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Differential Forms on Smooth Manifolds

Differential Forms

Let M be a topological manifold of dimension n ≥ 1. For k ≥ 0, a smooth k-form or
differential k-form on M is a smooth section

ω : M −→ T ∗M ∧
(k)
· · · ∧T ∗M

of the kth exterior power of the cotangent bundle T ∗M →M . Thus, at each point p ∈M ,
we can view ωp as an R-multilinear map

ωp : TpM ×
(k)
· · · ×TpM −→ R

which is alternating, that is ωp(. . . , vi, . . . , vj . . . ) = −ωp(. . . , vj, . . . , vi . . . ) for all i 6= j.
If ω is a smooth k-form on M and X1, . . . , Xk are smooth vector fields on M , then

ω(X1 . . . , Xk) is a smooth function on M given by

(ω(X1 . . . , Xk))(p) = ωp((X1)p, . . . , (Xk)p)

for every p ∈M .
We denote by Ωk(M) the R-vector space of smooth k-forms on M . If (U,ϕ) is a

chart in M with coordinates ϕ = (x1, . . . , xn), then each form ω ∈ Ωk(M) can be written
uniquely on U as ∑

i1<···<ik

ωi1...ik dxi1 ∧ · · · ∧ dxik

with ir ∈ {1, . . . , n} for all r, and each ωi1...ik is a smooth function U → R.

Wedge Product

The graded R-vector space Ω∗(M) = ⊕∞k=0 Ωk(M) can be given a graded ring structure
as follows. Given ω ∈ Ωk(M) and η ∈ Ωl(M), the wedge product ω ∧ η is the smooth
(k + l)-form on M given, in coordinate notation, by

ω ∧ η =
∑

ωi1...ik ηj1...jl dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjl

followed by a suitable reordering of the terms, where ω =
∑

i1<···<ik ωi1...ik dxi1 ∧ · · ·∧dxik
and η =

∑
j1<···<jl ηj1...jl dxj1 ∧ · · · ∧ dxjl .

The graded ring Ω∗(M) is anticommutative, that is,

ω ∧ η = (−1)kl η ∧ ω if ω ∈ Ωk(M) and η ∈ Ωl(M).
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Pull-back along a Smooth Map

If f : M → N is a smooth map between smooth manifolds and ω is a smooth k-form
on N , then f ∗(ω) is the smooth k-form on M given by

(f ∗(ω))p(v1, . . . , vk) = ωf(p)((df)p(v1), . . . , (df)p(vk))

for every p ∈M and all v1, . . . , vk ∈ TpM .
In coordinate notation, if ω =

∑
i1<···<ik ωi1...ik dxi1 ∧ · · · ∧ dxik , then

f ∗(ω) =
∑

i1<···<ik

(ωi1...ik ◦ f) dfi1 ∧ · · · ∧ dfik

where fj denotes the jth component of f in the given chart of N .
It then follows that f ∗ : Ω∗(N)→ Ω∗(M) is a ring homomorphism, that is,

f ∗(ω ∧ η) = f ∗(ω) ∧ f ∗(η) for all ω, η.

Exterior Derivative

The exterior derivative is an R-linear map d : Ωk(M) → Ωk+1(M) given in coordinate
notation by

dω =
∑

i1<···<ik

(dωi1...ik) ∧ dxi1 ∧ · · · ∧ dxik

if ω =
∑

i1<···<ik ωi1...ik dxi1 ∧ · · · ∧ dxik , where df =
∑n

j=1(∂f/∂xj) dxj.

This operator satisfies d ◦ d = 0 and commutes with pull-back: d(f ∗(ω)) = f ∗(dω) for
every ω ∈ Ω∗(N) and every smooth map f : M → N .

Therefore, for every smooth manifold M , we may view Ω∗(M) as a cochain complex,
called the de Rham complex of M , and for each smooth map f : M → N the induced ring
homomorphism f ∗ : Ω∗(N)→ Ω∗(M) is also a homomorphism of cochain complexes.

De Rham Cohomology

The de Rham cohomology of a smooth manifold M is the cohomology of the cochain
complex Ω∗(M). It is denoted by H∗dR(M). Thus, a k-cocycle is a smooth k-form ω on
M such that dω = 0. Such a form is called closed. A k-coboundary is a smooth k-form ω
such that ω = dη for some smooth (k− 1)-form η. If so, then ω is called exact, and η is a
primitive of ω. Thus, the statement that all closed smooth k-forms are exact is equivalent
to the statement that Hk

dR(M) = 0.
Each smooth map f : M → N between smooth manifolds induces a well-defined ring

homomorphism f ∗ : H∗dR(N)→ H∗dR(M).
The de Rham Theorem states that

H∗dR(M) ∼= H∗(M ;R)

as graded rings for every smooth manifold M , where H∗dR(M) is equipped with the wedge
product and H∗(M ;R) is equipped with the cup product. The isomorphism is given as
follows: if ω is a closed smooth k-form on M , then we assign to it the singular k-cochain
sending each smooth k-simplex σ : ∆k → M to the value of the integral

∫
σ
ω. This map

is well defined by Stokes’ Theorem.
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Exercises

68. Prove the following statements:

(i) If ω ∈ Ωk(M) and η ∈ Ωl(M), then ω ∧ η = (−1)kl η ∧ ω.

(ii) If ω ∈ Ωk(M) and η ∈ Ωl(M), then d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη.

(iii) If f : M → N is a smooth map, then f ∗(ω ∧ η) = f ∗(ω) ∧ f ∗(η) for all ω, η.

(iv) If f : M → N is a smooth map, then d(f ∗(ω)) = f ∗(dω) for every ω.

69. Express the 2-form x dy∧dz+y dz∧dx+z dx∧dy in spherical coordinates (ρ, ϕ, θ),
defined by

(x, y, z) = (ρ cosϕ cos θ, ρ cosϕ sin θ, ρ sinϕ).

70. For a smooth 2-form α =
∑

i<j αij dxi ∧ dxj, prove that dα = 0 if and only if

∂αij
∂xk

− ∂αik
∂xj

+
∂αjk
∂xi

= 0 for all i < j < k.

71. (a) Find a 1-form η on R3 such that dη = (1− x2) dx∧ dy+ 3x2 dx∧ dz− dy ∧ dz.

(b) Find a 2-form ν on R3 such that dν = (xy − 2y2z) dx ∧ dy ∧ dz.

72. Prove that the smooth 1-forms on M = R2 r {(0, 0)} given by

ω =
x

x2 + y2
dx+

y

x2 + y2
dy, η =

−y
x2 + y2

dx+
x

x2 + y2
dy

are closed. Which of these are exact?

73. Prove that the smooth 2-form x dy ∧ dz + y dz ∧ dx + z dx ∧ dy is closed but not
exact on the unit sphere S2 ⊆ R3.

74. A smooth manifold is orientable if it admits a smooth atlas {(Ui, ϕi)}i∈I in which
the differential of ϕj ◦ (ϕi)

−1 has positive determinant at each point for all i, j ∈ I
such that Ui ∩Uj 6= ∅. Prove that a smooth manifold is orientable if and only if the
underlying topological manifold is orientable.

75. Prove that a smooth n-dimensional manifold M is orientable if and only if there is
a smooth n-form ν such that νp 6= 0 for all p ∈M .

76. Prove that, if M is a topological manifold with boundary, then every smooth struc-
ture on M induces a smooth structure on the boundary ∂M , and if M is orientable
then ∂M is also orientable.

77. Let M be a connected smooth manifold and let U , V be connected open subsets
such that M = U ∪ V . For a 1-form ω on M , prove that if the restriction of ω to U
is exact and the restriction of ω to V is also exact and U ∩V is connected, then ω is
exact. Find a counterexample if the assumption that U ∩V is connected is omitted.

78. Prove that, if M and N are smooth manifolds, then

H∗dR(M ×N) ∼= H∗dR(M)⊗H∗dR(N).
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79. Using de Rham’s Theorem, find the de Rham cohomology of each compact connected
smooth surface.

80. Find generators of the de Rham cohomology of CP n following the next steps:

(a) Let (z0, z1, z2) be complex homogeneous coordinates on CP 2. View CP 1 as the
set of points of the form (0, z1, z2) and parametrize its affine complement A as
(1, u, v) with u, v ∈ C.

(b) Use the coordinate change u = re2πiα, v = se2πiβ on A, with r ≥ 0, s ≥ 0,
0 ≤ α ≤ 1, 0 ≤ β ≤ 1.

(c) Prove that r2 is a smooth map on A (however, r is not).

(d) Prove that the 1-form r dr is smooth on A.

(e) Prove that the 1-form r2 dα and the 2-form r dr ∧ dα are smooth.

(f) Prove that, if

η =
r2 dα + s2 dβ

1 + r2 + s2
,

then dη can be extended over a closed smooth 2-form ω on CP 2. (Hint: Analyze
how η changes when we move from one chart to another on CP 2.)

(g) Prove that

∫
CP 2

ω ∧ ω = 1 and infer from this fact that ω is not exact.

(h) Prove that ω is a generator of H2
dR(CP 2).

(i) Prove that ω ∧ · · · ∧ ω (k times) is a generator of H2k
dR(CP n) for every k ≤ n.

81. The Hopf invariant of a smooth map f : S3 → S2 is defined as

H(f) =

∫
S3

α ∧ f ∗(ω),

where ω is any smooth 2-form on S2 with
∫
S2 ω = 1 and α is a primitive of f ∗(ω),

that is, dα = f ∗(ω).

(a) Prove that H(f) does not depend on the choices of ω and α.

(b) Compute the Hopf invariant of the Hopf fibration f : S3 → S2, which is given
by

f(x, y, z, t) = (x2 + y2 − z2 − t2, 2(xt− yz), 2(yt− xz)).

82. Prove that, if M is a smooth compact orientable n-dimensional manifold, then,
for each 0 ≤ k ≤ n, the map from Ωk(M) to the dual of Ωn−k(M) sending each
ω ∈ Ωk(M) to the homomorphism η 7→

∫
M
ω ∧ η is an isomorphism, and hence

dimHk
dR(M) ∼= dimHn−k

dR (M) (Poincaré duality).
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