Classical Operators

Curl, Divergence, Gradient

For a smooth vector field $F=\left(F_{1}, F_{2}, F_{3}\right)$ on \mathbb{R}^{3}, the rotational or curl of F is the vector field defined as

$$
\operatorname{curl} F=\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}, \frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}, \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right)
$$

and the divergence of F is the function

$$
\operatorname{div} F=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}
$$

The gradient of a smooth function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the vector field

Exercise

$$
\operatorname{grad} f=\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)
$$

83. Prove that

$$
\text { curl } \circ \operatorname{grad}=0 \quad \text { and } \quad \text { div } \circ \text { curl }=0
$$

in \mathbb{R}^{3}, and show that these two equations correspond to the fact that the de Rham differential d satisfies $d \circ d=0$, through the correspondence between 1-forms and vector fields given by $f d x+g d y+h d z \leftrightarrow(f, g, h)$, together with the correspondence between k-forms and (3-k)-forms given by Hodge duality:

$$
\begin{aligned}
f d x+g d y+h d z & \longleftrightarrow f d y \wedge d z+g d z \wedge d x+h d x \wedge d y \\
f & \longleftrightarrow f d x \wedge d y \wedge d z
\end{aligned}
$$

Divergence Theorem

For a compact subset K whose boundary ∂K is a smooth surface in \mathbb{R}^{3}, Stokes' Theorem specializes to the Divergence Theorem for each smooth vector field F:

$$
\int_{K} \operatorname{div} F d V=\int_{\partial K} F \cdot N d A
$$

Here the 3-form $d V=d x \wedge d y \wedge d z$ on \mathbb{R}^{3} is called volume element and $\int_{K} d V$ is the Euclidean volume of K. In the right-hand integral, N denotes the outward unit normal vector field on ∂K and $d A$ is called surface area element, which is determined by the expression

$$
F \cdot N d A=F_{1} d y \wedge d z+F_{2} d z \wedge d x+F_{3} d x \wedge d y
$$

Kelvin-Stokes Theorem

Suppose now that M is a compact oriented smooth surface with boundary in \mathbb{R}^{3} and let N be the outward unit normal vector field on M. Then, for every smooth vector field F on an open neighbourhood of M, Stokes' Theorem yields

$$
\int_{M} \operatorname{curl} F \cdot N d A=\int_{\partial M} F \cdot T d L
$$

where $F \cdot T d L=F_{1} d x+F_{2} d y+F_{3} d z$. Here T denotes the unit tangent vector field along ∂M and $d L$ is called arc length element.

Green Theorem

As a special case of the Kelvin-Stokes Theorem, one obtains Green's Theorem: If S is a compact subset with smooth boundary in \mathbb{R}^{2}, then, for every smooth vector field $F=\left(F_{1}, F_{2}\right)$ on S,

$$
\int_{S}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d x \wedge d y=\int_{\partial S} F_{1} d x+F_{2} d y
$$

Exercises

84. Compute $\int_{\gamma} y^{3} d x-x^{3} d y$ where γ is the positively oriented circle of radius 2 centered at the origin in \mathbb{R}^{2}.
85. Let $T^{2}=S^{1} \times S^{1} \subset \mathbb{R}^{4}$ denote the 2-torus, defined by $w^{2}+x^{2}=y^{2}+z^{2}=1$. Compute

$$
\int_{T^{2}} x y z d w \wedge d y
$$

86. A cycloid arc is given by $x=a(t-\sin t)$ and $y=a(1-\cos t)$ where $t \in[0,2 \pi]$. Find the area between the arc and the x-axis. (Hint: Use Green's Theorem with the vector field $F=(-y, x)$.)
87. Let S be the surface obtained by rotating the curve in the $x z$-plane given by $x=\cos u, z=\sin 2 u,-\pi / 2 \leq u \leq \pi / 2$ around the z axis. Compute the volume of the region in \mathbb{R}^{3} bounded by S. (Hint: Apply the Divergence Theorem to a suitable vector field.)
