First Homology Group

Fundamental Group

The fundamental group of a topological space X with base point x_0 (also called Poincaré group or first homotopy group), denoted $\pi_1(X, x_0)$, is the group of homotopy classes of loops in X starting and ending at x_0, operating under concatenation, where homotopies are assumed to be constant over x_0.

Abelianization

For a group G, the commutator of two elements $x, y \in G$ is the element $xyx^{-1}y^{-1}$. The commutator subgroup of G is the subgroup generated by all commutators of all pairs of elements of G. It is denoted by $[G, G]$. Note that $[G, G] = \{1\}$ if and only if G is commutative.

Since $z(xyx^{-1}y^{-1})z^{-1} = (zxz^{-1})(zyz^{-1})(zxz^{-1})^{-1}(zyz^{-1})^{-1}$ for all x, y, z in G, the commutator subgroup is normal in G, that is, closed under conjugation. Therefore, the quotient

$$G_{ab} = G/[G, G]$$

acquires a group structure. It is called the abelianization of G and it is the largest quotient of G which is a commutative group.

Hurewicz–Poincaré Theorem

If X is any path-connected topological space and x_0 is any point of X, then

$$H_1(X) \cong \pi_1(X, x_0)_{ab}.$$

Exercises

12. Prove that the canonical projection $\alpha: G \to G_{ab}$ is characterized up to isomorphism by the following universal property: α is a group homomorphism onto an abelian group, and for every homomorphism $\varphi: G \to A$ where A is abelian there is a unique homomorphism $\psi: G_{ab} \to A$ such that $\psi \circ \alpha = \varphi$.

13. Choose a homeomorphism between Δ^1 and the interval $[0, 1]$, and prove that, if ω and σ are homotopic loops at a point x_0 of a space X, then ω and σ are homologous if viewed as 1-cycles. Show that this fact yields a well-defined group homomorphism $\varphi: \pi_1(X, x_0) \to H_1(X)$, which is surjective.

14. Compute the first homology group of all compact connected surfaces.

15. Let X be a finite connected (unoriented) graph with p vertices and q edges. Prove that $H_1(X)$ is a free abelian group and find its rank.