Cohomological localization towers

Carles Casacuberta and Imma Gálvez

May 8, 2014

Abstract

We prove that, assuming the existence of cohomological localizations (which is known to follow from the existence of supercompact cardinals), the localization of a space or a spectrum X with respect to a cohomology theory E^* can be computed pointwise as a homotopy inverse limit.

Introduction

Introduction.

Acknowledgements If any.

1 Completion with respect to group objects

Let \mathcal{M} be a left proper pointed model category with functorial factorizations, and let \mathcal{G} be any class of fibrant objects. A map $A \to B$ will be called \mathcal{G} -monic, as in [3, §3.1], if the induced function $[\Sigma^n B, G] \to [\Sigma^n A, G]$ is surjective for each $G \in \mathcal{G}$ and $n \geq 0$. An object X is \mathcal{G} -injective if the function $[\Sigma^n B, X] \to [\Sigma^n A, X]$ is surjective for each \mathcal{G} -monic map $A \to B$ and all $n \geq 0$.

One says that \mathcal{G} is a *class of injective models* if every object of \mathcal{M} is the source of a \mathcal{G} -monic map to a \mathcal{G} -injective target. According to $[3, \S 4.5]$, if \mathcal{G} is any set of group objects in Ho(\mathcal{M}), then \mathcal{G} is a class of injective models. The motivating example is the set

$$\mathcal{G} = \{ \Sigma^n E_k \mid n \in \mathbb{Z}, \, k \ge 0 \},\tag{1.1}$$

where E is a given Ω -spectrum and $\{E_k\}_{k\geq 0}$ are its representing spaces (i.e., pointed simplicial sets).

A class \mathcal{G} of injective models is *functorial* in the sense of [3, § 4.2] if there exists a functor $\Gamma \colon \mathcal{M} \to \mathcal{M}$ and a natural transformation $\gamma \colon \mathrm{Id} \to \Gamma$ such that $\gamma_X \colon X \to \Gamma X$ is a \mathcal{G} -monic map and ΓX is \mathcal{G} -injective for each X in \mathcal{M} . From the assumption that the model category \mathcal{M} has functorial factorizations it follows that every set \mathcal{G} of group objects in Ho(\mathcal{M}) is functorial; details are given in [3, § 4.5].

For an object X of \mathcal{M} and a class of injective models \mathcal{G} , let $X \to X^{\circ}$ be a trivial cofibration into a fibrant object in the \mathcal{G} -resolution model structure on the category of cosimplicial objects over \mathcal{M} given by [3, Theorem 3.3], where X is viewed as a constant cosimplicial object. This can be chosen functorially by [3, § 4.2] if \mathcal{G} is functorial. Recall that, in the \mathcal{G} -resolution model structure, a weak equivalence is a map $f: X^{\circ} \to Y^{\circ}$ of cosimplicial objects inducing a weak equivalence of simplicial groups $[\Sigma^n Y^{\circ}, G] \simeq [\Sigma^n X^{\circ}, G]$ for all $G \in \mathcal{G}$ and $n \geq 0$, and the fibrations and cofibrations are described in [3, § 3.2].

Now define the \mathcal{G} -completion of an object X in \mathcal{M} as

$$L_{\mathcal{G}}X = \operatorname{Tot} X^{\circ},$$

as in [3, § 5.7]. If \mathcal{G} is functorial, then $L_{\mathcal{G}}$ can be chosen as a functor $\mathcal{M} \to \mathcal{M}$ equipped with a natural transformation $\alpha \colon \mathrm{Id} \to L_{\mathcal{G}}^{\widehat{}}$. Note, moreover, that $L_{\mathcal{G}}^{\widehat{}}X$ is fibrant by [3, § 2.8].

We set, accordingly, $T_1 = \hat{L}_{\mathcal{G}}$ and $\eta_1 = \alpha$. By [3, Corollary 8.2], the functor T_1 and the natural transformation η_1 are part of a monad on Ho(\mathcal{M}). The main properties of this monad are collected in the following lemma.

- **Lemma 1.1.** (i) If an object X in \mathcal{M} is \mathcal{G} -injective, then $\eta_1 \colon X \to T_1 X$ is a weak equivalence.
 - (ii) Given a map $f: X \to Y$ in \mathcal{M} , the map $T_1f: T_1X \to T_1Y$ is a weak equivalence if and only if the function

$$[f,G]: [\Sigma^n Y,G] \longrightarrow [\Sigma^n X,G]$$

is a bijection for all $G \in \mathcal{G}$ and $n \geq 0$.

Proof. Part (i) is stated in [3, Corollary 6.6] and part (ii) follows from [3, Lemma 8.4]. \Box

The maps $X \to Y$ such that the induced function $[\Sigma^n Y, G] \to [\Sigma^n X, G]$ is bijective for all $G \in \mathcal{G}$ and $n \ge 0$ are called \mathcal{G} -equivalences.

2 A long tower

We next define a *long tower* as in [7], starting with $T_1 = L_{\mathcal{G}}$ as defined in the previous section, where \mathcal{G} is a functorial class of injective models in a left proper pointed model category \mathcal{M} . Thus we define inductively, for each ordinal α and each object X in \mathcal{M} ,

$$T_{\alpha+1}X = \operatorname{holim} \mathbf{T}_{\alpha}X$$

where $\mathbf{T}_{\alpha}X$ is the restricted cosimplicial object with $(\mathbf{T}_{\alpha}X)^k = T_{\alpha}^{k+1}X$ for $k \geq 0$; cf. [7, § 3]. For a limit ordinal λ , we let

$$T_{\lambda}X = \underset{\alpha < \lambda}{\operatorname{holim}} T_{\alpha}.$$

Each T_{α} is a functor on \mathcal{M} preserving weak equivalences, equipped with a natural transformation η_{α} : Id $\rightarrow T_{\alpha}$, and it is part of a monad $(T_{\alpha}, \eta_{\alpha}, \mu_{\alpha})$ on Ho(\mathcal{M}). These functors form an inverse system

$$\cdots \longrightarrow T_{\alpha+1} \xrightarrow{\varphi_{\alpha}} T_{\alpha} \longrightarrow \cdots \longrightarrow T_2 \xrightarrow{\varphi_1} T_1$$
 (2.1)

indexed by all ordinals, which we call the \mathcal{G} -completion tower, in which the equality $\varphi_{\alpha} \circ \eta_{\alpha+1} = \eta_{\alpha}$ holds for all α . Moreover, by [7, Lemma 3.4], each map $(\varphi_{\alpha})_X : T_{\alpha+1}X \to T_{\alpha}X$ is a fibration.

We call T_{α} -equivalences those maps f such that $T_{\alpha}f$ is a weak equivalence.

Lemma 2.1. The class of T_{α} -equivalences is the class of \mathcal{G} -equivalences for all ordinals $\alpha \geq 1$.

Proof. One implication follows from the fact that each T_{α} preserves weak equivalences and from the homotopy invariance of holim. The converse is shown using the same argument as in [3, Lemma 8.4]. THIS NEEDS TO BE WRITTEN DOWN PROPERLY.

Lemma 2.2. If X is cofibrant and $\eta_{\alpha} \colon X \to T_{\alpha}X$ has a left inverse for some ordinal α , then $\eta_{\alpha+1} \colon X \to T_{\alpha+1}X$ is a weak equivalence.

Proof. This follows from the Collapse Lemma proved in [7, \S 3.6]. CHECK THAT IT HOLDS FOR EVERY MODEL CATEGORY.

3 Main result

Let \mathcal{M} be a left proper pointed model category and let \mathcal{G} be a set of group objects in Ho(\mathcal{M}). Let $\{T_{\alpha} : \alpha \in \text{Ord}\}$ be the corresponding \mathcal{G} -completion tower (2.1). Let \mathcal{L} denote the closure of \mathcal{G} under homotopy limits and define an increasing sequence of classes \mathcal{L}_{α} , where \mathcal{L}_{0} is the class of \mathcal{G} -injective objects in \mathcal{M} and $\mathcal{L}_{\alpha+1}$ is the class of objects that are homotopy limits of diagrams with values in \mathcal{L}_{α} . For a limit ordinal λ , the class \mathcal{L}_{λ} is the union of \mathcal{L}_{α} for $\alpha < \lambda$. Then the union of the sequence $\{\mathcal{L}_{\alpha} : \alpha \in \text{Ord}\}$ is closed under homotopy limits, and hence it is equal to \mathcal{L} . Compare this sequence \mathcal{L}_{α} with the hierarchy I_{α} defined in [7, § 1.1].

By construction, each object of \mathcal{L} has a *complexity* with respect to \mathcal{G} . Namely, c(X) = 0 if X is \mathcal{G} -injective, and $c(X) = \alpha$ if α is the smallest ordinal for which $X \in \mathcal{L}_{\alpha}$.

Theorem 3.1. Let X be any object in \mathcal{M} , which we assume fibrant and cofibrant. If X is in \mathcal{L} and $c(X) \leq \alpha$ for an ordinal α , then the map $\eta_{\alpha+1} \colon X \to T_{\alpha+1}X$ is a weak equivalence.

Proof. By Lemma 1.1, $\eta_1: X \to T_1X$ is a weak equivalence if $X \in \mathcal{L}_0$. Now argue by transfinite induction as follows. Suppose that $\eta_\alpha: Z \to T_\alpha Z$ is a weak equivalence whenever Z is in \mathcal{L} and $c(Z) < \alpha$. Then, given X in \mathcal{L} with $c(X) = \alpha$, we may write $X \simeq \operatorname{holim} Z_i$ where each Z_i is in \mathcal{L} and $c(Z_i) < \alpha$.

Since, by induction hypothesis, $\eta_{\alpha} \colon Z_i \to T_{\alpha}Z_i$ is a weak equivalence for all *i*, the induced map $X \to \operatorname{holim}(T_{\alpha}Z_i)$ is a weak equivalence. If $\gamma_i \colon X \to Z_i$ is the *i*th structure map of X, then the maps $T_{\alpha}\gamma_i \colon T_{\alpha}X \to T_{\alpha}Z_i$ yield together a map $T_{\alpha}X \to \operatorname{holim}(T_{\alpha}Z_i) \simeq X$ which is a homotopy left inverse of $\eta_{\alpha} \colon X \to T_{\alpha}X$.

Since X is fibrant and cofibrant, $\eta_{\alpha} \colon X \to T_{\alpha}X$ also admits a strict left inverse. This implies, by Lemma 2.2, that $\eta_{\alpha+1} \colon X \to T_{\alpha+1}X$ is a weak equivalence, as claimed.

Our main goal in the article is to prove the following result. Recall that a full subcategory \mathcal{L} of a category \mathcal{C} is *reflective* if the inclusion $\mathcal{L} \hookrightarrow \mathcal{C}$ has a left adjoint $L: \mathcal{C} \to \mathcal{L}$. In this case, we denote by $l: \mathrm{Id} \to L$ the unit of the adjunction and call $l_X: X \to LX$ a *reflection* of X onto \mathcal{L} .

Theorem 3.2. Let \mathcal{M} be a left proper pointed model category and let \mathcal{G} be a set of group objects in Ho(\mathcal{M}) closed under suspension. Let $\{T_{\alpha} : \alpha \in \text{Ord}\}$ be the \mathcal{G} -completion tower. If the closure \mathcal{L} of \mathcal{G} under homotopy limits is reflective in Ho(\mathcal{M}), then for each cofibrant object X in \mathcal{M} there is an ordinal κ such that the map $\eta_{\kappa+1} \colon X \to T_{\kappa+1}X$ is a reflection of X onto \mathcal{L} .

Proof. Since \mathcal{L} is reflective in Ho(\mathcal{M}), for every object X in \mathcal{M} there is a map $l_X \colon X \to LX$ where LX is in \mathcal{L} and l_X is a T_1 -equivalence by part (ii) of Lemma 1.1. Then l_X is a T_{α} -equivalence for all ordinals α , by Lemma 2.1. Since LX is in \mathcal{L} , there is an ordinal κ such that $c(LX) = \kappa$. Hence $T_{\kappa+1}l_X: T_{\kappa+1}X \simeq T_{\kappa+1}LX$ because l_X is a $T_{\kappa+1}$ -equivalence, and $\eta_{\kappa+1}: LX \simeq T_{\kappa+1}LX$ by Theorem 3.1.

4 Cohomological localizations

We now specialize to the case $\mathcal{G} = \{\Sigma^n E_k \mid n \in \mathbb{Z}, k \geq 0\}$ where $E = \{E_k\}_{k\geq 0}$ is an Ω -spectrum and \mathcal{M} is the category of pointed simplicial sets. Let E^* be the reduced cohomology theory represented by E, that is, $E^k(X) \cong [X, E_k]$ for all k.

Recall that a map $f: X \to Y$ is an *E*-equivalence if $E^k f: E^k X \to E^k Y$ is an isomorphism for all k, and a space Z is *E*-local if every E^* -equivalence $f: X \to Y$ induces a bijection $[Y, Z] \cong [X, Z]$.

Proposition 4.1. Let $E = \{E_k\}_{k\geq 0}$ be an Ω -spectrum and let \mathcal{L} be the closure of the set $\mathcal{G} = \{\Sigma^n E_k \mid n \in \mathbb{Z}, k \geq 0\}$ under homotopy limits. If \mathcal{L} is reflective in the homotopy category, then \mathcal{L} is equal to the class of E^* -local spaces.

Proof. By definition, E_k is E^* -local for all k. Since the class of E^* -local spaces is closed under homotopy limits, it follows that \mathcal{L} is contained in the class of E^* -local spaces.

Conversely, observe that the class of E^* -local spaces is the orthogonal complement, by definition, of the class of E^* -equivalences, and the latter is the orthogonal complement of \mathcal{G} ; that is, $({}^{\perp}\mathcal{G})^{\perp}$ is equal to the class of E^* -local spaces. Since \mathcal{G} is contained in \mathcal{L} , we infer that $({}^{\perp}\mathcal{G})^{\perp}$ is contained in $({}^{\perp}\mathcal{L})^{\perp}$. Now, since we are assuming that \mathcal{L} is reflective, we have $({}^{\perp}\mathcal{L})^{\perp} = \mathcal{L}$ and the argument is complete.

What we have shown is that, assuming that E^* -localization exists (which is true if supercompact cardinals exist, as shown in [1]), then, for each pointed simplicial set X, the homotopy type of its E^* -localization $L_E X$ can be obtained as the homotopy inverse limit of the tower $\{T_{\alpha}X : \alpha \in \text{Ord}\}$, which eventually stabilizes at some ordinal depending on the complexity of $L_E X$, in the sense of the previous section.

5 Homological localizations of spectra

This is, as of today, speculative. For a ring spectrum E, take T_1X to be the Tot of the Bendersky–Thompson cosimplicial spectrum, which is probably a homotopy inverse limit of E-modules. Hence, our construction starts from the monad $X \mapsto X \wedge E$, which we could call T_0 . Note that, indeed, the T_0 -equivalences are the E_* -equivalences, and we hope that the T_{α} -equivalences will be the E_* -equivalences for all ordinals α .

It is unclear if the class \mathcal{L} of E_* -local spectra is the closure under homotopy inverse limits of the class of E-modules. Since E is a ring, each E-module is E_* -local, and therefore every homotopy inverse limit of E-modules is E_* -local.

If this works, then the results in this article generalize those in [7] to every homology theory represented by a ring spectrum; see [8] for a related discussion.

CAN WE EXPAND THIS SECTION SO THAT IT ALSO HOLDS FOR SPACES?

6 Final remarks

It follows from our results that localization with respect to a *cohomology* theory E^* is the *idempotent approximation*, in the sense of [5], of the *E*-completion functor on the homotopy category of spaces (OR PROBABLY ALSO SPECTRA).

Some of the philosophy of the present article can already be found in Pfenniger's thesis [9].

References

- [1] Bagaria, C, Mathias, Rosický
- [2] Bauer, Libman
- [3] Bousfield: Geometry and Topology
- [4] Bousfield–Kan
- [5] C, Frei
- [6] C, Gutiérrez, Rosický
- [7] Dror, Dwyer: Long towers
- [8] Farjoun: Arolla Proceedings
- [9] Pfenniger: thesis, unpublished, 1988