Moving curve ideals of rational plane parametrizations

Carlos D'Andrea

ICIAM 2015 Beijing - August 2015

Computational Algebra, Algebraic Geometry & Applications

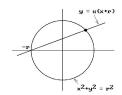
A Conference in honor of Alicia Dickenstein Buenos Aires, Argentina, August 1-3 2016 http://mate.dm.uba.ar/~coalaga/

Parametrization of the circle

$$\begin{array}{ccc}
\mathbb{K} & \dashrightarrow & \mathbb{K}^2 \\
t & \longmapsto & \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right)
\end{array}$$

$$\varphi: \mathbb{P}^1 \longrightarrow \mathbb{P}^2$$

$$(t_0:t_1) \longmapsto (t_0^2+t_1^2:t_0^2-t_1^2:2t_0t_1)$$



Implicitization via Sylvester Resultants

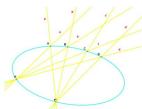
$$F = X_2(T_0^2 + T_1^2) - X_0(2T_0T_1) = X_2T_0^2 - 2X_0T_0T_1 + X_2T_1^2$$

$$G = X_2(T_0^2 - T_1^2) - X_1(2T_0T_1) = X_2T_0^2 - 2X_1T_0T_1 - X_2T_1^2$$

$$\operatorname{Res}_{\underline{T}}(F,G) = \begin{vmatrix} X_2 & -2X_0 & X_2 & 0\\ 0 & X_2 & -2X_0 & X_2\\ X_2 & -2X_1 & -X_2 & 0\\ 0 & X_2 & -2X_1 & -X_2 \end{vmatrix} = 4X_2^2(X_1^2 + X_2^2 - X_0^2)$$

Rows of the Sylvester matrix encode moving lines

$$\mathcal{L}(T_0, T_1, X_0, X_1, X_2) = v_0(\underline{T})X_0 + v_1(\underline{T})X_1 + v_2(\underline{T})X_2$$
such that
$$\mathcal{L}(T_0, T_1, u_0(\underline{T}), u_1(\underline{T}), u_2(\underline{T})) = 0$$



In our example...

$$\mathcal{L}_{1}(\underline{T}, \underline{X}) = -2T_{0}^{2}T_{1}X_{0} + 0X_{1} + (T_{0}^{3} + T_{0}T_{1}^{2})X_{2}
\mathcal{L}_{2}(\underline{T}, \underline{X}) = -2T_{0}T_{1}^{2}X_{0} + 0X_{1} + (T_{0}^{2}T_{1} + T_{1}^{3})X_{2}
\mathcal{L}_{3}(\underline{T}, \underline{X}) = 0X_{0} - 2T_{0}^{2}T_{1}X_{1} + (T_{0}^{3} - T_{0}T_{1}^{2})X_{2}
\mathcal{L}_{4}(\underline{T}, \underline{X}) = 0X_{0} - 2T_{0}T_{1}^{2}X_{1} + (T_{0}^{2}T_{1} - T_{1}^{3})X_{2}$$

In our example...

$$\mathcal{L}_{1}(\underline{T}, \underline{X}) = -2T_{0}^{2}T_{1}X_{0} + 0X_{1} + (T_{0}^{3} + T_{0}T_{1}^{2})X_{2}$$

$$\mathcal{L}_{2}(\underline{T}, \underline{X}) = -2T_{0}T_{1}^{2}X_{0} + 0X_{1} + (T_{0}^{2}T_{1} + T_{1}^{3})X_{2}$$

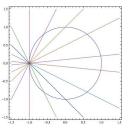
$$\mathcal{L}_{3}(\underline{T}, \underline{X}) = 0X_{0} - 2T_{0}^{2}T_{1}X_{1} + (T_{0}^{3} - T_{0}T_{1}^{2})X_{2}$$

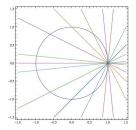
$$\mathcal{L}_{4}(\underline{T}, \underline{X}) = 0X_{0} - 2T_{0}T_{1}^{2}X_{1} + (T_{0}^{2}T_{1} - T_{1}^{3})X_{2}$$

$$\begin{pmatrix} X_{2} & -2X_{0} & X_{2} & 0\\ 0 & X_{2} & -2X_{0} & X_{2}\\ X_{2} & -2X_{1} & -X_{2} & 0\\ 0 & X_{2} & -2X_{1} & -X_{2} \end{pmatrix}$$

Can you get a smaller determinant?

Can you get a smaller determinant?





$$\left| \begin{array}{c|c} X_2 & -X_0 - X_1 \\ -X_0 + X_1 & X_2 \end{array} \right| = X_1^2 + X_2^2 - X_0^2$$

A bit of history on the CAGD side

- Sederberg, Saito, Qi, Klimaszewski. (1994), Curve implicitization using moving lines, Computer Aided Geometric Design 11, 687–706
- Sederberg, Chen. Implicitization using moving curves and surfaces. Proceedings of SIGGRAPH 1995, 301–308.
- Sederberg, Goldman, Du. (1997), Implicitizing rational curves by the method of moving algebraic curves,
 J. Symbolic Comp. 23, 153–175
- Cox., Sederberg, Chen. (1998), The moving line ideal basis for planar rational curves, Computer Aided Geometric Design 15, 803–827
-

Moving conics, Moving cubics,...

$$a_{j}(\underline{T})X_{0}^{2} + b_{j}(\underline{T})X_{0}X_{1} + c_{j}(\underline{T})X_{0}X_{2} + d_{j}(\underline{T})X_{1}^{2} + e_{j}(\underline{T})X_{1}X_{2} + f_{j}(\underline{T})X_{2}^{2}$$
is a **moving conic** which follows the parametrization if
$$a_{j}(\underline{T})a(\underline{T})^{2} + b_{j}(\underline{T})a(\underline{T})b(\underline{T}) + c_{j}(\underline{T})a(\underline{T})c(\underline{T}) + d_{j}(\underline{T})b(\underline{T})^{2} + e_{j}(\underline{T})b(\underline{T})c(\underline{T}) + f_{j}(\underline{T})c(\underline{T})^{2} = 0$$

The method of moving curves for implicitization

The implicit equation may be computed as a **small** determinant of

some moving lines some moving conics some moving cubics

The more singular the curve, the smaller the determinant

One of those theorems

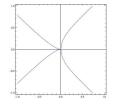
(Sederberg-Chen 1995)

The implicit equation of a quartic curve with no base points can be written as a 2×2 determinant. If the curve doesn't have a triple point, then each element of the determinant is a quadratic; otherwise one row is linear and one row is cubic

A quartic with triple point

$$\varphi(t_0, t_1) = (t_0^4 - t_1^4 : -t_0^2 t_1^2 : t_0 t_1^3)$$

$$F(X_0, X_1, X_2) = X_2^4 - X_1^4 - X_0 X_1 X_2^2$$

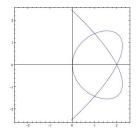


$$\mathcal{L}_{1,1}(\underline{T},\underline{X}) = T_0X_2 + T_1X_1
\mathcal{L}_{1,3}(\underline{T},\underline{X}) = T_0(X_1^3 + X_0X_2^2) + T_1X_2^3
\begin{pmatrix} X_2 & X_1 \\ X_1^3 + X_0X_2^2 & X_2^3 \end{pmatrix}$$

A quartic without a triple point

$$\varphi(t_0:t_1) = (t_0^4:6t_0^2t_1^2 - 4t_1^4:4t_0^3t_1 - 4t_0t_1^3)$$

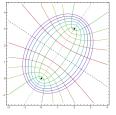
$$F(\underline{X}) = X_2^4 + 4X_0X_1^3 + 2X_0X_1X_2^2 - 16X_0^2X_1^2 - 6X_0^2X_2^2 + 16X_0^3X_1$$



$$\begin{array}{lcl} \mathcal{L}_{1,2}(\underline{T},\underline{X}) & = & T_0(X_1X_2 - X_0X_2) + T_1(-X_2^2 - 2X_0X_1 + 4X_0^2) \\ \tilde{\mathcal{L}}_{1,2}(\underline{T},\underline{X}) & = & T_0(X_1^2 + \frac{1}{2}X_2^2 - 2X_0X_1) + T_1(X_0X_2 - X_1X_2) \end{array}$$

For large d, we do not know...

which moving lines? which moving conics? which moving cubics?



The Rees Algebra associated to the parametrization

Cox, D. The moving curve ideal and the Rees algebra. Theoret. Comput. Sci. 392 (2008), no. 1–3.

$$\mathcal{K}_{\varphi} := \{ \text{moving curves following } \varphi \} = \text{ kernel of } \\ \mathbb{K}[T_0, T_1, X_0, X_1, X_2] \xrightarrow{\varphi_R} \mathbb{K}[T_0, T_1, s] \\ T_i & \mapsto & T_i \\ X_0 & \mapsto & a(\underline{T})s \\ X_1 & \mapsto & b(\underline{T})s \\ X_2 & \mapsto & c(T)s \\ \end{pmatrix}$$

"The defining ideal of the Rees Algebra associated to

Understanding \mathcal{K}_{φ} should be a sort of "Rossetta Stone" for the method of moving curves

Understanding \mathcal{K}_{φ} should be a sort of "Rossetta Stone" for the method of moving curves

For instance, experiments suggest that the more singular the curve, the simpler the description of \mathcal{K}_{φ}

■ Compute $n_0(\mathcal{K}_{\varphi})$, the number of minimal generators of \mathcal{K}_{φ}

- Compute $n_0(\mathcal{K}_{\varphi})$, the number of minimal generators of \mathcal{K}_{φ}
- Show that if φ is "more singular" than φ' then $n_0(\mathcal{K}_{\varphi}) \leq n_0(\mathcal{K}_{\varphi'})$

- Compute $n_0(\mathcal{K}_{\varphi})$, the number of minimal generators of \mathcal{K}_{φ}
- Show that if φ is "more singular" than φ' then $n_0(\mathcal{K}_{\varphi}) \leq n_0(\mathcal{K}_{\varphi'})$
- Describe **all** the possible values and the parameters of the function $n_0(\mathcal{K}_{\varphi})$

- Compute $n_0(\mathcal{K}_{\varphi})$, the number of minimal generators of \mathcal{K}_{φ}
- Show that if φ is "more singular" than φ' then $n_0(\mathcal{K}_{\varphi}) \leq n_0(\mathcal{K}_{\varphi'})$
- Describe **all** the possible values and the parameters of the function $n_0(\mathcal{K}_{\varphi})$
- Is there a **generic** value for $n_0(\mathcal{K}_{\varphi})$? Is this the maximal value?

- Compute $n_0(\mathcal{K}_{\varphi})$, the number of minimal generators of \mathcal{K}_{φ}
- Show that if φ is "more singular" than φ' then $n_0(\mathcal{K}_{\varphi}) \leq n_0(\mathcal{K}_{\varphi'})$
- Describe **all** the possible values and the parameters of the function $n_0(\mathcal{K}_{\varphi})$
- Is there a **generic** value for $n_0(\mathcal{K}_{\varphi})$? Is this the maximal value?
- Where is $n_0(\mathcal{K}_{\varphi})$ constant?

Known so far

- $\mu = 1$ (Hong-Simis-Vasconcelos, Cox-Hoffmann-Wang, Busé, Cortadellas-D)
- $\mu = 2$ (Busé, Cortadellas-**D**, Kustin-Polini-Ulrich)
- \bullet $(\mathcal{K}_{\varphi})_{(1,2)} \neq 0$ (Cortadellas- D)
- d = 6(Kustin-Polini-Ulrich)
- Monomial plane parametrizations (Cortadellas-D)

Monomial plane parametrizations

(joint with Teresa Cortadellas)

$$arphi_{\mu,d}: \mathbb{P}^1
ightarrow \mathbb{P}^2 \ (t_0:t_1)
ightarrow (t_0^d:t_0^{d-\mu}t_1^{\mu}:t_1^d)$$

- $1 \le \mu < d/2$, $gcd(\mu, d) = 1$
- The implicit equation is $x_1^d x_0^{d-\mu} x_2^{\mu} = 0$
- Two singular points: (1:0:0) and (0:0:1) of multiplicities μ and $d \mu$ respectively

A Minimal resolution of $\mathcal{K}_{\varphi_{u,d}}$ (Cortadellas-D)

(J. Symbolic Comput. 70, 2015)

$$0 \to S^{q-1} \to S^{2q} \to S^{q+2} \to S \stackrel{\varphi_{\mu,d,R}}{\to} \mathbb{K}[T_0, T_1, s] \to 0$$

- $S = \mathbb{K}[T_0, T_1, X_0, X_1, X_2]$
- It is a resolution of *S*-modules
- q and the maps of the resolution depend on the complexity of the Euclidean algorithm to compute $gcd(\mu, d)$

A Minimal bigraded resolution

$$0 \to \bigoplus_{n=1}^{q-1} S(-(b_n, |\sigma_n - \tau_n| + 2|\sigma_{m_{\ell(n)}} - \tau_{m_{\ell(n)}}|)) \to$$

$$\stackrel{\varphi_{\mu,d,3}}{\rightarrow} \oplus_{n=1}^{q} S(-(b_n,|\sigma_n-\tau_n|+|\sigma_{m_{\ell(n)}}-\tau_{m_{\ell(n)}}|))^2 \rightarrow$$

$$\stackrel{\varphi_{\mu,d,2}}{\to} \oplus_{n=1}^{q+2} S(-(b_n,|\sigma_n-\tau_n|)) \stackrel{\varphi_{\mu,d,1}}{\to} S \stackrel{\varphi_{\mu,d,R}}{\to} \mathbb{K}[T_0,T_1,s]$$

The theorem on an example

$$\mu = 3, d = 10$$

$$\mathbb{P}^{1} \xrightarrow{\varphi_{3,10}} \mathbb{P}^{2}$$

$$(t_{0}: t_{1}) \mapsto (t_{0}^{10}: t_{0}^{7}t_{1}^{3}: t_{1}^{10})$$

$$\mathbb{K}[T_{0}, T_{1}, X_{0}, X_{1}, X_{2}] \xrightarrow{\varphi_{3,10,R}} \mathbb{K}[T_{0}, T_{1}, s]$$

$$T_{i} \mapsto T_{i}$$

$$X_{0} \mapsto T_{0}^{10}s$$

$$X_{1} \mapsto T_{0}^{7}T_{1}^{3}s$$

$$Y_{2} \mapsto T_{1}^{10}s$$

Classic Euclidean remainder sequences

Applied to the pair
$$(d-\mu,\mu)=(7,3)$$

$$7 = 2\cdot 3+1$$

$$3 = 3\cdot 1+0,$$

$$\boxed{q=2+3=5}$$

$$0\to S^{q-1}\to S^{2q}\to S^{q+2}\to S\to \mathbb{K}[T_0,T_1,s]\to 0$$
 specializes to
$$0\to S^4\to S^{10}\to S^7\to S\to \mathbb{K}[T_0,T_1,s]\to 0$$

Slow Euclidean remainder sequences

$$7 = 1 \cdot 7 + 0 \cdot 3$$

$$3 = 0 \cdot 7 + 1 \cdot 3$$

$$4 = 1 \cdot 7 + (-1) \cdot 3$$

$$1 = 1 \cdot 7 + (-2) \cdot 3$$

$$2 = -1 \cdot 7 + 3 \cdot 3$$

$$1 = -2 \cdot 7 + 5 \cdot 3$$

$$0 = -3 \cdot 7 + 7 \cdot 3$$

There are q+2 elements in the sequence

The minimal generators of $\mathcal{K}_{\varphi_{3,10}}$ are

$$F_{7}(\underline{T}, \underline{X}) = T_{0}^{7}X_{2} - T_{1}^{7}X_{1}$$

$$F_{3}(\underline{T}, \underline{X}) = T_{0}^{3}X_{1} - T_{1}^{3}X_{0}$$

$$F_{1}(\underline{T}, \underline{X}) = T_{0}X_{0}^{2}X_{2} - T_{1}X_{1}^{3}$$

$$F_{4}(\underline{T}, \underline{X}) = T_{0}^{4}X_{0}X_{2} - T_{1}^{4}X_{1}^{2}$$

$$F_{2}(\underline{T}, \underline{X}) = T_{0}^{2}X_{1}^{4} - T_{1}^{2}X_{0}^{3}X_{2}$$

$$F_{1}^{*}(\underline{T}, \underline{X}) = T_{0}X_{1}^{7} - T_{1}X_{0}^{5}X_{2}^{2}$$

$$F_{0}(\underline{T}, \underline{X}) = X_{0}^{7}X_{2}^{3} - X_{1}^{10}$$

Theorem (Cortadellas-D)

This family of generators is minimal, and also a *Gröbner basis* of $\mathcal{K}_{\varphi_{u,d}}$ for the lexicographic order

The construction of the other maps of the resolution can also be made explicit via the SERS

Geometric features

A curve C_0 is **adjoint** to another curve C if $m_p(C_0) \geq m_p(C) - 1$ for all $p \in C$

Geometric features

A curve C_0 is **adjoint** to another curve C if $m_p(C_0) \geq m_p(C) - 1$ for all $p \in C$

Conjecture (Cox 2008)

Any $T_0 \mathcal{A}(X_0, X_1, X_2) + T_1 \mathcal{B}(X_0, X_1, X_2) \in (\mathcal{K}_{\varphi})_{(1,\ell)}$ is a **pencil of adjoints for** $\ell \geq d-2$

False in general (Busé, Jia, Cortadellas-D,...)

Measuring the difference

Theorem (Cortadellas - D)

For $\ell > d - 2$, the number

$$\dim_{\mathbb{K}} \left(\left(\mathcal{K}_{\varphi_{\mu,d}} \right)_{1,\ell} / \{ \text{pencils of adjoints} \} \cap \left(\mathcal{K}_{\varphi_{\mu,d}} \right)_{1,\ell} \right)$$

depends only on (μ, d) , and grows quadratically with d

Monomial curves in "arithmetic progression" (joint with Teresa Cortadellas)

$$\mathbb{P}^1
ightarrow \mathbb{P}^k \ (t_0:t_1)
ightarrow (t_0^{a+kb}:t_0^{a+(k-1)b}t_1^b:\ldots:t_1^{a+kb}) \ \gcd(a,b)=1$$

Monomial curves in "arithmetic progression" (joint with Teresa Cortadellas)

$$\mathbb{P}^1
ightarrow \mathbb{P}^k \ (t_0:t_1)
ightarrow (t_0^{a+kb}:t_0^{a+(k-1)b}t_1^b:\ldots:t_1^{a+kb}) \ \gcd(a,b)=1$$

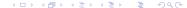
The resolution depends on

Monomial curves in "arithmetic progression" (joint with Teresa Cortadellas)

$$\mathbb{P}^1
ightarrow \mathbb{P}^k \ (t_0:t_1)
ightarrow (t_0^{a+kb}:t_0^{a+(k-1)b}t_1^b:\ldots:t_1^{a+kb}) \ \gcd(a,b)=1$$

The resolution depends on

■ the SERS on a, b



Monomial curves in "arithmetic progression" (joint with Teresa Cortadellas)

$$\mathbb{P}^1
ightarrow \mathbb{P}^k \ (t_0:t_1)
ightarrow (t_0^{a+kb}:t_0^{a+(k-1)b}t_1^b:\ldots:t_1^{a+kb}) \ \gcd(a,b)=1$$

The resolution depends on

- the SERS on a, b
- \blacksquare and k

Monomial curves in "arithmetic progression" (joint with Teresa Cortadellas)

$$\mathbb{P}^1
ightarrow \mathbb{P}^k \ (t_0:t_1)
ightarrow (t_0^{a+kb}:t_0^{a+(k-1)b}t_1^b:\ldots:t_1^{a+kb}) \ \gcd(a,b)=1$$

The resolution depends on

- the SERS on a, b
- \blacksquare and k

The Betti numbers and the generators depend on b_n , σ_n , τ_n and their values modulo k-1

Thanks!

