Differential Forms on Smooth Manifolds

Differential Forms

Let M be a topological manifold of dimension $n \ge 1$. For $k \ge 0$, a smooth k-form or differential k-form on M is a smooth section

$$\omega \colon M \longrightarrow T^*M \wedge \stackrel{(k)}{\cdots} \wedge T^*M$$

of the kth exterior power of the cotangent bundle $T^*M \to M$. Thus, at each point $p \in M$, we can view ω_p as an \mathbb{R} -multilinear map

$$\omega_p \colon T_p M \times \stackrel{(k)}{\cdots} \times T_p M \longrightarrow \mathbb{R}$$

which is alternating, that is $\omega_p(\ldots, v_i, \ldots, v_j, \ldots) = -\omega_p(\ldots, v_j, \ldots, v_i, \ldots)$ for all $i \neq j$.

If ω is a smooth k-form on M and X_1, \ldots, X_k are smooth vector fields on M, then $\omega(X_1, \ldots, X_k)$ is a smooth function on M given by

$$(\omega(X_1\ldots,X_k))(p)=\omega_p((X_1)_p,\ldots,(X_k)_p)$$

for every $p \in M$.

We denote by $\Omega^k(M)$ the \mathbb{R} -vector space of smooth k-forms on M. If (U, φ) is a chart in M with coordinates $\varphi = (x_1, \ldots, x_n)$, then each form $\omega \in \Omega^k(M)$ can be written uniquely on U as

$$\sum_{i_1 < \dots < i_k} \omega_{i_1 \dots i_k} \, dx_{i_1} \wedge \dots \wedge dx_{i_k}$$

with $i_r \in \{1, \ldots, n\}$ for all r, and each $\omega_{i_1 \ldots i_k}$ is a smooth function $U \to \mathbb{R}$.

Wedge Product

The graded \mathbb{R} -vector space $\Omega^*(M) = \bigoplus_{k=0}^{\infty} \Omega^k(M)$ can be given a graded ring structure as follows. Given $\omega \in \Omega^k(M)$ and $\eta \in \Omega^l(M)$, the wedge product $\omega \wedge \eta$ is the smooth (k+l)-form on M given, in coordinate notation, by

$$\omega \wedge \eta = \sum \omega_{i_1 \dots i_k} \eta_{j_1 \dots j_l} \, dx_{i_1} \wedge \dots \wedge dx_{i_k} \wedge dx_{j_1} \wedge \dots \wedge dx_{j_l}$$

followed by a suitable reordering of the terms, where $\omega = \sum_{i_1 < \cdots < i_k} \omega_{i_1 \dots i_k} dx_{i_1} \wedge \cdots \wedge dx_{i_k}$ and $\eta = \sum_{j_1 < \cdots < j_l} \eta_{j_1 \dots j_l} dx_{j_1} \wedge \cdots \wedge dx_{j_l}$.

The graded ring $\Omega^*(M)$ is anticommutative, that is,

$$\omega \wedge \eta = (-1)^{kl} \eta \wedge \omega \quad \text{if } \omega \in \Omega^k(M) \text{ and } \eta \in \Omega^l(M).$$

Pull-back along a Smooth Map

If $f: M \to N$ is a smooth map between smooth manifolds and ω is a smooth k-form on N, then $f^*(\omega)$ is the smooth k-form on M given by

$$(f^*(\omega))_p(v_1,\ldots,v_k) = \omega_{f(p)}((df)_p(v_1),\ldots,(df)_p(v_k))$$

for every $p \in M$ and all $v_1, \ldots, v_k \in T_p M$.

In coordinate notation, if $\omega = \sum_{i_1 < \cdots < i_k}^{p} \omega_{i_1 \dots i_k} dx_{i_1} \wedge \cdots \wedge dx_{i_k}$, then

$$f^*(\omega) = \sum_{i_1 < \cdots < i_k} (\omega_{i_1 \dots i_k} \circ f) \, df_{i_1} \wedge \cdots \wedge df_{i_k}$$

where f_j denotes the *j*th component of *f* in the given chart of *N*.

It then follows that $f^* \colon \Omega^*(N) \to \Omega^*(M)$ is a ring homomorphism, that is,

$$f^*(\omega \wedge \eta) = f^*(\omega) \wedge f^*(\eta)$$
 for all ω, η .

Exterior Derivative

The exterior derivative is an \mathbb{R} -linear map $d: \Omega^k(M) \to \Omega^{k+1}(M)$ given in coordinate notation by

$$d\omega = \sum_{i_1 < \dots < i_k} (d\omega_{i_1 \dots i_k}) \wedge dx_{i_1} \wedge \dots \wedge dx_{i_k}$$

if $\omega = \sum_{i_1 < \cdots < i_k} \omega_{i_1 \dots i_k} dx_{i_1} \wedge \cdots \wedge dx_{i_k}$, where $df = \sum_{j=1}^n (\partial f / \partial x_j) dx_j$.

This operator satisfies $d \circ d = 0$ and commutes with pull-back: $d(f^*(\omega)) = f^*(d\omega)$ for every $\omega \in \Omega^*(N)$ and every smooth map $f \colon M \to N$.

Therefore, for every smooth manifold M, we may view $\Omega^*(M)$ as a cochain complex, called the *de Rham complex* of M, and for each smooth map $f: M \to N$ the induced ring homomorphism $f^*: \Omega^*(N) \to \Omega^*(M)$ is also a homomorphism of cochain complexes.

De Rham Cohomology

The de Rham cohomology of a smooth manifold M is the cohomology of the cochain complex $\Omega^*(M)$. It is denoted by $H^*_{dR}(M)$. Thus, a k-cocycle is a smooth k-form ω on M such that $d\omega = 0$. Such a form is called *closed*. A k-coboundary is a smooth k-form ω such that $\omega = d\eta$ for some smooth (k-1)-form η . If so, then ω is called *exact*, and η is a *primitive* of ω . Thus, the statement that all closed smooth k-forms are exact is equivalent to the statement that $H^k_{dR}(M) = 0$.

Each smooth map $f: M \to N$ between smooth manifolds induces a well-defined ring homomorphism $f^*: H^*_{dR}(N) \to H^*_{dR}(M)$.

The de Rham Theorem states that

$$H^*_{\mathrm{dR}}(M) \cong H^*(M;\mathbb{R})$$

as graded rings for every smooth manifold M, where $H^*_{dR}(M)$ is equipped with the wedge product and $H^*(M; \mathbb{R})$ is equipped with the cup product. The isomorphism is given as follows: if ω is a closed smooth k-form on M, then we assign to it the singular k-cochain sending each smooth k-simplex $\sigma: \Delta^k \to M$ to the value of the integral $\int_{\sigma} \omega$. This map is well defined by Stokes' Theorem.

Exercises

68. Prove the following statements:

- (i) If $\omega \in \Omega^k(M)$ and $\eta \in \Omega^l(M)$, then $\omega \wedge \eta = (-1)^{kl} \eta \wedge \omega$.
- (ii) If $\omega \in \Omega^k(M)$ and $\eta \in \Omega^l(M)$, then $d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta$.
- (iii) If $f: M \to N$ is a smooth map, then $f^*(\omega \wedge \eta) = f^*(\omega) \wedge f^*(\eta)$ for all ω, η .
- (iv) If $f: M \to N$ is a smooth map, then $d(f^*(\omega)) = f^*(d\omega)$ for every ω .
- 69. Express the 2-form $x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy$ in spherical coordinates (ρ, φ, θ) , defined by

$$(x, y, z) = (\rho \cos \varphi \cos \theta, \rho \cos \varphi \sin \theta, \rho \sin \varphi).$$

70. For a smooth 2-form $\alpha = \sum_{i < j} \alpha_{ij} dx_i \wedge dx_j$, prove that $d\alpha = 0$ if and only if

$$\frac{\partial \alpha_{ij}}{\partial x_k} - \frac{\partial \alpha_{ik}}{\partial x_j} + \frac{\partial \alpha_{jk}}{\partial x_i} = 0 \quad \text{for all } i < j < k.$$

- 71. (a) Find a 1-form η on \mathbb{R}^3 such that $d\eta = (1 x^2) dx \wedge dy + 3x^2 dx \wedge dz dy \wedge dz$. (b) Find a 2-form ν on \mathbb{R}^3 such that $d\nu = (xy - 2y^2z) dx \wedge dy \wedge dz$.
- 72. Prove that the smooth 1-forms on $M = \mathbb{R}^2 \setminus \{(0,0)\}$ given by

$$\omega = \frac{x}{x^2 + y^2} \, dx + \frac{y}{x^2 + y^2} \, dy, \qquad \eta = \frac{-y}{x^2 + y^2} \, dx + \frac{x}{x^2 + y^2} \, dy$$

are closed. Which of these are exact?

- 73. Prove that the smooth 2-form $x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy$ is closed but not exact on the unit sphere $S^2 \subseteq \mathbb{R}^3$.
- 74. A smooth manifold is *orientable* if it admits a smooth atlas $\{(U_i, \varphi_i)\}_{i \in I}$ in which the differential of $\varphi_j \circ (\varphi_i)^{-1}$ has positive determinant at each point for all $i, j \in I$ such that $U_i \cap U_j \neq \emptyset$. Prove that a smooth manifold is orientable if and only if the underlying topological manifold is orientable.
- 75. Prove that a smooth *n*-dimensional manifold M is orientable if and only if there is a smooth *n*-form ν such that $\nu_p \neq 0$ for all $p \in M$.
- 76. Prove that, if M is a topological manifold with boundary, then every smooth structure on M induces a smooth structure on the boundary ∂M , and if M is orientable then ∂M is also orientable.
- 77. Let M be a connected smooth manifold and let U, V be connected open subsets such that $M = U \cup V$. For a 1-form ω on M, prove that if the restriction of ω to Uis exact and the restriction of ω to V is also exact and $U \cap V$ is connected, then ω is exact. Find a counterexample if the assumption that $U \cap V$ is connected is omitted.
- 78. Prove that, if M and N are smooth manifolds, then

$$H^*_{\mathrm{dR}}(M \times N) \cong H^*_{\mathrm{dR}}(M) \otimes H^*_{\mathrm{dR}}(N).$$

- 79. Using de Rham's Theorem, find the de Rham cohomology of each compact connected smooth surface.
- 80. Find generators of the de Rham cohomology of $\mathbb{C}P^n$ following the next steps:
 - (a) Let (z_0, z_1, z_2) be complex homogeneous coordinates on $\mathbb{C}P^2$. View $\mathbb{C}P^1$ as the set of points of the form $(0, z_1, z_2)$ and parametrize its affine complement \mathbb{A} as (1, u, v) with $u, v \in \mathbb{C}$.
 - (b) Use the coordinate change $u = re^{2\pi i\alpha}$, $v = se^{2\pi i\beta}$ on \mathbb{A} , with $r \ge 0$, $s \ge 0$, $0 \le \alpha \le 1, 0 \le \beta \le 1$.
 - (c) Prove that r^2 is a smooth map on \mathbb{A} (however, r is not).
 - (d) Prove that the 1-form r dr is smooth on A.
 - (e) Prove that the 1-form $r^2 d\alpha$ and the 2-form $r dr \wedge d\alpha$ are smooth.
 - (f) Prove that, if

$$\eta = \frac{r^2 \, d\alpha + s^2 \, d\beta}{1 + r^2 + s^2},$$

then $d\eta$ can be extended over a closed smooth 2-form ω on $\mathbb{C}P^2$. (*Hint:* Analyze how η changes when we move from one chart to another on $\mathbb{C}P^2$.)

- (g) Prove that $\int_{\mathbb{C}P^2} \omega \wedge \omega = 1$ and infer from this fact that ω is not exact.
- (h) Prove that ω is a generator of $H^2_{dR}(\mathbb{C}P^2)$.
- (i) Prove that $\omega \wedge \cdots \wedge \omega$ (k times) is a generator of $H^{2k}_{dR}(\mathbb{C}P^n)$ for every $k \leq n$.
- 81. The Hopf invariant of a smooth map $f: S^3 \to S^2$ is defined as

$$H(f) = \int_{S^3} \alpha \wedge f^*(\omega),$$

where ω is any smooth 2-form on S^2 with $\int_{S^2} \omega = 1$ and α is a primitive of $f^*(\omega)$, that is, $d\alpha = f^*(\omega)$.

- (a) Prove that H(f) does not depend on the choices of ω and α .
- (b) Compute the Hopf invariant of the Hopf fibration $f: S^3 \to S^2$, which is given by

$$f(x, y, z, t) = (x^{2} + y^{2} - z^{2} - t^{2}, 2(xt - yz), 2(yt - xz))$$

82. Prove that, if M is a smooth compact orientable *n*-dimensional manifold, then, for each $0 \le k \le n$, the map from $\Omega^k(M)$ to the dual of $\Omega^{n-k}(M)$ sending each $\omega \in \Omega^k(M)$ to the homomorphism $\eta \mapsto \int_M \omega \wedge \eta$ is an isomorphism, and hence

$$\dim H^k_{\mathrm{dR}}(M) \cong \dim H^{n-k}_{\mathrm{dR}}(M) \quad (Poincaré \ duality).$$