

Corollary 4.5 If E is any homotopy idempotent functor on simplicial sets and some

E-equivalence f :A→ B is not bijective on connected components, then EX is contractible

for every nonempty simplicial set X.

Proof. By part (a) of Corollary 4.4, all E-local simplicial sets are f -local. According to

[31, Theorem 4.1], if the function π0(f) is not bijective, then nonempty f -local simplicial

sets are contractible. 2
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5 Existence results

We will use Vopěnka’s principle in this section. One of its various equivalent formula-

tions [1, Ch. 6] says that no locally presentable category contains a rigid proper class of

objects. (A class of objects is called rigid if it admits no other morphisms than identities.)

Thus, according to Vopěnka’s principle, given a proper class of objects Ai in any locally

presentable category, there is a nonidentity morphism Ai → Aj for some indices i and j.

Under this axiom, as stated in [1, 6.24], every full subcategory closed under limits in a

locally presentable category is a small-orthogonality class (hence reflective). Since the

category of groups is locally presentable, we have the following.

Theorem 5.1 Suppose that Vopěnka’s principle holds. Let E be any idempotent functor

on the category of groups. Then there exists a homomorphism ϕ such that E ∼= Lϕ.

Proof. Our assumptions ensure that the class D of E-local groups is a small-orthogon-

ality class, that is, there is a homomorphism ϕ such that D = {ϕ}⊥. This means that the

classes of ϕ-local groups and E-local groups coincide and our claim follows. 2

Now we turn to the analogous situation in homotopy theory. We are going to prove

that, assuming that Vopěnka’s principle is true, every homotopy idempotent functor E

on simplicial sets is equivalent to Lf for some map f .

Lemma 5.2 Let D be any class of fibrant simplicial sets. Then the class of D-equivalences

is closed under filtered colimits.

Proof. Let fi:Xi → Yi be a diagram of maps in the class S of D-equivalences, where

the index i ranges over a filtered set I. We wish to prove that the induced map

colim fi: colimXi −→ colimYi

is in S. Since homotopy groups commute with filtered colimits of simplicial sets, the

horizontal arrows in the commutative diagram

hocolimXi −→ colimXi

↓ ↓
hocolimYi −→ colimYi

14



are weak equivalences; cf. [8, XII.3.5]. Therefore, it suffices to show that the left vertical

arrow hocolim fi is in S. But this follows from the natural equivalences

map(hocolimYi, Z) ' holim map(Yi, Z) ' holim map(Xi, Z) ' map(hocolimXi, Z),

for every simplicial set Z in D. 2

The following theorem is the basic result that explains the role of large-cardinal axioms

in homotopy theory.

Theorem 5.3 Suppose that Vopěnka’s principle is true. Let D be any class of fibrant

simplicial sets. Then there is a map f such that the class of f -equivalences is equal to the

class of D-equivalences.

Proof. According to [1, 6.6] and [1, 6.18], assuming Vopěnka’s principle, every full sub-

category which has λ-directed colimits for some regular cardinal λ in a locally presentable

category C is accessible. We will use this fact in the category C whose objects are maps

between simplicial sets and whose morphisms are commutative squares. Thus, let S be

the simplicial orthogonal complement of a given class D of fibrant simplicial sets, and de-

note with the same letter S the full subcategory of C with these objects. Lemma 5.2 says

that S is closed under filtered colimits. That is, S has filtered colimits, and the inclusion

of S into C preserves filtered colimits. Therefore, S is accessible. (This illustrates well

the distinction between locally presentable and accessible categories; S need not be closed

under arbitrary colimits, so it is not cocomplete.) Thus, for a certain regular cardinal λ0,

the class S contains a set X of λ0-presentable objects such that every object of S is a

λ0-directed colimit of objects from X .

Let f be the disjoint union of all the maps in X . Since every simplicial set in D is

f -local, every f -equivalence is in S. Conversely, every map g in S is a λ0-directed colimit

of maps in X . Since all maps in X are rendered invertible by Lf , they are f -equivalences.

Therefore, g is also an f -equivalence, by Lemma 5.2. This finishes the proof. 2

Corollary 5.4 Suppose that Vopěnka’s principle is true. If h∗ is any generalized coho-

mology theory, then there is a map f such that the class of f -equivalences coincides with

the class of h∗-equivalences.
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Proof. LetD be a set of fibrant simplicial sets {Kn}, n ∈ Z, representing the cohomology

theory h∗. Then a map g:X → Y is a D-equivalence if and only if

map(g,Kn): map(Y,Kn) −→ map(X,Kn)

is a weak equivalence for all n. Now, for every n and every X, the function complex

map(X,Kn) is an infinite loop space, so all its connected components have the same

homotopy type. Its group of connected components is [X,Kn] ∼= hn(X) and the homotopy

groups of the basepoint component are

πi(map(X,Kn), ∗) ∼= π0(Ω
imap(X,Kn)) ∼= π0(map(X,ΩiKn)) ∼= [X,ΩiKn] ∼= hn−i(X).

Hence, the class of D-equivalences is precisely the class of h∗-equivalences, and our claim

follows from Theorem 5.3. 2

In other words, Vopěnka’s principle implies the existence of arbitrary cohomological

localizations. So far, no proof of this fact has been given using only ZFC.

We also infer the following key result.

Theorem 5.5 Suppose that Vopěnka’s principle is true. If E is any homotopy idempotent

functor on simplicial sets, then there is a map f such that Lf ' E.

Proof. Let D be the class of E-local simplicial sets. It follows from Corollary 4.4 that

the class of D-equivalences coincides with the class of E-equivalences. Then Theorem 5.3

says that there is a map f such that the f -equivalences are precisely the E-equivalences.

This implies that the functors E and Lf are homotopy equivalent. 2

Note, however, that we have not proved the consistency relative to ZFC of the assertion

that every homotopy idempotent functor is equivalent to Lf for some f , since the validity

of this assertion depends on large-cardinal hypotheses. What we have shown is that it is

unreasonable to try to find a counterexample in ZFC, since such a counterexample would

imply that Vopěnka’s principle is inconsistent. The extent to which the strongest large-

cardinal principles not known to be inconsistent (such as Vopěnka’s principle) should be

considered “true” is discussed e.g. at the beginning and end of § 24 in [25]. We quote

the following paragraph: “Of course, a new inconsistency result would be an exciting

development, but as time goes by, the further analysis and application of these hypotheses

suggest that they may be approached with increasing confidence if not acceptance.”

In the next section we show that, under different set-theoretical assumptions, the

conclusion of Theorem 5.5 is different.
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6 A counterexample

It was shown in Proposition 2.1 of [11] that, in the category of groups, for every (possibly

proper) class S of epimorphisms, the orthogonal complement S⊥ is reflective (cf. also

Exercise 1.n in [1, p. 63] and Theorem 1 in [13]). Specifically, for a group G, let TG be the

intersection of all kernels of epimorphisms from G onto groups in S⊥. Then EG = G/TG

is the desired reflection. In the special case when S is a class of homomorphisms of

the form Aα → 0, where Aα ranges over a set or a class A of groups, the corresponding

reflection will be called A-reduction and denoted PA. Thus, a group G is A-reduced if and

only if the set Hom(Aα, G) is trivial for every Aα in A. Contrary to what happens with

more general localization functors, if two reduction functors annihilate the same groups,

then they coincide; cf. [11, Theorem 2.3].

For each cardinal κ, we denote by Zκ the cartesian product of κ copies of the additive

group of integers; that is, Zκ is the abelian group of all functions f :κ→ Z. For a function

f ∈ Zκ, the support supp(f) is the set of indices i ∈ κ for which f(i) 6= 0. We write Z<κ

to designate the set of all functions f ∈ Zκ such that the cardinality of supp(f) is smaller

than κ. We will focus attention on the quotient Zκ/Z<κ. (In the special case κ = ℵ0, this

is of course
∏∞
i=1Z/⊕∞i=1 Z.)

Lemma 6.1 Let κ be any regular cardinal and let G be a group with card(G) < κ. Then

every homomorphism β:G→ Zκ/Z<κ can be lifted to a homomorphism α:G→ Zκ.

Proof. This is a particular instance of Lemma 2.6 in [17], which we adapt to our

purposes. For each element g ∈ G, pick a representative φ(g) ∈ Zκ of the image β(g).

Thus, for each pair of elements g and h of G, the element φ(g)+φ(h)−φ(gh) lies in Z<κ.

Let S be the union of the supports of the elements φ(g) + φ(h) − φ(gh) for all pairs of

elements g and h of G. The assumption that card(G) < κ ensures that card(S) < κ as

well, since κ is regular. Thus, if we now define α(g) by setting to zero all the components

in S of the element φ(g), then α(g) and φ(g) define the same element in Zκ/Z<κ, and

α:G→ Zκ is in fact a homomorphism. 2

Let A be the class of groups Zκ/Z<κ for all cardinals κ, so that a group G is A-reduced

if and only if Hom(Zκ/Z<κ, G) = 0 for all κ.

Recall that an uncountable cardinal λ is measurable if it admits a nontrivial, two-

valued, λ-additive measure, that is, if a function µ can be defined on any set X of car-

dinality λ assigning to each subset of X a value 0 or 1, in such a way that µ(X) = 1,
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µ(x) = 0 for all x ∈ X, and µ (∪iAi) = Σi µ(Ai) if the subsets Ai are pairwise disjoint

and the set of indices i has cardinality smaller than λ. The existence of measurable cardi-

nals cannot be proved in ZFC, since every measurable cardinal is (strongly) inaccessible;

see [1, A.10] or [24, 5.27].

We note that in [21] —as in many other references— measurable cardinals are defined

by imposing only that the measure µ be countably additive. However, the existence of

cardinals λ with a nontrivial two-valued λ-additive measure is equivalent to the existence

of cardinals with a nontrivial two-valued countably additive measure; see Theorem 6.1.11

in [3] or Lemma 27.1 in [24].

Proposition 6.2 Let A be the class of groups Zκ/Z<κ for all cardinals κ. Then the

statement that the additive group of integers Z is A-reduced is equivalent to the statement

that all cardinals are nonmeasurable.

Proof. Assuming that measurable cardinals do not exist, we have Hom(Zκ/Z<κ, Z) = 0

for all κ; see Theorem 94.4 in Fuchs’ book [21]. On the other hand, if we admit the

existence of a measurable cardinal λ, then Hom(Zλ/Z<λ, Z) 6= 0, since we can define

a nonzero homomorphism ϕ:Zλ → Z with ϕ(Z<λ) = 0, by assigning to each function

f :λ→ Z the unique integer z such that f−1(z) has measure 1; cf. [17, p. 83]. 2

Theorem 6.3 Suppose that all cardinals are nonmeasurable. If A is the class of groups

Zκ/Z<κ for all cardinals κ, then there is no single group homomorphism ϕ such that

ϕ-localization is isomorphic to A-reduction on the category of groups.

Proof. First we show that there exists no group G such that G-reduction coincides with

A-reduction. Suppose that there is such a group G. Then, since PA(Zκ/Z<κ) = 0 for all κ,

we must have Hom(G, Zκ/Z<κ) 6= 0 for all κ as well. Let κ be a regular cardinal that is

bigger than the cardinality of G. Let β:G → Zκ/Z<κ be a nonzero homomorphism. By

Lemma 6.1, β can be lifted to a homomorphism α:G → Zκ, which is of course nonzero.

Hence, composition with a suitable projection yields a nonzero homomorphism G → Z

and this implies that Z is not G-reduced. From our assumption it follows that Z is not

A-reduced and this contradicts Proposition 6.2.

Now suppose that there is a homomorphism ϕ such that Lϕ coincides with PA. Let G

be a universal ϕ-acyclic group, as in [29, § 3]. Thus, PG and PA annihilate the same
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groups and hence they coincide. That is, G-reduction is the same as A-reduction, which

is, as we know, impossible. 2

Localizations of groups extend to localizations of groupoids as described in [9]. In par-

ticular, for each set or proper class of groups A, the functor PA extends over the category

of groupoids. For each groupoid G, the A-reduction morphism η:G → PAG induces a

bijection of connected components and an isomorphism PA π1(G, v) ∼= π1(PAG, η(v)) at

each object v of G.

Theorem 6.4 Suppose that all cardinals are nonmeasurable. Then there is a homotopy

idempotent functor E on simplicial sets that is not equivalent to f -localization for any

map f .

Proof. For each simplicial set X, define

EX = NPA πX,

where πX is the fundamental groupoid of X, the letter N denotes the nerve, and the class

A consists of all groups Zκ/Z<κ. The map ηX :X → EX is the composite of the natural

map X → NπX with the map induced by the A-reduction morphism πX → PA πX. This

functor E is homotopy idempotent, since πEX ∼= PA πX and the functor PA is homotopy

idempotent on the model category of groupoids [9].

Now suppose that there is a map f :R→ S of simplicial sets such that Lf is equivalent

to E. We may assume with no loss of generality that R and S are connected (using

Corollary 4.5), and furthermore that they have a single vertex. Let ϕ: πR → πS be the

morphism induced by f on fundamental groupoids (in fact, these are groups, since they

have only one object). A group G is ϕ-local if and only if ϕ induces a bijection of sets

Hom(πS,G) ∼= Hom(πR,G),

that is, if and only if f induces a weak equivalence of function complexes

map(S,NG) ' map(R,NG).

Hence, G is ϕ-local if and only if NG is f -local, that is, if and only if NG is E-local,

which is the same as imposing that G be A-reduced. Therefore, the class of ϕ-local

groups coincides with the class of A-reduced groups. This is impossible, according to

Theorem 6.3. 2

The confrontation of Theorem 5.5 with Theorem 6.4 was indeed one of the main goals

of this article.

19



7 Universal acyclic spaces

As shown in [29, § 3], for each localization on the category of groups with respect to a

homomorphism ϕ there exists a (not necessarily unique) universal acyclic group, that is,

a group G such that the G-reduction PG and the ϕ-localization Lϕ annihilate the same

groups. As we next explain, it cannot be proved in ZFC that arbitrary localizations on

the category of groups admit universal acyclic groups. Let E be an idempotent functor on

groups. On one hand, under Vopěnka’s principle, we know that E ∼= Lϕ for some ϕ and

hence a universal E-acyclic group exists. On the other hand, assuming that no measurable

cardinal exists, Theorem 6.3 yields a reduction functor which is not isomorphic to PG for

any group G. Such a functor does not admit a universal acyclic group.

The same result holds for simplicial sets, as shown below. Thus, Bousfield’s result

in [7], asserting that for every map f there is a universal f -acyclic space, cannot be

extended to arbitrary homotopy idempotent functors. Recall that, if E is a homotopy

idempotent functor on simplicial sets, a simplicial set X is called E-acyclic if EX is

contractible. A universal E-acyclic space is a simplicial set U such that the nullification

PU kills the same simplicial sets as E does.

Theorem 7.1 The existence of a universal E-acyclic space for every homotopy idempo-

tent functor E on simplicial sets is ensured by Vopěnka’s principle. However, if we assume

that measurable cardinals do not exist, then there are homotopy idempotent functors on

simplicial sets for which no universal acyclic space exists.

Proof. Let E be given. First, if Vopěnka’s principle holds, then E ' Lf for some map f ,

by Theorem 5.5. Hence, it follows from [7, Theorem 4.4] that a universal E-acyclic space

exists. Secondly, assume that there are no measurable cardinals. As in Section 6, consider

the functor EX = NPA πX, where the class A consists of all groups Zκ/Z<κ. We claim

that there is no universal E-acyclic space. Indeed, suppose that universal E-acyclic spaces

exist, and choose one with a single vertex. Call it U and let G be its fundamental group.

Let κ be a regular cardinal that is bigger than the cardinality of G. Then the simplicial set

N(Zκ/Z<κ) is E-acyclic and hence it is PU -acyclic. This implies that there are essential

maps U → N(Zκ/Z<κ). Therefore, Hom(G, Zκ/Z<κ) 6= 0. From Lemma 6.1 it follows

that Hom(G,Z) 6= 0. Therefore, there are essential maps U → S1 and, as shown in [12],

S1 is then PU -acyclic. It follows that S1 is E-acyclic, which implies that PA Z = 0, and

this contradicts Proposition 6.2. 2
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