Smooth Manifolds

Smooth Structures

Let M be a topological manifold of dimension $n \geq 1$. A chart in M is a pair (U, φ) where U is an open subset of M and φ is a homeomorphism from U into an open subset of \mathbb{R}^n . An atlas on M is a collection of charts $\{(U_i, \varphi_i)\}_{i \in I}$ such that $\bigcup_{i \in I} U_i = M$. An atlas $\{(U_i, \varphi_i)\}_{i \in I}$ is smooth if $\varphi_j \circ (\varphi_i)^{-1}$ is C^{∞} on $\varphi_i(U_i \cap U_j)$ for all $i, j \in I$ such that $U_i \cap U_j \neq \emptyset$. A smooth structure on M is an equivalence class of smooth atlases, where two smooth atlases are equivalent if their union is a smooth atlas. A smooth manifold is a topological manifold equipped with a smooth structure. The canonical smooth structure on \mathbb{R}^n is the one given by the atlas consisting of a single chart with the identity map.

Smooth Maps

If $f: M \to N$ is a continuous map between smooth manifolds of respective dimensions m and n, we say that f is smooth if $\psi \circ f \circ \varphi^{-1}$ is C^{∞} on $\varphi(U \cap f^{-1}(V))$ for each pair of charts (U, φ) in M and (V, ψ) in N such that $U \cap f^{-1}(V) \neq \emptyset$. If $f: M_1 \to M_2$ and $g: M_2 \to M_3$ are smooth maps, then $g \circ f$ is smooth. A smooth homeomorphism with smooth inverse is called a *diffeomorphism*.

Tangent Vectors

If M is a smooth manifold of dimension n, let $\mathcal{F}(M)$ denote the \mathbb{R} -algebra of smooth functions $M \to \mathbb{R}$, where \mathbb{R} is equipped with the canonical smooth structure. A *derivation* at a point $p \in M$ (also called a *tangent vector* at p) is an \mathbb{R} -linear operator $X : \mathcal{F}(M) \to \mathbb{R}$ such that

$$X(fg) = X(f)g(p) + f(p)X(g)$$

for all smooth functions f and g. The tangent space of M at a point p is the \mathbb{R} -vector space of all derivations at p. It is denoted by T_pM . If (U, φ) is a chart in M with $p \in U$ and $\varphi = (x_1, \ldots, x_n)$, then $T_pM \cong T_pU$ and it is spanned as an \mathbb{R} -vector space by the derivations $(\partial/\partial x_1)_p, \ldots, (\partial/\partial x_n)_p$, where

$$\left(\frac{\partial}{\partial x_i}\right)_p(f) = \frac{\partial (f \circ \varphi^{-1})}{\partial x_i}(p)$$

for each i and all $f \in \mathcal{F}(U)$. Thus $T_p M$ has dimension n.

If $\gamma: (-\varepsilon, \varepsilon) \to M$ is a smooth curve with $\gamma(0) = p$, then the *tangent vector* to γ at p is the derivation $\gamma'(0)$ at p given by

$$\gamma'(0)(f) = \frac{d(f \circ \gamma)}{dt}(0)$$

for every $f \in \mathcal{F}(M)$. The collection of all tangent vectors at p to all smooth curves through a point $p \in M$ is equal to T_pM .

Tangent Bundle

The tangent bundle over a smooth manifold M of dimension n is the 2n-dimensional manifold

$$TM = \{(p, v) \mid p \in M, v \in T_pM\}$$

together with the projection $TM \to M$ sending $(p, v) \mapsto p$. Then TM admits a smooth structure such that the projection is a smooth map. In fact TM is an *n*-dimensional smooth vector bundle over M. A manifold M is called *parallelizable* if its tangent vector bundle is trivial, i.e., $TM \cong M \times \mathbb{R}^n$ as vector bundles over M.

Vector Fields

A smooth vector field on a smooth manifold M is a smooth section $X: M \to TM$ of the tangent bundle over M. Thus a smooth vector field on M assigns to each point $p \in M$ a tangent vector $X_p \in T_pM$. If (U, φ) is a chart on M with $\varphi = (x_1, \ldots, x_n)$ then each smooth vector field X can be written uniquely as $X = X_1(\partial/\partial x_1) + \cdots + X_n(\partial/\partial x_n)$ where X_1, \ldots, X_n are smooth functions.

Differential Forms

Let us denote by T^*M the dual of the tangent bundle. Thus T^*M is an *n*-dimensional vector bundle over M whose fibre at p is the dual vector space $(T_pM)^* = \operatorname{Hom}_{\mathbb{R}}(T_pM,\mathbb{R})$. It is called the *cotangent bundle* over M.

A smooth 1-form or differential 1-form on M is a smooth section $\omega \colon M \to T^*M$ of the cotangent bundle over M. If X is a smooth vector field on M and ω is a smooth 1-form on M, then $\omega(X)$ is the smooth function given by $\omega(X)(p) = \omega_p(X_p)$ for each $p \in M$.

If $(dx_1)_p, \ldots, (dx_n)_p$ is the dual basis of $(\partial/\partial x_1)_p, \ldots, (\partial/\partial x_n)_p$ at any point p, then each smooth 1-form ω on M can be written uniquely as $\omega = \omega_1 dx_1 + \cdots + \omega_n dx_n$ where $\omega_1, \ldots, \omega_n$ are smooth functions.

Differential of a Smooth Map

If $f: M \to N$ is a smooth map between smooth manifolds, then $df: TM \to TN$ is the fibrewise \mathbb{R} -linear map defined at each point p by $(df)_p \gamma'(0) = (f \circ \gamma)'(0)$ where γ is any smooth curve with $\gamma(0) = p$. This map $(df)_p$ is called the *differential* of f at p. If (U, φ) and (V, ψ) are charts in M and N with $p \in U$ and $f(p) \in V$, and we denote $\varphi = (x_1, \ldots, x_n)$, then the matrix of $(df)_p$ is the *Jacobian* matrix $(\partial(\psi \circ f \circ \varphi^{-1})_i / \partial x_j)$ at $\varphi(p)$. As a special case, the differential of a smooth function $f: M \to \mathbb{R}$ is the 1-form given by $df = (\partial(f \circ \varphi^{-1}) / \partial x_1) dx_1 + \cdots + (\partial(f \circ \varphi^{-1}) / \partial x_n) dx_n$ in each chart (U, φ) of M.

A smooth map $f: M \to N$ is an *immersion* if $(df)_p$ is injective for all $p \in M$. It is a *submersion* if $(df)_p$ is surjective for all $p \in M$. It is an *embedding* if it is an injective immersion inducing a homeomorphism $M \cong f(M)$. A *smooth submanifold* of N is the image of an embedding $f: M \to N$.

The Regular Value Theorem states that, if a map $f: M \to N$ is given and $q \in N$ is a point such that $f^{-1}(q) \neq \emptyset$ and $(df)_p$ is surjective for each $p \in f^{-1}(q)$, then $f^{-1}(q)$ is a smooth submanifold of M of dimension dim M – dim N. A point $q \in N$ such that $f^{-1}(q) \neq \emptyset$ and $(df)_p$ is surjective for each $p \in f^{-1}(q)$ is called a regular value of f. A point $p \in M$ for which $(df)_p$ is not surjective is called a singular point of f.

Exercises

61. Let $S^n = \{(x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} \mid (x_1)^2 + \cdots + (x_{n+1})^2 = 1\}$ be the unit sphere in \mathbb{R}^{n+1} . Consider the open subsets $U_1 = S^n \setminus \{(0, \ldots, 0, 1)\}, U_2 = S^n \setminus \{(0, \ldots, 0, -1)\},$ and the stereographic projections $\phi_i \colon U_i \to \mathbb{R}^n$ given, respectively, by

$$\phi_1(x_1, \dots, x_{n+1}) = \frac{1}{1 - x_{n+1}}(x_1, \dots, x_n),$$

$$\phi_2(x_1, \dots, x_{n+1}) = \frac{1}{1 + x_{n+1}}(x_1, \dots, x_n).$$

Prove that the charts (U_1, ϕ_1) and (U_1, ϕ_2) form a smooth atlas on S^n .

62. Let $\mathbb{R}P^n$ denote the real projective space of dimension n, defined as the quotient of $\mathbb{R}^{n+1} \setminus \{(0,\ldots,0)\}$ by the relation $(x_0,\ldots,x_n) \sim \lambda(x_0,\ldots,x_n)$ for $\lambda \in \mathbb{R}, \lambda \neq 0$. Denote by $[x_0:\cdots:x_n]$ the equivalence class of (x_0,\ldots,x_n) . For $i \in \{0,\ldots,n\}$, consider the open subsets $U_i = \{[x_0:\cdots:x_n] \mid x_i \neq 0\}$ and the maps $\phi_i: U_i \to \mathbb{R}^n$ defined as

$$\phi_i([x_0:\cdots:x_n]) = (x_0/x_i,\ldots,x_{i-1}/x_i, x_{i+1}/x_i,\ldots,x_n/x_i).$$

Prove that $\{(U_i, \phi_i)\}_{0 \le i \le n}$ is a smooth atlas on $\mathbb{R}P^n$.

- 63. Prove that, if M and N are smooth manifolds, then $M \times N$ admits a smooth structure such that the projections on each factor are smooth maps. Use this fact to endow $S^1 \times \cdots \times S^1$ with a smooth structure for every number of factors.
- 64. Prove that the map $F: S^2 \to \mathbb{R}^4$ defined by $F(x, y, z) = (x^2 y^2, xy, xz, yz)$ yields a smooth embedding of the real projective plane $\mathbb{R}P^2$ into \mathbb{R}^4 .
- 65. Prove that $M = \{(x, y, z, t) \in \mathbb{R}^4 \mid x^4 + y^4 + z^4 + t^4 = 1\}$ is a smooth submanifold of \mathbb{R}^4 and find a basis of the tangent space $T_pM \subset T_p(\mathbb{R}^4)$ for $p = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$.
- 66. Prove that $V = \{(x, y, z, t) \in \mathbb{R}^4 \mid x^3 + y^3 + z^3 + t^3 = 0, x^2 + y^2 + z^2 + t^2 = 1\}$ is a smooth submanifold of \mathbb{R}^4 and find a basis of the tangent space of V at each of the points $p = (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0, 0)$ and $q = (\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2})$.
- 67. Prove that the vector fields in \mathbb{R}^4 defined as

$$X = -y\frac{\partial}{\partial x} + x\frac{\partial}{\partial y} - t\frac{\partial}{\partial z} + z\frac{\partial}{\partial t}$$
$$Y = -z\frac{\partial}{\partial x} + t\frac{\partial}{\partial y} + x\frac{\partial}{\partial z} - y\frac{\partial}{\partial t}$$
$$Z = -t\frac{\partial}{\partial x} - z\frac{\partial}{\partial y} + y\frac{\partial}{\partial z} + x\frac{\partial}{\partial t}$$

are tangent to the unit sphere S^3 and X_p, Y_p, Z_p are linearly independent for each $p \in S^3$. Hence S^3 is parallelizable.