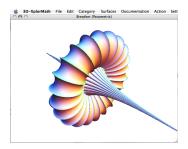
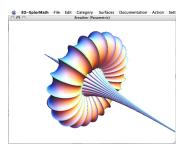
Relating geometric singularities of parametric curves and surfaces with algebraic moving ideals

Carlos D'Andrea

ARCADES Workshop

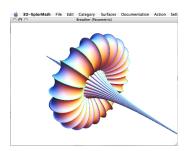






■ Affine Geometry

- Affine Geometry
- Projective Geometry



- Affine Geometry
- Projective Geometry
- Real Topology

Geometry \leftrightarrow Algebra

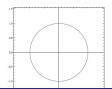
Geometry \leftrightarrow Algebra

Parametric and Implicit representations of curves and surfaces

Geometry \leftrightarrow Algebra

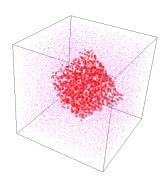
Parametric and Implicit representations of curves and surfaces

$$\begin{array}{ccc}
\mathbb{R} & \to & \mathbb{R}^2 \\
t & \longmapsto & \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right) & x^2 + y^2 - 1 = 0
\end{array}$$



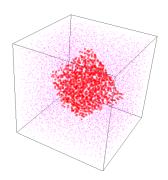
Implicit and parametric forms

Implicit and parametric forms



■ Parametric: "plot" points

Implicit and parametric forms

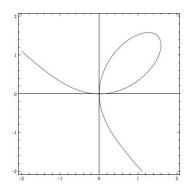


- <u>Parametric:</u> "plot" points
- Implicit: "split" regions

Our Project..

Our Project..

implicitization of curves and surfaces



From affine to projective

$$\mathbb{K} \longrightarrow \mathbb{K}^2$$

$$t \longmapsto \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right)$$

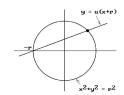
From affine to projective

$$\mathbb{K} \xrightarrow{--} \mathbb{K}^2$$

$$t \longmapsto \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right)$$

$$\phi: \mathbb{P}^1 \longrightarrow \mathbb{P}^2$$

$$(t_0:t_1) \longmapsto (t_0^2 + t_1^2:t_0^2 - t_1^2:2t_0t_1)$$



Sylvester's resultant

$$X_2 a(\underline{T}) - X_0 c(\underline{T}) = X_2 T_0^2 - 2X_0 T_0 T_1 + X_2 T_1^2$$

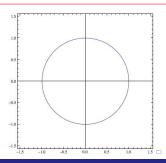
$$X_2 b(\underline{T}) - X_1 c(\underline{T}) = X_2 T_0^2 - 2X_1 T_0 T_1 - X_2 T_1^2$$

$$\operatorname{Res}_{\underline{T}}(X_2 \cdot a(\underline{T}) - X_0 \cdot c(\underline{T}), X_2 \cdot b(\underline{T}) - X_1 \cdot c(\underline{T})) = \\ \det \begin{pmatrix} X_2 & -2X_0 & X_2 & 0 \\ 0 & X_2 & -2X_0 & X_2 \\ X_2 & -2X_1 & -X_2 & 0 \\ 0 & X_2 & -2X_1 & -X_2 \end{pmatrix}$$

From parametric to implicit

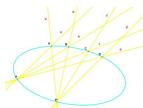
From parametric to implicit

$$\operatorname{Res}_{\underline{T}}(X_2 \cdot a(\underline{T}) - X_0 \cdot c(\underline{T}), X_2 \cdot b(\underline{T}) - X_1 \cdot c(\underline{T})) = \\ -4X_2^2(X_0^2 - X_1^2 - X_2^2)$$



Moving lines

$$\mathcal{L}(T_0, T_1, X_0, X_1, X_2) = v_0(\underline{T})X_0 + v_1(\underline{T})X_1 + v_2(\underline{T})X_2$$
such that
$$\mathcal{L}(T_0, T_1, a(\underline{T}), b(\underline{T}), c(\underline{T})) = 0$$



In our example...

$$\mathcal{L}_{1}(\underline{T}, \underline{X}) = -2T_{0}^{2}T_{1}X_{0} + 0X_{1} + (T_{0}^{3} + T_{0}T_{1}^{2})X_{2}$$

$$\mathcal{L}_{2}(\underline{T}, \underline{X}) = -2T_{0}T_{1}^{2}X_{0} + 0X_{1} + (T_{0}^{2}T_{1} + T_{1}^{3})X_{2}$$

$$\mathcal{L}_{3}(\underline{T}, \underline{X}) = 0X_{0} - 2T_{0}^{2}T_{1}X_{1} + (T_{0}^{3} - T_{0}T_{1}^{2})X_{2}$$

$$\mathcal{L}_{4}(\underline{T}, \underline{X}) = 0X_{0} - 2T_{0}T_{1}^{2}X_{1} + (T_{0}^{2}T_{1} - T_{1}^{3})X_{2}$$

In our example...

$$\mathcal{L}_{1}(\underline{T}, \underline{X}) = -2T_{0}^{2}T_{1}X_{0} + 0X_{1} + (T_{0}^{3} + T_{0}T_{1}^{2})X_{2}
\mathcal{L}_{2}(\underline{T}, \underline{X}) = -2T_{0}T_{1}^{2}X_{0} + 0X_{1} + (T_{0}^{2}T_{1} + T_{1}^{3})X_{2}
\mathcal{L}_{3}(\underline{T}, \underline{X}) = 0X_{0} - 2T_{0}^{2}T_{1}X_{1} + (T_{0}^{3} - T_{0}T_{1}^{2})X_{2}
\mathcal{L}_{4}(\underline{T}, \underline{X}) = 0X_{0} - 2T_{0}T_{1}^{2}X_{1} + (T_{0}^{2}T_{1} - T_{1}^{3})X_{2}
\begin{pmatrix} X_{2} & -2X_{0} & X_{2} & 0 \\ 0 & X_{2} & -2X_{0} & X_{2} \\ X_{2} & -2X_{1} & -X_{2} & 0 \\ 0 & X_{2} & -2X_{1} & -X_{2} \end{pmatrix}$$

In general

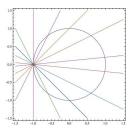
The determinant of a "matrix of moving lines" is a multiple of the implicit equation

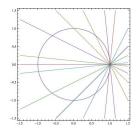
$$\begin{pmatrix} L_{11}(\underline{X}) & L_{12}(\underline{X}) & \dots & L_{1k}(\underline{X}) \\ L_{21}(\underline{X}) & L_{22}(\underline{X}) & \dots & L_{2k}(\underline{X}) \\ \vdots & \vdots & \dots & \vdots \\ L_{k1}(\underline{X}) & L_{k2}(\underline{X}) & \dots & L_{kk}(\underline{X}) \end{pmatrix}$$

How small can the matrix be?

$$\mathcal{L}_{1,1}(\underline{T},\underline{X}) = X_2 \quad T_0 \quad -(X_0 + X_1) \quad T_1 \\ \mathcal{L}'_{1,1}(\underline{T},\underline{X}) = (-X_0 + X_1) \quad T_0 \quad +X_2 \quad T_1$$

How small can the matrix be?





$$\det \begin{pmatrix} X_2 & -X_0 - X_1 \\ -X_0 + X_1 & X_2 \end{pmatrix} = X_1^2 + X_2^2 - X_0^2$$

The (free) module of moving lines

(Hilbert (1890) There exists $\mu \leq \frac{d}{2}$ and $\mathcal{P}_{\mu}(\underline{T},\underline{X}),\ \mathcal{Q}_{d-\mu}(\underline{T},\underline{X})$ moving lines following ϕ such that any other $\mathcal{L}_{\delta}(\underline{T},\underline{X})$ following ϕ is of the form

$$p_{\delta-\mu}(\underline{T})\mathcal{P}_{\mu}(\underline{T},\underline{X}) + q_{\delta-d+\mu}(\underline{T})\mathcal{P}_{d-\mu}(\underline{T},\underline{X})$$

Why do we care about these bases

Why do we care about these bases

Implicit equation

 $= \operatorname{\mathsf{Res}}_{\underline{\mathcal{T}}} \big(\mathcal{P}_{\mu}(\underline{\mathcal{T}}, \underline{X}), \ \mathcal{Q}_{d-\mu}(\underline{\mathcal{T}}, \underline{X}) \big)$

Why do we care about these bases

Implicit equation

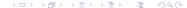
 $\operatorname{\mathsf{Res}}_{\underline{\mathcal{T}}}\big(\mathcal{P}_{\mu}(\underline{\mathcal{T}},\underline{X}),\;\mathcal{Q}_{d-\mu}(\underline{\mathcal{T}},\underline{X})\big)$

Busé-D (2012)

If B is a Bézout matrix, and S one of Sylester type, then

$$X_2 S(\mathcal{P}_{\mu}(\underline{T}, \underline{X}), \mathcal{Q}_{d-\mu}(\underline{T}, \underline{X})) = M \cdot B(aX_2 - cX_0, bX_2 - cX_1),$$

with $M \in \mathbb{K}^{d \times d}$ invertible



Moving conics, moving cubics,...

Moving conics, moving cubics,...

$$o(\underline{T})X_0^2 + p(\underline{T})X_0X_1 + q(\underline{T})X_0X_2 + r(\underline{T})X_1^2 + s(\underline{T})X_1X_2 + t(\underline{T})X_2^2$$

is a moving conic following the parametrization if

Moving conics, moving cubics,...

The implicit equation can be computed as the determinant of a **small** matrix with entries

The implicit equation can be computed as the determinant of a **small** matrix with entries

some moving lines some moving conics some moving cubics

The implicit equation can be computed as the determinant of a **small** matrix with entries

some moving lines some moving conics some moving cubics

the more **singular** the curve, the **simpler** the description of the determinant

Example (Sederberg & Chen 1995)

Example (Sederberg & Chen 1995)

The implicit equation of a quartic can be computed as a 2×2 determinant.

Example (Sederberg & Chen 1995)

The implicit equation of a quartic can be computed as a 2×2 determinant.

If the curve has a triple point, then one row is linear and the other is cubic

Example (Sederberg & Chen 1995)

The implicit equation of a quartic can be computed as a 2×2 determinant.

If the curve has a triple point, then one row is linear and the other is cubic.

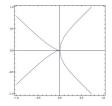
Otherwise, both rows are quadratic.

$$\phi(t_0, t_1) = (t_0^4 - t_1^4 : -t_0^2 t_1^2 : t_0 t_1^3)$$

$$F(X_0, X_1, X_2) = X_2^4 - X_1^4 - X_0 X_1 X_2^2$$

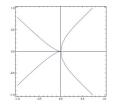
$$\phi(t_0, t_1) = (t_0^4 - t_1^4 : -t_0^2 t_1^2 : t_0 t_1^3)$$

$$F(X_0, X_1, X_2) = X_2^4 - X_1^4 - X_0 X_1 X_2^2$$



$$\phi(t_0, t_1) = (t_0^4 - t_1^4 : -t_0^2 t_1^2 : t_0 t_1^3)$$

$$F(X_0, X_1, X_2) = X_2^4 - X_1^4 - X_0 X_1 X_2^2$$



$$\mathcal{L}_{1,1}(\underline{T},\underline{X}) = T_0X_2 + T_1X_1
\mathcal{L}_{1,3}(\underline{T},\underline{X}) = T_0(X_1^3 + X_0X_2^2) + T_1X_2^3
\begin{pmatrix} X_2 & X_1 \\ X_1^3 + X_0X_2^2 & X_2^3 \end{pmatrix}$$

A quartic without triple points

$$\phi(t_0:t_1) = (t_0^4:6t_0^2t_1^2 - 4t_1^4:4t_0^3t_1 - 4t_0t_1^3)$$

$$F(\underline{X}) = X_2^4 + 4X_0X_1^3 + 2X_0X_1X_2^2 - 16X_0^2X_1^2 - 6X_0^2X_2^2 + 16X_0^3X_1$$

A quartic without triple points

$$\phi(t_0:t_1) = (t_0^4:6t_0^2t_1^2 - 4t_1^4:4t_0^3t_1 - 4t_0t_1^3)$$

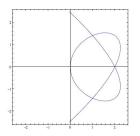
$$F(\underline{X}) = X_2^4 + 4X_0X_1^3 + 2X_0X_1X_2^2 - 16X_0^2X_1^2 - 6X_0^2X_2^2 + 16X_0^3X_1$$



A quartic without triple points

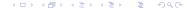
$$\phi(t_0:t_1) = (t_0^4:6t_0^2t_1^2 - 4t_1^4:4t_0^3t_1 - 4t_0t_1^3)$$

$$F(\underline{X}) = X_2^4 + 4X_0X_1^3 + 2X_0X_1X_2^2 - 16X_0^2X_1^2 - 6X_0^2X_2^2 + 16X_0^3X_1$$



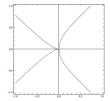
$$\mathcal{L}_{1,2}(\underline{T},\underline{X}) = T_0(X_1X_2 - X_0X_2) + T_1(-X_2^2 - 2X_0X_1 + 4X_0^2)$$

$$\tilde{\mathcal{L}}_{1,2}(\underline{T},\underline{X}) = T_0(X_1^2 + \frac{1}{2}X_2^2 - 2X_0X_1) + T_1(X_0X_2 - X_1X_2)$$



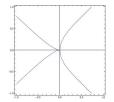
Very concentrated singularities

Very concentrated singularities



If the curve has a point of multiplicity d-1

Very concentrated singularities



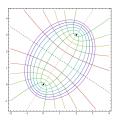
If the curve has a point of multiplicity d-1 the implicit equation is always a 2 \times 2 determinant

$$\left|\begin{array}{cc} \mathcal{L}_{1,1}(\underline{X}) & \mathcal{L}'_{1,1}(\underline{X}) \\ \mathcal{L}_{1,d-1}(\underline{X}) & \mathcal{L}'_{1,d-1}(\underline{X}) \end{array}\right|$$

In general, we do not know..

In general, we do not know..

which moving lines? which moving conics? which moving cubics?



The Rees Algebra associated to the parametrization

Cox, D. The moving curve ideal and the Rees algebra. Theoret. Comput. Sci. 392 (2008), no. 1–3, 23–36

The Rees Algebra associated to the parametrization

Cox, D. The moving curve ideal and the Rees algebra. Theoret. Comput. Sci. 392 (2008), no. 1–3, 23–36

 $\mathcal{K}_{\phi} := \{ \text{Moving curves following } \phi \} =$ homogeneous elements in the kernel of

$$\mathbb{K}[T_0, T_1, X_0, X_1, X_2] \rightarrow \mathbb{K}[T_0, T_1, s]
T_i \mapsto T_i
X_0 \mapsto a(\underline{T})s
X_1 \mapsto b(\underline{T})s
X_2 \mapsto c(T)s$$

The Rees Algebra associated to the parametrization

Cox, D. The moving curve ideal and the Rees algebra. Theoret. Comput. Sci. 392 (2008), no. 1–3, 23–36

 $\mathcal{K}_{\phi} := \{ \text{Moving curves following } \phi \} =$ homogeneous elements in the kernel of

$$\mathbb{K}[T_0, T_1, X_0, X_1, X_2] \rightarrow \mathbb{K}[T_0, T_1, s]$$

$$T_i \mapsto T_i$$

$$X_0 \mapsto a(\underline{T})s$$

$$X_1 \mapsto b(\underline{T})s$$

$$X_2 \mapsto c(T)s$$

"The ideal of moving curves following * \document{\pi'} \tag{\pi} \tag{\pi}

The implicit equation should be obtained as the determinant of a matrix with

The implicit equation should be obtained as the determinant of a matrix with

some minimal generators of \mathcal{K}_{ϕ} and relations among them ...

The implicit equation should be obtained as the determinant of a matrix with

some minimal generators of \mathcal{K}_{ϕ} and relations among them \dots

The more singular the curve, the simpler the description of \mathcal{K}_{ϕ}

Compute a minimal system of generators of \mathcal{K}_{ϕ}

Compute a minimal system of generators of \mathcal{K}_{ϕ} for **any** ϕ

Compute a minimal system of generators of \mathcal{K}_{ϕ} for any ϕ

Known for

- $\mu = 1$ (Hong-Simis-Vasconcelos, Cox-Hoffmann-Wang, Busé, Cortadellas-**D**)
- $\mu = 2$ (Busé, Cortadellas-**D**, Kustin-Polini-Ulrich)
- $(\mathcal{K}_{\phi})_{(1,2)} \neq 0$ (Cortadellas- **D**)
- Monomial Parametrizations (Cortadellas-D)

A coarser problem

A coarser problem

Compute $n_0(\mathcal{K}_{\phi})$, the number of minimal generators of \mathcal{K}_{ϕ}

A coarser problem

Compute $n_0(\mathcal{K}_{\phi})$, the number of minimal generators of \mathcal{K}_{ϕ} Show that if ϕ is "more singular" than ϕ' then $n_0(\mathcal{K}_{\phi}) \leq n_0(\mathcal{K}_{\phi'})$

Example: $\mu = 2$

Example: $\mu = 2$

The curve has either

■ one point of multiplicity d-2 $n_0 = \mathcal{O}\left(\frac{d}{2}\right)$ (Cortadellas-**D**, Kustin-Polini-Ulrich)

Example: $\mu = 2$

The curve has either

• one point of multiplicity d-2

$$n_0 = \mathcal{O}\left(\frac{d}{2}\right)$$
 (Cortadellas-**D**, Kustin-Polini-Ulrich)

or only double points

$$n_0 = \mathcal{O}\left(\frac{d^2}{2}\right)$$
 (Busé)

■ Describe **all** the possible values and parameters of the "function" $n_0(\mathcal{K}_{\phi})$

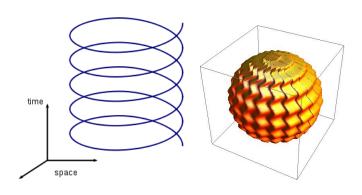
- Describe **all** the possible values and parameters of the "function" $n_0(\mathcal{K}_{\phi})$
- Does there exist a **generic** value for $n_0(\mathcal{K}_{\phi})$?

- Describe **all** the possible values and parameters of the "function" $n_0(\mathcal{K}_{\phi})$
- Does there exist a **generic** value for $n_0(\mathcal{K}_{\phi})$? Is this the maximal value?

Other problems

- Describe **all** the possible values and parameters of the "function" $n_0(\mathcal{K}_{\phi})$
- Does there exist a **generic** value for $n_0(\mathcal{K}_{\phi})$? Is this the maximal value?
- In which "regions" is $n_0(\mathcal{K}_{\phi})$ constant?

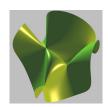
Only curves in the plane?



Rational Surfaces

$$\phi_S: \qquad \mathbb{P}^2 \qquad \dashrightarrow \quad \mathbb{P}^3$$

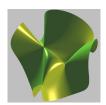
$$\underline{t} = (t_0: t_1: t_2) \longmapsto (a(\underline{t}): b(\underline{t}): c(\underline{t}): d(\underline{t}))$$



Rational Surfaces

$$\phi_{S}: \qquad \mathbb{P}^{2} \qquad \longrightarrow \quad \mathbb{P}^{3}$$

$$\underline{t} = (t_{0}: t_{1}: t_{2}) \longmapsto (a(\underline{t}): b(\underline{t}): c(\underline{t}): d(\underline{t}))$$



There are base points!

■ Resultants Macaulay, Dixon, Gelfand-Kapranov-Zelevinskii, ...

- Resultants Macaulay, Dixon, Gelfand-Kapranov-Zelevinskii, ...
- Determinants of complexes Botbol, Busé, Chardin, Jouanlou, ...

- Resultants Macaulay, Dixon, Gelfand-Kapranov-Zelevinskii, ...
- Determinants of complexes Botbol, Busé, Chardin, Jouanlou, ...
- Representation matrices Botbol, Busé, Chardin, Dickenstein, ...

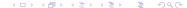
- Resultants Macaulay, Dixon, Gelfand-Kapranov-Zelevinskii, ...
- Determinants of complexes Botbol, Busé, Chardin, Jouanlou, ...
- Representation matrices Botbol, Busé, Chardin, Dickenstein, ...

(Sederberg-Chen, Cox-Goldman-Zhang, Busé-Cox, **D**, **D**-Khetan)

(Sederberg-Chen, Cox-Goldman-Zhang, Busé-Cox, **D**, **D**-Khetan)

Contrast:

■ The module of moving planes is not free



(Sederberg-Chen, Cox-Goldman-Zhang, Busé-Cox, **D**, **D**-Khetan)

Contrast:

- The module of moving planes is not free
- There is a concept of μ -basis given by Chen-Cox-Liu

Not easy to compute

Implicitization

Implicitization

Quadratic and cubic surfaces (Chen-Shen-Deng)

Implicitization

- Quadratic and cubic surfaces (Chen-Shen-Deng)
- Steiner surfaces (Wang-Chen)

Implicitization

- Quadratic and cubic surfaces (Chen-Shen-Deng)
- Steiner surfaces (Wang-Chen)
- Revolution surfaces (Shi-Goldman)
- **.** . . .

Implicitization

- Quadratic and cubic surfaces (Chen-Shen-Deng)
- Steiner surfaces (Wang-Chen)
- Revolution surfaces (Shi-Goldman)
-

Rees Algebras

Implicitization

- Quadratic and cubic surfaces (Chen-Shen-Deng)
- Steiner surfaces (Wang-Chen)
- Revolution surfaces (Shi-Goldman)
-

Rees Algebras

■ "Monoid" Surfaces (Cortadellas - D)

Implicitization

- Quadratic and cubic surfaces (Chen-Shen-Deng)
- Steiner surfaces (Wang-Chen)
- Revolution surfaces (Shi-Goldman)
- **.** . . .

Rees Algebras

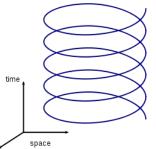
- "Monoid" Surfaces (Cortadellas D)
- de Jonquières surfaces (Hassanzadeh- Simis)

Similar Results for

Spatial curves

$$\phi_C: \qquad \mathbb{P}^1 \qquad \dashrightarrow \quad \mathbb{P}^3$$

$$\underline{t} = (t_0: t_1) \quad \longmapsto \quad (a(\underline{t}): b(\underline{t}): c(\underline{t}): d(\underline{t}))$$



Thanks!

