Smooth Manifolds

Smooth Structures

Let M be a topological manifold of dimension $n \geq 1$. A chart in M is a pair (U, φ) where U is an open subset of M and φ is a homeomorphism from U into an open subset of \mathbb{R}^{n}. An atlas on M is a collection of charts $\left\{\left(U_{i}, \varphi_{i}\right)\right\}_{i \in I}$ such that $\cup_{i \in I} U_{i}=M$. An atlas $\left\{\left(U_{i}, \varphi_{i}\right)\right\}_{i \in I}$ is smooth if $\varphi_{j} \circ\left(\varphi_{i}\right)^{-1}$ is C^{∞} on $\varphi_{i}\left(U_{i} \cap U_{j}\right)$ for all $i, j \in I$ such that $U_{i} \cap U_{j} \neq \emptyset$. A smooth structure on M is an equivalence class of smooth atlases, where two smooth atlases are equivalent if their union is a smooth atlas. A smooth manifold is a topological manifold equipped with a smooth structure. The canonical smooth structure on \mathbb{R}^{n} is the one given by the atlas consisting of a single chart with the identity map.

Smooth Maps

If $f: M \rightarrow N$ is a continuous map between smooth manifolds of respective dimensions m and n, we say that f is smooth if $\psi \circ f \circ \varphi^{-1}$ is C^{∞} on $\varphi\left(U \cap f^{-1}(V)\right)$ for each pair of charts (U, φ) in M and (V, ψ) in N such that $U \cap f^{-1}(V) \neq \emptyset$. If $f: M_{1} \rightarrow M_{2}$ and $g: M_{2} \rightarrow M_{3}$ are smooth maps, then $g \circ f$ is smooth. A smooth homeomorphism with smooth inverse is called a diffeomorphism.

Tangent Vectors

If M is a smooth manifold of dimension n, let $\mathcal{F}(M)$ denote the \mathbb{R}-algebra of smooth functions $M \rightarrow \mathbb{R}$, where \mathbb{R} is equipped with the canonical smooth structure. A derivation at a point $p \in M$ (also called a tangent vector at p) is an \mathbb{R}-linear operator $X: \mathcal{F}(M) \rightarrow \mathbb{R}$ such that

$$
X(f g)=X(f) g(p)+f(p) X(g)
$$

for all smooth functions f and g. The tangent space of M at a point p is the \mathbb{R}-vector space of all derivations at p. It is denoted by $T_{p} M$. If (U, φ) is a chart in M with $p \in U$ and $\varphi=\left(x_{1}, \ldots, x_{n}\right)$, then $T_{p} M \cong T_{p} U$ and it is spanned as an \mathbb{R}-vector space by the derivations $\left(\partial / \partial x_{1}\right)_{p}, \ldots,\left(\partial / \partial x_{n}\right)_{p}$, where

$$
\left(\frac{\partial}{\partial x_{i}}\right)_{p}(f)=\frac{\partial\left(f \circ \varphi^{-1}\right)}{\partial x_{i}}(p)
$$

for each i and all $f \in \mathcal{F}(U)$. Thus $T_{p} M$ has dimension n.
If $\gamma:(-\varepsilon, \varepsilon) \rightarrow M$ is a smooth curve with $\gamma(0)=p$, then the tangent vector to γ at p is the derivation $\gamma^{\prime}(0)$ at p given by

$$
\gamma^{\prime}(0)(f)=\frac{d(f \circ \gamma)}{d t}(0)
$$

for every $f \in \mathcal{F}(M)$. The collection of all tangent vectors at p to all smooth curves through a point $p \in M$ is equal to $T_{p} M$.

Tangent Bundle

The tangent bundle over a smooth manifold M of dimension n is the $2 n$-dimensional manifold

$$
T M=\left\{(p, v) \mid p \in M, v \in T_{p} M\right\}
$$

together with the projection $T M \rightarrow M$ sending $(p, v) \mapsto p$. Then $T M$ admits a smooth structure such that the projection is a smooth map. In fact $T M$ is an n-dimensional smooth vector bundle over M. A manifold M is called parallelizable if its tangent vector bundle is trivial, i.e., $T M \cong M \times \mathbb{R}^{n}$ as vector bundles over M.

Vector Fields

A smooth vector field on a smooth manifold M is a smooth section $X: M \rightarrow T M$ of the tangent bundle over M. Thus a smooth vector field on M assigns to each point $p \in M$ a tangent vector $X_{p} \in T_{p} M$. If (U, φ) is a chart on M with $\varphi=\left(x_{1}, \ldots, x_{n}\right)$ then each smooth vector field X can be written uniquely as $X=X_{1}\left(\partial / \partial x_{1}\right)+\cdots+X_{n}\left(\partial / \partial x_{n}\right)$ where X_{1}, \ldots, X_{n} are smooth functions.

Differential Forms

Let us denote by $T^{*} M$ the dual of the tangent bundle. Thus $T^{*} M$ is an n-dimensional vector bundle over M whose fibre at p is the dual vector space $\left(T_{p} M\right)^{*}=\operatorname{Hom}_{\mathbb{R}}\left(T_{p} M, \mathbb{R}\right)$. It is called the cotangent bundle over M.

A smooth 1-form or differential 1-form on M is a smooth section $\omega: M \rightarrow T^{*} M$ of the cotangent bundle over M. If X is a smooth vector field on M and ω is a smooth 1-form on M, then $\omega(X)$ is the smooth function given by $\omega(X)(p)=\omega_{p}\left(X_{p}\right)$ for each $p \in M$.

If $\left(d x_{1}\right)_{p}, \ldots,\left(d x_{n}\right)_{p}$ is the dual basis of $\left(\partial / \partial x_{1}\right)_{p}, \ldots,\left(\partial / \partial x_{n}\right)_{p}$ at any point p, then each smooth 1-form ω on M can be written uniquely as $\omega=\omega_{1} d x_{1}+\cdots+\omega_{n} d x_{n}$ where $\omega_{1}, \ldots, \omega_{n}$ are smooth functions.

Differential of a Smooth Map

If $f: M \rightarrow N$ is a smooth map between smooth manifolds, then $d f: T M \rightarrow T N$ is the fibrewise \mathbb{R}-linear map defined at each point p by $(d f)_{p} \gamma^{\prime}(0)=(f \circ \gamma)^{\prime}(0)$ where γ is any smooth curve with $\gamma(0)=p$. This map $(d f)_{p}$ is called the differential of f at p. If (U, φ) and (V, ψ) are charts in M and N with $p \in U$ and $f(p) \in V$, and we denote $\varphi=\left(x_{1}, \ldots, x_{n}\right)$, then the matrix of $(d f)_{p}$ is the Jacobian matrix $\left(\partial\left(\psi \circ f \circ \varphi^{-1}\right)_{i} / \partial x_{j}\right)$ at $\varphi(p)$. As a special case, the differential of a smooth function $f: M \rightarrow \mathbb{R}$ is the 1 -form given by $d f=\left(\partial\left(f \circ \varphi^{-1}\right) / \partial x_{1}\right) d x_{1}+\cdots+\left(\partial\left(f \circ \varphi^{-1}\right) / \partial x_{n}\right) d x_{n}$ in each chart (U, φ) of M.

A smooth map $f: M \rightarrow N$ is an immersion if $(d f)_{p}$ is injective for all $p \in M$. It is a submersion if $(d f)_{p}$ is surjective for all $p \in M$. It is an embedding if it is an injective immersion inducing a homeomorphism $M \cong f(M)$. A smooth submanifold of N is the image of an embedding $f: M \rightarrow N$.

The Regular Value Theorem states that, if a map $f: M \rightarrow N$ is given and $q \in N$ is a point such that $f^{-1}(q) \neq \emptyset$ and $(d f)_{p}$ is surjective for each $p \in f^{-1}(q)$, then $f^{-1}(q)$ is a smooth submanifold of M of $\operatorname{dimension} \operatorname{dim} M-\operatorname{dim} N$. A point $q \in N$ such that $f^{-1}(q) \neq \emptyset$ and $(d f)_{p}$ is surjective for each $p \in f^{-1}(q)$ is called a regular value of f. A point $p \in M$ for which $(d f)_{p}$ is not surjective is called a singular point of f.

Exercises

61. Let $S^{n}=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1} \mid\left(x_{1}\right)^{2}+\cdots+\left(x_{n+1}\right)^{2}=1\right\}$ be the unit sphere in \mathbb{R}^{n+1}. Consider the open subsets $U_{1}=S^{n} \backslash\{(0, \ldots, 0,1)\}, U_{2}=S^{n} \backslash\{(0, \ldots, 0,-1)\}$, and the stereographic projections $\phi_{i}: U_{i} \rightarrow \mathbb{R}^{n}$ given, respectively, by

$$
\begin{aligned}
\phi_{1}\left(x_{1}, \ldots, x_{n+1}\right) & =\frac{1}{1-x_{n+1}}\left(x_{1}, \ldots, x_{n}\right), \\
\phi_{2}\left(x_{1}, \ldots, x_{n+1}\right) & =\frac{1}{1+x_{n+1}}\left(x_{1}, \ldots, x_{n}\right) .
\end{aligned}
$$

Prove that the charts $\left(U_{1}, \phi_{1}\right)$ and $\left(U_{1}, \phi_{2}\right)$ form a smooth atlas on S^{n}.
62. Let $\mathbb{R} P^{n}$ denote the real projective space of dimension n, defined as the quotient of $\mathbb{R}^{n+1} \backslash\{(0, \ldots, 0)\}$ by the relation $\left(x_{0}, \ldots, x_{n}\right) \sim \lambda\left(x_{0}, \ldots, x_{n}\right)$ for $\lambda \in \mathbb{R}, \lambda \neq 0$. Denote by $\left[x_{0}: \cdots: x_{n}\right]$ the equivalence class of $\left(x_{0}, \ldots, x_{n}\right)$. For $i \in\{0, \ldots, n\}$, consider the open subsets $U_{i}=\left\{\left[x_{0}: \cdots: x_{n}\right] \mid x_{i} \neq 0\right\}$ and the maps $\phi_{i}: U_{i} \rightarrow \mathbb{R}^{n}$ defined as

$$
\phi_{i}\left(\left[x_{0}: \cdots: x_{n}\right]\right)=\left(x_{0} / x_{i}, \ldots, x_{i-1} / x_{i}, x_{i+1} / x_{i}, \ldots, x_{n} / x_{i}\right) .
$$

Prove that $\left\{\left(U_{i}, \phi_{i}\right)\right\}_{0 \leq i \leq n}$ is a smooth atlas on $\mathbb{R} P^{n}$.
63. Prove that, if M and N are smooth manifolds, then $M \times N$ admits a smooth structure such that the projections on each factor are smooth maps. Use this fact to endow $S^{1} \times \cdots \times S^{1}$ with a smooth structure for every number of factors.
64. Prove that the map $F: S^{2} \rightarrow \mathbb{R}^{4}$ defined by $F(x, y, z)=\left(x^{2}-y^{2}, x y, x z, y z\right)$ yields a smooth embedding of the real projective plane $\mathbb{R} P^{2}$ into \mathbb{R}^{4}.
65. Prove that $M=\left\{(x, y, z, t) \in \mathbb{R}^{4} \mid x^{4}+y^{4}+z^{4}+t^{4}=1\right\}$ is a smooth submanifold of \mathbb{R}^{4} and find a basis of the tangent space $T_{p} M \subset T_{p}\left(\mathbb{R}^{4}\right)$ for $p=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.
66. Prove that $V=\left\{(x, y, z, t) \in \mathbb{R}^{4} \mid x^{3}+y^{3}+z^{3}+t^{3}=0, x^{2}+y^{2}+z^{2}+t^{2}=1\right\}$ is a smooth submanifold of \mathbb{R}^{4} and find a basis of the tangent space of V at each of the points $p=\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0,0\right)$ and $q=\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right)$.
67. Prove that the vector fields in \mathbb{R}^{4} defined as

$$
\begin{aligned}
X & =-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}-t \frac{\partial}{\partial z}+z \frac{\partial}{\partial t} \\
Y & =-z \frac{\partial}{\partial x}+t \frac{\partial}{\partial y}+x \frac{\partial}{\partial z}-y \frac{\partial}{\partial t} \\
Z & =-t \frac{\partial}{\partial x}-z \frac{\partial}{\partial y}+y \frac{\partial}{\partial z}+x \frac{\partial}{\partial t}
\end{aligned}
$$

are tangent to the unit sphere S^{3} and X_{p}, Y_{p}, Z_{p} are linearly independent for each $p \in S^{3}$. Hence S^{3} is parallelizable.

