Moving curve ideals of rational plane parametrizations

Carlos D'Andrea

Georgia State University - December 2015

From Wikiversity

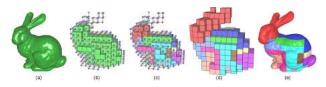


From Wikiversity

Computer-aided geometric design deals with the mathematical description of shape for use in computer graphics, numerical analysis, approximation theory, data structures, and computer algebra.

From Wikiversity

While this field may be mathematical in nature, it is specifically geared toward use in computer science and in engineering fields, making it a field that stretches across several disciplines.



■ Primitives (lines, points, vectors, etc.)

- Primitives (lines, points, vectors, etc.)
- Bézier Curves

- Primitives (lines, points, vectors, etc.)
- Bézier Curves
- Power and Bernstein polynomials

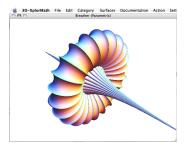
- Primitives (lines, points, vectors, etc.)
- Bézier Curves
- Power and Bernstein polynomials
- B-splines/NURBS

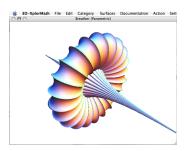
- Primitives (lines, points, vectors, etc.)
- Bézier Curves
- Power and Bernstein polynomials
- B-splines/NURBS
- Algebraic Geometry

- Primitives (lines, points, vectors, etc.)
- Bézier Curves
- Power and Bernstein polynomials
- B-splines/NURBS
- Algebraic Geometry
- Free-form Deformation

- Primitives (lines, points, vectors, etc.)
- Bézier Curves
- Power and Bernstein polynomials
- B-splines/NURBS
- Algebraic Geometry
- Free-form Deformation
- Tensor-product surfaces

- Primitives (lines, points, vectors, etc.)
- Bézier Curves
- Power and Bernstein polynomials
- B-splines/NURBS
- Algebraic Geometry
- Free-form Deformation
- Tensor-product surfaces
- Interpolation

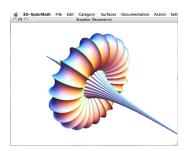




■ Affine Geometry



- Affine Geometry
- Projective Geometry



- Affine Geometry
- Projective Geometry
- Real Topology

$\overline{\mathsf{Geometry}} \leftrightarrow \mathsf{Algebra}$

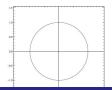
Geometry \leftrightarrow Algebra

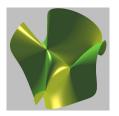
Parametric and Implicit representations of curves and surfaces

Geometry \leftrightarrow Algebra

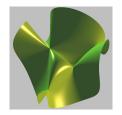
Parametric and Implicit representations of curves and surfaces

$$\begin{array}{ccc}
\mathbb{R} & \to & \mathbb{R}^2 \\
t & \longmapsto & \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right) & x^2 + y^2 - 1 = 0
\end{array}$$





■ Input, Process and Output in CAGD must be arithmetically "finite"

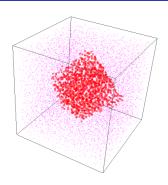


- Input, Process and Output in CAGD must be arithmetically "finite"
- Finite and "short" codification (polynomials / rational functions of very low degree)

- Input, Process and Output in CAGD must be arithmetically "finite"
- Finite and "short" codification (polynomials / rational functions of very low degree)
- Precision is achieved by "glueing" patches (splines, etc.)

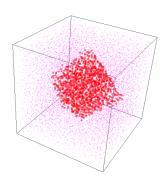
Implicit and parametric forms

Implicit and parametric forms



■ <u>Parametric:</u> "plot" points

Implicit and parametric forms



- Parametric: "plot" points
- Implicit: "split" regions

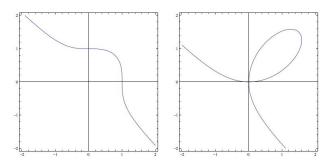
Passing from one form to the other

Passing from one form to the other

is important

Passing from one form to the other

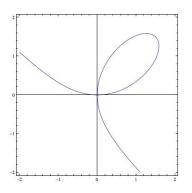
is important although not always possible



From now on..

From now on..

implicitization of curves in the plane



From affine to projective

$$\mathbb{K} \longrightarrow \mathbb{K}^2$$

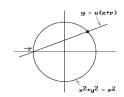
$$t \longmapsto \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right)$$

From affine to projective

$$\mathbb{K} \longrightarrow \mathbb{K}^2$$

$$t \longmapsto \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right)$$

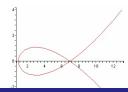
$$\phi: \mathbb{P}^{1} \longrightarrow \mathbb{P}^{2} \\ (t_{0}:t_{1}) \longmapsto (t_{0}^{2}+t_{1}^{2}:t_{0}^{2}-t_{1}^{2}:2t_{0}t_{1})$$



Parametrization of Plane Curves

$$\phi: \mathbb{P}^1 \to \mathbb{P}^2 \ (t_0:t_1) \mapsto (a(t_0,t_1):b(t_0,t_1):c(t_0,t_1))$$

- **a**, b, $c \in \mathbb{K}[T_0, T_1]$, homogeneous of the same degree $d \ge 1$
- \blacksquare gcd(a, b, c) = 1



Rational Curves in the plane

The image of ϕ is a **rational plane curve**

Rational Curves in the plane

The image of ϕ is a **rational plane curve**

■ It has degree d if ϕ is "generically" injective

Rational Curves in the plane

The image of ϕ is a **rational plane curve**

- It has degree d if ϕ is "generically" injective
- it has genus 0, which means the maximal number of multiple points $\frac{(d-1)(d-2)}{2}$

Rational Curves in the plane

The image of ϕ is a **rational plane curve**

- It has degree d if ϕ is "generically" injective
- it has genus 0, which means the maximal number of multiple points $\frac{(d-1)(d-2)}{2}$
- Computing its implicit equation is relatively easy from ϕ

Sylvester's resultant

$$X_{2}a(\underline{T}) - X_{0}c(\underline{T}) = X_{2}T_{0}^{2} - 2X_{0}T_{0}T_{1} + X_{2}T_{1}^{2}$$

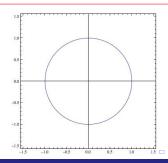
$$X_{2}b(\underline{T}) - X_{1}c(\underline{T}) = X_{2}T_{0}^{2} - 2X_{1}T_{0}T_{1} - X_{2}T_{1}^{2}$$

$$\operatorname{Res}_{\underline{T}} \left(X_2 \cdot a(\underline{T}) - X_0 \cdot c(\underline{T}), X_2 \cdot b(\underline{T}) - X_1 \cdot c(\underline{T}) \right) = \\ \det \begin{pmatrix} X_2 & -2X_0 & X_2 & 0 \\ 0 & X_2 & -2X_0 & X_2 \\ X_2 & -2X_1 & -X_2 & 0 \\ 0 & X_2 & -2X_1 & -X_2 \end{pmatrix}$$

From parametric to implicit

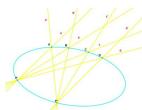
From parametric to implicit

$$\operatorname{Res}_{\underline{T}}(X_2 \cdot a(\underline{T}) - X_0 \cdot c(\underline{T}), X_2 \cdot b(\underline{T}) - X_1 \cdot c(\underline{T})) = \\ -4X_2^2(X_0^2 - X_1^2 - X_2^2)$$



Moving lines

$$\mathcal{L}(T_0, T_1, X_0, X_1, X_2) = v_0(\underline{T})X_0 + v_1(\underline{T})X_1 + v_2(\underline{T})X_2$$
such that
$$\mathcal{L}(T_0, T_1, a(\underline{T}), b(\underline{T}), c(\underline{T})) = 0$$



In our example...

$$\mathcal{L}_{1}(\underline{T}, \underline{X}) = -2T_{0}^{2}T_{1}X_{0} + 0X_{1} + (T_{0}^{3} + T_{0}T_{1}^{2})X_{2}$$

$$\mathcal{L}_{2}(\underline{T}, \underline{X}) = -2T_{0}T_{1}^{2}X_{0} + 0X_{1} + (T_{0}^{2}T_{1} + T_{1}^{3})X_{2}$$

$$\mathcal{L}_{3}(\underline{T}, \underline{X}) = 0X_{0} - 2T_{0}^{2}T_{1}X_{1} + (T_{0}^{3} - T_{0}T_{1}^{2})X_{2}$$

$$\mathcal{L}_{4}(\underline{T}, \underline{X}) = 0X_{0} - 2T_{0}T_{1}^{2}X_{1} + (T_{0}^{2}T_{1} - T_{1}^{3})X_{2}$$

In our example...

$$\mathcal{L}_{1}(\underline{T},\underline{X}) = -2T_{0}^{2}T_{1}X_{0} + 0X_{1} + (T_{0}^{3} + T_{0}T_{1}^{2})X_{2}$$

$$\mathcal{L}_{2}(\underline{T},\underline{X}) = -2T_{0}T_{1}^{2}X_{0} + 0X_{1} + (T_{0}^{2}T_{1} + T_{1}^{3})X_{2}$$

$$\mathcal{L}_{3}(\underline{T},\underline{X}) = 0X_{0} - 2T_{0}^{2}T_{1}X_{1} + (T_{0}^{3} - T_{0}T_{1}^{2})X_{2}$$

$$\mathcal{L}_{4}(\underline{T},\underline{X}) = 0X_{0} - 2T_{0}T_{1}^{2}X_{1} + (T_{0}^{2}T_{1} - T_{1}^{3})X_{2}$$

$$\begin{pmatrix} X_{2} & -2X_{0} & X_{2} & 0\\ 0 & X_{2} & -2X_{0} & X_{2}\\ X_{2} & -2X_{1} & -X_{2} & 0\\ 0 & X_{2} & -2X_{1} & -X_{2} \end{pmatrix}$$

In general

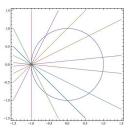
The determinant of a "matrix of moving lines" is a multiple of the implicit equation

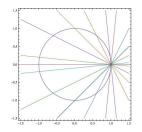
$$\begin{pmatrix} L_{11}(\underline{X}) & L_{12}(\underline{X}) & \dots & L_{1k}(\underline{X}) \\ L_{21}(\underline{X}) & L_{22}(\underline{X}) & \dots & L_{2k}(\underline{X}) \\ \vdots & \vdots & & \vdots \\ L_{k1}(\underline{X}) & L_{k2}(\underline{X}) & \dots & L_{kk}(\underline{X}) \end{pmatrix}$$

How small can the matrix be?

$$\mathcal{L}_{1,1}(\underline{T},\underline{X}) = X_2 \quad T_0 \quad -(X_0 + X_1) \quad T_1 \\ \mathcal{L}'_{1,1}(\underline{T},\underline{X}) = (-X_0 + X_1) \quad T_0 \quad +X_2 \quad T_1$$

How small can the matrix be?





$$\det \begin{pmatrix} X_2 & -X_0 - X_1 \\ -X_0 + X_1 & X_2 \end{pmatrix} = X_1^2 + X_2^2 - X_0^2$$

The (free) module of moving lines

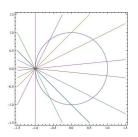
(Hilbert (1890) There exists $\mu \leq \frac{d}{2}$ and $\mathcal{P}_{\mu}(\underline{T},\underline{X}),\ \mathcal{Q}_{d-\mu}(\underline{T},\underline{X})$ moving lines following ϕ such that any other $\mathcal{L}_{\delta}(\underline{T},\underline{X})$ following ϕ is of the form

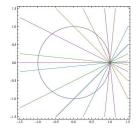
$$p_{\delta-\mu}(\underline{T})\mathcal{P}_{\mu}(\underline{T},\underline{X}) + q_{\delta-d+\mu}(\underline{T})\mathcal{P}_{d-\mu}(\underline{T},\underline{X})$$

Geometric version

There exist $\mu \leq \frac{d}{2}$ and two other parametrizations $\varphi_{\mu}(t_0, t_1), \, \psi_{d-\mu}(t_0, t_1)$ of degrees $\mu, \, d-\mu$ such that

$$\phi(t_0, t_1) = \varphi_{\mu}(t_0, t_1) \wedge \psi_{d-\mu}(t_0, t_1)$$





For the unit circle...

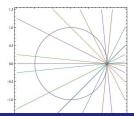
For the unit circle...

$$\varphi_1(t_0:t_1) = (-t_1:-t_1:t_0)
\psi_1(t_0:t_1) = (-t_0:t_0:t_1)$$

For the unit circle...

$$\varphi_1(t_0:t_1) = (-t_1:-t_1:t_0)
\psi_1(t_0:t_1) = (-t_0:t_0:t_1)$$

$$egin{array}{c|cccc} \mathbf{e}_0 & \mathbf{e}_1 & \mathbf{e}_2 \\ -t_1 & -t_1 & t_0 \\ -t_0 & t_0 & t_1 \end{array} = \left(-t_0^2 - t_1^2, t_1^2 - t_0^2, -2t_0t_1 \right)$$



Hilbert's Syzygy Theorem

Hilbert's Syzygy Theorem

The homogeneous ideal $I = (a(\underline{T}), b(\underline{T}), c(\underline{T})) \subset \mathbb{K}[T_0, T_1]$ has a **Hilbert-Burch resolution** of the type

$$0 \to \mathbb{K}[\underline{T}]^2 \stackrel{(\varphi_{\mu}, \psi_{d-\mu})^{\mathbf{t}}}{\longrightarrow} \mathbb{K}[\underline{T}]^3 \stackrel{(a,b,c)}{\longrightarrow} \mathbb{K}[\underline{T}]$$

Hilbert's Syzygy Theorem

The homogeneous ideal $I = (a(\underline{T}), b(\underline{T}), c(\underline{T})) \subset \mathbb{K}[T_0, T_1]$ has a **Hilbert-Burch resolution** of the type

$$0 \to \mathbb{K}[\underline{T}]^2 \stackrel{(\varphi_{\mu}, \psi_{d-\mu})^{\mathbf{t}}}{\longrightarrow} \mathbb{K}[\underline{T}]^3 \stackrel{(a,b,c)}{\longrightarrow} \mathbb{K}[\underline{T}]$$

A μ -basis of the parametrization is a basis of $\operatorname{Syz}(I)$ as a $\mathbb{K}[\underline{T}]$ -module

Why do we care about these bases

Why do we care about these bases

Implicit equation

 $\mathsf{Res}_{\underline{\mathcal{T}}}\big(\mathcal{P}_{\mu}(\underline{\mathcal{T}},\underline{X}),\ \mathcal{Q}_{d-\mu}(\underline{\mathcal{T}},\underline{X})\big)$

Why do we care about these bases

Implicit equation

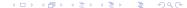
 $\operatorname{\mathsf{Res}}_{\underline{\mathcal{T}}} \big(\mathcal{P}_{\mu} \big(\underline{\mathcal{T}}, \underline{\mathcal{X}} \big), \; \mathcal{Q}_{d-\mu} \big(\underline{\mathcal{T}}, \underline{\mathcal{X}} \big) \big)$

Busé-D (2012)

If B is a Bézout matrix, and S one of Sylester type, then

$$X_2 S(\mathcal{P}_{\mu}(\underline{T}, \underline{X}), \mathcal{Q}_{d-\mu}(\underline{T}, \underline{X})) = M \cdot B(aX_2 - cX_0, bX_2 - cX_1),$$

with $M \in \mathbb{K}^{d \times d}$ invertible



A bit of history

- Sederberg, Saito, Qi, Klimaszewski. (1994), Curve implicitization using moving lines, Computer Aided Geometric Design 11, 687–706
- Sederberg, Chen. Implicitization using moving curves and surfaces. Proceedings of SIGGRAPH 1995, 301–308.
- Sederberg, Goldman, Du. (1997), Implicitizing rational curves by the method of moving algebraic curves,
 J. Symbolic Comp. 23, 153–175
- Cox, Sederberg, Chen. (1998), The moving line ideal basis for planar rational curves, Computer Aided Geometric Design 15, 803–827
-

Moving conics, moving cubics,...

Moving conics, moving cubics,...

$$o(\underline{T})X_0^2 + p(\underline{T})X_0X_1 + q(\underline{T})X_0X_2 + r(\underline{T})X_1^2 + s(\underline{T})X_1X_2 + t(\underline{T})X_2^2$$

is a moving conic following the parametrization if

Moving conics, moving cubics,...

$$o(\underline{T})X_0^2 + p(\underline{T})X_0X_1 + q(\underline{T})X_0X_2 + r(\underline{T})X_1^2 + s(\underline{T})X_1X_2 + t(\underline{T})X_2^2$$
 is a **moving conic** following the parametrization if

$$o(\underline{T})a(\underline{T})^2 + p(\underline{T})a(\underline{T})b(\underline{T}) + q(\underline{T})a(\underline{T})c(\underline{T}) + r(\underline{T})b(\underline{T})^2 + s(\underline{T})b(\underline{T})c(\underline{T}) + t(\underline{T})c(\underline{T})^2 = 0$$

The implicit equation can be computed as the determinant of a **small** matrix with entries

The implicit equation can be computed as the determinant of a **small** matrix with entries

some moving lines some moving conics some moving cubics

The implicit equation can be computed as the determinant of a **small** matrix with entries

some moving lines some moving conics some moving cubics

the more **singular** the curve, the **simpler** the description of the determinant

The implicit equation of a quartic can be computed as a 2×2 determinant.

The implicit equation of a quartic can be computed as a 2×2 determinant.

If the curve has a triple point, then one row is linear and the other is cubic.

The implicit equation of a quartic can be computed as a 2×2 determinant.

If the curve has a triple point, then one row is linear and the other is cubic.

Otherwise, both rows are quadratic.

A quartic with a triple point

A quartic with a triple point

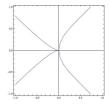
$$\phi(t_0, t_1) = (t_0^4 - t_1^4 : -t_0^2 t_1^2 : t_0 t_1^3)$$

$$F(X_0, X_1, X_2) = X_2^4 - X_1^4 - X_0 X_1 X_2^2$$

A quartic with a triple point

$$\phi(t_0, t_1) = (t_0^4 - t_1^4 : -t_0^2 t_1^2 : t_0 t_1^3)$$

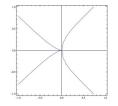
$$F(X_0, X_1, X_2) = X_2^4 - X_1^4 - X_0 X_1 X_2^2$$



A quartic with a triple point

$$\phi(t_0, t_1) = (t_0^4 - t_1^4 : -t_0^2 t_1^2 : t_0 t_1^3)$$

$$F(X_0, X_1, X_2) = X_2^4 - X_1^4 - X_0 X_1 X_2^2$$



$$\mathcal{L}_{1,1}(\underline{T},\underline{X}) = T_0X_2 + T_1X_1
\mathcal{L}_{1,3}(\underline{T},\underline{X}) = T_0(X_1^3 + X_0X_2^2) + T_1X_2^3
\begin{pmatrix} X_2 & X_1 \\ X_1^3 + X_0X_2^2 & X_2^3 \end{pmatrix}$$

A quartic without triple points

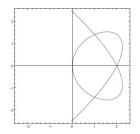
$$\phi(t_0:t_1) = (t_0^4:6t_0^2t_1^2 - 4t_1^4:4t_0^3t_1 - 4t_0t_1^3)$$

$$F(\underline{X}) = X_2^4 + 4X_0X_1^3 + 2X_0X_1X_2^2 - 16X_0^2X_1^2 - 6X_0^2X_2^2 + 16X_0^3X_1$$

A quartic without triple points

$$\phi(t_0:t_1) = (t_0^4:6t_0^2t_1^2 - 4t_1^4:4t_0^3t_1 - 4t_0t_1^3)$$

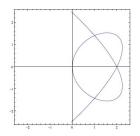
$$F(\underline{X}) = X_2^4 + 4X_0X_1^3 + 2X_0X_1X_2^2 - 16X_0^2X_1^2 - 6X_0^2X_2^2 + 16X_0^3X_1$$



A quartic without triple points

$$\phi(t_0:t_1) = (t_0^4:6t_0^2t_1^2 - 4t_1^4:4t_0^3t_1 - 4t_0t_1^3)$$

$$F(\underline{X}) = X_2^4 + 4X_0X_1^3 + 2X_0X_1X_2^2 - 16X_0^2X_1^2 - 6X_0^2X_2^2 + 16X_0^3X_1$$



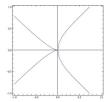
$$\mathcal{L}_{1,2}(\underline{T},\underline{X}) = T_0(X_1X_2 - X_0X_2) + T_1(-X_2^2 - 2X_0X_1 + 4X_0^2)$$

$$\tilde{\mathcal{L}}_{1,2}(\underline{T},\underline{X}) = T_0(X_1^2 + \frac{1}{2}X_2^2 - 2X_0X_1) + T_1(X_0X_2 - X_1X_2)$$



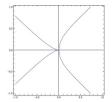
Very concentrated singularities

Very concentrated singularities



If the curve has a point of multiplicity d-1

Very concentrated singularities



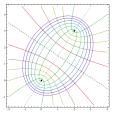
If the curve has a point of multiplicity d-1 the implicit equation is always a 2 \times 2 determinant

$$\left|\begin{array}{cc} \mathcal{L}_{1,1}(\underline{X}) & \mathcal{L}'_{1,1}(\underline{X}) \\ \mathcal{L}_{1,d-1}(\underline{X}) & \mathcal{L}'_{1,d-1}(\underline{X}) \end{array}\right|$$

In general, we do not know..

In general, we do not know..

which moving lines? which moving conics? which moving cubics?



The Rees Algebra associated to the parametrization

Cox, D. The moving curve ideal and the Rees algebra. Theoret. Comput. Sci. 392 (2008), no. 1–3, 23–36

The Rees Algebra associated to the parametrization

Cox, D. The moving curve ideal and the Rees algebra. Theoret. Comput. Sci. 392 (2008), no. 1–3, 23–36

 $\mathcal{K}_{\phi} := \{ \text{Moving curves following } \phi \} =$ homogeneous elements in the kernel of

$$\mathbb{K}[T_0, T_1, X_0, X_1, X_2] \rightarrow \mathbb{K}[T_0, T_1, s]
T_i \mapsto T_i
X_0 \mapsto a(\underline{T})s
X_1 \mapsto b(\underline{T})s
X_2 \mapsto c(T)s$$

The Rees Algebra associated to the parametrization

Cox, D. The moving curve ideal and the Rees algebra. Theoret. Comput. Sci. 392 (2008), no. 1–3, 23–36

 $\mathcal{K}_{\phi} := \{ \text{Moving curves following } \phi \} =$ homogeneous elements in the kernel of

$$\mathbb{K}[T_0, T_1, X_0, X_1, X_2] \rightarrow \mathbb{K}[T_0, T_1, s]
T_i \mapsto T_i
X_0 \mapsto a(\underline{T})s
X_1 \mapsto b(\underline{T})s
X_2 \mapsto c(T)s$$

"The ideal of moving curves following $\phi'' = -990$

The implicit equation should be obtained as the determinant of a matrix with

The implicit equation should be obtained as the determinant of a matrix with

some minimal generators of \mathcal{K}_{ϕ} and relations among them ...

The implicit equation should be obtained as the determinant of a matrix with

some minimal generators of \mathcal{K}_{ϕ} and relations among them \dots

The more singular the curve, the simpler the description of \mathcal{K}_{ϕ}

Compute a minimal system of generators of \mathcal{K}_{ϕ}

Compute a minimal system of generators of \mathcal{K}_{ϕ} for any ϕ

Compute a minimal system of generators of \mathcal{K}_{ϕ} for any ϕ

Known for

- $\mu = 1$ (Hong-Simis-Vasconcelos, Cox-Hoffmann-Wang, Busé, Cortadellas- \mathbf{D})
- $\mu = 2$ (Busé, Cortadellas-**D**, Kustin-Polini-Ulrich)
- $(\mathcal{K}_{\phi})_{(1,2)} \neq 0$ (Cortadellas- D)
- Monomial Parametrizations (Cortadellas-D)

A coarser problem

A coarser problem

Compute $n_0(\mathcal{K}_{\phi})$, the number of minimal generators of \mathcal{K}_{ϕ}

A coarser problem

Compute $n_0(\mathcal{K}_\phi)$, the number of minimal generators of \mathcal{K}_ϕ Show that if ϕ is "more singular" than ϕ' then $n_0(\mathcal{K}_\phi) \leq n_0(\mathcal{K}_{\phi'})$

Example: $\mu = 2$

Example: $\mu = 2$

The curve has either

■ one point of multiplicity d-2 $n_0 = \mathcal{O}\left(\frac{d}{2}\right)$ (Cortadellas-**D**, Kustin-Polini-Ulrich)

Example: $\mu = 2$

The curve has either

• one point of multiplicity d-2 $n_0 = \mathcal{O}\left(\frac{d}{2}\right)$ (Cortadellas-**D**, Kustin-Polini-Ulrich)

or only double points

$$n_0 = \mathcal{O}\left(\frac{d^2}{2}\right)$$
 (Busé)

■ Describe **all** the possible values and parameters of the "function" $n_0(\mathcal{K}_{\phi})$

- Describe **all** the possible values and parameters of the "function" $n_0(\mathcal{K}_{\phi})$
- Does there exist a **generic** value for $n_0(\mathcal{K}_{\phi})$?

- Describe **all** the possible values and parameters of the "function" $n_0(\mathcal{K}_{\phi})$
- Does there exist a **generic** value for $n_0(\mathcal{K}_{\phi})$? Is this the maximal value?

- Describe **all** the possible values and parameters of the "function" $n_0(\mathcal{K}_{\phi})$
- Does there exist a **generic** value for $n_0(\mathcal{K}_{\phi})$? Is this the maximal value?
- In which "regions" is $n_0(\mathcal{K}_{\phi})$ constant?

Breaking News!

Breaking News!

Jeff Madsen

Equations of Rees algebras of ideals in two variables

arXiv:1511.04073

Breaking News!

Jeff Madsen

Equations of Rees algebras of ideals in two variables

arXiv:1511.04073

Gives an algorithm to compute all minimal generators in $\underline{\mathcal{T}}$ -degree larger than or equal to μ

Ongoing Project

(w/Teresa Cortadellas and David Cox)

 Make explicit these generators and their degrees

Ongoing Project

(w/Teresa Cortadellas and David Cox)

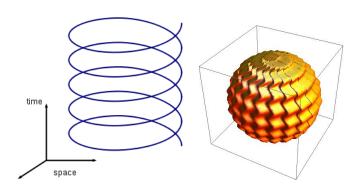
- Make explicit these generators and their degrees
- It seems that $n_0(\mathcal{K}_{\varphi})$ depends on the " μ -type of the μ -basis

Ongoing Project

(w/Teresa Cortadellas and David Cox)

- Make explicit these generators and their degrees
- It seems that $n_0(\mathcal{K}_{\varphi})$ depends on the " μ -type of the μ -basis
- Complete the description to a set of all minimal generators

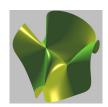
Only curves in the plane?



Rational Surfaces

$$\phi_{S}: \qquad \mathbb{P}^{2} \qquad \longrightarrow \quad \mathbb{P}^{3}$$

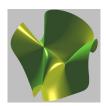
$$\underline{t} = (t_{0}: t_{1}: t_{2}) \longmapsto (a(\underline{t}): b(\underline{t}): c(\underline{t}): d(\underline{t}))$$



Rational Surfaces

$$\phi_{S}: \qquad \mathbb{P}^{2} \qquad \longrightarrow \quad \mathbb{P}^{3}$$

$$\underline{t} = (t_{0}: t_{1}: t_{2}) \longmapsto (a(\underline{t}): b(\underline{t}): c(\underline{t}): d(\underline{t}))$$



There are base points!

Resultants Macaulay, Dixon, Gelfand-Kapranov-Zelevinskii, ...

- Resultants Macaulay, Dixon, Gelfand-Kapranov-Zelevinskii, ...
- Determinants of complexes Botbol, Busé, Chardin, Jouanlou, ...

- Resultants Macaulay, Dixon, Gelfand-Kapranov-Zelevinskii, ...
- Determinants of complexes Botbol, Busé, Chardin, Jouanlou, ...
- Representation matrices Botbol, Busé, Chardin, Dickenstein, ...

- Resultants Macaulay, Dixon, Gelfand-Kapranov-Zelevinskii, ...
- Determinants of complexes Botbol, Busé, Chardin, Jouanlou, ...
- Representation matrices Botbol, Busé, Chardin, Dickenstein, ...

(Sederberg-Chen, Cox-Goldman-Zhang, Busé-Cox, **D**, **D**-Khetan)

(Sederberg-Chen, Cox-Goldman-Zhang, Busé-Cox, **D**, **D**-Khetan)

Contrast:

■ The module of moving planes is not free

(Sederberg-Chen, Cox-Goldman-Zhang, Busé-Cox, **D**, **D**-Khetan)

Contrast:

- The module of moving planes is not free
- There is a concept of μ -basis given by Chen-Cox-Liu

Not easy to compute

Implicitization

Implicitization

Quadratic and cubic surfaces (Chen-Shen-Deng)

Implicitization

- Quadratic and cubic surfaces (Chen-Shen-Deng)
- Steiner surfaces (Wang-Chen)

Implicitization

- Quadratic and cubic surfaces (Chen-Shen-Deng)
- Steiner surfaces (Wang-Chen)
- Revolution surfaces (Shi-Goldman)
-

Implicitization

- Quadratic and cubic surfaces (Chen-Shen-Deng)
- Steiner surfaces (Wang-Chen)
- Revolution surfaces (Shi-Goldman)
- **.** . . .

Rees Algebras

Implicitization

- Quadratic and cubic surfaces (Chen-Shen-Deng)
- Steiner surfaces (Wang-Chen)
- Revolution surfaces (Shi-Goldman)
-

Rees Algebras

■ "Monoid" Surfaces (Cortadellas - D)

Implicitization

- Quadratic and cubic surfaces (Chen-Shen-Deng)
- Steiner surfaces (Wang-Chen)
- Revolution surfaces (Shi-Goldman)
- **.** . . .

Rees Algebras

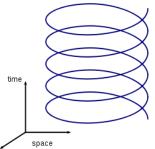
- "Monoid" Surfaces (Cortadellas D)
- de Jonquières surfaces (Hassanzadeh- Simis)

Similar Results for

Spatial curves

$$\phi_C: \qquad \mathbb{P}^1 \qquad \dashrightarrow \quad \mathbb{P}^3$$

$$\underline{t} = (t_0: t_1) \quad \longmapsto \quad (a(\underline{t}): b(\underline{t}): c(\underline{t}): d(\underline{t}))$$



ARCADES

Algebraic Representations in Computer-Aided Design for complEx Shapes

Marie Sklodowska-Curie European Training Network, 2016 – 2019

ATHENA Research & Innovation Center, U. Barcelona, INRIA, J. Kepler U. Linz, SINTEF, U. Strathclyde, T.U. Wien, Evolute GmbH

13 Open Phd Positions (2016)

```
http://erga.di.uoa.gr/projects/main.html#arcades
(emiris@athena-innovation.gr)
```

Thanks!

