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Cohomology Products

Cup Product

If X and Y are topological spaces, the Eilenberg—Zilber Theorem states the existence
of a natural homotopy equivalence ® of singular chain complexes

S.(X X V) ~ S.(X) ® S.(Y).

If « € SP(X;G) and 5 € SUY;G’) are cochains, where G and G’ are abelian groups,
we may consider the composition

Spra(X X V) =5 (Su(X) ® Su(Y )iy 5 GG,

where a ® [ is meant to be zero on all the summands except for S,(X) ® S,(Y).
This defines a natural homomorphism

SP(X:G)® SUY;G) =5 SPTI(X xY:Ge G,

which will be denoted with a multiplication symbol. The effect of the coboundary
operator is given by

5o x B) = (6a) x B+ (~1)a x (38).

This expression allows us to factor this multiplication to cohomology. The resulting
operation is known as external cohomology product:

HP(X;G)® H(Y;G') = HM(X xY;G®G).

If we now set X =Y and choose G = G’ = R (a ring), and consider the diagonal
map d: X — X x X, d(x) = (z,x), then the composite

HP(X: R)®H'(X: R) = HP"(XxX; ROR) - HP™9(X; R®R) 5 HP*(X; R),

where p: R ® R — R is the multiplication of R, yields an internal product that is
called cup product and denoted with ——. Thus, if ¢ and ¥ are any two cocycles, the
product of the corresponding cohomology classes [¢], [¢] is given by

(o] = [f] = [po(p@y)oPod] (1)

As a further consequence of the Acyclic Model Theorem, all natural chain maps
S (X) = S.(X) ® Si(X) such that z — 2 ® z for all z € Sy(X) are homotopic.
For this reason, ® o d, is homotopic to the chain map 7: S,(X) — S.«(X) ® S.(X)
defined as follows and called Alezander—Whitney diagonal approximation:

7(0) = Z o' ® o

i+j=n
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where ,
0'Z<t0,...,ti) = U(to,...,ti,o,...,O),

Uj(lfo,...,fj) :O'<O,...,0,t0,...,tj)

are called front i-th face and back j-th face of o, respectively, for each o: A,, — X.
Since 7 ~ ® o d,, the cup product can also be expressed as

[p] — W] = o (p@)or].

Thus, we may define ¢ ~— 1 as the cocycle which takes the following value on each
singular simplex o: Ay, = X:

(o — ¥)(0) = p(a”) P(oy),

and this definition agrees with (1) after passing to cohomology.

In summary, H*(X; R) is a graded ring for every space X and every ring R.
Moreover, given any map f: X — Y, the induced arrow f*: H*(Y; R) — H*(X; R)
is a homomorphism of graded rings, that is, the cup product commutes with induced
homomorphisms in cohomology.

Anti-commutativity

In general, ¢ — 9 and 1 — ¢ are distinct cocycles. However, in cohomology,

o] — [l = (=)™ [¢] — [#], (2)

where p is the degree of ¢ and ¢ is the degree of 1. This can be inferred from the
Acyclic Model Theorem, as follows. For spaces X and Y, let T: X xY — Y x X be
the twist map T'(x,y) = (y,z). Choose, as above, a natural homotopy equivalence
O: S, (X XY) = Su(X)® S.(Y). If we define F(oc @ n) = (—1)P(n ® o), then F
is a natural chain map, so the Acyclic Model Theorem implies that F'o ® ~ ® o T},
since they agree on 0-simplices. Since (p @ ) o F = (=1)P1¢ ® p and T od = d,
this fulfills our goal, by taking ¥ = X.

We say that the ring H*(X; R) is commutative in the graded sense meaning that,
in fact, it is anti-commutative by (2). An important consequence is that, if « is a
cohomology class of odd degree, then necessarily o — o« = 0 (unless the ring R has
exponent 2), since o« — a = —(«a — «) by reversing the order of the factors.

Cap Product
The cap product takes the following form, for a space X and a ring R:

HP(X;R) ® H,(X;R) = H,_,(X;R),
forn > 0and 0 < p < n. It is defined by factoring the adjoint of the homomorphism
SP(X; R) — Hom(S,(X; R), S,—p(X; R))
defined as follows: Given a cocycle ¢ € SP(X; R), send each cycle ¢ € S, (X; R) to
o ~c=((p®id) o (id® e ®id) o (id ® 7))(c).
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Here 7 is the Alexander—Whitney diagonal approximation, and ¢ ® id is to be
understood as defined over S,(X) ® S.(X) taking the 0 value on 5;(X) ® S;(X)
unless ¢ = p and j = q.

Hence, if we remind the definition of 7, we can define, more explicitly,

p ~ o =p(a”) On—p

for each o: A, — X. This definition passes to cohomology, as inferred from the
formula

0(p ~ o) = (=1)" (¢ ~ 0c) + (=1)"* (dp ~ )

for the boundary operator.
The following adjunction between the cup product and the cap product is im-
portant:

(p—t,0) = (Y, ~0).

This relation follows directly from the definitions. One also infers directly from the
definitions that, in the special case p = n, the cap product

H"(X;R)® H,(X;R) — Hy(X; R)

is just the Kronecker pairing if X is path-connected (by identifying Hy(X; R) = R
as usual).

Exercises

29. Let R be any ring with 1. Prove that, for every space X, the 0-cocycle that
sends all points of X to 1 is the unit element of the cohomology ring H*(X; R).

30. Prove that, given any map f: X — Y of spaces and given a ring R with 1,
the induced R-module homomorphism f*: H*(Y; R) — H*(X; R) is in fact a
homomorphism of R-algebras.

31. Denote by r and s the retractions of the one-point union X V Y onto X
and Y respectively, where X and Y are any two pointed spaces. Prove that
r*a — s*f =0 forall « € H?(X) and f € HY(Y) if p > 1 and ¢ > 1, and
infer from this fact that A*(X VY) = H*(X) ® H*(Y) as graded rings.

32. Compute the cohomology ring of a torus S* x - -+ x St of any dimension.

33. Prove that H*(S™ x S™) = H*(S"V S™V S""™) as graded abelian groups for
all n and m, but not as rings.

34. Prove that, if a space X can be written as X = AU B where A and B are
contractible open subspaces, then o — [ = 0 for all cohomology classes o and
[ of nonzero degree. Deduce from this fact that S™ x S™ is not the union of
any two contractible open subspaces if n > 1 and m > 1.
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35.

36.

37.

The suspension ¥ X of a nonempty topological space X is the quotient of
X x [0,1] by the equivalence relation which collapses X x {0} onto a point
and X x {1} onto another point.

(a) Prove that H,(XX) = H, ;(X) and H"(XX) =2 H"'(X) for n > 2.

(¢) Prove that a — § = 0 for all cohomology classes o and [ of nonzero
degree in H*(3X) for every connected space X.

Prove that the cup product and the cap product are adjoint, meaning that

(p—1v,0)= (¥, p ~0),

where (—, —) is the Kronecker pairing.

Prove that ¢ ~ (¢ —~ ¢) = (¢ — ©) —~ ¢ for all cochains ¢ and ¢ and every
chain ¢ of suitable degree.
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