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Abstract

We prove that, assuming the existence of cohomological localiza-
tions (which is known to follow from the existence of supercompact
cardinals), the localization of a space or a spectrum X with respect to
a cohomology theory E* can be computed pointwise as a homotopy
inverse limit.
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1 Completion with respect to group objects

Let M be a left proper pointed model category with functorial factorizations,
and let G be any class of fibrant objects. A map A — B will be called
G-monic, as in [3, §3.1], if the induced function [X"B,G] — [X"A,G] is
surjective for each G € G and n > 0. An object X is G-injective if the
function [¥"B, X] — [E"A, X] is surjective for each G-monic map A — B
and all n > 0.

One says that G is a class of injective models if every object of M is the
source of a G-monic map to a G-injective target. According to [3, §4.5], if G
is any set of group objects in Ho(M), then G is a class of injective models.
The motivating example is the set

G={X"Ey|n€Z k=>0}, (1.1)

where E is a given -spectrum and { Ej }x>o are its representing spaces (i.e.,
pointed simplicial sets).



A class G of injective models is functorial in the sense of [3, §4.2] if there
exists a functor I': M — M and a natural transformation v: Id — I' such
that vx: X — I'X is a G-monic map and I'X is G-injective for each X in M.
From the assumption that the model category M has functorial factorizations
it follows that every set G of group objects in Ho(M) is functorial; details
are given in [3, §4.5].

For an object X of M and a class of injective models G, let X — X° be a
trivial cofibration into a fibrant object in the G-resolution model structure on
the category of cosimplicial objects over M given by [3, Theorem 3.3], where
X is viewed as a constant cosimplicial object. This can be chosen functorially
by [3, §4.2] if G is functorial. Recall that, in the G-resolution model structure,
a weak equivalence is a map f: X° — Y° of cosimplicial objects inducing a
weak equivalence of simplicial groups [X"Y° G] ~ [¥"X°, G] for all G € G
and n > 0, and the fibrations and cofibrations are described in [3, §3.2].

Now define the G-completion of an object X in M as

LgX = Tot X°,

asin [3, §5.7]. If G is functorial, then Ly can be chosen as a functor M — M
equipped with a natural transformation a: Id — L;. Note, moreover, that
LgX is fibrant by [3, §2.8].

We set, accordingly, Ty = Lg and 11 = . By [3, Corollary 8.2], the
functor 7 and the natural transformation 7, are part of a monad on Ho(M).
The main properties of this monad are collected in the following lemma.

Lemma 1.1. (i) If an object X in M is G-injective, then n: X — T1 X
1s a weak equivalence.

(ii) Given a map f: X — Y in M, the map Ty f: ' X — T1Y is a weak
equivalence if and only if the function

[f) G] : [EnY7 G] — [EnXa G]
is a bijection for all G € G and n > 0.

Proof. Part (i) is stated in [3, Corollary 6.6] and part (ii) follows from [3,
Lemma 8.4]. O

The maps X — Y such that the induced function [¥"Y,G] — [£"X, G]
is bijective for all G € G and n > 0 are called G-equivalences.



2 A long tower

We next define a long tower as in [7], starting with 77 = Lé as defined in
the previous section, where G is a functorial class of injective models in a
left proper pointed model category M. Thus we define inductively, for each
ordinal o and each object X in M,

Tyi1 X =holimT, X

where T, X is the restricted cosimplicial object with (T,X)* = T*1X for
k > 0; cf. [7, §3]. For a limit ordinal A, we let

T, X = holim T,,.
a<A
Each T, is a functor on M preserving weak equivalences, equipped with

a natural transformation 7, : Id — T, and it is part of a monad (7}, 7, fta)
on Ho(M). These functors form an inverse system

i T 25Ty — - — Ty 25 T, (2.1)

indexed by all ordinals, which we call the G-completion tower, in which the
equality ¢q © Na+1 = 7o holds for all . Moreover, by [7, Lemma 3.4], each
map (pq)x: Tu1 X — Ty X is a fibration.

We call T, -equivalences those maps f such that T, f is a weak equivalence.

Lemma 2.1. The class of T, -equivalences is the class of G-equivalences for
all ordinals o« > 1.

Proof. One implication follows from the fact that each T, preserves weak
equivalences and from the homotopy invariance of holim. The converse is
shown using the same argument as in [3, Lemma 8.4]. THIS NEEDS TO BE
WRITTEN DOWN PROPERLY. m

Lemma 2.2. If X is cofibrant and n,: X — T, X has a left inverse for some
ordinal o, then Noi1: X — To11 X 1S a weak equivalence.

Proof. This follows from the Collapse Lemma proved in [7, §3.6]. CHECK
THAT IT HOLDS FOR EVERY MODEL CATEGORY. O

3 Main result

Let M be a left proper pointed model category and let G be a set of group
objects in Ho(M). Let {T, : « € Ord} be the corresponding G-completion
tower (2.1).



Let £ denote the closure of G under homotopy limits and define an in-
creasing sequence of classes L£,, where Lg is the class of G-injective objects
in M and L, is the class of objects that are homotopy limits of diagrams
with values in £,. For a limit ordinal A, the class £, is the union of L,
for @ < A. Then the union of the sequence {L, : @ € Ord} is closed under
homotopy limits, and hence it is equal to £. Compare this sequence L, with
the hierarchy I, defined in [7, § 1.1].

By construction, each object of £ has a complexity with respect to G.
Namely, ¢(X) = 0 if X is G-injective, and ¢(X) = « if a is the smallest
ordinal for which X € L,,.

Theorem 3.1. Let X be any object in M, which we assume fibrant and
cofibrant. If X is in L and ¢(X) < « for an ordinal «, then the map
Nat1: X — Toi1X is a weak equivalence.

Proof. By Lemma 1.1, n;: X — T1.X is a weak equivalence if X € L£y. Now
argue by transfinite induction as follows. Suppose that n,: Z — T,Z is a
weak equivalence whenever Z is in £ and ¢(Z) < a. Then, given X in £ with
¢(X) = a, we may write X ~ holim Z; where each Z; is in £ and ¢(Z;) < a.

Since, by induction hypothesis, n,: Z; — T,Z; is a weak equivalence for
all 7, the induced map X — holim(7, Z;) is a weak equivalence. If v;: X — Z;
is the ¢th structure map of X, then the maps T,v;: T,X — T,Z; yield
together a map T,X — holim(7,Z;) ~ X which is a homotopy left inverse
of ng: X - T,X.

Since X is fibrant and cofibrant, n,: X — T, X also admits a strict left
inverse. This implies, by Lemma 2.2, that n,,1: X — T, X is a weak
equivalence, as claimed. O

Our main goal in the article is to prove the following result. Recall that
a full subcategory L of a category C is reflective if the inclusion £ < C has
a left adjoint L: C — L. In this case, we denote by [: Id — L the unit of the
adjunction and call [x: X — LX a reflection of X onto L.

Theorem 3.2. Let M be a left proper pointed model category and let G be a
set of group objects in Ho(M) closed under suspension. Let {1, : o € Ord}
be the G-completion tower. If the closure L of G under homotopy limits is
reflective in Ho(M), then for each cofibrant object X in M there is an ordinal
k such that the map ner1: X — T1X is a reflection of X onto L.

Proof. Since L is reflective in Ho(M), for every object X in M there is
a map ly: X — LX where LX is in £ and lx is a Tj-equivalence by
part (ii) of Lemma 1.1. Then lx is a T,-equivalence for all ordinals «, by
Lemma 2.1. Since LX is in £, there is an ordinal x such that ¢(LX) = k.
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Hence Ty 1lx: Txi1 X =~ T, LX because lx is a Ty, i-equivalence, and
Nwt1: LX >~ T,11 LX by Theorem 3.1. ]

4 Cohomological localizations

We now specialize to the case G = {¥"E) | n € Z, k > 0} where E = {Ej }r>0
is an (2-spectrum and M is the category of pointed simplicial sets. Let £* be
the reduced cohomology theory represented by E, that is, E¥(X) = [X, E}]
for all k.

Recall that a map f: X — Y is an E-equivalence if E¥f: E¥X — EFY
is an isomorphism for all &, and a space Z is E-local if every E*-equivalence
f: X — Y induces a bijection Y, Z] = [X, Z].

Proposition 4.1. Let E = {Ey}r>0 be an Q-spectrum and let L be the
closure of the set G = {X"Ey | n € Z, k > 0} under homotopy limits. If L is
reflective in the homotopy category, then L is equal to the class of E*-local
spaces.

Proof. By definition, Ej is E*-local for all k. Since the class of E*-local
spaces is closed under homotopy limits, it follows that £ is contained in the
class of E*-local spaces.

Conversely, observe that the class of E*-local spaces is the orthogonal
complement, by definition, of the class of E*-equivalences, and the latter
is the orthogonal complement of G; that is, (+G)* is equal to the class of
E*-local spaces. Since G is contained in £, we infer that (Lg)L is contained
in (+£)*1. Now, since we are assuming that £ is reflective, we have (+£)* = £
and the argument is complete. O]

What we have shown is that, assuming that E*-localization exists (which
is true if supercompact cardinals exist, as shown in [1]), then, for each pointed
simplicial set X, the homotopy type of its E*-localization LgX can be ob-
tained as the homotopy inverse limit of the tower {7, X : a € Ord}, which
eventually stabilizes at some ordinal depending on the complexity of LgX,
in the sense of the previous section.

5 Homological localizations of spectra

This is, as of today, speculative. For a ring spectrum FE, take 77X to be
the Tot of the Bendersky—Thompson cosimplicial spectrum, which is proba-
bly a homotopy inverse limit of E-modules. Hence, our construction starts



from the monad X — X A FE, which we could call 7. Note that, in-
deed, the Tj-equivalences are the FE,-equivalences, and we hope that the
T,-equivalences will be the F,-equivalences for all ordinals «.

It is unclear if the class £ of E,-local spectra is the closure under homo-
topy inverse limits of the class of F-modules. Since E is a ring, each F-mod-
ule is F,-local, and therefore every homotopy inverse limit of EF-modules is
FE.-local.

If this works, then the results in this article generalize those in [7] to
every homology theory represented by a ring spectrum; see [8] for a related
discussion.

CAN WE EXPAND THIS SECTION SO THAT IT ALSO HOLDS FOR
SPACES?

6 Final remarks

It follows from our results that localization with respect to a cohomology the-
ory E* is the idempotent approximation, in the sense of [5], of the E-comple-
tion functor on the homotopy category of spaces (OR PROBABLY ALSO
SPECTRA).

Some of the philosophy of the present article can already be found in
Pfenniger’s thesis [9].
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