On minimal generators of the ideal of moving curves following a rational plane parametrization

Carlos D'Andrea

Computational Algebra and Geometric Modeling
Oaxaca, August 2016

Rational Plane Parametrizations

$$\mathbb{K} \longrightarrow \mathbb{K}^2$$

$$t \longmapsto \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right)$$

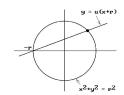
Rational Plane Parametrizations

$$\mathbb{K} \xrightarrow{--} \mathbb{K}^2$$

$$t \longmapsto \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right)$$

$$\phi: \quad \mathbb{P}^1 \quad \longrightarrow \quad \mathbb{P}^2$$

$$(t_0:t_1) \quad \longmapsto \quad (t_0^2+t_1^2:t_0^2-t_1^2:2t_0t_1)$$



Parametrization of Plane Curves

$$\phi: \mathbb{P}^1 \to \mathbb{P}^2 \ (t_0:t_1) \mapsto (a(t_0,t_1):b(t_0,t_1):c(t_0,t_1))$$

- **a**, b, $c \in \mathbb{K}[T_0, T_1]$, homogeneous of the same degree $d \ge 1$
- \blacksquare gcd(a, b, c) = 1

The image of ϕ is a **rational plane curve**

The image of ϕ is a **rational plane curve**

■ It has degree d if ϕ is "generically" injective

The image of ϕ is a **rational plane curve**

- It has degree d if ϕ is "generically" injective
- It has genus 0, which means the maximal number of multiple points $\frac{(d-1)(d-2)}{2}$

The image of ϕ is a **rational plane curve**

- It has degree d if ϕ is "generically" injective
- It has genus 0, which means the maximal number of multiple points $\frac{(d-1)(d-2)}{2}$
- Computing its implicit equation is relatively easy from ϕ

Sylvester's resultant

$$X_2 a(\underline{T}) - X_0 c(\underline{T}) = X_2 T_0^2 - 2X_0 T_0 T_1 + X_2 T_1^2$$

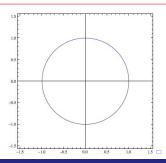
$$X_2 b(\underline{T}) - X_1 c(\underline{T}) = X_2 T_0^2 - 2X_1 T_0 T_1 - X_2 T_1^2$$

$$\operatorname{Res}_{\underline{T}}(X_2 \cdot a(\underline{T}) - X_0 \cdot c(\underline{T}), X_2 \cdot b(\underline{T}) - X_1 \cdot c(\underline{T})) = \\ \det \begin{pmatrix} X_2 & -2X_0 & X_2 & 0 \\ 0 & X_2 & -2X_0 & X_2 \\ X_2 & -2X_1 & -X_2 & 0 \\ 0 & X_2 & -2X_1 & -X_2 \end{pmatrix}$$

From parametric to implicit

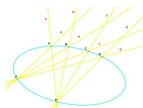
From parametric to implicit

$$\operatorname{Res}_{\underline{T}}(X_2 \cdot a(\underline{T}) - X_0 \cdot c(\underline{T}), X_2 \cdot b(\underline{T}) - X_1 \cdot c(\underline{T})) = \\ -4X_2^2(X_0^2 - X_1^2 - X_2^2)$$



Moving lines

$$\mathcal{L}(T_0, T_1, X_0, X_1, X_2) = v_0(\underline{T})X_0 + v_1(\underline{T})X_1 + v_2(\underline{T})X_2$$
such that
$$\mathcal{L}(T_0, T_1, a(\underline{T}), b(\underline{T}), c(\underline{T})) = 0$$



In our example...

$$\mathcal{L}_{1}(\underline{T}, \underline{X}) = -2T_{0}^{2}T_{1}X_{0} + 0X_{1} + (T_{0}^{3} + T_{0}T_{1}^{2})X_{2}$$

$$\mathcal{L}_{2}(\underline{T}, \underline{X}) = -2T_{0}T_{1}^{2}X_{0} + 0X_{1} + (T_{0}^{2}T_{1} + T_{1}^{3})X_{2}$$

$$\mathcal{L}_{3}(\underline{T}, \underline{X}) = 0X_{0} - 2T_{0}^{2}T_{1}X_{1} + (T_{0}^{3} - T_{0}T_{1}^{2})X_{2}$$

$$\mathcal{L}_{4}(\underline{T}, \underline{X}) = 0X_{0} - 2T_{0}T_{1}^{2}X_{1} + (T_{0}^{2}T_{1} - T_{1}^{3})X_{2}$$

In our example...

$$\mathcal{L}_{1}(\underline{T}, \underline{X}) = -2T_{0}^{2}T_{1}X_{0} + 0X_{1} + (T_{0}^{3} + T_{0}T_{1}^{2})X_{2}$$

$$\mathcal{L}_{2}(\underline{T}, \underline{X}) = -2T_{0}T_{1}^{2}X_{0} + 0X_{1} + (T_{0}^{2}T_{1} + T_{1}^{3})X_{2}$$

$$\mathcal{L}_{3}(\underline{T}, \underline{X}) = 0X_{0} - 2T_{0}^{2}T_{1}X_{1} + (T_{0}^{3} - T_{0}T_{1}^{2})X_{2}$$

$$\mathcal{L}_{4}(\underline{T}, \underline{X}) = 0X_{0} - 2T_{0}T_{1}^{2}X_{1} + (T_{0}^{2}T_{1} - T_{1}^{3})X_{2}$$

$$\begin{pmatrix} X_{2} & -2X_{0} & X_{2} & 0\\ 0 & X_{2} & -2X_{0} & X_{2}\\ X_{2} & -2X_{1} & -X_{2} & 0\\ 0 & X_{2} & -2X_{1} & -X_{2} \end{pmatrix}$$

In general

The determinant of a "matrix of moving lines" is a multiple of the implicit equation

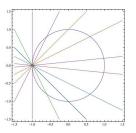
$$\begin{pmatrix} L_{11}(\underline{X}) & L_{12}(\underline{X}) & \dots & L_{1k}(\underline{X}) \\ L_{21}(\underline{X}) & L_{22}(\underline{X}) & \dots & L_{2k}(\underline{X}) \\ \vdots & \vdots & \dots & \vdots \\ L_{k1}(\underline{X}) & L_{k2}(\underline{X}) & \dots & L_{kk}(\underline{X}) \end{pmatrix}$$

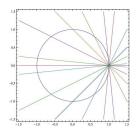
How small can the matrix be?

$$\mathcal{L}_{1,1}(\underline{T},\underline{X}) = X_2 \quad T_0 \quad -(X_0 + X_1) \quad T_1 \\ \mathcal{L}'_{1,1}(\underline{T},\underline{X}) = (-X_0 + X_1) \quad T_0 \quad +X_2 \quad T_1$$

How small can the matrix be?

$$\begin{array}{lllll} \mathcal{L}_{1,1}(\underline{T},\underline{X}) & = & X_2 & T_0 & -(X_0+X_1) & T_1 \\ \mathcal{L}'_{1,1}(\underline{T},\underline{X}) & = & (-X_0+X_1) & T_0 & +X_2 & T_1 \end{array}$$





$$\det \begin{pmatrix} X_2 & -X_0 - X_1 \\ -X_0 + X_1 & X_2 \end{pmatrix} = X_1^2 + X_2^2 - X_0^2$$

The (free) module of moving lines

(Hilbert (1890) There exists $\mu \leq \frac{d}{2}$ and $p_{\mu}(\underline{T},\underline{X}), q_{d-\mu}(\underline{T},\underline{X})$ moving lines following ϕ such

 $(p_{\mu}(\underline{I},\underline{X}),\ q_{d-\mu}(\underline{I},\underline{X})$ moving lines following ϕ such that any other $r_{\delta}(\underline{T},\underline{X})$ following ϕ is of the form

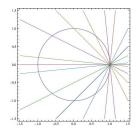
$$\mathcal{P}_{\delta-\mu}(\underline{T})p_{\mu}(\underline{T},\underline{X}) + \mathcal{Q}_{\delta-d+\mu}(\underline{T})q_{d-\mu}(\underline{T},\underline{X})$$

Geometric version

There exist $\mu \leq \frac{d}{2}$ and two other parametrizations $\varphi_{\mu}(t_0, t_1), \, \psi_{d-\mu}(t_0, t_1)$ of degrees $\mu, \, d-\mu$ such that

$$\phi(t_0,t_1)=\varphi_{\mu}(t_0,t_1)\wedge\psi_{d-\mu}(t_0,t_1)$$





For the unit circle...

For the unit circle...

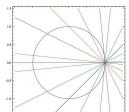
$$\varphi_1(t_0:t_1) = (-t_1:-t_1:t_0)
\psi_1(t_0:t_1) = (-t_0:t_0:t_1)$$

For the unit circle...

$$\varphi_1(t_0:t_1) = (-t_1:-t_1:t_0)
\psi_1(t_0:t_1) = (-t_0:t_0:t_1)$$

$$\begin{vmatrix} \mathbf{e}_0 & \mathbf{e}_1 & \mathbf{e}_2 \\ -t_1 & -t_1 & t_0 \\ -t_0 & t_0 & t_1 \end{vmatrix} = \left(-t_0^2 - t_1^2, t_1^2 - t_0^2, -2t_0t_1 \right)$$





Hilbert's Syzygy Theorem

Hilbert's Syzygy Theorem

The homogeneous ideal $I = (a(\underline{T}), b(\underline{T}), c(\underline{T})) \subset \mathbb{K}[T_0, T_1]$ has a **Hilbert-Burch resolution** of the type

$$0 \to \mathbb{K}[\underline{T}]^2 \stackrel{(\varphi_{\mu}, \psi_{d-\mu})^{\mathbf{t}}}{\longrightarrow} \mathbb{K}[\underline{T}]^3 \stackrel{(a,b,c)}{\longrightarrow} \mathbb{K}[\underline{T}]$$

Hilbert's Syzygy Theorem

The homogeneous ideal $I = (a(\underline{T}), b(\underline{T}), c(\underline{T})) \subset \mathbb{K}[T_0, T_1]$ has a **Hilbert-Burch resolution** of the type

$$0 \to \mathbb{K}[\underline{T}]^2 \stackrel{(\varphi_{\mu}, \psi_{d-\mu})^{\mathbf{t}}}{\longrightarrow} \mathbb{K}[\underline{T}]^3 \stackrel{(a,b,c)}{\longrightarrow} \mathbb{K}[\underline{T}]$$

A μ -basis of the parametrization is a basis of $\operatorname{Syz}(I)$ as a $\mathbb{K}[\underline{T}]$ -module

Why do we care about μ -bases?

Why do we care about μ -bases?

Implicit equation

 $= \operatorname{\mathsf{Res}}_{\underline{T}} ig(p_{\mu}(\underline{T}, \underline{X}), \ q_{d-\mu}(\underline{T}, \underline{X}) ig)$

Why do we care about μ -bases?

Implicit equation

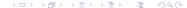
$$= \operatorname{Res}_{\underline{T}} \left(p_{\mu}(\underline{T}, \underline{X}), \ q_{d-\mu}(\underline{T}, \underline{X}) \right)$$

Busé-D (2012)

If B is a Bézout matrix, and S one of Sylester type, then

$$X_2 S(p_{\mu}(\underline{T},\underline{X}), q_{d-\mu}(\underline{T},\underline{X})) = M \cdot B(aX_2 - cX_0, bX_2 - cX_1),$$

with $M \in \mathbb{K}^{d \times d}$ invertible



Moving conics, moving cubics,...

Moving conics, moving cubics,...

$$\mathcal{O}(\underline{T})X_0^2 + \mathcal{P}(\underline{T})X_0X_1 + \mathcal{Q}(\underline{T})X_0X_2 + \mathcal{R}(\underline{T})X_1^2 + \mathcal{S}(\underline{T})X_1X_2 + \mathcal{T}(\underline{T})X_2^2 \in \mathbb{K}[\underline{T},\underline{X}]$$

is a moving conic following the parametrization if

Moving conics, moving cubics,...

$$\mathcal{O}(\underline{T})X_0^2 + \mathcal{P}(\underline{T})X_0X_1 + \mathcal{Q}(\underline{T})X_0X_2 + \mathcal{R}(\underline{T})X_1^2 + \mathcal{S}(\underline{T})X_1X_2 + \mathcal{T}(\underline{T})X_2^2 \in \mathbb{K}[\underline{T},\underline{X}]$$
 is a **moving conic** following the parametrization if
$$\mathcal{O}(\underline{T})a(\underline{T})^2 + \mathcal{P}(\underline{T})a(\underline{T})b(\underline{T}) + \mathcal{Q}(\underline{T})a(\underline{T})c(\underline{T}) + \mathcal{R}(\underline{T})b(\underline{T})^2 + \mathcal{S}(\underline{T})b(\underline{T})c(\underline{T}) + \mathcal{T}(\underline{T})c(\underline{T})^2 = 0$$

The implicit equation can be computed as the determinant of a **small** matrix with entries

The implicit equation can be computed as the determinant of a **small** matrix with entries

some moving lines some moving conics some moving cubics

The implicit equation can be computed as the determinant of a **small** matrix with entries

some moving lines some moving conics some moving cubics

the more **singular** the curve, the **simpler** the description of the determinant

Example (Sederberg & Chen 1995)

Example (Sederberg & Chen 1995)

The implicit equation of a quartic can be computed as a 2×2 determinant.

Example (Sederberg & Chen 1995)

The implicit equation of a quartic can be computed as a 2×2 determinant.

If the curve has a triple point, then one row is linear and the other is cubic.

Example (Sederberg & Chen 1995)

The implicit equation of a quartic can be computed as a 2×2 determinant.

If the curve has a triple point, then one row is linear and the other is cubic.

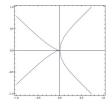
Otherwise, both rows are quadratic.

$$\phi(t_0, t_1) = (t_0^4 - t_1^4 : -t_0^2 t_1^2 : t_0 t_1^3)$$

$$F(X_0, X_1, X_2) = X_2^4 - X_1^4 - X_0 X_1 X_2^2$$

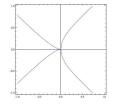
$$\phi(t_0, t_1) = (t_0^4 - t_1^4 : -t_0^2 t_1^2 : t_0 t_1^3)$$

$$F(X_0, X_1, X_2) = X_2^4 - X_1^4 - X_0 X_1 X_2^2$$



$$\phi(t_0, t_1) = (t_0^4 - t_1^4 : -t_0^2 t_1^2 : t_0 t_1^3)$$

$$F(X_0, X_1, X_2) = X_2^4 - X_1^4 - X_0 X_1 X_2^2$$



$$\mathcal{L}_{1,1}(\underline{T},\underline{X}) = T_0X_2 + T_1X_1
\mathcal{L}_{1,3}(\underline{T},\underline{X}) = T_0(X_1^3 + X_0X_2^2) + T_1X_2^3
\begin{pmatrix} X_2 & X_1 \\ X_1^3 + X_0X_2^2 & X_2^3 \end{pmatrix}$$

A quartic without triple points

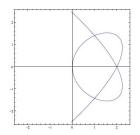
$$\phi(t_0:t_1) = (t_0^4:6t_0^2t_1^2 - 4t_1^4:4t_0^3t_1 - 4t_0t_1^3)$$

$$F(\underline{X}) = X_2^4 + 4X_0X_1^3 + 2X_0X_1X_2^2 - 16X_0^2X_1^2 - 6X_0^2X_2^2 + 16X_0^3X_1$$

A quartic without triple points

$$\phi(t_0:t_1) = (t_0^4:6t_0^2t_1^2 - 4t_1^4:4t_0^3t_1 - 4t_0t_1^3)$$

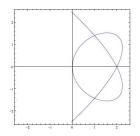
$$F(\underline{X}) = X_2^4 + 4X_0X_1^3 + 2X_0X_1X_2^2 - 16X_0^2X_1^2 - 6X_0^2X_2^2 + 16X_0^3X_1$$



A quartic without triple points

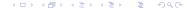
$$\phi(t_0:t_1) = (t_0^4:6t_0^2t_1^2 - 4t_1^4:4t_0^3t_1 - 4t_0t_1^3)$$

$$F(\underline{X}) = X_2^4 + 4X_0X_1^3 + 2X_0X_1X_2^2 - 16X_0^2X_1^2 - 6X_0^2X_2^2 + 16X_0^3X_1$$



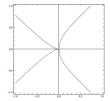
$$\mathcal{L}_{1,2}(\underline{T},\underline{X}) = T_0(X_1X_2 - X_0X_2) + T_1(-X_2^2 - 2X_0X_1 + 4X_0^2)$$

$$\tilde{\mathcal{L}}_{1,2}(T,X) = T_0(X_1^2 + \frac{1}{2}X_2^2 - 2X_0X_1) + T_1(X_0X_2 - X_1X_2)$$



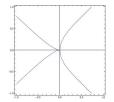
Very concentrated singularities

Very concentrated singularities



If the curve has a point of multiplicity d-1

Very concentrated singularities



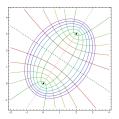
If the curve has a point of multiplicity d-1 the implicit equation is always a 2 \times 2 determinant

$$\left|egin{array}{ccc} \mathcal{L}_{1,1}(\underline{X}) & \mathcal{L}_{1,1}'(\underline{X}) \ \mathcal{L}_{1,d-1}'(\underline{X}) & \mathcal{L}_{1,d-1}'(\underline{X}) \end{array}
ight|$$

In general, we do not know..

In general, we do not know..

which moving lines? which moving conics? which moving cubics?



The Rees Algebra associated to the parametrization

Cox, D. The moving curve ideal and the Rees algebra. Theoret. Comput. Sci. 392 (2008), no. 1–3, 23–36

The Rees Algebra associated to the parametrization

Cox, D. The moving curve ideal and the Rees algebra. Theoret. Comput. Sci. 392 (2008), no. 1–3, 23–36

 $\mathcal{K}_{\phi} := \{ \text{Moving curves following } \phi \} =$ homogeneous elements in the kernel of

$$\mathbb{K}[T_0, T_1, X_0, X_1, X_2] \rightarrow \mathbb{K}[T_0, T_1, s]
T_i \mapsto T_i
X_0 \mapsto a(\underline{T})s
X_1 \mapsto b(\underline{T})s
X_2 \mapsto c(T)s$$

The Rees Algebra associated to the parametrization

Cox, D. The moving curve ideal and the Rees algebra. Theoret. Comput. Sci. 392 (2008), no. 1–3, 23–36

 $\mathcal{K}_{\phi} := \{ \text{Moving curves following } \phi \} =$ homogeneous elements in the kernel of

$$\mathbb{K}[T_0, T_1, X_0, X_1, X_2] \rightarrow \mathbb{K}[T_0, T_1, s]$$

$$T_i \mapsto T_i$$

$$X_0 \mapsto a(\underline{T})s$$

$$X_1 \mapsto b(\underline{T})s$$

$$X_2 \mapsto c(T)s$$

"The ideal of moving curves following ϕ " ϕ "

The implicit equation should be obtained as the determinant of a matrix with

The implicit equation should be obtained as the determinant of a matrix with

some minimal generators of \mathcal{K}_{ϕ} and relations among them \dots

The implicit equation should be obtained as the determinant of a matrix with

some minimal generators of \mathcal{K}_{ϕ} and relations among them \dots

The more singular the curve, the simpler the description of \mathcal{K}_{ϕ}

Compute a minimal system of generators of \mathcal{K}_{ϕ}

Compute a minimal system of generators of \mathcal{K}_{ϕ} for **any** ϕ

Compute a minimal system of generators of \mathcal{K}_{ϕ} for any ϕ

Known for

- $\mu = 1$ (Hong-Simis-Vasconcelos, Cox-Hoffmann-Wang, Busé, Cortadellas-**D**)
- $\mu = 2$ (Busé, Cortadellas-**D**, Kustin-Polini-Ulrich)
- $(\mathcal{K}_{\phi})_{(1,2)} \neq 0$ (Cortadellas- **D**)
- Monomial Parametrizations (Cortadellas-D)

A coarser problem

A coarser problem

Compute $n_0(\mathcal{K}_{\phi})$, the number of minimal generators of \mathcal{K}_{ϕ}

A coarser problem

Compute $n_0(\mathcal{K}_{\phi})$, the number of minimal generators of \mathcal{K}_{ϕ} Show that if ϕ is "more singular" than ϕ' then $n_0(\mathcal{K}_{\phi}) \leq n_0(\mathcal{K}_{\phi'})$

Example: $\mu = 2$

Example: $\mu = 2$

The curve has either

• one point of multiplicity d-2 $n_0 = \mathcal{O}\left(\frac{d}{2}\right)$ (Cortadellas-**D**, Kustin-Polini-Ulrich)

Example: $\mu = 2$

The curve has either

• one point of multiplicity d-2

$$n_0 = \mathcal{O}\left(\frac{d}{2}\right)$$
 (Cortadellas-**D**, Kustin-Polini-Ulrich)

or only double points

$$n_0 = \mathcal{O}\left(\frac{d^2}{2}\right)$$
 (Busé)

■ Describe **all** the possible values and parameters of the "function" $n_0(\mathcal{K}_{\phi})$

- Describe **all** the possible values and parameters of the "function" $n_0(\mathcal{K}_{\phi})$
- Does there exist a **generic** value for $n_0(\mathcal{K}_{\phi})$?

- Describe **all** the possible values and parameters of the "function" $n_0(\mathcal{K}_{\phi})$
- Does there exist a **generic** value for $n_0(\mathcal{K}_{\phi})$? Is this the maximal value?

Other problems

- Describe **all** the possible values and parameters of the "function" $n_0(\mathcal{K}_{\phi})$
- Does there exist a **generic** value for $n_0(\mathcal{K}_{\phi})$? Is this the maximal value?
- In which "regions" is $n_0(\mathcal{K}_{\phi})$ constant?

Recent Progress

Recent Progress

Jeff Madsen

Equations of Rees algebras of ideals in two variables

arXiv:1511.04073

Recent Progress

Jeff Madsen

Equations of Rees algebras of ideals in two variables

arXiv:1511.04073

Describes the bi-degrees of all minimal generators in $\underline{\mathcal{T}}$ -degree larger than or equal to μ

Ongoing Project

(w/Teresa Cortadellas and David Cox)

■ Make explicit these generators and their degrees

Ongoing Project

(w/Teresa Cortadellas and David Cox)

- Make explicit these generators and their degrees
- Complete the description to a set of all minimal generators

$$\phi$$
 " =" $(a(\underline{T}), b(\underline{T}), c(\underline{T}))$ (the parametrization)

$$\phi "=" (a(\underline{T}),b(\underline{T}),c(\underline{T}))$$
 (the parametrization)
$$p_{\mu}(\underline{T},\underline{X})"=" (p_0(\underline{T}),p_1(\underline{T}),p_2(\underline{T}))$$
 ("the" smallest degree element of the \$\mu\$-basis)

```
\phi " =" (a(\underline{T}), b(\underline{T}), c(\underline{T}))
             (the parametrization)
p_{\mu}(\underline{T},\underline{X}) " =" (p_0(\underline{T}),p_1(\underline{T}),p_2(\underline{T}))
   ("the" smallest degree element of
                      the\mu-basis)
              It also has a \mu-basis!
```

The
$$\mu$$
-basis of $p_{\mu}(\underline{T},\underline{X})$ " =" $(p_0(\underline{T}),p_1(\underline{T}),p_2(\underline{T}))$ is $A_h=(A_0(\underline{T}),A_1(\underline{T}),A_2(\underline{T}))$ $B_\ell=(B_0(\underline{T}),B_1(\underline{T}),B_2(\underline{T}))$

The
$$\mu$$
-basis of $p_{\mu}(\underline{T},\underline{X})$ " =" $(p_0(\underline{T}),p_1(\underline{T}),p_2(\underline{T}))$ is $A_h = (A_0(\underline{T}),A_1(\underline{T}),A_2(\underline{T}))$ with $B_{\ell} = (B_0(\underline{T}),B_1(\underline{T}),B_2(\underline{T}))$ deg $(A_h) = h \leq \deg(B_{\ell}) = \ell$

The
$$\mu$$
-basis of $p_{\mu}(\underline{T},\underline{X})$ " =" $(p_0(\underline{T}),p_1(\underline{T}),p_2(\underline{T}))$ is $A_h = (A_0(\underline{T}),A_1(\underline{T}),A_2(\underline{T}))$ with $B_{\ell} = (B_0(\underline{T}),B_1(\underline{T}),B_2(\underline{T}))$ deg $(A_h) = h \leq \deg(B_{\ell}) = \ell$ $h + \ell = \mu$

 (h,ℓ) is the μ type of ϕ

 (h,ℓ) is the μ type of ϕ

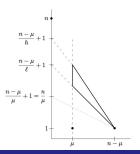
Bernardi, Gimigliano, Idà (arXiv:1507.02227)

 $h = 0 \iff$ there is an axial moving line

Theorem

(Jeff Madsen arXiv:1511.04073)

The minimal generators of $(\mathcal{K}_{\phi})_{\geq \mu,*}$ are inside the triangle



Moreover...

(Jeff Madsen arXiv:1511.04073)

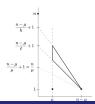
If $h < \ell$ there is one minimal generator at bidegree

$$(i,j) = (n - \mu - \alpha h - \beta \ell, \alpha + \beta + 1)$$
$$(\alpha, \beta \ge 0, n - \mu - \alpha h - \beta \ell \ge \mu)$$

(Jeff Madsen arXiv:1511.04073)

If $h = \ell$ there are exactly j minimal at

$$(i,j) = (n - \mu - \alpha h, \alpha + 1)$$
$$(\alpha \ge 0, n - \mu - \alpha h \ge \mu)$$



Our Contribution

(Cortadellas-Cox-D 2016)

Construction of explicit generators

Our Contribution

(Cortadellas-Cox-D 2016) Construction of explicit generators Recall: The μ -basis of $p_{\iota\iota}(\underline{T},\underline{X})$ " =" $(p_0(\underline{T}),p_1(\underline{T}),p_2(\underline{T}))$ $A_h = (A_0(\underline{T}), A_1(\underline{T}), A_2(\underline{T}))$ $B_{\ell} = (B_0(\underline{T}), B_1(\underline{T}), B_2(\underline{T}))$

The Construction

(Cortadellas-Cox-D 2016) If
$$G \in (\mathcal{K}_\phi)_{i,j}, \ i \geq \mu + \ell - 1,$$

The Construction

(Cortadellas-Cox-D 2016) If
$$G \in (\mathcal{K}_\phi)_{i,j}, \ i \geq \mu + \ell - 1, \ \mathsf{then}$$
 $G = G_0 p_0 + G_1 p_1 + G_2 p_2$

The Construction

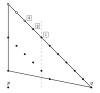
(Cortadellas-Cox-D 2016)

If
$$G \in (\mathcal{K}_\phi)_{i,j}, \ i \geq \mu + \ell - 1, \ ext{then}$$
 $G = G_0 p_0 + G_1 p_1 + G_2 p_2$ $D_A(G) := \left| egin{array}{cccc} G_0 & G_1 & G_2 \\ x_0 & x_1 & x_2 \\ A_0 & A_1 & A_2 \end{array} \right| \in (\mathcal{K}_\phi)_{i-\ell,j+1}$

Analogously

(Cortadellas-Cox-D 2016)

$$D_B(G) := \left|egin{array}{cccc} G_0 & G_1 & G_2 \ x_0 & x_1 & x_2 \ B_0 & B_1 & B_2 \end{array}
ight| \in (\mathcal{K}_\phi)_{i-h,j+1}$$



Creating minimal generators

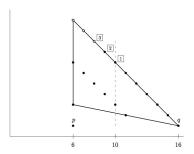


Figure 2. Degrees when $n=22, \mu=6, h=1, \ell=5$

Starting from $q_{d-\mu}$

Creating minimal generators

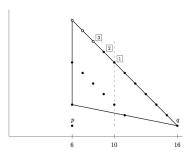


Figure 2. Degrees when $n=22, \mu=6, h=1, \ell=5$

Starting from $q_{d-\mu}$ we apply either D_A or D_B to get almost all the

Another approach

The
$$\mu$$
-basis of $p_{\mu}(\underline{T},\underline{X})$ " =" $(p_0(\underline{T}),p_1(\underline{T}),p_2(\underline{T}))$ is $A_h=(A_0(\underline{T}),A_1(\underline{T}),A_2(\underline{T}))$ $B_\ell=(B_0(\underline{T}),B_1(\underline{T}),B_2(\underline{T}))$

Another approach

The
$$\mu$$
-basis of
$$p_{\mu}(\underline{T},\underline{X}) = (p_{0}(\underline{T}), p_{1}(\underline{T}), p_{2}(\underline{T}))$$
is
$$A_{h} = (A_{0}(\underline{T}), A_{1}(\underline{T}), A_{2}(\underline{T}))$$

$$B_{\ell} = (B_{0}(\underline{T}), B_{1}(\underline{T}), B_{2}(\underline{T}))$$

$$\phi = \alpha_{d-h}(\underline{T})A_{h} + \beta_{d-\ell}(\underline{T})B_{\ell}$$

The "lifting" of ϕ

```
(Bernardi, Gimigliano, Idà arXiv:1507.02227) \mathbb{P}^1 \to \mathbb{P}^{\mu+1} \underline{t} \mapsto \left(\alpha_{d-h}(\underline{t})t_0^h:\ldots:\beta_{d-\ell}(\underline{t})t_1^\ell\right) The lifted curve is singular if and only if h=0
```

The "lifting" of ϕ

(Bernardi, Gimigliano, Idà arXiv:1507.02227)
$$\mathbb{P}^1 \to \mathbb{P}^{\mu+1}$$

$$\underline{t} \mapsto \left(\alpha_{d-h}(\underline{t})t_0^h:\ldots:\beta_{d-\ell}(\underline{t})t_1^\ell\right)$$
 The lifted curve is singular if and only if $h=0$ The projection $\mathbb{P}^{\mu+1} \to \mathbb{P}^2$ is linear

Algebraically...

Algebraically...

Algebraically...

$$(\text{Cortadellas-Cox-D 2016})$$

$$(a(\underline{T}), b(\underline{T}), c(\underline{T})) \subset$$

$$(\alpha_{d-h}(\underline{T})T_0^i T_1^{h-i}, \beta_{d-\ell}(\underline{T})T_0^j T_1^{\ell-j})_{0 \leq i \leq h, 0 \leq j \leq \ell}$$

$$\Longrightarrow$$

$$\mathcal{K}_{\phi} = \text{Rees}(\phi) \text{``} \subset \text{''} \text{Rees(lifted curve)}$$

(Cortadellas-Cox-D 2016) Explicit generators of Rees(lifted curve)

(Cortadellas-Cox-D 2016) Explicit generators of Rees(lifted curve)

■ Some generators from the normal scroll

(Cortadellas-Cox-D 2016) Explicit generators of Rees(lifted curve)

- Some generators from the normal scroll
- Some coming from "polarizing" $\alpha_{d-h}(\underline{T}), \beta_{d-\ell}(\underline{T})$

(Cortadellas-Cox-D 2016) Explicit generators of Rees(lifted curve)

- Some generators from the normal scroll
- Some coming from "polarizing" $\alpha_{d-h}(\underline{T}), \beta_{d-\ell}(\underline{T})$
- Some coming from the "monomial ideal" $(i,j,k) \in \mathbb{N}^3$: $i+hj+\ell k \geq d-\mu$

Our hope...

Knowledge of the lifted curve should help unraveling the plane curve

Our hope...

- Knowledge of the lifted curve should help unraveling the plane curve
- Complete the list of minimal generators given by Madsen

Our hope...

- Knowledge of the lifted curve should help unraveling the plane curve
- Complete the list of minimal generators given by Madsen
- \blacksquare And also for smaller values of i!

Thanks!

