Cohomology Products

Cup Product

If X and Y are topological spaces, the Eilenberg-Zilber Theorem states the existence of a natural homotopy equivalence Φ of singular chain complexes

$$
S_{*}(X \times Y) \simeq S_{*}(X) \otimes S_{*}(Y)
$$

If $\alpha \in S^{p}(X ; G)$ and $\beta \in S^{q}\left(Y ; G^{\prime}\right)$ are cochains, where G and G^{\prime} are abelian groups, we may consider the composition

$$
S_{p+q}(X \times Y) \xrightarrow{\Phi}\left(S_{*}(X) \otimes S_{*}(Y)\right)_{p+q} \xrightarrow{\alpha \otimes \beta} G \otimes G^{\prime},
$$

where $\alpha \otimes \beta$ is meant to be zero on all the summands except for $S_{p}(X) \otimes S_{q}(Y)$.
This defines a natural homomorphism

$$
S^{p}(X ; G) \otimes S^{q}\left(Y ; G^{\prime}\right) \xrightarrow{\times} S^{p+q}\left(X \times Y ; G \otimes G^{\prime}\right),
$$

which will be denoted with a multiplication symbol. The effect of the coboundary operator is given by

$$
\delta(\alpha \times \beta)=(\delta \alpha) \times \beta+(-1)^{p} \alpha \times(\delta \beta) .
$$

This expression allows us to factor this multiplication to cohomology. The resulting operation is known as external cohomology product:

$$
H^{p}(X ; G) \otimes H^{q}\left(Y ; G^{\prime}\right) \xrightarrow{\times} H^{p+q}\left(X \times Y ; G \otimes G^{\prime}\right) .
$$

If we now set $X=Y$ and choose $G=G^{\prime}=R$ (a ring), and consider the diagonal map $d: X \rightarrow X \times X, d(x)=(x, x)$, then the composite
$H^{p}(X ; R) \otimes H^{q}(X ; R) \xrightarrow{\times} H^{p+q}(X \times X ; R \otimes R) \xrightarrow{d^{*}} H^{p+q}(X ; R \otimes R) \xrightarrow{\mu_{*}} H^{p+q}(X ; R)$,
where $\mu: R \otimes R \rightarrow R$ is the multiplication of R, yields an internal product that is called cup product and denoted with \smile. Thus, if φ and ψ are any two cocycles, the product of the corresponding cohomology classes $[\varphi],[\psi]$ is given by

$$
\begin{equation*}
[\varphi] \smile[\psi]=\left[\mu \circ(\varphi \otimes \psi) \circ \Phi \circ d_{b}\right] . \tag{1}
\end{equation*}
$$

As a further consequence of the Acyclic Model Theorem, all natural chain maps $S_{*}(X) \rightarrow S_{*}(X) \otimes S_{*}(X)$ such that $x \mapsto x \otimes x$ for all $x \in S_{0}(X)$ are homotopic. For this reason, $\Phi \circ d_{b}$ is homotopic to the chain map $\tau: S_{*}(X) \rightarrow S_{*}(X) \otimes S_{*}(X)$ defined as follows and called Alexander-Whitney diagonal approximation:

$$
\tau(\sigma)=\sum_{i+j=n} \sigma^{i} \otimes \sigma_{j}
$$

where

$$
\begin{aligned}
\sigma^{i}\left(t_{0}, \ldots, t_{i}\right) & =\sigma\left(t_{0}, \ldots, t_{i}, 0, \ldots, 0\right) \\
\sigma_{j}\left(t_{0}, \ldots, t_{j}\right) & =\sigma\left(0, \ldots, 0, t_{0}, \ldots, t_{j}\right)
\end{aligned}
$$

are called front i-th face and back j-th face of σ, respectively, for each $\sigma: \Delta_{n} \rightarrow X$.
Since $\tau \simeq \Phi \circ d_{b}$, the cup product can also be expressed as

$$
[\varphi] \smile[\psi]=[\mu \circ(\varphi \otimes \psi) \circ \tau] .
$$

Thus, we may define $\varphi \smile \psi$ as the cocycle which takes the following value on each singular simplex $\sigma: \Delta_{p+q} \rightarrow X$:

$$
(\varphi \smile \psi)(\sigma)=\varphi\left(\sigma^{p}\right) \psi\left(\sigma_{q}\right)
$$

and this definition agrees with (1) after passing to cohomology.
In summary, $H^{*}(X ; R)$ is a graded ring for every space X and every ring R. Moreover, given any map $f: X \rightarrow Y$, the induced arrow $f^{*}: H^{*}(Y ; R) \rightarrow H^{*}(X ; R)$ is a homomorphism of graded rings, that is, the cup product commutes with induced homomorphisms in cohomology.

Anti-commutativity

In general, $\varphi \smile \psi$ and $\psi \smile \varphi$ are distinct cocycles. However, in cohomology,

$$
\begin{equation*}
[\varphi] \smile[\psi]=(-1)^{p q}[\psi] \smile[\varphi], \tag{2}
\end{equation*}
$$

where p is the degree of φ and q is the degree of ψ. This can be inferred from the Acyclic Model Theorem, as follows. For spaces X and Y, let $T: X \times Y \rightarrow Y \times X$ be the twist map $T(x, y)=(y, x)$. Choose, as above, a natural homotopy equivalence $\Phi: S_{*}(X \times Y) \rightarrow S_{*}(X) \otimes S_{*}(Y)$. If we define $F(\sigma \otimes \eta)=(-1)^{p q}(\eta \otimes \sigma)$, then F is a natural chain map, so the Acyclic Model Theorem implies that $F \circ \Phi \simeq \Phi \circ T_{b}$, since they agree on 0 -simplices. Since $(\varphi \otimes \psi) \circ F=(-1)^{p q} \psi \otimes \varphi$ and $T \circ d=d$, this fulfills our goal, by taking $Y=X$.

We say that the ring $H^{*}(X ; R)$ is commutative in the graded sense meaning that, in fact, it is anti-commutative by (2). An important consequence is that, if α is a cohomology class of odd degree, then necessarily $\alpha \smile \alpha=0$ (unless the ring R has exponent 2), since $\alpha \smile \alpha=-(\alpha \smile \alpha)$ by reversing the order of the factors.

Cap Product

The cap product takes the following form, for a space X and a ring R :

$$
H^{p}(X ; R) \otimes H_{n}(X ; R) \hookrightarrow H_{n-p}(X ; R),
$$

for $n \geq 0$ and $0 \leq p \leq n$. It is defined by factoring the adjoint of the homomorphism

$$
S^{p}(X ; R) \longrightarrow \operatorname{Hom}\left(S_{n}(X ; R), S_{n-p}(X ; R)\right)
$$

defined as follows: Given a cocycle $\varphi \in S^{p}(X ; R)$, send each cycle $c \in S_{n}(X ; R)$ to

$$
\varphi \frown c=((\mu \otimes \mathrm{id}) \circ(\mathrm{id} \otimes \varphi \otimes \mathrm{id}) \circ(\mathrm{id} \otimes \tau))(c) .
$$

Here τ is the Alexander-Whitney diagonal approximation, and $\varphi \otimes \mathrm{id}$ is to be understood as defined over $S_{*}(X) \otimes S_{*}(X)$ taking the 0 value on $S_{i}(X) \otimes S_{j}(X)$ unless $i=p$ and $j=q$.

Hence, if we remind the definition of τ, we can define, more explicitly,

$$
\varphi \frown \sigma=\varphi\left(\sigma^{p}\right) \sigma_{n-p}
$$

for each $\sigma: \Delta_{n} \rightarrow X$. This definition passes to cohomology, as inferred from the formula

$$
\partial(\varphi \frown \sigma)=(-1)^{p}(\varphi \frown \partial c)+(-1)^{p+1}(\delta \varphi \frown c)
$$

for the boundary operator.
The following adjunction between the cup product and the cap product is important:

$$
\langle\varphi \smile \psi, \sigma\rangle=\langle\psi, \varphi \frown \sigma\rangle .
$$

This relation follows directly from the definitions. One also infers directly from the definitions that, in the special case $p=n$, the cap product

$$
H^{n}(X ; R) \otimes H_{n}(X ; R) \longrightarrow H_{0}(X ; R)
$$

is just the Kronecker pairing if X is path-connected (by identifying $H_{0}(X ; R) \cong R$ as usual).

Exercises

29 . Let R be any ring with 1 . Prove that, for every space X, the 0 -cocycle that sends all points of X to 1 is the unit element of the cohomology ring $H^{*}(X ; R)$.
30. Prove that, given any map $f: X \rightarrow Y$ of spaces and given a ring R with 1 , the induced R-module homomorphism $f^{*}: H^{*}(Y ; R) \rightarrow H^{*}(X ; R)$ is in fact a homomorphism of R-algebras.
31. Denote by r and s the retractions of the one-point union $X \vee Y$ onto X and Y respectively, where X and Y are any two pointed spaces. Prove that $r^{*} \alpha \smile s^{*} \beta=0$ for all $\alpha \in H^{p}(X)$ and $\beta \in H^{q}(\underset{\tilde{H}}{(})$ if $p \geq 1$ and $q \geq 1$, and infer from this fact that $\tilde{H}^{*}(X \vee Y) \cong \tilde{H}^{*}(X) \oplus \tilde{H}^{*}(Y)$ as graded rings.
32. Compute the cohomology ring of a torus $S^{1} \times \cdots \times S^{1}$ of any dimension.
33. Prove that $H^{*}\left(S^{n} \times S^{m}\right) \cong H^{*}\left(S^{n} \vee S^{m} \vee S^{n+m}\right)$ as graded abelian groups for all n and m, but not as rings.
34. Prove that, if a space X can be written as $X=A \cup B$ where A and B are contractible open subspaces, then $\alpha \smile \beta=0$ for all cohomology classes α and β of nonzero degree. Deduce from this fact that $S^{n} \times S^{m}$ is not the union of any two contractible open subspaces if $n \geq 1$ and $m \geq 1$.
35. The suspension ΣX of a nonempty topological space X is the quotient of $X \times[0,1]$ by the equivalence relation which collapses $X \times\{0\}$ onto a point and $X \times\{1\}$ onto another point.
(a) Prove that $H_{n}(\Sigma X) \cong H_{n-1}(X)$ and $H^{n}(\Sigma X) \cong H^{n-1}(X)$ for $n \geq 2$.
(c) Prove that $\alpha \smile \beta=0$ for all cohomology classes α and β of nonzero degree in $H^{*}(\Sigma X)$ for every connected space X.
36. Prove that the cup product and the cap product are adjoint, meaning that

$$
\langle\varphi \smile \psi, c\rangle=\langle\psi, \varphi \frown c\rangle,
$$

where $\langle-,-\rangle$ is the Kronecker pairing.
37. Prove that $\psi \frown(\varphi \frown c)=(\varphi \smile \psi) \frown c$ for all cochains φ and ψ and every chain c of suitable degree.

