Chain Complexes

Let R be a ring with 1 . A chain complex of left R-modules is a sequence A_{*} of left R-modules and R-module homomorphisms

$$
\cdots \longrightarrow A_{n+1} \xrightarrow{d_{n+1}} A_{n} \xrightarrow{d_{n}} A_{n-1} \xrightarrow{d_{n-1}} A_{n-2} \longrightarrow \cdots
$$

for $n \in \mathbb{Z}$, such that $d_{n} \circ d_{n+1}=0$ for all n. If $A_{n}=0$ for $n<0$, then the chain complex A_{*} is called positive. The arrows d_{n} are called differentials or boundaries.

Morphisms of Chain Complexes

If A_{*} and B_{*} are chain complexes of left R-modules, a morphism $f_{*}: A_{*} \rightarrow B_{*}$ is a collection of R-module homomorphisms $f_{n}: A_{n} \rightarrow B_{n}$ for $n \in \mathbb{Z}$ such that $f_{n} \circ d_{n+1}^{A}=d_{n+1}^{B} \circ f_{n+1}$ for all n, where d_{n}^{A} denotes the nth differential of A_{*} and d_{n}^{B} denotes the nth differential of B_{*}.

Homology

If A_{*} is a chain complex of left R-modules, then the condition $d_{n} \circ d_{n+1}=0$ implies that $\operatorname{Im} d_{n+1} \subseteq \operatorname{Ker} d_{n}$. The homology of A_{*} is the collection of R-modules defined as

$$
H_{n}\left(A_{*}\right)=\operatorname{Ker} d_{n} / \operatorname{Im} d_{n+1}
$$

for all n. If the chain complex A_{*} is positive and $H_{n}\left(A_{*}\right)=0$ for $n \neq 0$ then A_{*} is called acyclic. An acyclic complex A_{*} is also called a resolution of M where $M=H_{0}\left(A_{*}\right)$, and the epimorphism $A_{0} \rightarrow M$ is called the augmentation of A_{*}.

Exercises

1. Let A_{*} denote the chain complex of \mathbb{Z}-modules in which $A_{n}=\mathbb{Z} / m$ for all n, where m is a fixed integer (possibly zero), and $d_{n}=0$ if n is even while d_{n} is multiplication by k if n is odd, where k is another given integer:

$$
\cdots \xrightarrow{0} \mathbb{Z} / m \xrightarrow{k} \mathbb{Z} / m \xrightarrow{0} \mathbb{Z} / m \xrightarrow{k} \mathbb{Z} / m \xrightarrow{0} \cdots
$$

Compute the homology groups $H_{n}\left(A_{*}\right)$ for all n.
2. Let G be a cylic group of order 2 and let $\mathbb{Z} G$ denote the group ring of G. Let A_{*} denote the positive chain complex of $\mathbb{Z} G$-modules in which $A_{n}=\mathbb{Z} G$ for all $n \geq 0$, and d_{n} is multiplication by $1+x$ if n is even while d_{n} is multiplication by $1-x$ if n is odd, where x denotes a generator of G.

$$
\cdots \longrightarrow \mathbb{Z} G \xrightarrow{1-x} \mathbb{Z} G \xrightarrow{1+x} \mathbb{Z} G \xrightarrow{1-x} \mathbb{Z} G \xrightarrow{1+x} \cdots \xrightarrow{1-x} \mathbb{Z} G
$$

Prove that A_{*} is acyclic and $H_{0}\left(A_{*}\right) \cong \mathbb{Z}$.
3. Compute the homology of the chain complex of \mathbb{Z}-modules

$$
\mathbb{Z}^{2} \xrightarrow{d_{3}} \mathbb{Z}^{5} \xrightarrow{d_{2}} \mathbb{Z}^{3} \xrightarrow{d_{1}} \mathbb{Z}
$$

where
$d_{3}=\left(\begin{array}{rr}1 & 1 \\ 0 & 0 \\ -1 & 1 \\ 0 & 0 \\ 0 & -2\end{array}\right) ; \quad d_{2}=\left(\begin{array}{rrrrr}1 & 0 & 1 & 0 & 1 \\ -1 & 0 & -1 & 0 & -1 \\ 2 & 0 & 2 & 0 & 2\end{array}\right) ; \quad d_{1}=\left(\begin{array}{lll}1 & -1 & -1\end{array}\right)$.
4. Compute the homology of the chain complex of \mathbb{Z}-modules

$$
\mathbb{Z} \xrightarrow{d_{2}} \mathbb{Z}^{2} \xrightarrow{d_{1}} \mathbb{Z}
$$

where

$$
d_{2}=\binom{0}{-2} ; \quad d_{1}=\left(\begin{array}{ll}
0 & 0
\end{array}\right) .
$$

5. Prove that the following sequence is a chain complex of \mathbb{Q}-modules and find its homology:

$$
\mathbb{Q}^{2} \xrightarrow{d_{5}} \mathbb{Q}^{2} \xrightarrow{d_{4}} \mathbb{Q}^{2} \xrightarrow{d_{3}} \mathbb{Q}^{2} \xrightarrow{d_{2}} \mathbb{Q}^{2} \xrightarrow{d_{1}} \mathbb{Q}^{2}
$$

where

$$
\begin{gathered}
d_{5}=\left(\begin{array}{ll}
5 & 1 \\
0 & 0
\end{array}\right) ; \quad d_{4}=\left(\begin{array}{rr}
0 & 3 \\
0 & -2
\end{array}\right) ; \quad d_{3}=\left(\begin{array}{ll}
6 & 9 \\
2 & 3
\end{array}\right) ; \\
d_{2}=\left(\begin{array}{rr}
1 & -3 \\
-1 & 3
\end{array}\right) ; \quad d_{1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) .
\end{gathered}
$$

6. Prove that the following sequence is a chain complex of $\mathbb{Z} / 2$-modules and find its homology:

$$
(\mathbb{Z} / 2)^{2} \xrightarrow{d_{3}}(\mathbb{Z} / 2)^{3} \xrightarrow{d_{2}}(\mathbb{Z} / 2)^{3} \xrightarrow{d_{1}}(\mathbb{Z} / 2)^{2}
$$

where

$$
d_{3}=\left(\begin{array}{cc}
1 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right) ; \quad d_{2}=\left(\begin{array}{ccc}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right) ; \quad d_{1}=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) .
$$

