Poincaré Duality

Compact Support Cohomology

The cohomology groups with compact support of a manifold M are defined as

$$
H_{c}^{p}(M)=\operatorname{colim}_{K} H^{p}(M, M \backslash K),
$$

where the colimit is indexed by the directed system of all compact subspaces of M. Therefore, a class in $H_{c}^{p}(M)$ is represented by a relative cocycle in $S^{p}(M, M \backslash K)$ for some compact subspace K.

If M is compact, then $H_{c}^{p}(M) \cong H^{p}(M)$, since M is a maximal compact subspace of itself. If M is not compact, then $H_{c}^{p}(M)$ is the p th singular cohomology group of the Alexandroff compactification of M if $p \geq 1$. In particular,

$$
H_{c}^{p}\left(\mathbb{R}^{n}\right) \cong H^{p}\left(S^{n}\right)
$$

for $p \geq 1$, while $H_{c}^{0}\left(\mathbb{R}^{n}\right)=0$.

Poincaré Duality Theorem

Suppose given an orientation on an n-dimensional topological manifold M. If K is a compact subspace of M, then the induced orientation on K is represented by a class

$$
\zeta_{K} \in H_{n}(M, M \backslash K) .
$$

Then the cap product yields a homomorphism

$$
(-) \frown \zeta_{K}: H^{p}(M, M \backslash K) \longrightarrow H_{n-p}(M)
$$

for each p, which, by naturality, is compatible with the homomorphisms

$$
H^{p}(M, M \backslash K) \longrightarrow H^{p}(M, M \backslash L)
$$

whenever $K \subseteq L$. Passing to the colimit, we obtain a homomorphism

$$
D_{M}: H_{c}^{p}(M) \longrightarrow H_{n-p}(M) .
$$

The Poincaré Duality Theorem asserts that, if M is orientable, then D_{M} is an isomorphism for all p. Moreover, if the assumption that M is orientable is omitted, then

$$
D_{M}: H_{c}^{p}(M ; \mathbb{Z} / 2) \longrightarrow H_{n-p}(M ; \mathbb{Z} / 2)
$$

is still an isomorphism for all p.

Betti Numbers

If M is compact, connected and orientable and we pick a generator ζ of $H_{n}(M)$, then the Poincaré Duality Theorem tells us that

$$
\begin{equation*}
H^{p}(M) \cong H_{n-p}(M) \tag{1}
\end{equation*}
$$

for all p, where the isomorphism is given by $\alpha \mapsto \alpha \frown \zeta$.
The integers $\beta_{i}=\operatorname{dim}_{\mathbb{Q}} H_{i}(M ; \mathbb{Q})$ are called Betti numbers of M. If M is compact, connected and orientable, then (1) implies that $\beta_{i}=\beta_{n-i}$ for all i, where n is the dimension of M. This is due to the fact that

$$
H_{i}(M ; \mathbb{Q}) \cong H^{i}(M ; \mathbb{Q}) \cong H_{n-i}(M ; \mathbb{Q}),
$$

where the first isomorphism comes from Kronecker duality (using the fact that, if M is compact, then its homology groups are finitely generated) and the second isomorphism is given by Poincaré duality.

Signature

One of the most relevant outcomes of Poincaré duality is the signature of a manifold. Let M be compact, connected and orientable, and suppose that $\operatorname{dim} M=4 k$. Assume chosen an orientation class $\zeta \in H_{4 k}(M)$. Then we have well-defined isomorphisms

$$
H^{4 k}(M ; \mathbb{Q}) \cong H_{4 k}(M ; \mathbb{Q}) \cong \mathbb{Q}
$$

given by Kronecker duality and by the choice of ζ. Then the cup product on the middle dimension

$$
H^{2 k}(M ; \mathbb{Q}) \otimes H^{2 k}(M ; \mathbb{Q}) \longrightarrow H^{4 k}(M ; \mathbb{Q})
$$

is a symmetric bilinear form, since the cup product is commutative in even degrees. This bilinear form is called intersection form, since it corresponds, via Poincaré duality, with transverse intersection of submanifolds.

The intersection form is nondegenerate, since if there is a class $\rho \in H^{2 k}(M ; \mathbb{Q})$ such that $\rho \smile \alpha=0$ for all α, then

$$
0=\langle\rho \smile \alpha, \zeta\rangle=\langle\alpha, \rho \frown \zeta\rangle
$$

for all α, and it follows that $\rho \frown \zeta=0$. Since the Duality Theorem tells us that $(-) \frown \zeta$ is an isomorphism, we conclude that $\rho=0$.

The signature of this nondegenerate symmetric bilinear form is called the signature of M. If the dimension of M is not a multiple of 4 , then its signature is defined as zero.

Exercises

52. Prove that, for a manifold M and an open subspace $U \subseteq M$, the excision isomorphisms

$$
H^{p}(U, U \backslash K) \cong H^{p}(M, M \backslash K)
$$

for $K \subseteq U$ compact induce a homomorphism $H_{c}^{p}(U) \longrightarrow H_{c}^{p}(M)$ for each p. Prove that this homomorphism is not an isomorphism in general.
53. Prove the Onion Lemma: Let M be a topological manifold of dimension n and let \mathcal{S} be a collection of open sets in M. Suppose that the following conditions hold:
(a) If an open set U is homeomorphic to a convex open subset of \mathbb{R}^{n}, then $U \in \mathcal{S}$.
(b) If two open sets U, V are in \mathcal{S}, and $U \cap V \in \mathcal{S}$, then $U \cup V \in \mathcal{S}$.
(c) If $\left\{U_{i}\right\}_{i \in I}$ is a family of pairwise disjoint open sets of M such that $U_{i} \in \mathcal{S}$ for all $i \in I$, then $\cup_{i \in I} U_{i} \in \mathcal{S}$.

Then it follows that $M \in \mathcal{S}$.
54. Prove the Poincaré Duality Theorem using the Onion Lemma.
55. Prove that, if M is a connected, compact, orientable manifold of dimension n, then $H_{n-1}(M)$ is a free abelian group.
56. Prove that, if M is a simply-connected compact manifold of dimension 3, then $H_{i}(M) \cong H_{i}\left(S^{3}\right)$ for all i.
57. Prove that, if M is a connected, compact, nonorientable manifold of dimension 3, then the fundamental group $\pi_{1}(M)$ is infinite.
58. The Euler characteristic of a compact manifold M is the alternating sum of its Betti numbers, $\chi(M)=\sum_{i=0}^{\infty}(-1)^{i} \beta_{i}$. Prove that if M is a connected compact manifold of odd dimension, then $\chi(M)=0$.
59. (a) Prove that $H^{*}\left(\mathbb{C} P^{n}\right) \cong \mathbb{Z}[x] /\left(x^{n+1}\right)$ for all n as graded rings, with $\operatorname{deg} x=2$. Deduce from this fact that $H^{*}\left(\mathbb{C} P^{\infty}\right) \cong \mathbb{Z}[x]$.
(b) Prove that $H^{*}\left(\mathbb{R} P^{n} ; \mathbb{Z} / 2\right) \cong(\mathbb{Z} / 2)[x] /\left(x^{n+1}\right)$ for all n as graded rings, with $\operatorname{deg} x=1$. Deduce from this fact that $H^{*}\left(\mathbb{R} P^{\infty} ; \mathbb{Z} / 2\right) \cong(\mathbb{Z} / 2)[x]$.
60. (a) Find the signature of $S^{1} \times \cdots \times S^{1}$ for an arbitrary (finite) number of factors.
(b) Find the signature of $\mathbb{C} P^{n}$ for all n.

