Cellularization of structures in triangulated categories

Javier J. Gutiérrez
Centre de Recerca Matemàtica

CSASC 2010
Prague, Czech Republic, January 22-26, 2010
Cellularization functors were introduced by Farjoun in 1996 in the category of topological spaces.

- Given A and X two pointed topological spaces, $\text{Cell}_A X$ contains the information on X that can be built up from A.
- X is called A-cellular if $\text{Cell}_A X \simeq X$ and it is the smallest class that contains A and it is closed under weak equivalences and homotopy colimits.
- $f : X \rightarrow Y$ is an A-cellular equivalence if

$$f_* : \text{map}_*(A, X) \rightarrow \text{map}_*(A, Y)$$

is a weak equivalence.
Cellularization functors were introduced by Farjoun in 1996 in the category of topological spaces.

Given A and X two pointed topological spaces, $\text{Cell}_A X$ contains the information on X that can be built up from A.

X is called A-cellular if $\text{Cell}_A X \simeq X$ and it is the smallest class that contains A and it is closed under weak equivalences and homotopy colimits.

$f : X \longrightarrow Y$ is an A-cellular equivalence if

$$f_* : \text{map}_*(A, X) \longrightarrow \text{map}_*(A, Y)$$

is a weak equivalence.
Cellularization functors were introduced by Farjoun in 1996 in the category of topological spaces.

Given A and X two pointed topological spaces, $\text{Cell}_A X$ contains the information on X that can be built up from A.

X is called A-cellular if $\text{Cell}_A X \simeq X$ and it is the smallest class that contains A and it is closed under weak equivalences and homotopy colimits.

$f : X \rightarrow Y$ is an A-cellular equivalence if

$$f_* : \text{map}_*(A, X) \rightarrow \text{map}_*(A, Y)$$

is a weak equivalence.
Cellularization functors were introduced by Farjoun in 1996 in the category of topological spaces. Given A and X two pointed topological spaces, $Cell_A X$ contains the information on X that can be built up from A. X is called A-cellular if $Cell_A X \simeq X$ and it is the smallest class that contains A and it is closed under weak equivalences and homotopy colimits.

$f : X \to Y$ is an A-cellular equivalence if

$$f_* : \text{map}_*(A, X) \to \text{map}_*(A, Y)$$

is a weak equivalence.
Examples: n-connective covers, universal covers.

Cellularization for groups and modules has been studied by Farjoun-Göbel-Segev-Shelah and Rodríguez-Strüngmann.

Objectives

- Describe the formal properties of cellularization functors in triangulated categories.
- Study the algebraic structures preserved by these functors.
Introduction

Precedents

Examples: n-connective covers, universal covers.

Cellularization for groups and modules has been studied by Farjoun-Göbel-Segev-Shelah and Rodríguez-Strüngmann.

Objectives

Describe the formal properties of cellularization functors in triangulated categories.

Study the algebraic structures preserved by these functors.
Precedents

Examples: n-connective covers, universal covers.

Cellularization for groups and modules has been studied by Farjoun-Göbel-Segev-Shelah and Rodríguez-Strüngmann.

Objectives

Describe the formal properties of cellularization functors in triangulated categories.

Study the algebraic structures preserved by these functors.
Precedents

- Examples: n-connective covers, universal covers.

- Cellularization for groups and modules has been studied by Farjoun-Göbel-Segev-Shelah and Rodríguez-Strüngmann.

Objectives

- Describe the formal properties of cellularization functors in triangulated categories.

- Study the algebraic structures preserved by these functors.
Cellular and null objects

Let \((\mathcal{T}, \Sigma, [-,-])\) be a triangulated category with arbitrary coproducts and a set of generators.

Definition

Let \(A\) be any object of \(\mathcal{T}\).

i) A map \(f: X \rightarrow Y\) in \(\mathcal{T}\) is an \textit{A-cellular equivalence} if the induced map

\[
[\Sigma^k A, X] \xrightarrow{g_*} [\Sigma^k A, Y]
\]

is an isomorphism of abelian groups for all \(k \geq 0\).

ii) An object \(Z\) of \(\mathcal{T}\) is \textit{A-cellular} if the induced map

\[
[\Sigma^k Z, X] \xrightarrow{f_*} [\Sigma^k Z, Y]
\]

is an isomorphism for every \(A\)-cellular equivalence \(f: X \rightarrow Y\) and for all \(k \geq 0\).
Cellular and null objects

Let \((\mathcal{T}, \Sigma, [-, -])\) be a triangulated category with arbitrary coproducts and a set of generators.

Definition

Let \(A\) be any object of \(\mathcal{T}\).

i) A map \(f: X \to Y\) in \(\mathcal{T}\) is an **A-cellular equivalence** if the induced map

\[
[\Sigma^k A, X] \xrightarrow{g_*} [\Sigma^k A, Y]
\]

is an isomorphism of abelian groups for all \(k \geq 0\).

ii) An object \(Z\) of \(\mathcal{T}\) is **A-cellular** if the induced map

\[
[\Sigma^k Z, X] \xrightarrow{f_*} [\Sigma^k Z, Y]
\]

is an isomorphism for every A-cellular equivalence \(f: X \to Y\) and for all \(k \geq 0\).
Cellular and null objects

Definition

Let A be any object of \mathcal{T}.

i) An object X is **A-null** if $[\Sigma^k A, X] = 0$ for every $k \geq 0$.

ii) A map $g : X \to Y$ is an **A-null equivalence** if the induced map

$$[\Sigma^k Y, Z] \cong [\Sigma^k X, Z]$$

is an isomorphism of abelian groups for $k \geq 0$.

- An **A-cellularization functor** is a colocalization functor $(Cell_A, c)$ such that for every object X of \mathcal{T}, the map $c_X : Cell_A X \to X$ is an A-cellular equivalence and $Cell_A X$ is A-cellular.

- An **A-nullification functor** is a localization functor (P_A, l) such that for every object X of \mathcal{T}, the map $l_X : X \to P_A X$ is an A-null equivalence and $P_A X$ is A-null.
Cellularization and nullification functors

Cellular and null objects

Definition

Let A be any object of \mathcal{T}.

i) An object X is **A-null** if $[\Sigma^k A, X] = 0$ for every $k \geq 0$.

ii) A map $g: X \to Y$ is an **A-null equivalence** if the induced map

$$[\Sigma^k Y, Z] \cong [\Sigma^k X, Z]$$

is an isomorphism of abelian groups for $k \geq 0$.

- An **A-cellularization functor** is a colocalization functor (Cell_A, c) such that for every object X of \mathcal{T}, the map $c_X: \text{Cell}_A X \to X$ is an A-cellular equivalence and $\text{Cell}_A X$ is A-cellular.

- An **A-nullification functor** is a localization functor (P_A, l) such that for every object X of \mathcal{T}, the map $l_X: X \to P_A X$ is an A-null equivalence and $P_A X$ is A-null.
Cellular and null objects

- We say that P_A or $Cell_A$ are \textit{exact} if they are triangulated functors.

Existence

- Assume that there is a stable model category \mathcal{M} such that $\mathcal{T} = Ho(\mathcal{M})$. Cellularization and nullification functors always exist if \mathcal{M} is a proper combinatorial model category.

- Examples to keep in mind: Spectra, $\mathcal{D}(R)$, E-local spectra, $\mathcal{D}(shv/X)$, ...
Cellular and null objects

- We say that P_A or $Cell_A$ are **exact** if they are triangulated functors.

Existence

- Assume that there is a stable model category \mathcal{M} such that $\mathcal{T} = Ho(\mathcal{M})$. Cellularization and nullification functors always exist if \mathcal{M} is a proper combinatorial model category.

- Examples to keep in mind: Spectra, $\mathcal{D}(R)$, E-local spectra, $\mathcal{D}(shv/X)$, ...
We say that P_A or $Cell_A$ are exact if they are triangulated functors.

Existence

- Assume that there is a stable model category \mathcal{M} such that $\mathcal{T} = Ho(\mathcal{M})$. Cellularization and nullification functors always exist if \mathcal{M} is a proper combinatorial model category.

- Examples to keep in mind: Spectra, $\mathcal{D}(R)$, E-local spectra, $\mathcal{D}(shv/X)$, ...
Cellular and null objects

Closure properties

Let $X \longrightarrow Y \longrightarrow Z$ be an exact triangle in \mathcal{T}

i) If Y and Z are A-null then X is A-null.

ii) If X and Z are A-null then Y is A-null.

iii) If X and Y are A-cellular then Z is A-cellular.

iv) If X and Z are A-cellular then Y is not A-cellular in general.

v) The class of A-null objects and the class of A-cellular equivalences are closed under desuspensions.

vi) The class of A-cellular objects and the class of A-null equivalences are closed under suspensions.

vii) If P_A and $Cell_A$ are exact the above classes are closed under suspensions and desuspensions.

Colocalization functors satisfying the analog of condition ii) are called quasiexact.
Cellular and null objects

Closure properties

Let $X \longrightarrow Y \longrightarrow Z$ be an exact triangle in \mathcal{T}

i) If Y and Z are A-null then X is A-null.

ii) If X and Z are A-null then Y is A-null.

iii) If X and Y are A-cellular then Z is A-cellular.

iv) If X and Z are A-cellular then Y is not A-cellular in general.

v) The class of A-null objects and the class of A-cellular equivalences are closed under desuspensions.

vi) The class of A-cellular objects and the class of A-null equivalences are closed under suspensions.

vii) If P_A and Cell_A are exact the above classes are closed under suspensions and desuspensions.

Colocalization functors satisfying the analog of condition ii) are called quasiexact.
Cellular and null objects

Closure properties

Let \(X \longrightarrow Y \longrightarrow Z \) be an exact triangle in \(\mathcal{T} \).

i) If \(Y \) and \(Z \) are \(A \)-null then \(X \) is \(A \)-null.

ii) If \(X \) and \(Z \) are \(A \)-null then \(Y \) is \(A \)-null.

iii) If \(X \) and \(Y \) are \(A \)-cellular then \(Z \) is \(A \)-cellular.

iv) If \(X \) and \(Z \) are \(A \)-cellular then \(Y \) is \textit{not} \(A \)-cellular in general.

v) The class of \(A \)-null objects and the class of \(A \)-cellular equivalences are closed under desuspensions.

vi) The class of \(A \)-cellular objects and the class of \(A \)-null equivalences are closed under suspensions.

vii) If \(P_A \) and \(Cell_A \) are exact the above classes are closed under suspensions and desuspensions.

Colocalization functors satisfying the analog of condition ii) are called \textit{quasiexact}.
Cellular and null objects

Closure properties
Let $X \rightarrow Y \rightarrow Z$ be an exact triangle in \mathcal{T}

i) If Y and Z are A-null then X is A-null.

ii) If X and Z are A-null then Y is A-null.

iii) If X and Y are A-cellular then Z is A-cellular.

iv) If X and Z are A-cellular then Y is not A-cellular in general.

v) The class of A-null objects and the class of A-cellular equivalences are closed under desuspensions.

vi) The class of A-cellular objects and the class of A-null equivalences are closed under suspensions.

vii) If P_A and $Cell_A$ are exact the above classes are closed under suspensions and desuspensions.

Colocalization functors satisfying the analog of condition ii) are called quasiexact.
Cellular and null objects

Closure properties
Let $X \rightarrow Y \rightarrow Z$ be an exact triangle in \mathcal{T}

i) If Y and Z are A-null then X is A-null.
ii) If X and Z are A-null then Y is A-null.
iii) If X and Y are A-cellular then Z is A-cellular.
iv) If X and Z are A-cellular then Y is \textit{not} A-cellular in general.
v) The class of A-null objects and the class of A-cellular equivalences are closed under desuspensions.
vi) The class of A-cellular objects and the class of A-null equivalences are closed under suspensions.
vii) If P_A and $Cell_A$ are exact the above classes are closed under suspensions and desuspensions.

Colocalization functors satisfying the analog of condition ii) are called \textit{quasiexact}.
Cellular and null objects

Closure properties
Let $X \to Y \to Z$ be an exact triangle in \mathcal{T}

i) If Y and Z are A-null then X is A-null.
ii) If X and Z are A-null then Y is A-null.
iii) If X and Y are A-cellular then Z is A-cellular.
iv) If X and Z are A-cellular then Y is not A-cellular in general.
v) The class of A-null objects and the class of A-cellular equivalences are closed under desuspensions.
vi) The class of A-cellular objects and the class of A-null equivalences are closed under suspensions.
vii) If P_A and $Cell_A$ are exact the above classes are closed under suspensions and desuspensions.

Colocalization functors satisfying the analog of condition ii) are called quasiexact.
Cellular and null objects

Closure properties
Let $X \to Y \to Z$ be an exact triangle in \mathcal{T}

i) If Y and Z are A-null then X is A-null.

ii) If X and Z are A-null then Y is A-null.

iii) If X and Y are A-cellular then Z is A-cellular.

iv) If X and Z are A-cellular then Y is not A-cellular in general.

v) The class of A-null objects and the class of A-cellular equivalences are closed under desuspensions.

vi) The class of A-cellular objects and the class of A-null equivalences are closed under suspensions.

vii) If P_A and $Cell_A$ are exact the above classes are closed under suspensions and desuspensions.

Colocalization functors satisfying the analog of condition ii) are called quasiexact.
Exact triangles

There are natural maps

\[\text{Cell}_A X \longrightarrow X \longrightarrow P_A X. \]

This is \textit{not} an exact triangle in general.

Theorem

Let A and X be two objects of \mathcal{T}.

i) There is an exact triangle $\text{Cell}_A X \longrightarrow X \longrightarrow P_A X$ if and only if the morphism of abelian groups $[\Sigma^{-1} A, \text{Cell}_A X] \longrightarrow [\Sigma^{-1} A, X]$ is injective (e.g. if $[\Sigma^{-1} A, \text{Cell}_A X] = 0$).

ii) There is an exact triangle $\text{Cell}_A X \longrightarrow X \longrightarrow P_{\Sigma A} X$ if and only if $[A, X] \longrightarrow [A, P_{\Sigma A} X]$ is the zero map (e.g. if $[A, X] = 0$).

iii) If Cell_A or P_A are exact, then $\text{Cell}_A X \longrightarrow X \longrightarrow P_A X$ is an exact triangle.
Exact triangles

There are natural maps

\[\text{Cell}_A X \longrightarrow X \longrightarrow P_A X. \]

This is \textit{not} an exact triangle in general.

Theorem

Let \(A \) and \(X \) be two objects of \(\mathcal{T} \).

i) There is an exact triangle \(\text{Cell}_A X \longrightarrow X \longrightarrow P_A X \) if and only if the morphism of abelian groups \([\Sigma^{-1} A, \text{Cell}_A X] \longrightarrow [\Sigma^{-1} A, X] \) is injective (e.g. if \([\Sigma^{-1} A, \text{Cell}_A X] = 0 \)).

ii) There is an exact triangle \(\text{Cell}_A X \longrightarrow X \longrightarrow P_{\Sigma A} X \) if and only if \([A, X] \longrightarrow [A, P_{\Sigma A} X] \) is the zero map (e.g. if \([A, X] = 0 \)).

iii) If \(\text{Cell}_A \) or \(P_A \) are exact, then \(\text{Cell}_A X \longrightarrow X \longrightarrow P_A X \) is an exact triangle.
There are natural maps

\[\text{Cell}_A X \longrightarrow X \longrightarrow P_A X. \]

This is \textit{not} an exact triangle in general.

Theorem

Let \(A \) and \(X \) be two objects of \(\mathcal{T} \).

i) \textit{There is an exact triangle} \(\text{Cell}_A X \longrightarrow X \longrightarrow P_A X \) \textit{if and only if the morphism of abelian groups} \([\Sigma^{-1} A, \text{Cell}_A X] \longrightarrow [\Sigma^{-1} A, X] \) \textit{is injective (e.g. if} \([\Sigma^{-1} A, \text{Cell}_A X] = 0 \).

ii) \textit{There is an exact triangle} \(\text{Cell}_A X \longrightarrow X \longrightarrow P_{\Sigma A} X \) \textit{if and only if} \([A, X] \longrightarrow [A, P_{\Sigma A} X] \) \textit{is the zero map (e.g. if} \([A, X] = 0 \).

iii) \textit{If} \(\text{Cell}_A \) \textit{or} \(P_A \) \textit{are exact, then} \(\text{Cell}_A X \longrightarrow X \longrightarrow P_A X \) \textit{is an exact triangle.}
Exact triangles

There are natural maps

\[\text{Cell}_A X \rightarrow X \rightarrow P_A X. \]

This is not an exact triangle in general.

Theorem

Let \(A \) and \(X \) be two objects of \(\mathcal{T} \).

i) There is an exact triangle \(\text{Cell}_A X \rightarrow X \rightarrow P_A X \) if and only if the morphism of abelian groups \([\Sigma^{-1} A, \text{Cell}_A X] \rightarrow [\Sigma^{-1} A, X] \) is injective (e.g. if \([\Sigma^{-1} A, \text{Cell}_A X] = 0 \)).

ii) There is an exact triangle \(\text{Cell}_A X \rightarrow X \rightarrow P_{\Sigma A} X \) if and only if \([A, X] \rightarrow [A, P_{\Sigma A} X] \) is the zero map (e.g. if \([A, X] = 0 \)).

iii) If \(\text{Cell}_A \) or \(P_A \) are exact, then \(\text{Cell}_A X \rightarrow X \rightarrow P_A X \) is an exact triangle.
Not every nullification and cellularization functor fitting into an exact triangle are exact.

If \mathcal{T} is the stable homotopy category of spectra and S is the sphere spectrum, then we have an exact triangle

$$\text{Cell}_S X \longrightarrow X \longrightarrow P_S X$$

for every X, but neither Cell_S nor P_S are exact.
Exact triangles

Example

Not every nullification and cellularization functor fitting into an exact triangle are exact.
If \mathcal{T} is the stable homotopy category of spectra and S is the sphere spectrum, then we have an exact triangle

$$\text{Cell}_S X \rightarrow X \rightarrow P_S X$$

for every X, but neither Cell_S nor P_S are exact.
Colocalizations associated to nullifications

Let $F_A X$ be the fiber of the map $X \rightarrow P_A X$

$$F_A X \rightarrow X \rightarrow P_A X$$

The universal property of P_A and the fact that P_A is quasiexact make F_A a colocalization functor (augmented and idempotent).

Moreover

- F_A is quasiexact
- F_A-colocal objects are closed under suspensions
- $[F_A X, P_A Y] = 0$ for every X and Y in \mathcal{T}.

Under Vopěnka’s principle $F_A = \text{Cell}_E$ for some E [Chorny, 2008]. A construction of E in pointed spaces is possible not relying on Vopěnka’s principle [Chacholski-Parent-Stanley, 2004].
Colocalizations associated to nullifications

Let $F_A X$ be the fiber of the map $X \rightarrow P_A X$

$$F_A X \rightarrow X \rightarrow P_A X$$

The universal property of P_A and the fact that P_A is quasiexact make F_A a colocalization functor (augmented and idempotent).

Moreover

- F_A is quasiexact
- F_A-colocal objects are closed under suspensions
- $[F_A X, P_A Y] = 0$ for every X and Y in \mathcal{C}.

Under Vopěnka’s principle $F_A = \text{Cell}_E$ for some E [Chorny, 2008]. A construction of E in pointed spaces is possible not relying on Vopěnka’s principle [Chacholski-Parent-Stanley, 2004].
Colocalizations associated to nullifications

Let $F_A X$ be the fiber of the map $X \longrightarrow P_A X$

\[F_A X \longrightarrow X \longrightarrow P_A X \]

The universal property of P_A and the fact that P_A is quasiexact make F_A a colocalization functor (augmented and idempotent).

Moreover

- F_A is quasiexact
- F_A-colocal objects are closed under suspensions
- $[F_A X, P_A Y] = 0$ for every X and Y in \mathcal{J}.

Under Vopěnka’s principle $F_A = \text{Cell}_E$ for some E [Chorny, 2008]. A construction of E in pointed spaces is possible not relying on Vopěnka’s principle [Chacholski-Parent-Stanley, 2004].
Colocalizations associated to nullifications

Let $F_A X$ be the fiber of the map $X \rightarrow P_A X$

\[F_A X \rightarrow X \rightarrow P_A X \]

The universal property of P_A and the fact that P_A is quasiexact make F_A a colocalization functor (augmented and idempotent).

Moreover
- F_A is quasiexact
- F_A-colocal objects are closed under suspensions
- $[F_A X, P_A Y] = 0$ for every X and Y in \mathcal{T}.

Under Vopěnka’s principle $F_A = Cell_E$ for some E [Chorny, 2008]. A construction of E in pointed spaces is possible not relying on Vopěnka’s principle [Chacholski-Parent-Stanley, 2004].
Definition

A *t-structure* on \mathcal{T} is a pair of full subcategories $(\mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 0})$ such that, denoting $\mathcal{T}^{\leq n} = \Sigma^{-n}\mathcal{T}^{\leq 0}$ and $\mathcal{T}^{\geq n} = \Sigma^{-n}\mathcal{T}^{\geq 0}$, the following hold:

i) For every object X of $\mathcal{T}^{\leq 0}$ and every object Y of $\mathcal{T}^{\geq 1}$, $[X, Y] = 0$.

ii) $\mathcal{T}^{\leq 0} \subset \mathcal{T}^{\leq 1}$ and $\mathcal{T}^{\geq 1} \subset \mathcal{T}^{\geq 0}$.

iii) For every object X of \mathcal{T}, there is an exact triangle

$$U \rightarrow X \rightarrow V,$$

where U is an object of $\mathcal{T}^{\leq 0}$ and V is an object of $\mathcal{T}^{\geq 1}$.

The *core* of the *t*-structure is the full subcategory $\mathcal{T}^{\leq 0} \cap \mathcal{T}^{\geq 0}$. The core is always an abelian subcategory of \mathcal{T}.

Javier J. Gutiérrez (CRM)
A **t-structure** on \mathcal{F} is a pair of full subcategories $(\mathcal{F}^{\leq 0}, \mathcal{F}^{\geq 0})$ such that, denoting $\mathcal{F}^{\leq n} = \Sigma^{-n}\mathcal{F}^{\leq 0}$ and $\mathcal{F}^{\geq n} = \Sigma^{-n}\mathcal{F}^{\geq 0}$, the following hold:

i) For every object X of $\mathcal{F}^{\leq 0}$ and every object Y of $\mathcal{F}^{\geq 1}$, $\left[X, Y\right] = 0$.

ii) $\mathcal{F}^{\leq 0} \subset \mathcal{F}^{\leq 1}$ and $\mathcal{F}^{\geq 1} \subset \mathcal{F}^{\geq 0}$.

iii) For every object X of \mathcal{F}, there is an exact triangle

\[U \rightarrow X \rightarrow V, \]

where U is an object of $\mathcal{F}^{\leq 0}$ and V is an object of $\mathcal{F}^{\geq 1}$.

The **core** of the t-structure is the full subcategory $\mathcal{F}^{\leq 0} \cap \mathcal{F}^{\geq 0}$. The core is always an abelian subcategory of \mathcal{F}.
Theorem

For any object A in \mathcal{T} the full subcategory of ΣA-null objects and the full subcategory of F_A-colocal objects define a t-structure on \mathcal{T}.

- If $Cell_A$ and P_A fit into an exact triangle, then the t-structure is given by the A-cellular objects and the ΣA-null objects.

- If $Cell_A$ and P_A are exact, then the associated t-structure is trivial.
Theorem

For any object A in \mathcal{T} the full subcategory of ΣA-null objects and the full subcategory of F_A-colocal objects define a t-structure on \mathcal{T}.

- If $Cell_A$ and P_A fit into an exact triangle, then the t-structure is
given by the A-cellular objects and the ΣA-null objects

- If $Cell_A$ and P_A are exact, then the associated t-structure is trivial.
Theorem

For any object \(A \) in \(\mathcal{T} \) the full subcategory of \(\Sigma A \)-null objects and the full subcategory of \(F_A \)-colocal objects define a \(t \)-structure on \(\mathcal{T} \).

- If \(\text{Cell}_A \) and \(P_A \) fit into an exact triangle, then the \(t \)-structure is given by the \(A \)-cellular objects and the \(\Sigma A \)-null objects.

- If \(\text{Cell}_A \) and \(P_A \) are exact, then the associated \(t \)-structure is trivial.
Example

Let \mathcal{T} be a monogenic stable homotopy category with unit S, such that $[\Sigma^k S, S] = 0$ for every $k < 0$. Let R denote the ring $[S, S]$. Then the functors $Cell_{\Sigma^k S}$ and $P_{\Sigma^k S}$ are the k-th connective cover functor and the k-th Postnikov section functor respectively:

$$[\Sigma^n S, Cell_{\Sigma^k S} X] = \begin{cases} 0 & \text{if } n < k \\ [\Sigma^n S, X] & \text{if } n \geq k \end{cases}$$

$$[\Sigma^n S, P_{\Sigma^k S} X] = \begin{cases} 0 & \text{if } n \geq k \\ [\Sigma^n S, X] & \text{if } n < k \end{cases}$$

We have an exact triangle

$$Cell_{\Sigma^k S} X \rightarrow X \rightarrow P_{\Sigma^k S} X.$$
Example

Let \(T \) be a monogenic stable homotopy category with unit \(S \), such that
\[[\Sigma^k S, S] = 0 \] for every \(k < 0 \). Let \(R \) denote the ring \([S, S]\). Then the functors \(Cell_{\Sigma^k S} \) and \(P_{\Sigma^k S} \) are the \(k \)-th connective cover functor and the \(k \)-th Postnikov section functor respectively:

\[
[\Sigma^n S, Cell_{\Sigma^k S} X] = \begin{cases}
0 & \text{if } n < k \\
[\Sigma^n S, X] & \text{if } n \geq k
\end{cases}
\]

\[
[\Sigma^n S, P_{\Sigma^k S} X] = \begin{cases}
0 & \text{if } n \geq k \\
[\Sigma^n S, X] & \text{if } n < k
\end{cases}
\]

We have an exact triangle

\[
Cell_{\Sigma^k S} X \longrightarrow X \longrightarrow P_{\Sigma^k S} X.
\]
Example

Let \mathcal{T} be a monogenic stable homotopy category with unit S, such that $[\Sigma^k S, S] = 0$ for every $k < 0$. Let R denote the ring $[S, S]$. Then the functors $\text{Cell}_{\Sigma^k S}$ and $P_{\Sigma^k S}$ are the k-th connective cover functor and the k-th Postnikov section functor respectively:

$$[\Sigma^n S, \text{Cell}_{\Sigma^k S} X] = \begin{cases} 0 & \text{if } n < k \\ [\Sigma^n S, X] & \text{if } n \geq k \end{cases}$$

$$[\Sigma^n S, P_{\Sigma^k S} X] = \begin{cases} 0 & \text{if } n \geq k \\ [\Sigma^n S, X] & \text{if } n < k \end{cases}$$

We have an exact triangle

$$\text{Cell}_{\Sigma^k S} X \to X \to P_{\Sigma^k S} X.$$
Example

The core of the associated t-structure is the full subcategory of \mathcal{T} with objects X such that such that $[\Sigma^n S, X] = 0$ if $n \neq k$ and it is equivalent to the category of R-modules. The objects in the core are called \textit{Eilenberg-Mac Lane objects}.

Note that $\text{Cell}_{\Sigma^k S}$ is not an exact functor. For example, if $[\Sigma^{k-1} S, X] \neq 0$, then $\text{Cell}_{\Sigma^k S} \Sigma X \neq \Sigma \text{Cell}_{\Sigma^k S} X$.
Example

The core of the associated t-structure is the full subcategory of \mathcal{T} with objects X such that $[\Sigma^n S, X] = 0$ if $n \neq k$ and it is equivalent to the category of R-modules. The objects in the core are called *Eilenberg-Mac Lane objects*.

Note that $\text{Cell}_{\Sigma k} S$ is not an exact functor. For example, if $[\Sigma^{k-1} S, X] \neq 0$, then $\text{Cell}_{\Sigma k} S \Sigma X \neq \Sigma \text{Cell}_{\Sigma k} S X$.
Let \mathcal{T} be a monoidal triangulated category with tensor product \otimes, unit S and internal hom $F(\cdot, \cdot)$, such that

- \mathcal{T} is monogenic.
- \mathcal{T} is connective, i.e., $[\Sigma^k S, S] = 0$ for $k < 0$.

An object X is called connective if $\text{Cell}_S X \cong X$ and if X is connective, then

$$[X, \text{Cell}_S F(Y, Z)] \cong [X, F(Y, Z)] \cong [X \otimes Y, Z].$$

A ring R in \mathcal{T} is a monoid object and an R-module in \mathcal{T} is a monoid over the monoid R.
Let \mathcal{T} be a monoidal triangulated category with tensor product \otimes, unit S and internal hom $F(_ , _)$, such that

- \mathcal{T} is monogenic.
- \mathcal{T} is connective, i.e., $[\Sigma^k S, S] = 0$ for $k < 0$.

An object X is called \textit{connective} if $\text{Cell}_S X \simeq X$ and if X is connective, then

$$[X, \text{Cell}_S F(Y, Z)] \simeq [X, F(Y, Z)] \simeq [X \otimes Y, Z].$$

A ring R in \mathcal{T} is a monoid object and an R-module in \mathcal{T} is a monoid over the monoid R.
Let \mathcal{T} be a monoidal triangulated category with tensor product \otimes, unit S and internal hom $F(−, −)$, such that

- \mathcal{T} is monogenic.
- \mathcal{T} is connective, i.e., $[\Sigma^k S, S] = 0$ for $k < 0$.

An object X is called connective if $Cell_S X \simeq X$ and if X is connective, then

$$[X, Cell_S F(Y, Z)] \cong [X, F(Y, Z)] \cong [X \otimes Y, Z].$$

A ring R in \mathcal{T} is a monoid object and an R-module in \mathcal{T} is a monoid over the monoid R.

Theorem

If E is a connective ring object and M is an E-module, then for any object A, the object $\text{Cell}_A M$ has an E-module structure such that the cellularization map $\text{Cell}_A M \to M$ is a map of E-modules. If Cell_A is exact, we can avoid the connectivity condition.

The case for rings is more involved. If R is a ring, then $\text{Cell}_A R$ will not be a ring in general, even if Cell_A is exact!
Theorem

If E is a connective ring object and M is an E-module, then for any object A, the object $\text{Cell}_A M$ has an E-module structure such that the cellularization map $\text{Cell}_A M \rightarrow M$ is a map of E-modules. If Cell_A is exact, we can avoid the connectivity condition.

The case for rings is more involved. If R is a ring, then $\text{Cell}_A R$ will not be a ring in general, even if Cell_A is exact!
Theorem

If E is a connective ring object and M is an E-module, then for any object A, the object $\text{Cell}_A M$ has an E-module structure such that the cellularization map $\text{Cell}_A M \longrightarrow M$ is a map of E-modules. If Cell_A is exact, we can avoid the connectivity condition.

The case for rings is more involved. If R is a ring, then $\text{Cell}_A R$ will not be a ring in general, even if Cell_A is exact!
Cellularization of modules and rings

Let C be the cofiber of $\text{Cell}_A E \rightarrow E$

$$\text{Cell}_A E \rightarrow E \rightarrow C$$

Theorem

Let E be a ring object. Assume that either one of the following holds:

i) Cell_A commutes with suspension, the morphism $\pi_1(E) \rightarrow \pi_1(C)$ is surjective and the morphism $\pi_0(C) \rightarrow \pi_{-1}(\text{Cell}_A E)$ is injective or

ii) $\text{Cell}_A E$ is connective, Cell_A is of the form F_B for some B, the morphism $\pi_1(E) \rightarrow \pi_1(P_B E)$ is surjective and $\pi_0(P_B E) = 0$.

Then $\text{Cell}_A E$ has a unique ring structure such that the cellularization map is a map of rings.
Let C be the cofiber of $\text{Cell}_AE \to E$

\[\text{Cell}_AE \to E \to C \]

Theorem

Let E be a ring object. Assume that either one of the following holds:

i) Cell_A commutes with suspension, the morphism $\pi_1(E) \to \pi_1(C)$ is surjective and the morphism $\pi_0(C) \to \pi_{-1}(\text{Cell}_AE)$ is injective or

ii) Cell_AE is connective, Cell_A is of the form F_B for some B, the morphism $\pi_1(E) \to \pi_1(P_BE)$ is surjective and $\pi_0(P_BE) = 0$.

Then Cell_AE has a unique ring structure such that the cellularization map is a map of rings.
Let C be the cofiber of $\text{Cell}_AE \rightarrow E$

$$\text{Cell}_AE \rightarrow E \rightarrow C$$

Theorem

Let E be a ring object. Assume that either one of the following holds:

i) Cell_A commutes with suspension, the morphism $\pi_1(E) \rightarrow \pi_1(C)$ is surjective and the morphism $\pi_0(C) \rightarrow \pi_{-1}(\text{Cell}_AE)$ is injective or

ii) Cell_AE is connective, Cell_A is of the form F_B for some B, the morphism $\pi_1(E) \rightarrow \pi_1(P_BE)$ is surjective and $\pi_0(P_BE) = 0$.

Then Cell_AE has a unique ring structure such that the cellularization map is a map of rings.
Cellularization of modules and rings

Let C be the cofiber of $Cell_A E \to E$

\[Cell_A E \to E \to C \]

Theorem

Let E be a ring object. Assume that either one of the following holds:

1. $Cell_A$ commutes with suspension, the morphism $\pi_1(E) \to \pi_1(C)$ is surjective and the morphism $\pi_0(C) \to \pi_{-1}(Cell_A E)$ is injective or

2. $Cell_A E$ is connective, $Cell_A$ is of the form F_B for some B, the morphism $\pi_1(E) \to \pi_1(P_B E)$ is surjective and $\pi_0(P_B E) = 0$.

Then $Cell_A E$ has a unique ring structure such that the cellularization map is a map of rings.
Let \(A = S \), then \(\text{Cell}_A E \) is the connective cover of \(E \). There is an exact triangle

\[
\text{Cell}_S E \rightarrow E \rightarrow P_S E
\]

where \(P_S \) is the Postnikov section functor, i.e., it kills all the homotopy groups in dimensions bigger or equal to zero. So \(\pi_1 P_S E = \pi_0 P_S E = 0 \) and by part ii) of the previous theorem we have that if \(E \) is a ring object, then so is its connective cover \(\text{Cell}_S E \).
Some computations

How to compute $\text{Cell}_A \Sigma^k H G$ for any abelian group G.

Theorem

Let G be any abelian group, $n \in \mathbb{Z}$ and A be any object in \mathcal{T}. Then

$$\text{Cell}_A \Sigma^n H G \simeq \Sigma^{n-1} H B \vee \Sigma^n H C$$

for some abelian groups B and C. Moreover

i) $\text{Hom}(B, B) \oplus \text{Ext}(B, C) \cong \text{Ext}(B, G)$.

ii) $\text{Hom}(C, C) \cong \text{Hom}(C, G)$.

iii) $\text{Hom}(B, C) \cong \text{Hom}(B, G)$.

If G is divisible, then $\text{Cell}_A \Sigma^n H G$ is either zero or $\Sigma^n H C$ for some abelian group C.
Some computations

How to compute $\text{Cell}_A \Sigma^k H G$ for any abelian group G.

Theorem

Let G be any abelian group, $n \in \mathbb{Z}$ and A be any object in \mathbb{T}. Then

$$\text{Cell}_A \Sigma^n H G \simeq \Sigma^{n-1} H B \lor \Sigma^n H C$$

for some abelian groups B and C. Moreover

i) $\text{Hom}(B, B) \oplus \text{Ext}(B, C) \cong \text{Ext}(B, G)$.

ii) $\text{Hom}(C, C) \cong \text{Hom}(C, G)$.

iii) $\text{Hom}(B, C) \cong \text{Hom}(B, G)$.

If G is divisible, then $\text{Cell}_A \Sigma^n H G$ is either zero or $\Sigma^n H C$ for some abelian group C.
Some computations

How to compute $\text{Cell}_A \Sigma^k HG$ for any abelian group G.

Theorem

Let G be any abelian group, $n \in \mathbb{Z}$ and A be any object in \mathcal{T}. Then

$$\text{Cell}_A \Sigma^n HG \cong \Sigma^{n-1} HB \vee \Sigma^n HC$$

for some abelian groups B and C. Moreover

i) $\text{Hom}(B, B) \oplus \text{Ext}(B, C) \cong \text{Ext}(B, G)$.

ii) $\text{Hom}(C, C) \cong \text{Hom}(C, G)$.

iii) $\text{Hom}(B, C) \cong \text{Hom}(B, G)$.

If G is divisible, then $\text{Cell}_A \Sigma^n HG$ is either zero or $\Sigma^n HC$ for some abelian group C.
Some computations

How to compute $\text{Cell}_A \Sigma^k HG$ for any abelian group G.

Theorem

Let G be any abelian group, $n \in \mathbb{Z}$ and A be any object in \mathcal{T}. Then

$$\text{Cell}_A \Sigma^n HG \cong \Sigma^{n-1} HB \vee \Sigma^n HC$$

for some abelian groups B and C. Moreover

i) $\text{Hom}(B, B) \oplus \text{Ext}(B, C) \cong \text{Ext}(B, G)$.

ii) $\text{Hom}(C, C) \cong \text{Hom}(C, G)$.

iii) $\text{Hom}(B, C) \cong \text{Hom}(B, G)$.

If G is divisible, then $\text{Cell}_A \Sigma^n HG$ is either zero or $\Sigma^n HC$ for some abelian group C.
Some computations

Example

For every object A in \mathcal{T} and any integer m, we have that

$$Cell_A \Sigma^m H\mathbb{Z}/p^n \simeq \Sigma^m H\mathbb{Z}/p^j,$$

where $1 \leq j \leq n$.

If $A = \Sigma^m H\mathbb{Z}/p^k$, then

$$Cell_A \Sigma^m H\mathbb{Z}/p^n \simeq \begin{cases} \Sigma^m H\mathbb{Z}/p^k & \text{if } n \geq k \\ \Sigma^m H\mathbb{Z}/p^n & \text{if } n < k. \end{cases}$$

This shows that $Cell_{H\mathbb{Z}/p}$ is not quasiexact, since $H\mathbb{Z}/p$ is A-cellular but $H\mathbb{Z}/p^2$ is not.
Some computations

Example

For every object A in \mathcal{T} and any integer m, we have that

$$Cell_A \Sigma^m \mathbb{H}\mathbb{Z}/p^n \simeq \Sigma^m \mathbb{H}\mathbb{Z}/p^j,$$

where $1 \leq j \leq n$.

If $A = \Sigma^m \mathbb{H}\mathbb{Z}/p^k$, then

$$Cell_A \Sigma^m \mathbb{H}\mathbb{Z}/p^n \simeq \prod \begin{cases} \Sigma^m \mathbb{H}\mathbb{Z}/p^k & \text{if } n \geq k \\ \Sigma^m \mathbb{H}\mathbb{Z}/p^n & \text{if } n < k. \end{cases}$$

This shows that $Cell_{\mathbb{H}\mathbb{Z}/p}$ is not quasiexact, since $\mathbb{H}\mathbb{Z}/p$ is A-cellular but $\mathbb{H}\mathbb{Z}/p^2$ is not.
Some computations

Example

For every object A in \mathcal{C} and any integer m, we have that

$$Cell_A \Sigma^m H\mathbb{Z}/p^n \simeq \Sigma^m H\mathbb{Z}/p^j,$$

where $1 \leq j \leq n$.

If $A = \Sigma^m H\mathbb{Z}/p^k$, then

$$Cell_A \Sigma^m H\mathbb{Z}/p^n \simeq \begin{cases}
\Sigma^m H\mathbb{Z}/p^k & \text{if } n \geq k \\
\Sigma^m H\mathbb{Z}/p^n & \text{if } n < k.
\end{cases}$$

This shows that $Cell_{H\mathbb{Z}/p}$ is not quasiexact, since $H\mathbb{Z}/p$ is A-cellular but $H\mathbb{Z}/p^2$ is not.
Some computations

Let \mathcal{I} be the homotopy category of spectra. Let E be any spectrum and let L_E be homological localization with respect to E. Bousfield proved that there is another spectrum A, such that $L_E X \simeq P_A X$ for every X. Since L_E commutes with suspension there is an exact triangle

$$Cell_A X \rightarrow X \rightarrow P_A X,$$

where $Cell_A$ is the E-acyclization functor (in Bousfield language).

Example

The cellularization $Cell_A H\mathbb{Z}$ is either zero or one of the following three possibilities

$$H\mathbb{Z}, \quad \Sigma^{-1} H(\oplus_{p \in P} \mathbb{Z}/p^\infty), \quad \Sigma^{-1} H((\prod_{p \in P} \hat{\mathbb{Z}}_p)/\mathbb{Z}).$$

This shows that $Cell_A$ does not preserve rings in general.
Some computations

Let \mathcal{T} be the homotopy category of spectra. Let E be any spectrum and let L_E be homological localization with respect to E. Bousfield proved that there is another spectrum A, such that $L_E X \simeq P_A X$ for every X. Since L_E commutes with suspension there is an exact triangle

$$Cell_A X \rightarrow X \rightarrow P_A X,$$

where $Cell_A$ is the E-acyclization functor (in Bousfield language).

Example

The cellularization $Cell_A H\mathbb{Z}$ is either zero or one of the following three possibilities

$$H\mathbb{Z}, \quad \Sigma^{-1} H(\bigoplus_{p \in P} \mathbb{Z}/p^\infty), \quad \Sigma^{-1} H((\prod_{p \in P} \hat{\mathbb{Z}}_p)/\mathbb{Z}).$$

This shows that $Cell_A$ does not preserve rings in general.
Some computations

Let \mathcal{I} be the homotopy category of spectra. Let E be any spectrum and let L_E be homological localization with respect to E. Bousfield proved that there is another spectrum A, such that $L_E X \simeq P_A X$ for every X. Since L_E commutes with suspension there is an exact triangle

$$Cell_A X \rightarrow X \rightarrow P_A X,$$

where $Cell_A$ is the E-acyclization functor (in Bousfield language).

Example

The cellularization $Cell_A \mathbb{H}\mathbb{Z}$ is either zero or one of the following three possibilities

$$\mathbb{H}\mathbb{Z}, \quad \Sigma^{-1} H(\bigoplus_{p \in P} \mathbb{Z}/p^\infty), \quad \Sigma^{-1} H((\prod_{p \in P} \hat{\mathbb{Z}}_p)/\mathbb{Z}).$$

This shows that $Cell_A$ does not preserve rings in general.