Geometry and Topology of Manifolds 2015–2016

First Homology Group

Fundamental Group

The fundamental group of a topological space X with base point x_0 (also called *Poincaré group* or first homotopy group), denoted $\pi_1(X, x_0)$, is the group of homotopy classes of loops in X starting and ending at x_0 , operating under concatenation, where homotopies are assumed to be constant over x_0 .

Abelianization

For a group G, the commutator of two elements $x, y \in G$ is the element $xyx^{-1}y^{-1}$. The commutator subgroup of G is the subgroup generated by all commutators of all pairs of elements of G. It is denoted by [G, G]. Note that $[G, G] = \{1\}$ if and only if G is commutative.

Since $z(xyx^{-1}y^{-1})z^{-1} = (zxz^{-1})(zyz^{-1})(zxz^{-1})^{-1}(zyz^{-1})^{-1}$ for all x, y, z in G, the commutator subgroup is *normal* in G, that is, closed under conjugation. Therefore, the quotient

$$G_{\rm ab} = G/[G,G]$$

acquires a group structure. It is called the *abelianization* of G and it is the largest quotient of G which is a commutative group.

Hurewicz–Poincaré Theorem

If X is any path-connected topological space and x_0 is any point of X, then

$$H_1(X) \cong \pi_1(X, x_0)_{\mathrm{ab}}.$$

Exercises

- 12. Prove that the canonical projection $\alpha \colon G \to G_{ab}$ is characterized up to isomorphism by the following *universal property*: α is a group homomorphism onto an abelian group, and for every homomorphism $\varphi \colon G \to A$ where A is abelian there is a unique homomorphism $\psi \colon G_{ab} \to A$ such that $\psi \circ \alpha = \varphi$.
- 13. Choose a homeomorphism between Δ^1 and the interval [0, 1], and prove that, if ω and σ are homotopic loops at a point x_0 of a space X, then ω and σ are homologous if viewed as 1-cycles. Show that this fact yields a well-defined group homomorphism $\varphi \colon \pi_1(X, x_0) \to H_1(X)$, which is surjective.
- 14. Compute the first homology group of all compact connected surfaces.
- 15. Let X be a finite connected (unoriented) graph with p vertices and q edges. Prove that $H_1(X)$ is a free abelian group and find its rank.