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Abstract

We prove that, assuming the existence of cohomological localiza-
tions (which is known to follow from the existence of supercompact
cardinals), the localization of a space or a spectrum X with respect to
a cohomology theory E∗ can be computed pointwise as a homotopy
inverse limit.
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1 Completion with respect to group objects

LetM be a left proper pointed model category with functorial factorizations,
and let G be any class of fibrant objects. A map A → B will be called
G-monic, as in [3, § 3.1], if the induced function [ΣnB,G] → [ΣnA,G] is
surjective for each G ∈ G and n ≥ 0. An object X is G-injective if the
function [ΣnB,X] → [ΣnA,X] is surjective for each G-monic map A → B
and all n ≥ 0.

One says that G is a class of injective models if every object of M is the
source of a G-monic map to a G-injective target. According to [3, § 4.5], if G
is any set of group objects in Ho(M), then G is a class of injective models.
The motivating example is the set

G = {ΣnEk | n ∈ Z, k ≥ 0}, (1.1)

where E is a given Ω-spectrum and {Ek}k≥0 are its representing spaces (i.e.,
pointed simplicial sets).

1



A class G of injective models is functorial in the sense of [3, § 4.2] if there
exists a functor Γ: M →M and a natural transformation γ : Id → Γ such
that γX : X → ΓX is a G-monic map and ΓX is G-injective for each X inM.
From the assumption that the model categoryM has functorial factorizations
it follows that every set G of group objects in Ho(M) is functorial; details
are given in [3, § 4.5].

For an object X ofM and a class of injective models G, let X → X◦ be a
trivial cofibration into a fibrant object in the G-resolution model structure on
the category of cosimplicial objects overM given by [3, Theorem 3.3], where
X is viewed as a constant cosimplicial object. This can be chosen functorially
by [3, § 4.2] if G is functorial. Recall that, in the G-resolution model structure,
a weak equivalence is a map f : X◦ → Y ◦ of cosimplicial objects inducing a
weak equivalence of simplicial groups [ΣnY ◦, G] ' [ΣnX◦, G] for all G ∈ G
and n ≥ 0, and the fibrations and cofibrations are described in [3, § 3.2].

Now define the G-completion of an object X in M as

LĜX = TotX◦,

as in [3, § 5.7]. If G is functorial, then LĜ can be chosen as a functorM→M
equipped with a natural transformation α : Id → LĜ. Note, moreover, that
LĜX is fibrant by [3, § 2.8].

We set, accordingly, T1 = LĜ and η1 = α. By [3, Corollary 8.2], the
functor T1 and the natural transformation η1 are part of a monad on Ho(M).
The main properties of this monad are collected in the following lemma.

Lemma 1.1. (i) If an object X in M is G-injective, then η1 : X → T1X
is a weak equivalence.

(ii) Given a map f : X → Y in M, the map T1f : T1X → T1Y is a weak
equivalence if and only if the function

[f,G] : [ΣnY,G] −→ [ΣnX,G]

is a bijection for all G ∈ G and n ≥ 0.

Proof. Part (i) is stated in [3, Corollary 6.6] and part (ii) follows from [3,
Lemma 8.4].

The maps X → Y such that the induced function [ΣnY,G] → [ΣnX,G]
is bijective for all G ∈ G and n ≥ 0 are called G-equivalences.

2



2 A long tower

We next define a long tower as in [7], starting with T1 = LĜ as defined in
the previous section, where G is a functorial class of injective models in a
left proper pointed model category M. Thus we define inductively, for each
ordinal α and each object X in M,

Tα+1X = holimTαX

where TαX is the restricted cosimplicial object with (TαX)k = T k+1
α X for

k ≥ 0; cf. [7, § 3]. For a limit ordinal λ, we let

TλX = holim
α<λ

Tα.

Each Tα is a functor on M preserving weak equivalences, equipped with
a natural transformation ηα : Id→ Tα, and it is part of a monad (Tα, ηα, µα)
on Ho(M). These functors form an inverse system

· · · −→ Tα+1
ϕα−→ Tα −→ · · · −→ T2

ϕ1−→ T1 (2.1)

indexed by all ordinals, which we call the G-completion tower, in which the
equality ϕα ◦ ηα+1 = ηα holds for all α. Moreover, by [7, Lemma 3.4], each
map (ϕα)X : Tα+1X → TαX is a fibration.

We call Tα-equivalences those maps f such that Tαf is a weak equivalence.

Lemma 2.1. The class of Tα-equivalences is the class of G-equivalences for
all ordinals α ≥ 1.

Proof. One implication follows from the fact that each Tα preserves weak
equivalences and from the homotopy invariance of holim. The converse is
shown using the same argument as in [3, Lemma 8.4]. THIS NEEDS TO BE
WRITTEN DOWN PROPERLY.

Lemma 2.2. If X is cofibrant and ηα : X → TαX has a left inverse for some
ordinal α, then ηα+1 : X → Tα+1X is a weak equivalence.

Proof. This follows from the Collapse Lemma proved in [7, § 3.6]. CHECK
THAT IT HOLDS FOR EVERY MODEL CATEGORY.

3 Main result

Let M be a left proper pointed model category and let G be a set of group
objects in Ho(M). Let {Tα : α ∈ Ord} be the corresponding G-completion
tower (2.1).

3



Let L denote the closure of G under homotopy limits and define an in-
creasing sequence of classes Lα, where L0 is the class of G-injective objects
in M and Lα+1 is the class of objects that are homotopy limits of diagrams
with values in Lα. For a limit ordinal λ, the class Lλ is the union of Lα
for α < λ. Then the union of the sequence {Lα : α ∈ Ord} is closed under
homotopy limits, and hence it is equal to L. Compare this sequence Lα with
the hierarchy Iα defined in [7, § 1.1].

By construction, each object of L has a complexity with respect to G.
Namely, c(X) = 0 if X is G-injective, and c(X) = α if α is the smallest
ordinal for which X ∈ Lα.

Theorem 3.1. Let X be any object in M, which we assume fibrant and
cofibrant. If X is in L and c(X) ≤ α for an ordinal α, then the map
ηα+1 : X → Tα+1X is a weak equivalence.

Proof. By Lemma 1.1, η1 : X → T1X is a weak equivalence if X ∈ L0. Now
argue by transfinite induction as follows. Suppose that ηα : Z → TαZ is a
weak equivalence whenever Z is in L and c(Z) < α. Then, given X in L with
c(X) = α, we may write X ' holimZi where each Zi is in L and c(Zi) < α.

Since, by induction hypothesis, ηα : Zi → TαZi is a weak equivalence for
all i, the induced map X → holim(TαZi) is a weak equivalence. If γi : X → Zi
is the ith structure map of X, then the maps Tαγi : TαX → TαZi yield
together a map TαX → holim(TαZi) ' X which is a homotopy left inverse
of ηα : X → TαX.

Since X is fibrant and cofibrant, ηα : X → TαX also admits a strict left
inverse. This implies, by Lemma 2.2, that ηα+1 : X → Tα+1X is a weak
equivalence, as claimed.

Our main goal in the article is to prove the following result. Recall that
a full subcategory L of a category C is reflective if the inclusion L ↪→ C has
a left adjoint L : C → L. In this case, we denote by l : Id→ L the unit of the
adjunction and call lX : X → LX a reflection of X onto L.

Theorem 3.2. Let M be a left proper pointed model category and let G be a
set of group objects in Ho(M) closed under suspension. Let {Tα : α ∈ Ord}
be the G-completion tower. If the closure L of G under homotopy limits is
reflective in Ho(M), then for each cofibrant object X inM there is an ordinal
κ such that the map ηκ+1 : X → Tκ+1X is a reflection of X onto L.

Proof. Since L is reflective in Ho(M), for every object X in M there is
a map lX : X → LX where LX is in L and lX is a T1-equivalence by
part (ii) of Lemma 1.1. Then lX is a Tα-equivalence for all ordinals α, by
Lemma 2.1. Since LX is in L, there is an ordinal κ such that c(LX) = κ.
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Hence Tκ+1lX : Tκ+1X ' Tκ+1LX because lX is a Tκ+1-equivalence, and
ηκ+1 : LX ' Tκ+1LX by Theorem 3.1.

4 Cohomological localizations

We now specialize to the case G = {ΣnEk | n ∈ Z, k ≥ 0} where E = {Ek}k≥0
is an Ω-spectrum andM is the category of pointed simplicial sets. Let E∗ be
the reduced cohomology theory represented by E, that is, Ek(X) ∼= [X,Ek]
for all k.

Recall that a map f : X → Y is an E-equivalence if Ekf : EkX → EkY
is an isomorphism for all k, and a space Z is E-local if every E∗-equivalence
f : X → Y induces a bijection [Y, Z] ∼= [X,Z].

Proposition 4.1. Let E = {Ek}k≥0 be an Ω-spectrum and let L be the
closure of the set G = {ΣnEk | n ∈ Z, k ≥ 0} under homotopy limits. If L is
reflective in the homotopy category, then L is equal to the class of E∗-local
spaces.

Proof. By definition, Ek is E∗-local for all k. Since the class of E∗-local
spaces is closed under homotopy limits, it follows that L is contained in the
class of E∗-local spaces.

Conversely, observe that the class of E∗-local spaces is the orthogonal
complement, by definition, of the class of E∗-equivalences, and the latter
is the orthogonal complement of G; that is, (⊥G)⊥ is equal to the class of
E∗-local spaces. Since G is contained in L, we infer that (⊥G)⊥ is contained
in (⊥L)⊥. Now, since we are assuming that L is reflective, we have (⊥L)⊥ = L
and the argument is complete.

What we have shown is that, assuming that E∗-localization exists (which
is true if supercompact cardinals exist, as shown in [1]), then, for each pointed
simplicial set X, the homotopy type of its E∗-localization LEX can be ob-
tained as the homotopy inverse limit of the tower {TαX : α ∈ Ord}, which
eventually stabilizes at some ordinal depending on the complexity of LEX,
in the sense of the previous section.

5 Homological localizations of spectra

This is, as of today, speculative. For a ring spectrum E, take T1X to be
the Tot of the Bendersky–Thompson cosimplicial spectrum, which is proba-
bly a homotopy inverse limit of E-modules. Hence, our construction starts
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from the monad X 7→ X ∧ E, which we could call T0. Note that, in-
deed, the T0-equivalences are the E∗-equivalences, and we hope that the
Tα-equivalences will be the E∗-equivalences for all ordinals α.

It is unclear if the class L of E∗-local spectra is the closure under homo-
topy inverse limits of the class of E-modules. Since E is a ring, each E-mod-
ule is E∗-local, and therefore every homotopy inverse limit of E-modules is
E∗-local.

If this works, then the results in this article generalize those in [7] to
every homology theory represented by a ring spectrum; see [8] for a related
discussion.

CAN WE EXPAND THIS SECTION SO THAT IT ALSO HOLDS FOR
SPACES?

6 Final remarks

It follows from our results that localization with respect to a cohomology the-
ory E∗ is the idempotent approximation, in the sense of [5], of the E-comple-
tion functor on the homotopy category of spaces (OR PROBABLY ALSO
SPECTRA).

Some of the philosophy of the present article can already be found in
Pfenniger’s thesis [9].
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