Geometry and Topology of Manifolds 2015–2016

Homology of Cell Complexes

Cell Complexes

Let us denote by E^n the closed *n*-ball, whose boundary is the sphere S^{n-1} . A *cell* complex (or *CW*-complex) is a topological space X equipped with a filtration by subspaces

$$X^{(0)} \subseteq X^{(1)} \subseteq X^{(2)} \subseteq \dots \subseteq X^{(n)} \subseteq \dots$$
(1)

where $X^{(0)}$ is discrete (i.e., has the discrete topology), such that $X = \bigcup_{n=0}^{\infty} X^{(n)}$ as a topological space, and, for all n, the space $X^{(n)}$ is obtained from $X^{(n-1)}$ by attaching a set of n-cells by means of a family of maps $\{\varphi_j \colon S^{n-1} \to X^{(n-1)}\}_{j \in J_n}$. Here J_n is any set of indices and $X^{(n)}$ is therefore a quotient of the disjoint union $X^{(n-1)} \coprod_{j \in J_n} E^n$ where we identify, for each point $x \in S^{n-1}$, the image $\varphi_j(x) \in X^{(n-1)}$ with the point x in the j-th copy of E^n . It is customary to denote

$$X^{(n)} = X^{(n-1)} \cup_{\{\varphi_i\}} \{e_i^n\}$$

and view each e_j^n as an "open *n*-cell". The space $X^{(n)}$ is called the *n*-skeleton of X, and the filtration (1) together with the attaching maps $\{\varphi_j\}_{j\in J_n}$ for all *n* is called a *cell decomposition* or *CW*-decomposition of X. Thus a topological space may admit many distinct cell decompositions (or none).

Cellular Chain Complexes

Let X be a cell complex with n-skeleton $X^{(n)}$ and attaching maps $\{\varphi_j\}_{j\in J_n}$ for all n. We define

$$C_n(X) = H_n(X^{(n)}, X^{(n-1)})$$

for each n. Note that, since $X^{(n-1)}$ is a closed subspace of $X^{(n)}$ which is a strong deformation retract of an open neighbourhood, we have

$$C_n(X) \cong H_n(X^{(n)}/X^{(n-1)})$$

for all *n*. Moreover, $X^{(n)}/X^{(n-1)} \cong \bigvee_{j \in J_n} S^n$. Therefore $C_n(X)$ is a free abelian group with a free generator for each $j \in J_n$, or, in other words, for each *n*-cell of *X*. Thus we may write

$$C_n(X) \cong \bigoplus_{j \in J_n} \mathbb{Z}e_j^n.$$

We next show that $C_*(X)$ is in fact a chain complex whose homology groups are isomorphic to the homology groups of X. For this, we need to define a boundary operator $\partial_n : C_n(X) \longrightarrow C_{n-1}(X)$ for each n. We pick $\partial_n = p_{n-1} \circ \Delta_n$, where

$$\Delta_n \colon H_n\big(X^{(n)}, X^{(n-1)}\big) \longrightarrow H_{n-1}\big(X^{(n-1)}\big)$$

is the connecting homomorphism from the homology long exact sequence of the pair $(X^{(n)}, X^{(n-1)})$, and

$$p_{n-1}: H_{n-1}(X^{(n-1)}) \longrightarrow H_{n-1}(X^{(n-1)}, X^{(n-2)})$$

comes from the homology long exact sequence of the pair $(X^{(n-1)}, X^{(n-2)})$. Hence,

$$\partial_{n-1} \circ \partial_n = p_{n-2} \circ \Delta_{n-1} \circ p_{n-1} \circ \Delta_n = 0,$$

since $\Delta_{n-1} \circ p_{n-1} = 0$, as they are consecutive arrows in the same exact sequence.

Furthermore, observe that p_{n-1} is injective because $H_{n-1}(X^{(n-2)}) = 0$, as one shows inductively. This fact yields

$$H_n(C_*(X)) = \operatorname{Ker} \partial_n / \operatorname{Im} \partial_{n+1} = \operatorname{Ker} \Delta_n / \operatorname{Im} \partial_{n+1}$$

= Im $p_n / \operatorname{Im} \partial_{n+1} \cong H_n(X^{(n)}) / \operatorname{Im} \Delta_{n+1} \cong H_n(X^{(n)}) / \operatorname{Ker} i_n$
\approx Im $i_n \cong H_n(X^{(n+1)}) \cong H_n(X),$

where $i_n: H_n(X^{(n)}) \to H_n(X^{(n+1)})$ is induced by the inclusion. Note that i_n is surjective since $H_n(X^{(n+1)}, X^{(n)}) = 0$, and the isomorphism $H_n(X^{(n+1)}) \cong H_n(X)$ is shown by applying the Mayer–Vietoris exact sequence to the k-cells with k > n+1.

Incidence Numbers

Let us obtain a more useful description of the boundary operators ∂_n of the cellular chain complex. For a cell complex X with n-skeleton $X^{(n)}$ and attaching maps $\{\varphi_j\}_{j\in J_n}$, we may view ∂_n as a group homomorphism between free abelian groups:

$$\partial_n \colon \oplus_{j \in J_n} \mathbb{Z} e_j^n \longrightarrow \oplus_{i \in J_{n-1}} \mathbb{Z} e_i^{n-1}.$$

Hence ∂_n is fully determined by an array of integers, which we call *incidence numbers* and denote as follows:

$$\partial_n e_j^n = \sum_{i \in J_{n-1}} [e_i^{n-1} : e_j^n] e_i^{n-1}.$$

Observe that $[e_i^{n-1} : e_j^n]$ is the degree of the map $\phi_i^j : S^{n-1} \to S^{n-1}$ obtained by composing $\varphi_j : S^{n-1} \to X^{(n-1)}$ with the collapse $X^{(n-1)} \to X^{(n-1)}/(X^{(n-1)} \smallsetminus e_i^{n-1})$ and with the canonical homeomorphism of the latter with S^{n-1} .

Simplicial Homology

Suppose that |K| is the geometric realization of an abstract simplicial complex K. Then |K| admits a cell decomposition where the *n*-cells correspond to the *n*-faces of K, and the cellular chain complex $C_*(|K|)$ is isomorphic to the simplicial chain complex $C_*(K)$. This shows that

$$H_n(|K|) \cong H_n(K)$$

for all n, where the group on the left means singular homology while the group on the right means simplicial homology.

Exercises

- 26. Prove that, for every abstract simplicial complex K, the boundary operator of the cellular chain complex $C_*(|K|)$ coincides with the one of the simplicial chain complex $C_*(K)$.
- 27. Find the homology groups of the space obtained by attaching an (n + 1)-cell to a sphere S^n by means of a map $f: S^n \to S^n$ of degree $k \ge 2$.
- 28. Prove that for every family $\{A_n\}_{n\geq 1}$ of finitely generated abelian groups there exists a connected space X such that $H_n(X) \cong A_n$ for all n.