Geometry and Topology of Manifolds 2015-2016

Orientations in Topological Manifolds

Local Orientations

Let M be a topological manifold of dimension n and let R be a commutative ring with 1. A *local* R-orientation at a point $x \in M$ is a generator of $H_n(M, M \setminus \{x\}; R)$ viewed as a free R-module of rank 1.

An *R*-orientation class on a subspace $U \subseteq M$ is a class $\alpha \in H_n(M, M \setminus U; R)$ such that, for every $x \in U$, the restriction homomorphism

$$i_x^U \colon H_n(M, M \smallsetminus U; R) \longrightarrow H_n(M, M \smallsetminus \{x\}; R)$$

sends α to a local *R*-orientation at *x*.

Orientability

An *R*-oriented chart in an *n*-dimensional manifold M is a pair (U, α) where U is an open subpace of M such that $U \cong \mathbb{R}^n$ and α is an *R*-orientation class on U.

A topological manifold M is R-orientable if there is a set $\{(U_j, \alpha_j)\}_{j \in J}$ of R-oriented charts such that $\bigcup_{j \in J} U_j = M$ and such that, whenever $U_j \cap U_k \neq \emptyset$, the classes α_j and α_k induce the same local orientation at each point of $U_j \cap U_k$. Such a set of charts is called an R-oriented atlas. An R-orientation on M is an equivalence class of R-oriented atlases, where two such atlases are equivalent if their union is also an R-oriented atlas.

If $R = \mathbb{Z}$, then it will be omitted from the notation. Thus an *orientable manifold* is a \mathbb{Z} -orientable manifold.

Exercises

- 45. (a) Prove that, if M is \mathbb{Z} -orientable, then it is R-orientable for every ring R.
 - (b) Prove that all manifolds are $\mathbb{Z}/2$ -orientable.
- 46. Prove that, if a connected manifold M is \mathbb{Z} -orientable, then it admits precisely two distinct orientations. More generally, if M is connected and R-orientable, then there is a bijection between the orientations on M and the set R^* of invertible elements in the ring R.
- 47. Prove that for every point x of a topological manifold M and every ring R there is an R-oriented chart (U, α) in M with $x \in U$.
- 48. Prove that every submanifold of an *R*-orientable manifold is *R*-orientable.
- 49. Let M be a connected *n*-dimensional manifold. Prove the following facts:
 - (i) $H_k(M) = 0$ if k > n.
 - (ii) If M is compact and orientable, then $H_n(M) \cong \mathbb{Z}$.
 - (iii) If M is noncompact or nonorientable, then $H_n(M) = 0$.
- 50. (a) Prove that the real projective spaces RPⁿ are orientable if and only if n is odd.
 (b) Prove that the complex projective spaces CPⁿ are orientable for all n.
- 51. Prove that all simply-connected manifolds are orientable.