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Abstract 
 
In this paper we analyze the time of ruin in a risk process with the 
interclaim times being Erlang(n) distributed and a constant dividend 
barrier. We obtain an integro-differential equation for the Laplace 
Transform of the time of ruin. Explicit solutions for the moments of the 
time of ruin are presented when the individual claim amounts have a 
distribution with rational Laplace transform. Finally, some numerical 
results and a compare son with the classical risk model, with interclaim 
times following an exponential distribution, are given 
 
 
Resumen: 
 
En este artículo analizamos el momento de ruina en un proceso del riesgo 
donde el tiempo de ocurrencia entre los siniestros se distribuye según una 
Erlang(n) y con una barrera de dividendos constate. Obtenemos una 
ecuación integro diferencial para la Transformada de Laplace del momento 
de ruina. 
 
Presentamos soluciones explicitas para el momento de ruina cuando la 
cuantía individual de un siniestro cumple que la Transformada de Laplace 
de su función distribución es racional. Finalmente, se muestran resultados 
numéricos y una comparación con el modelo clásico (con tiempos de 
interocurrencia exponencial) 
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1 Introduction

In the classical model of risk theory, the insurer’s surplus process at a given

time t, R(t), is given by

R (t) = u+ c · t−
N(t)X
i=1

Zi , t ∈ [0,∞)

with u = R (0) being the insurer’s initial surplus. N (t) , the number of

claims occurred until time t, follows a Poisson process with parameter λ,

and Zi is the amount of the i-th claim and has density function f (z) . The

instantaneous premium rate, c, is c = E [N ] ·E [Z] · (1 + ρ) , where ρ, called

the security loading, is a positive constant.

Figure 1: Sample path for the classical risk process

Define τ to be the time of ruin so that τ = inf {t : R (t) < 0} , with
τ = ∞ if R (t) ≥ 0 for all t > 0. We denote the ultimate ruin probability

from initial surplus u by ψ (u), so that ψ (u) = P [τ <∞] . The time to ruin
in the classical risk model is considered in Gerber and Shiu (1998), Lin and

Willmot (2000), Dickson and Waters (2002), Drekic and Willmot (2003), or

Ren (2005) where a perturbed model is analyzed.
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In this paper the Poisson number process of the classical risk model is

replaced with a more general renewal risk process with inter-occurrence times

of a General Erlang(n) type. The time of ruin in an Erlang risk process is

considered in Albrecher et al. (2005), Dickson and Hipp (2001) and Dickson

et al. (2003) and Li and Garrido (2004) where an integro-differential equation

for the Gerber-Shiu function is derived.

In what follows we shall use the modified model with a constant divi-

dend barrier b , 0 ≤ u ≤ b, so that when the surplus reaches the level b,

premium income is paid out as dividend to shareholders and the modified

surplus process remains at level b until the occurrence of the next claim. In

this model the probability of ruin is equal to one, so we can assure that τ

<∞.

Figure 2: Modified model with a constant dividend barrier

The layout of this paper is as follows. In the next section we obtain the

integro-differential equation for the Laplace transform of the time of ruin,

φ (u) , in a model modified with a constant dividend barrier in a Sparre

Andersen model with generalized Erlang(n) interclaim times. Using rational

Laplace Transforms, we solve the corresponding differential equation.

Section 3 presents the results for the particular case when the interclaim

time follows an Erlang(2, λ) process. In 3.1 we obtain the boundary condition
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when the individual claim amount is distributed as an exponential distrib-

ution, and in 3.2 when the individual claim amount follows an Erlang(2, β)

distribution.

In section 4 some ideas about the interpretation of the Laplace transform

are given, and by differentiating φ (u) we will obtain the n-moments of the

time of ruin and some numerical results are presented. Finally a comparison

with the classical risk model is presented.

2 Laplace Transform of the time of ruin

We start by obtaining the integro-differential equation for the Laplace Trans-

form of the time of ruin. We define,

φ (u) = E
£
e−δτ

¤
.

We assume that the interocurrence times Ti, i = 1, 2, .. follow a generalized

Erlang(n) distributed, i.e. each Ti is a sum of n independent exponential

random variables with possibly different parameters λ1, ..., λn each causing

a "sub-claim" of size 0 and at the time of the nth subclaim a claim with

distribution F occurs. We consider n states of the risk process (starting at

time 0 in state 1) , where every subclaim causes a transition to the next state

and in the time of occurrence of the nth subclaim the risk process jumps into

state 1 again (see Albrecher at al. (2005)).

Let φj (u) denote the Laplace transform of the time of ruin if the risk

process is in state j = 1, ..., n.

Theorem 1 The integro-differential equation for φ (u) is,Ã
nY

j=1

µ
δ + λj − c

∂·
∂u

¶!
φ (u)−

nY
j=1

λj

Z u

0

φ (u− z) dF (z)−
nY

j=1

λj [1− F (u)] = 0,

(1)
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with boundary condition,

k−1Y
j=1

Ã
δ + λj − c ∂·

∂u

λj

!
∂φ (u)

∂u

¯̄̄̄
u=b

= 0 for k = 1, ..., n (2)

Proof. For 0 ≤ u < b, by differential argument

φj (u) = (1− λjdt)φ
j (u+ cdt) e−δdt+

λjdtφ
j+1 (u+ cdt) e−δdt + θ (dt)

for j = 1, ..., n− 1 (3)

beeing θ (dt) the probability of more than one claim occurs in dt.

φn (u) = (1− λndt)φ
n (u+ cdt) e−δdt+

λndt
R u+cdt
0

φ1 (u+ cdt− z) dF (z) e−δdt+

λndte
−δdt R∞

u+cdt
dF (z) + θ (dt)

for j = n

(4)

Then by linear approximation, dividing by dt, and taking dt → 0, from

(3) and (4) we obtain,

c
∂φj (u)

∂u
− (δ + λj)φ

j (u) + λjφ
j+1 (u) = 0, for j = 1, ..., n− 1. (5)

c∂φ
n(u)
∂u
− (δ + λn)φ

n (u)+

λn
R u
0
φ1 (u− z) dF (z) + λn [1− F (u)] = 0.

for j = n (6)

From (5) ,

φj+1 (u) =

Ã
(δ + λj)− c ∂·

∂u

λj

!
φj (u) , j = 1, ..., n− 1,
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and following a recursive process,

φn (u) =

Ã
n−1Y
j=1

(δ + λj)− c ∂·
∂u

λj

!
φ1 (u) . (7)

We can write (6) as,µ
(δ + λn)− c

∂·
∂u

¶
φn (u)−λn

Z u

0

φ1 (u− z) dF (z)−λn [1− F (u)] = 0. (8)

Substituting (7) in (8) , (1) is obtained.

For u = b using an analogous process for j = 1, ..., n− 1

φj (b) = (1− λjdt)φ
j (b) e−δdt + λjdtφ

j+1 (b) e−δdt + θ (dt)

we obtain

λjφ
j+1 (b)− (δ + λj)φ

j (b) = 0

that comparing with (5) ,
∂φj (u)

∂u

¯̄̄̄
u=b

= 0 (9)

And for j = n,

φn (b) = (1− λndt)φ
n (b) e−δdt + λndt

R b
0
φ1 (b− z) dF (z) e−δdt+

λndte
−δdt R∞

b
dF (z) + θ (dt)

then,

λn

Z b

0

φ (b− z) dF (z) + λn

Z ∞

b

dF (z)− (δ + λn)φ
n (b) = 0

and comparing with (6)
∂φn (u)

∂u

¯̄̄̄
u=b

= 0 (10)

From (9) , (10) and (7) the boundary condition (2) is obtained.
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Using an alternative method, Li and Garrido (2004) obtained an equiv-

alent integro-differential equation and boundary conditions for the Gerber-

Shiu function.

Applying Laplace transforms to (1) we obtain,

ϑ (s) eφ (s) + Ln−1 (s)−
nY

j=1

λj

Ãeφ (s) ef (s)− 1− ef (s)
s

!
= 0, (11)

being eφ (s) the Laplace transform of φ (u) and ef (s) the Laplace transform
of the claim density function f (z) .

Ln−1 (s) represents the n − 1 degree polynomial, whose coefficients in-
volve the quantities ∂φj)(u)

∂u

¯̄̄
u=0

, j = 0, ..., n − 1, and ϑ (s) is the n degree

polynomial ϑ (s) =
nY

j=1

(δ + λj − cs) .

From (11) we obtain eφ (s) ,

eφ (s) =
nY

j=1

(λj)
³
1−f(s)

s

´
− Ln−1 (s)

ϑ (s)−
nY

j=1

λj ef (s) . (12)

Example 2 Assuming the classical model of risk theory with interocurrence
claims Erlang(1, λ), expression (12) is,

eφ (s) = λ
³
1−f(s)

s

´
− cφ (0)

(δ + λ− cs)− λ ef (s) . (13)

Let us now restrict the further analysis to the case of claim size distribu-

tion with rational Laplace transform

ef (s) = Qr−1 (s)

Pr (s)
,
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where Pr (s) and Qr−1 (s) denote polynomials of degree r and (at most) r−1
respectively with no common zeros. Moreover Pr (s) has leading coefficient

1, no roots in the positive half plane and Pr (0) = Qr−1 (0) .For this claim size

distribution, the denominator of (12) has n+ r zeroes, which are s1, ..., sn+r.,

and we assume that the roots are real and distinct. From the above we

conclude that r of these zeroes are located in the negative halfplane. Then

using partial fractions, it is obtained,

φ (u) =
n+rX
i=1

αi (b) e
siu. (14)

Note that αi (b) are functions of b, but for brevity we write αi. Now, we

need to find n + r equations satisfied by αi, i = 1, ..., n + r. The first n are

obtained from (2) .

3 Laplace transform of Time of ruin in Erlang(2, λ)

risk model

Assuming the case of a Sparre Andersen model with Erlang(2, λ) interclaim

times (n = 2 and λ1 = λ2 = λ) the integro-differential equation for φ (u) isµ
δ + λ− c

∂·
∂u

¶2
φ (u)− λ2

Z u

0

φ (u− z) dF (z)− λ2 [1− F (u)] = 0, (15)

From (12), it is easy to obtain

eφ (s) = λ2
³
1−f(s)

s

´
+ c2φ0 (0) + (c2s− 2c (δ + λ))φ (0)

(δ + λ− cs)2 − λ2 ef (s) , (16)

and assuming a claim distribution with rational Laplace transform, it is ob-
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tained

φ (u) =
2+rX
i=1

αi (b) e
siu. (17)

3.1 Claim distribution z ∼ exp (γ)
If we assume that f (z) = γe−γz, then ef (s) = γ

γ+s
. We obtain the roots

si, i = 1, 2, 3, from

(δ + λ− cs)2 (γ + s)− λ2γ = 0. (18)

Then the solution of φ (u) is,

φ (u) =
3X

i=1

αie
siu. (19)

The first two equations obtained from (2) are
3X

i=1

siαie
sib = 0 and

3X
i=1

s2iαie
sib =

0.

To find the third equation, we substitute (19) and f (z) = γe−γz in the

integro-differential equation (15), and resolving the integral,

3X
i=1

αie
siu

∙
(λ+ δ)2 − 2c (λ+ δ) si + c2s2i −

λ2γ

(si + γ)

¸
+

λ2γ
3X

i=1

αie
−γu

(si + γ)
− λ2e−γu = 0.

From (18) the coefficient of esiu is equal to zero, then we obtain the third

equation,
3X

i=1

αi
(si+γ)

= 1
γ
.
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We thus have a system of three equations from which we can easily solve

for αi, i = 1, 2, 3 using Mathematica.

3.2 Claim distribution z ∼ Erlang (2, β)

Consider a risk process in which claims occur as an Erlang(2, β) distribution,

f (z) = β2ze−βz with Laplace transform ef (s) = β2

(β+s)2
. Then the fourth roots

are obtained from

(δ + λ− cs)2 (β + s)2 − λ2β2 = 0 (20)

The solution in this case is,

φ (u) =
4X

i=1

αie
siu. (21)

We need to find four equations to calculate the unknowns αi, i = 1, 2, 3, 4.

Two equations are obtained from (2):
4X

i=1

siαie
sib = 0 and

4X
i=1

s2iαie
sib =

0.

From (15), (21) and knowing that f (z) = β2ze−βz, we find the other two,
4X

i=1

αi

(si + β)2
=
1

β2
and

4X
i=1

αi

(si + β)
=
1

β
.

4 Getting information from Laplace transform

of the time of ruin

From φ (u) we can get two kind of different informations about the time of

ruin.

First φ (u) = E
£
e−δτ

¤
can be interpreted as the expected present value

of one monetary unit that was paid at the time of ruin. Then the parameter

of the Laplace transform δ can be interpreted as the interest rate used to
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obtain the present value.

But also φ (u) allows us to find the the n-moments of the random variable

τ , i.e. E [τn] , that can be obtained differentiating φ (u) with respect to δ,

∂nφ (u)

∂δn
=

∂n

∂δn
E
£
e−δτ

¤
= E

£
(−τ)n e−δτ

¤
.

and evaluating these at δ = 0,

E [τn] = (−1)n ∂φn (u)

∂δn

¯̄̄̄
δ=0

.

In what follows, some numerical results are obtained.

If we assume that f (z) = γe−γz, for γ = 1, λ = 1, b = 10 and c = 0.6, the

results for E [τ ] , σ [τ ] and the variation coefficient of τ defined by cv [τ ] =
100.σ[τ ]
E[τ ]

are summarized in Table 1,

E [τ ] σ [τ ] cv [τ ]

u = 0 93.9577 217.63 231.625

u = 1 157.031 265.267 168.926

u = 2 205.805 288.281 140.075

u = 3 243.077 299.847 123.355

u = 4 271.099 305.565 112.714

u = 5 291.68 308.253 105.682

u = 6 306.277 309.411 101.023

u = 7 316.06 309.845 98.0336

u = 8 321.974 309.973 96.2727

u = 9 324.794 309.996 95.4437

u = 10 325.372 309.997 95.2744

Table 1: E [τ ] , σ [τ ] and cv [τ ]

for f (z) = e−z, λ = 1, b = 10 and c = 0.6
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Graphically,
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Figure 3 : E[τ ] assuming Ti ∼ Erlang(2, 1)

and Z ∼ exp(1)
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Figure 4 : α[τ ] assuming Ti ∼ Erlang(2, 1)

and Z ∼ exp(1
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Figure 5 : cv [τ ] assuming Ti ∼ Erlang(2, 1)

and Z ∼ exp(1)
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4.1 Comparison with the classical model

In this section we are going to compare the time of ruin with a constant

barrier in an Erlang risk model with the corresponding in the classical risk

model.

In the classical risk model, claims occur as a Poisson process. Note that in

a Poisson process with parameter λ, Ti, i ≥ 1 has an exponential distribution
with mean 1

λ
, i.e. with an Erlang(1, λ) distribution. So the time of ruin in the

classical risk model is included in Theorem 1 as a particular case. From (1),

for n = 1, we get the integro-differential equation for the Laplace transform

of the time of ruin in the classical risk model and the boundary condition,

(δ + λ)φ (u)− cφ0 (u)− λ

Z u

0

φ (u− z) dF (z)− λ [1− F (u)] = 0 (22)

∂φ (u)

∂u

¯̄̄̄
u=b

= 0.

This equation can be obtained too from equation (2.5) in Lin et al (2003)

for the Gerber-Shiu function in the classical risk model. (See too Dickson

and Waters (2004))

To solve this model, from (13), assuming that f (z) = γe−γz, the roots

are obtained from −c2s2 + (δ + λ− cγ) s+ δγ = 0. Then φ (u) =
2X

i=1

αie
siu.

To calculate αi, substituting φ (u) =
2X

i=1

αie
siu and f (z) = γe−γz in (22) we

get
2X

i=1

αi

(si + γ)
=
1

γ
.

In order to analyze the influence that the distribution of the interclaim

times has in the time of ruin, the two models have to be comparable, i.e.

E [Nt] when t→∞ must be assimptotically the same in the Erlangian model

and in the classical model.
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Following Cox (1962), in an ordinary renewal process the renewal func-
tion, E [Nt] , is related with Ti

eL (s) = 1

s

egTi (s)
1− egTi (s) , for egTi (s) < 1

being eL (s) the Laplace transform of E [Nt] and egTi (s) the Laplace transform
of the density function of the interrocurrence times.

For an Erlangian model, i.e. Ti ∼ Erlang(n, λ) with egTi (s) = ¡ λ
λ+s

¢n
,

then eL (s) = λn

s ((λ+ s)n − λn)
. (23)

From (23), if Ti ∼ Erlang(2, λ), E [Nt] is easily obtained inverting eL (s) =
λ2

s
¡
(λ+ s)2 − λ2

¢ , then E [Nt] =
1

E [Ti]
t− 1

4
+
1

4
e
−

4

E [Ti]
t

.

From (23), if Ti ∼ Erlang(1, λ), i.e. for the classical risk model with

E [Ti] =
1

λ
, eL (s) = λ

s2
and inverting, we have E [Nt] =

t

E [Ti]
.

So, if E [Ti] is the same, the renewal function E [Nt] has the same behavior

when t→∞. In general in an ordinary renewal process lim
t→∞

E[Nt]
t
= 1

E[Ti]
(see

Parzen (1972))

It´s easy to see also that the security loading included in the premium

is different in the two models, and that if E [Ti] is the same, asymptot-

ically the security loading in the two models coincides: It´s known that

the total premium income until time t is ct = E [Z]E [Nt] (1 + ρt) , then

ρt =
ct

E [Z]E [Nt]
− 1, and assuming E [Z] = 1, for the Erlangian model

ρt =
ct

1

E [Ti]
t− 1

4
+
1

4
e
−

4

E [Ti]
t

− 1
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and for the classical model

ρt = cE [Ti]− 1

Then, in order to compare the time of ruin in the Erlang(2, 1)model with

E [Ti] = 2 with the classical model, where the interocurrence time follows an

exponential distribution, the parameter of the exponential must be 0.5, i.e.

Ti ∼ exp(0.5) with E [Ti] = 2.

The difference between E [τ ] in the Erlang(2,1) model and in the classical

model with Ti ∼ Exp(0.5) is represented in Figure 6. In the Figures 7 and

Figure 8 the difference for σ [τ ] and the variation coefficient of τ is repre-

sented,
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Figure 6: EErlang [τ ]− EExp [τ ]
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Figure 7: σErlang [τ ]− σExp [τ ]
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Figure 8: cvErlang [τ ]− cvExp [τ ]
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