Excision and Mayer-Vietoris Sequence

Excision Theorem

Suppose given a space X and two subspaces $U \subseteq A \subseteq X$ such that the closure of U is contained in the interior of A. Then the inclusion of $X \backslash U$ into X induces isomorphisms

$$
H_{n}(X \backslash U, A \backslash U) \cong H_{n}(X, A)
$$

for all n, and similarly for cohomology with arbitrary coefficients.

The Mayer-Vietoris Exact Sequence

A pair of subspaces A, B of a space X form an excisive couple if excision yields isomorphisms $H_{n}(A, A \cap B) \cong H_{n}(A \cup B, B)$ for all n. For example, if $A \cup B$ is the union of the interiors of A and B, then A and B form an excisive couple. If A and B form an excisive couple, then there is a natural long exact sequence

$$
\cdots \rightarrow H_{n}(A \cap B) \rightarrow H_{n}(A) \oplus H_{n}(B) \rightarrow H_{n}(A \cup B) \rightarrow H_{n-1}(A \cap B) \rightarrow \cdots
$$

where the homomorphism $H_{n}(A \cap B) \rightarrow H_{n}(A) \oplus H_{n}(B)$ is induced by the inclusions, and $H_{n}(A) \oplus H_{n}(B) \rightarrow H_{n}(A \cup B)$ is the difference of the homomorphisms induced by the corresponding inclusions. Similarly, there is a natural long exact sequence for cohomology

$$
\cdots \rightarrow H^{n}(A \cup B) \rightarrow H^{n}(A) \oplus H^{n}(B) \rightarrow H^{n}(A \cap B) \rightarrow H^{n+1}(A \cup B) \rightarrow \cdots,
$$

also with arbitrary coefficients.

Exercises

38. Prove that, if A and B are subcomplexes of a cell complex X, then A and B form an excisive couple.
39. (a) Prove that, if $V \subseteq U \subseteq X$, then there is a long exact sequence

$$
\cdots \rightarrow H_{n}(U, V) \rightarrow H_{n}(X, V) \rightarrow H_{n}(X, U) \rightarrow H_{n-1}(U, V) \rightarrow \cdots .
$$

(b) Prove that, if A and B form an excisive couple, then there is a long exact sequence

$$
\cdots \rightarrow H_{n}(A, A \cap B) \rightarrow H_{n}(X, B) \rightarrow H_{n}(X, A \cup B) \rightarrow H_{n-1}(A, A \cap B) \rightarrow \cdots .
$$

40. A space X with a base point x_{0} is called well pointed if $\left\{x_{0}\right\}$ is a strong deformation retract of some neighbourhood.
(a) Prove that, if X and Y are well pointed, then $H_{n}(X \vee Y) \cong H_{n}(X) \oplus H_{n}(Y)$ for $n \geq 1$, where \vee denotes wedge sum (one-point union).
(b) Prove that the same result holds for infinitely many wedge summands $\vee_{j \in J} X_{j}$.
41. Prove that, if X is any space and A is a closed subspace which is a strong deformation retract of some neighbourhood, then $H_{n}(X, A) \cong \tilde{H}_{n}(X / A)$ for all n.
42. Prove that, if a space Y is obtained from another space X by attaching an n-cell, where $n \geq 1$, then the inclusion $X \subset Y$ induces
(i) isomorphisms $H_{k}(X) \cong H_{k}(Y)$ for $k<n-1$ and $k>n$;
(ii) an epimorphism $H_{n-1}(X) \rightarrow H_{n-1}(Y)$;
(iii) a monomorphism $H_{n}(X) \rightarrow H_{n}(Y)$.

Prove that, consequently, if X is a cell complex then $H_{k}\left(X^{(m)}\right) \cong H_{k}(X)$ for $m>k$.
43. Find the homology groups of the connected sum $M_{1} \# M_{2}$ of two compact connected surfaces in terms of the homology groups of M_{1} and M_{2}.
44. Prove that, if M is an n-dimensional topological manifold, where $n \geq 2$, then

$$
H_{n}(M, M \backslash\{x\}) \cong \mathbb{Z}
$$

for every point $x \in M$, and moreover $H_{k}(M, M \backslash\{x\})=0$ if $k \neq n$. Prove that the same result holds for homology with coefficients in any abelian group G.

