Geometry and Topology of Manifolds 2015-2016
Differential Forms on Smooth Manifolds

Differential Forms

Let M be a topological manifold of dimension n > 1. For k > 0, a smooth k-form or
differential k-form on M is a smooth section

)

wi M —TMA Y AT M

of the kth exterior power of the cotangent bundle T*M — M. Thus, at each point p € M,
we can view w, as an R-multilinear map

k
wy: T,M % 2 x T,M — R

which is alternating, that is wy(...,v;, ..., vj...) = —wp(...,vj,...,v;...) for all ¢ # j.
If w is a smooth k-form on M and X;,..., X, are smooth vector fields on M, then
w(Xj ..., Xg) is a smooth function on M given by

(WX, X)) (p) = wp((Xi)ps -+ (Xi)p)

for every p € M.

We denote by QF(M) the R-vector space of smooth k-forms on M. If (U, ) is a
chart in M with coordinates ¢ = (zy,...,z,), then each form w € Q*(M) can be written
uniquely on U as

Z Wiy . .ig, dl‘il VANEIEIAN dIZk

1< <ip

with 4, € {1,...,n} for all 7, and each w;, ,, is a smooth function U — R.

Wedge Product

The graded R-vector space Q*(M) = @&, QF(M) can be given a graded ring structure
as follows. Given w € QF(M) and n € Q!(M), the wedge product w A 7 is the smooth
(k + [)-form on M given, in coordinate notation, by

WA= th---ik Niy..g, Axiy N - Ndx, Ndx; N--- Ndxj,

followed by a suitable reordering of the terms, where w = >
and =3 . Mg dzjy Ao Ady,.
The graded ring Q*(M) is anticommutative, that is,

i1<"'<7:k wzlzk dxil /\ e /\ dxlk

wAn=(=)"nArw ifwe QM) and n e Q(M).
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Pull-back along a Smooth Map

If f: M — N is a smooth map between smooth manifolds and w is a smooth k-form
on N, then f*(w) is the smooth k-form on M given by

(FHpvrs - vn) = Wi (df)p(v1); - - (dF ) (vr))

for every p € M and all vy,..., v, € T,M.

In coordinate notation, if w =) Wiy i, dxiy A+ - Adx,, then

@ = > @io f)dfy A Adfy,

i1 <<

where f; denotes the jth component of f in the given chart of V.
It then follows that f*: Q*(N) — Q*(M) is a ring homomorphism, that is,

frlwnn)=fAw)Afin) forallw,n.

Exterior Derivative

The exterior derivative is an R-linear map d: QF(M) — QFF1(M) given in coordinate
notation by
dw = Z (dwiy..ip) Ndziy A -+ A day,
11 <<t

if w=>3" c.ci Wiriy dTiy Ao Adxg,, where df = Z?Zl((?f/axj) dz;.

This operator satisfies d o d = 0 and commutes with pull-back: d(f*(w)) = f*(dw) for
every w € (*(N) and every smooth map f: M — N.

Therefore, for every smooth manifold M, we may view Q*(M) as a cochain complex,
called the de Rham complex of M, and for each smooth map f: M — N the induced ring
homomorphism f*: Q*(N) — Q*(M) is also a homomorphism of cochain complexes.

De Rham Cohomology

The de Rham cohomology of a smooth manifold M is the cohomology of the cochain
complex Q*(M). It is denoted by Hjz(M). Thus, a k-cocycle is a smooth k-form w on
M such that dw = 0. Such a form is called closed. A k-coboundary is a smooth k-form w
such that w = dn for some smooth (k — 1)-form 7. If so, then w is called ezact, and 7 is a
primitive of w. Thus, the statement that all closed smooth k-forms are exact is equivalent
to the statement that H¥; (M) = 0.

Each smooth map f: M — N between smooth manifolds induces a well-defined ring
homomorphism f*: Hig(N) — Hig(M).

The de Rham Theorem states that

Hig(M) = H*(M;R)

as graded rings for every smooth manifold M, where H}y (M) is equipped with the wedge
product and H*(M;R) is equipped with the cup product. The isomorphism is given as
follows: if w is a closed smooth k-form on M, then we assign to it the singular k-cochain
sending each smooth k-simplex o: A¥ — M to the value of the integral faw. This map
is well defined by Stokes” Theorem.
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Exercises

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

Prove the following statements:

(i) Ifw € QF(M) and n € Q/(M), then w Anp = (—1)"n A w.

(ii) If w € QF(M) and n € QY (M), then d(w An) = dw An+ (=1)*w A dn.

(iii) If f: M — N is a smooth map, then f*(w An) = f*(w) A f*(n) for all w, n.
(iv) If f: M — N is a smooth map, then d(f*(w)) = f*(dw) for every w.

Express the 2-form = dy Adz+vy dz Adx + z dx A dy in spherical coordinates (p, ¢, 0),

defined by
(x,y,2) = (pcospcosb, pcospsinb, psingp).

For a smooth 2-form o = Zi<j a;j dx; A dxj, prove that da = 0 if and only if

a&z‘j B 80zik i 80éjk

=0 foralli<j<k.
B2, oz, oz, 0 foralli<j<

(a) Find a 1-form n on R? such that dnp = (1 — 2?) dz Ady + 3x* dv A dz — dy N dz.
(b) Find a 2-form v on R? such that dv = (zy — 2y*2) dx A dy A d=.

Prove that the smooth 1-forms on M = R? \ {(0,0)} given by

x y —y x
w = dx + dy, = dr + ———d
x? + y? 2 + 12 J m x? + y? x? + y? Y

are closed. Which of these are exact?

Prove that the smooth 2-form zdy A dz + ydz A dv + zdx A dy is closed but not
exact on the unit sphere S? C R3.

A smooth manifold is orientable if it admits a smooth atlas {(U;, ;) }ier in which
the differential of ¢; o (p;)~" has positive determinant at each point for all i,j € T
such that U; NU; # (). Prove that a smooth manifold is orientable if and only if the
underlying topological manifold is orientable.

Prove that a smooth n-dimensional manifold M is orientable if and only if there is
a smooth n-form v such that v, # 0 for all p € M.

Prove that, if M is a topological manifold with boundary, then every smooth struc-
ture on M induces a smooth structure on the boundary OM, and if M is orientable
then OM is also orientable.

Let M be a connected smooth manifold and let U, V' be connected open subsets
such that M = U UV. For a 1-form w on M, prove that if the restriction of w to U
is exact and the restriction of w to V is also exact and U NV is connected, then w is
exact. Find a counterexample if the assumption that U NV is connected is omitted.

Prove that, if M and N are smooth manifolds, then

Hig(M x N) = Hig(M) ® Hig(N).

28



79. Using de Rham’s Theorem, find the de Rham cohomology of each compact connected
smooth surface.

80. Find generators of the de Rham cohomology of CP" following the next steps:

(a) Let (2o, 21, 22) be complex homogeneous coordinates on CP?. View CP! as the
set of points of the form (0, z1, 25) and parametrize its affine complement A as
(1, u,v) with u,v € C.

(b) Use the coordinate change u = re*™@ v = se?™ on A, with r > 0, s > 0,
0<a<l,0<p<1

(c) Prove that r? is a smooth map on A (however, r is not).

(d) Prove that the 1-form r dr is smooth on A.
) Prove that the 1-form r? da and the 2-form r dr A da are smooth.
)

Prove that, if

(e
(f
_ rPda+s*dp

1424820
then dn can be extended over a closed smooth 2-form w on CP?. (Hint: Analyze
how 7 changes when we move from one chart to another on CP?.)

(g) Prove that / w A w =1 and infer from this fact that w is not exact.
Cp2

(h) Prove that w is a generator of Hig(CP?).
(i) Prove that w A --- Aw (k times) is a generator of H2k(CP") for every k < n.

81. The Hopf invariant of a smooth map f: S® — S? is defined as

1) = [ ans),
S3
where w is any smooth 2-form on S? with [, w =1 and « is a primitive of f*(w),
that is, da = f*(w).

(a) Prove that H(f) does not depend on the choices of w and «.

(b) Compute the Hopf invariant of the Hopf fibration f: S® — S?, which is given
by
f(z,y, 2, t) = (2% +9° — 2% — 12, 2(at — yz), 2(yt — x2)).

82. Prove that, if M is a smooth compact orientable n-dimensional manifold, then,
for each 0 < k < n, the map from QF(M) to the dual of Q" *(M) sending each
w € QF(M) to the homomorphism 7 +— / 4 W A is an isomorphism, and hence

dim HY: (M) = dim H{z"(M) (Poincaré duality).
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