Rational Plane Curves with $\mu=2$

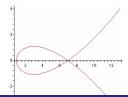
Carlos D'Andrea

Algebraic Geometry and Geometric Modeling
Banff - January 2013

Rational Plane Curves

$$\phi: \mathbb{P}^1 \to \mathbb{P}^2 (t_0:t_1) \mapsto (a(t_0,t_1):b(t_0,t_1):c(t_0,t_1))$$

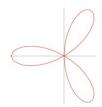
- $a, b, c \in \mathbb{K}[T_0, T_1]$, homogeneous of the same degree $d \ge 1$
- $\gcd(a, b, c) = 1$



Rational Plane Curves

The image of the map is a rational plane curve

- The curve has degree d if ϕ is injective (proper)
- It has genus 0, which means "maximal" number of multiple points $\frac{(d-1)(d-2)}{2}$
- lacktriangle Computing the "implicit equation" is relatively easy from ϕ

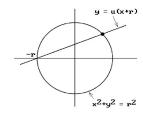


Example

$$d = 2, r > 0$$

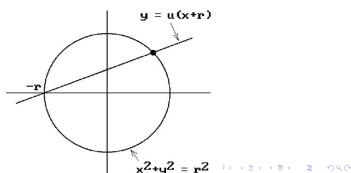
$$\begin{cases}
x_0 = a(t_0, t_1) = 2rt_0t_1 \\
x_1 = b(t_0, t_1) = r(t_0^2 - t_1^2) \\
x_2 = c(t_0, t_1) = t_0^2 + t_1^2
\end{cases}$$

$$x_0^2 + x_1^2 - r^2x_2^2 = 0$$



From parametric to implicit

$$\operatorname{Res}_{\underline{T}}(X_2 \cdot a(\underline{T}) - X_0 \cdot c(\underline{T}), X_2 \cdot b(\underline{T}) - X_1 \cdot c(\underline{T})) = \\ -4X_2r^2(X_2r^2 - X_0^2 - X_1^2)$$



The Sylvester Resultant

$$X_{2}a(\underline{T}) - X_{0}c(\underline{T}) = -X_{0}T_{0}^{2} + 2X_{2}rT_{0}T_{1} - X_{0}T_{1}^{2}$$

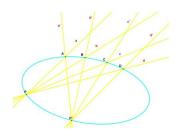
$$X_{2}b(\underline{T}) - X_{1}c(\underline{T}) = (X_{2}r - X_{1})T_{0}^{2} + 0T_{0}T_{1} - (X_{2}r + X_{1})T_{1}^{2}$$

$$\operatorname{Res}_{\underline{T}} \left(X_2 \cdot a(\underline{T}) - X_0 \cdot c(\underline{T}), X_2 \cdot b(\underline{T}) - X_1 \cdot c(\underline{T}) \right) = \\ \det \begin{pmatrix} -X_0 & 2X_2r & -X_0 & 0\\ 0 & -X_0 & 2X_2r & -X_0\\ X_2r - X_1 & 0 & -(X_2r + X_1) & 0\\ 0 & X_2r - X_1 & 0 & -(X_2r + X_1) \end{pmatrix}$$

The μ basis of a parametrization

There exist $\mu \leq \frac{d}{2}$ and two other parametrizations $\varphi_{\mu}(t_0, t_1), \, \varphi_{d-\mu}(t_0, t_1)$ of degrees $\mu, \, d-\mu$ such that

$$\phi(t_0,t_1)=\varphi_{\mu}(t_0,t_1)\wedge\varphi_{d-\mu}(t_0,t_1)$$

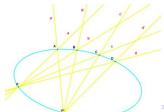


The μ basis of a parametrization

The set
$$\{\varphi_{\mu}(\underline{T}), \varphi_{d-\mu}(\underline{T})\}$$
 is called a μ -basis of ϕ . $\varphi_{j}(\underline{T}) = (a_{j}(\underline{T}), b_{j}(\underline{T}), c_{j}(\underline{T}))$

$$a_j(\underline{T})X_0 + b_j(\underline{T})X_1 + c_j(\underline{T})X_2$$

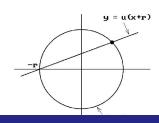
is a **moving line** which follows the curve



A μ basis for the parametrization of the circle

$$\begin{array}{rcl}
\varphi_1(\underline{T}) &=& (-T_0, T_1, rT_1) \\
\widetilde{\varphi}_1(\underline{T}) &=& (-T_1, -T_0, rT_0)
\end{array}$$

$$\begin{vmatrix} \mathbf{e}_0 & \mathbf{e}_1 & \mathbf{e}_2 \\ -T_0 & T_1 & rT_1 \\ -T_1 & -T_0 & rT_0 \end{vmatrix} = (2rT_0T_1, r(T_0^2 - T_1^2), T_0^2 + T_1^2)$$



μ bases and Hilbert's Syzygy Theorem

The homogeneous polynomial ideal $I = (a(\underline{T}), b(\underline{T}), c(\underline{T})) \subset \mathbb{K}[T_0, T_1]$ has a **Hilbert-Burch resolution** of the type

$$0 \to \mathbb{K}[\underline{T}]^2 \stackrel{(\varphi_{\mu}, \varphi_{d-\mu})^{\mathbf{t}}}{\longrightarrow} \mathbb{K}[\underline{T}]^3 \stackrel{(a,b,c)}{\longrightarrow} \mathbb{K}[\underline{T}]$$

A μ basis of the parametrization is a basis of $\operatorname{Syz}(I)$ as a $\mathbb{K}[\underline{T}]$ -module

How to compute a μ basis?

Wait for the next talk

Why do we care about μ bases?

Implicit equation

$$\mathsf{Res}_{\underline{\mathcal{T}}}\big(\varphi_{\mu}(\underline{\mathcal{T}})\cdot(X_0,X_1,X_2),\,\varphi_{d-\mu}(\underline{\mathcal{T}})\cdot(X_0,X_1,X_2)\big)$$

For the circle:

$$\varphi_1(\underline{T}) \cdot (X_0, X_1, X_2) = -X_0 T_0 + (X_1 + rX_2) T_1$$

$$\tilde{\varphi}_1(\underline{T}) \cdot (X_0, X_1, X_2) = (-X_1 + rX_2) T_0 - X_0 T_1$$

$$\begin{vmatrix} -X_0 & X_1 + rX_2 \\ -X_1 + rX_2 & -X_0 \end{vmatrix} = X_0^2 + X_1^2 - r^2 X_2^2$$

Compact formulas for computing resultants

- Sylvester $\sim 2D$
- Hybrid
- Bézout ~ D

Busé-D (2012)

If *B* denotes a Bézout matrix and *S* a Sylvester matrix then,

$$X_2 S(\varphi_{\mu} \cdot \underline{X}, \varphi_{d-\mu} \cdot \underline{X}) = M B(aX_2 - cX_0, bX_2 - cX_1),$$

with $M \in \mathbb{K}^{d \times d}$ invertible

A bit of history

- Sederberg, Saito, Qi, Klimaszewski. (1994), Curve implicitization using moving lines, Computer Aided Geometric Design 11, 687–706
- Sederberg, Chen. Implicitization using moving curves and surfaces. Proceedings of SIGGRAPH 1995, 301–308.
- Sederberg, Goldman, Du. (1997), Implicitizing rational curves by the method of moving algebraic curves, J. Symbolic Comp. 23, 153–175
- Cox., Sederberg, Chen. (1998), The moving line ideal basis for planar rational curves, Computer Aided Geometric Design 15, 803–827
- . . .

Moving conics, Moving cubics,...

$$a_{j}(\underline{T})X_{0}^{2} + b_{j}(\underline{T})X_{0}X_{1} + c_{j}(\underline{T})X_{0}X_{2} + d_{j}(\underline{T})X_{1}^{2} + e_{j}(\underline{T})X_{1}X_{2} + f_{j}(\underline{T})X_{2}^{2}$$
is a **moving conic** which follows the parametrization if
$$a_{j}(\underline{T})a(\underline{T})^{2} + b_{j}(\underline{T})a(\underline{T})b(\underline{T}) + c_{j}(\underline{T})a(\underline{T})c(\underline{T}) + d_{j}(\underline{T})b(\underline{T})^{2} + e_{j}(\underline{T})b(\underline{T})c(\underline{T}) + f_{j}(\underline{T})c(\underline{T})^{2} = 0$$

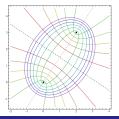
The method of moving curves for implicitization

The implicit equation may be computed as a **small** determinant of

some moving lines some moving conics some moving cubics

the **more** singular the curve is, the **smaller** the determinant is

which moving lines? which moving conics? which moving cubics?



The Rees Algebra associated to the parametrization

Cox, D. The moving curve ideal and the Rees algebra. Theoret. Comput. Sci. 392 (2008), no. 1–3, 23–36.

$$\mathcal{K} := \{ \text{moving curves following } \phi \} = \text{ kernel of } \\ \mathbb{K}[T_0, T_1, X_0, X_1, X_2] \rightarrow \mathbb{K}[T_0, T_1, s] \\ T_i \mapsto T_i \\ X_0 \mapsto a(\underline{T})s \\ X_1 \mapsto b(\underline{T})s \\ X_2 \mapsto c(T)s$$

"The defining ideal of the Rees Algebra associated to

The implicit equation may be obtained as the determinant of a very small matrix:

some minimal generators of $\mathcal K$

The more singular the curve, the simpler the description of \mathcal{K}

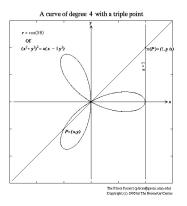
Computing minimal generators of K

The case $\mu = 1$

- Hong, J.; Simis; Vasconcelos. On the homology of two- dimensional elimination. J. Symbolic Comput. 43 (2008)
- Cox, Hoffman, Wang, H. Syzygies and the Rees algebra. J. Pure Appl. Algebra 212 (2008)
- Busé. On the equations of the moving curve ideal of a rational algebraic plane curve. J. Algebra 321 (2009)
- Cortadellas, D. Minimal generators of the defining ideal of the Rees Algebra associated to monoid parametrizations. Computer Aided Geometric Design, 27 (6) 2010

$$\mu = 1$$

$\mu = 1 \iff$ there is a point of multiplicity d-1



Monoid curves if $d \ge 2$

Minimal generators for the space of moving curves $(\mu = 1)$

One can always assume

$$\varphi_1 \cdot (X_0, X_1, X_2) = T_0 X_1 - T_1 X_0$$

A complete set of minimal generators can be obtained by "**reducing**" the other element of the μ basis via this form

Example

$$\varphi_{1} \cdot (X_{0}, X_{1}, X_{2}) = T_{0}X_{1} - T_{1}X_{0}$$

$$\varphi_{3} \cdot (X_{0}, X_{1}, X_{2}) = (T_{0}^{3} + T_{0}^{2}T_{1})X_{0} + T_{1}^{3}X_{1} + T_{0}T_{1}^{2}X_{3}$$

$$F_{2,2} = (T_{0}^{2}X_{0} + T_{0}^{2}X_{1})X_{0} + T_{1}^{2}X_{1}X_{1} + T_{0}T_{1}X_{1}X_{3}$$

$$F_{1,3} = (T_{0}X_{0}^{2} + T_{0}X_{0}X_{1})X_{0} + T_{1}X_{1}^{2}X_{1} + T_{0}X_{1}^{2}X_{3}$$

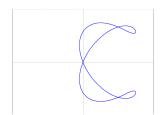
The ideal of moving curves has d + 1 minimal generators

 $F_{0.4} = (X_0^3 + X_0^2 X_1) X_0 + X_1^3 X_1 + X_0 X_1^2 X_3$

$$\mu = 2$$

The curve has either

- one point of multiplicity d-2 and the rest double
- only double points



$\mu = 2$ with only double points

Busé, J. Algebra 321 (2009)

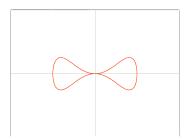
Constructs an explicit family of $\frac{(d+1)(d-4)}{2} + 6$ generators of the moving curve ideal

(Cortadellas-**D** arXiv:1301.6286): remove the "jacobian", and you will get a family of minimal generators

$\mu = 2$ with a very singular point

(Cortadellas-D arXiv:1301.6286)

Compute an explicit family of minimal generators of $\mathcal{O}(\frac{d}{2})$ elements, via reduction



How does it work? (Example)

(Cortadellas-D arXiv:1301.6286)
$$\varphi_1 \cdot (X_0, X_1, X_2) = T_0^2 X_1 - T_1^2 X_0$$

$$\varphi_{2k-3} \cdot (X_0, X_1, X_2) = T_1^{2k-3} X_1 - T_0^{2k-3} X_2$$

$$F_{2k-5,2} = T_1^{2k-5} X_1 X_1 - T_0^{2k-5} X_0 X_2$$

$$F_{2k-7,3} = T_1^{2k-7} X_1^2 X_1 - T_0^{2k-7} X_0^2 X_2$$
 ...
$$F_{1,k-1} = T_1 X_1^{k-2} X_1 - T_0 X_0^{k-2} X_2$$

How does it work?

(Cortadellas-D arXiv:1301.6286)

- One can assume that the very singular point is (0:0:1), i.e. that $\varphi_2 \cdot (X_0, X_1, X_2) = Q_0(\underline{T})X_1 Q_1(\underline{T})X_0$
- Reduce φ_{d-2} (every polinomial of degree larger than 2 can be written as a polynomial combination of $Q_0(\underline{T})$, $Q_1(\underline{T})$)
- Add one or two more elements at level (1, k) depending on whether d is odd or even, and also the implicit equation

In our example...

$$\varphi_{2} \cdot (X_{0}, X_{1}, X_{2}) = T_{0} T_{0} X_{1} - T_{1} T_{1} X_{0}$$

$$\varphi_{2k-3} \cdot (X_{0}, X_{1}, X_{2}) = T_{1}^{2k-3} X_{1} - T_{0}^{2k-3} X_{2}$$

$$F_{2k-5,2} = T_{1}^{2k-5} X_{1} X_{1} - T_{0}^{2k-5} X_{0} X_{2}$$

$$F_{2k-7,3} = T_{1}^{2k-7} X_{1}^{2} X_{1} - T_{0}^{2k-7} X_{0}^{2} X_{2}$$
...
$$F_{1,k-1} = T_{1} X_{1}^{k-2} X_{1} - T_{0} X_{0}^{k-2} X_{2}$$

$$F_{1,k} = T_{0} (X_{1}^{k-2} X_{1}) X_{1} - T_{1} (X_{0}^{k-2} X_{2}) X_{0}$$

$$F_{0,2k-1} = X_{1}^{2k-1} - X_{0}^{2k-3} X_{2}^{2}$$

Minimal generators for d = 2k - 1

```
(2, 1)
```

Minimal generators for d = 2k

```
(2, 1)
```

Adjoints

A curve C_0 is **adjoint** to another curve C if $m_p(C_0) \ge m_p(C) - 1$ for all $p \in C$

Busé, J. Algebra 321 (2009)

Any moving curve of the form

$$F_{1,\ell} = T_0 \mathcal{A}(X_0, X_1, X_2) + T_1 \mathcal{B}(X_0, X_1, X_2)$$

is a **pencil of adjoints** ($\mu = 2$, only double points)

Adjoints

(Cortadellas - **D** arXiv:1301.6286)

If the curve has $\mu=2$ and a point of multiplicity d-2, for any $\ell \geq d-2$,

 $\dim_{\mathbb{K}}\left(\mathcal{K}_{1,\ell}/\{\text{pencils of adjoints}\}\cap\mathcal{K}_{1,\ell}
ight)$

$$\begin{cases}
(k-2)^2 & d=2k-1 \\
(k-1)(k-2) & d=2k
\end{cases}$$

The equality holds for generic curves in this class

What about $\mu \geq 3$?

Busé's method does not work for $\mu = 3$ Ours either!

$$\begin{cases}
\varphi_3 = T_0^3 X_0 + (T_1^3 - T_0 T_1^2) X_1 \\
\varphi_7 = (T_0^6 T_1 - T_0^2 T_1^5) X_0 + (T_0^4 T_1^3 + T_0^2 T_1^5) X_1 + (T_0^7 + T_1^7) X_2
\end{cases}$$

with minimal generators of bidegree

$$(3,1), (7,1), (2,3), (2,3), (4,2), (2,4), (1,6), (1,6), (1,6), (0,10)$$

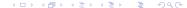
$$\begin{cases}
\tilde{\varphi}_3 = (T_0^3 - T_0^2 T_1) X_0 + (T_1^3 + T_0 T_1^2 - T_0 T_1^2) X_1 \\
\tilde{\varphi}_7 = (T_0^6 T_1 - T_0^2 T_1^5) X_0 + (T_0^4 T_1^3 + T_0^2 T_1^5) X_1 + (T_0^7 + T_1^7) X_2
\end{cases}$$

with minimal generators of bidegree

(3,1), (7,1), (2,3), (2,3), (4,2), (2,4), (1,5), (1,6), (1,6), (0,10)

Current related work

- Cox, Kustin, Polini. A study of singularities on rational curves via syzygies. To appear in Memoirs of AMS
- Cortadellas, D. Rational plane curves parameterizable by conics. J. Algebra 373 (2013)
- Hassanzadeh, Simis. Implicitization of the Jonquières parametrizations.arXiv:1205.1083
- Kustin, Polini, Ulrich. The bi-graded structure of Symmetric Algebras with applications to Rees rings. arXiv:1301.7106
- Botbol, Busé. Talk at 11... Stay tuned!
-



Thanks!

