Moving Lines, Soccer, and Rees Algebras

Carlos D'Andrea

Ideals, Varieties, Applications - Amherst

Back in 2012...

David: Now that I am in Barcelona...

David: Now that I am in Barcelona... I want to visit the 2 churches

David: Now that I am in Barcelona... I want to visit the 2 churches

$\overline{\mathsf{Church}} \ \# \ 1$: Sagrada $\overline{\mathsf{Família}}$

Church #2?

Church #2: Camp Nou!!

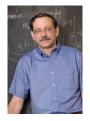


"The" score of the (20th) Century

Let us enjoy it

▶ Diego's goal

David's score of Last (and this) Century



David's score of Last (and this) Century

Geometric Modeling
vs
Algebraic Geometry

David's goal of Last (and this) Century

Geometric Modeling and Algebraic Geometry

(Sederberg & Chen 1995)

(Sederberg & Chen 1995)

The implicit equation of a rational quartic can be computed as a 2×2 determinant.

(Sederberg & Chen 1995)

The implicit equation of a rational quartic can be computed as a 2×2 determinant.

If the curve has a triple point, then one row is linear and the other is cubic.

(Sederberg & Chen 1995)

The implicit equation of a rational quartic can be computed as a 2×2 determinant.

If the curve has a triple point, then one row is linear and the other is cubic.

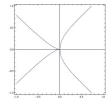
Otherwise, both rows are quadratic.

$$\phi(t_0, t_1) = (t_0^4 - t_1^4 : -t_0^2 t_1^2 : t_0 t_1^3)$$

$$F(X_0, X_1, X_2) = X_2^4 - X_1^4 - X_0 X_1 X_2^2$$

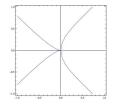
$$\phi(t_0, t_1) = (t_0^4 - t_1^4 : -t_0^2 t_1^2 : t_0 t_1^3)$$

$$F(X_0, X_1, X_2) = X_2^4 - X_1^4 - X_0 X_1 X_2^2$$



$$\phi(t_0, t_1) = (t_0^4 - t_1^4 : -t_0^2 t_1^2 : t_0 t_1^3)$$

$$F(X_0, X_1, X_2) = X_2^4 - X_1^4 - X_0 X_1 X_2^2$$



$$\mathcal{L}_{1,1}(\underline{T},\underline{X}) = T_0X_2 + T_1X_1
\mathcal{L}_{1,3}(\underline{T},\underline{X}) = T_0(X_1^3 + X_0X_2^2) + T_1X_2^3
\begin{pmatrix} X_2 & X_1 \\ X_1^3 + X_0X_2^2 & X_2^3 \end{pmatrix}$$

A quartic without triple points

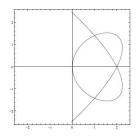
$$\phi(t_0:t_1) = (t_0^4:6t_0^2t_1^2 - 4t_1^4:4t_0^3t_1 - 4t_0t_1^3)$$

$$F(\underline{X}) = X_2^4 + 4X_0X_1^3 + 2X_0X_1X_2^2 - 16X_0^2X_1^2 - 6X_0^2X_2^2 + 16X_0^3X_1$$

A quartic without triple points

$$\phi(t_0:t_1) = (t_0^4:6t_0^2t_1^2 - 4t_1^4:4t_0^3t_1 - 4t_0t_1^3)$$

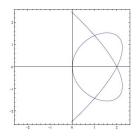
$$F(\underline{X}) = X_2^4 + 4X_0X_1^3 + 2X_0X_1X_2^2 - 16X_0^2X_1^2 - 6X_0^2X_2^2 + 16X_0^3X_1$$



A quartic without triple points

$$\phi(t_0:t_1) = (t_0^4:6t_0^2t_1^2 - 4t_1^4:4t_0^3t_1 - 4t_0t_1^3)$$

$$F(\underline{X}) = X_2^4 + 4X_0X_1^3 + 2X_0X_1X_2^2 - 16X_0^2X_1^2 - 6X_0^2X_2^2 + 16X_0^3X_1$$

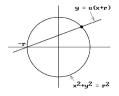


$$\mathcal{L}_{1,2}(\underline{T},\underline{X}) = T_0(X_1X_2 - X_0X_2) + T_1(-X_2^2 - 2X_0X_1 + 4X_0^2)$$

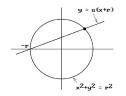
$$\tilde{\mathcal{L}}_{1,2}(T,X) = T_0(X_1^2 + \frac{1}{2}X_2^2 - 2X_0X_1) + T_1(X_0X_2 - X_1X_2)$$

Parametrizing the circle

Parametrizing the circle



Parametrizing the circle



$$\phi: \mathbb{P}^1 \longrightarrow \mathbb{P}^2$$

$$(t_0:t_1) \longmapsto (t_0^2 + t_1^2: t_0^2 - t_1^2: 2t_0t_1)$$

$$(a(\mathbf{t}): b(\mathbf{t}): c(\mathbf{t}))$$

Implicitization

Implicitization

$$X_2 a(\underline{T}) - X_0 c(\underline{T}) = X_2 T_0^2 - 2X_0 T_0 T_1 + X_2 T_1^2$$

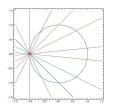
$$X_2b(\underline{T}) - X_1c(\underline{T}) = X_2T_0^2 - 2X_1T_0T_1 - X_2T_1^2$$

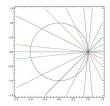
Implicitization

$$X_2a(\underline{T}) - X_0c(\underline{T}) = X_2T_0^2 - 2X_0T_0T_1 + X_2T_1^2$$

$$X_2b(\underline{T}) - X_1c(\underline{T}) = X_2T_0^2 - 2X_1T_0T_1 - X_2T_1^2$$

$$\operatorname{Res}_{\underline{T}}(X_{2} \cdot a(\underline{T}) - X_{0} \cdot c(\underline{T}), X_{2} \cdot b(\underline{T}) - X_{1} \cdot c(\underline{T})) = \\ \det\begin{pmatrix} X_{2} & -2X_{0} & X_{2} & 0 \\ 0 & X_{2} & -2X_{0} & X_{2} \\ X_{2} & -2X_{1} & -X_{2} & 0 \\ 0 & X_{2} & -2X_{1} & -X_{2} \end{pmatrix} = 4X_{2}^{2}(X_{1}^{2} + X_{2}^{2} - X_{0}^{2})$$

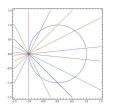


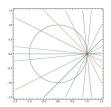


$$\varphi_1(\underline{T},\underline{X}) = (-T_1:-T_1:T_0)$$

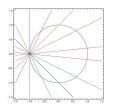
$$= X_2T_0 - (X_0+X_1)T_1$$

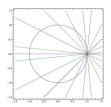
$$\psi_1(\underline{T},\underline{X}) = (-T_0:T_0:T_1)$$





$$\varphi_{1}(\underline{T}, \underline{X}) = (-T_{1} : -T_{1} : T_{0})
= X_{2}T_{0} - (X_{0} + X_{1})T_{1}
\psi_{1}(\underline{T}, \underline{X}) = (-T_{0} : T_{0} : T_{1})
(-X_{0} + X_{1})T_{0} + X_{2}T_{1}$$





$$\varphi_{1}(\underline{T},\underline{X}) = (-T_{1}:-T_{1}:T_{0})$$

$$= X_{2}T_{0} - (X_{0}+X_{1})T_{1}$$

$$\psi_{1}(\underline{T},\underline{X}) = (-T_{0}:T_{0}:T_{1})$$

$$(-X_{0}+X_{1})T_{0}+X_{2}T_{1}$$

$$\det \left(\begin{array}{cc} X_2 & -X_0 - X_1 \\ -X_0 + X_1 & X_2 \end{array} \right) = X_1^2 + X_2^2 - X_0^2$$

Moving Lines!

Moving Lines!

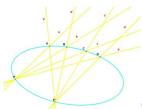
A moving line

$$\mathcal{L}(T_0, T_1, X_0, X_1, X_2) = v_0(\underline{T})X_0 + v_1(\underline{T})X_1 + v_2(\underline{T})X_2$$

Moving Lines!

A moving line

$$\mathcal{L}(T_0, T_1, X_0, X_1, X_2) = v_0(\underline{T})X_0 + v_1(\underline{T})X_1 + v_2(\underline{T})X_2$$
 follows the parametrization iff
$$\mathcal{L}(T_0, T_1, a(\underline{T}), b(\underline{T}), c(\underline{T})) = 0$$



For the unit circle...

$$\mathcal{L}_{1}(\underline{T},\underline{X}) = -2T_{0}^{2}T_{1}X_{0} + 0X_{1} + (T_{0}^{3} + T_{0}T_{1}^{2})X_{2}$$

$$\mathcal{L}_{2}(\underline{T},\underline{X}) = -2T_{0}T_{1}^{2}X_{0} + 0X_{1} + (T_{0}^{2}T_{1} + T_{1}^{3})X_{2}$$

$$\mathcal{L}_{3}(\underline{T},\underline{X}) = 0X_{0} - 2T_{0}^{2}T_{1}X_{1} + (T_{0}^{3} - T_{0}T_{1}^{2})X_{2}$$

$$\mathcal{L}_{4}(T,X) = 0X_{0} - 2T_{0}T_{1}^{2}X_{1} + (T_{0}^{2}T_{1} - T_{1}^{3})X_{2}$$

For the unit circle...

$$\mathcal{L}_{1}(\underline{T}, \underline{X}) = -2T_{0}^{2}T_{1}X_{0} + 0X_{1} + (T_{0}^{3} + T_{0}T_{1}^{2})X_{2}$$

$$\mathcal{L}_{2}(\underline{T}, \underline{X}) = -2T_{0}T_{1}^{2}X_{0} + 0X_{1} + (T_{0}^{2}T_{1} + T_{1}^{3})X_{2}$$

$$\mathcal{L}_{3}(\underline{T}, \underline{X}) = 0X_{0} - 2T_{0}^{2}T_{1}X_{1} + (T_{0}^{3} - T_{0}T_{1}^{2})X_{2}$$

$$\mathcal{L}_{4}(T, \underline{X}) = 0X_{0} - 2T_{0}T_{1}^{2}X_{1} + (T_{0}^{2}T_{1} - T_{1}^{3})X_{2}$$

$$\begin{pmatrix} X_2 & -2X_0 & X_2 & 0 \\ 0 & X_2 & -2X_0 & X_2 \\ X_2 & -2X_1 & -X_2 & 0 \\ 0 & X_2 & -2X_1 & -X_2 \end{pmatrix}$$

In general

The determinant of a "matrix of moving lines" is always a multiple of the implicit equation

$$\left(egin{array}{cccc} L_{11}(\underline{X}) & L_{12}(\underline{X}) & \dots & L_{1k}(\underline{X}) \ L_{21}(\underline{X}) & L_{22}(\underline{X}) & \dots & L_{2k}(\underline{X}) \ & \vdots & & \vdots & & \vdots \ L_{k1}(\underline{X}) & L_{k2}(\underline{X}) & \dots & L_{kk}(\underline{X}) \end{array}
ight)$$

I dare you...

I dare you...

find a non-singular square matrix of moving lines

I dare you...

- find a non-singular square matrix of moving lines
- find one where the determinant is exactly the implicit equation

David gets the ball...

David gets the ball...

Cox, Sederberg, Chen
The moving line ideal basis of planar rational curves
CAGD 98

Moving Lines are Syzygies

Moving Lines are Syzygies

The homogeneous ideal $I = (a(\underline{T}), b(\underline{T}), c(\underline{T})) \subset \mathbb{K}[T_0, T_1]$ has a Hilbert-Burch resolution of the type

$$0 \to \mathbb{K}[\underline{T}]^2 \stackrel{(\varphi_{\mu}, \psi_{d-\mu})^{\mathbf{t}}}{\longrightarrow} \mathbb{K}[\underline{T}]^3 \stackrel{(a,b,c)}{\longrightarrow} \mathbb{K}[\underline{T}]$$

Moving Lines are Syzygies

The homogeneous ideal $I = (a(\underline{T}), b(\underline{T}), c(\underline{T})) \subset \mathbb{K}[T_0, T_1]$ has a Hilbert-Burch resolution of the type

$$0 \to \mathbb{K}[\underline{T}]^2 \stackrel{(\varphi_{\mu}, \psi_{d-\mu})^{\mathbf{t}}}{\longrightarrow} \mathbb{K}[\underline{T}]^3 \stackrel{(a,b,c)}{\longrightarrow} \mathbb{K}[\underline{T}]$$

The moving lines are a free $\mathbb{K}[\underline{T}]$ -module of rank 2 The determinant of $\mathsf{Sylv}(\varphi_{\mu}, \psi_{d-\mu})$ gives exactly the implicit equation

Geometrically...

Geometrically...

There are two parametrizations

$$\varphi_{\mu}(t_0:t_1),\,\psi_{d-\mu}(t_0:t_1)$$
 such that

$$\phi(t_0:t_1) = \varphi_{\mu}(t_0:t_1) \wedge \psi_{d-\mu}(t_0:t_1)$$

"Factorization" of the unit circle

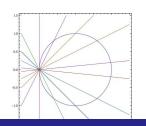
"Factorization" of the unit circle

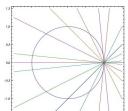
$$\varphi_1(t_0:t_1) = (-t_1:-t_1:t_0)
\psi_1(t_0:t_1) = (-t_0:t_0:t_1)$$

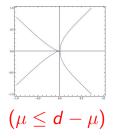
"Factorization" of the unit circle

$$\varphi_1(t_0:t_1) = (-t_1:-t_1:t_0)
\psi_1(t_0:t_1) = (-t_0:t_0:t_1)$$

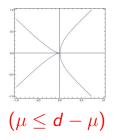
$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -t_1 & -t_1 & t_0 \\ -t_0 & t_0 & t_1 \end{vmatrix} = \left(-t_0^2 - t_1^2 : t_1^2 - t_0^2 : -2t_0t_1 \right)$$



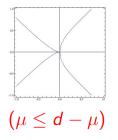




 $\mu = 1 \iff$ there is one point of multiplicity d-1



- $\mu = 1 \iff$ there is one point of multiplicity d-1
- If there is a point of multiplicity $> \mu$,



- $\mu = 1 \iff$ there is one point of multiplicity d-1
- If there is a point of multiplicity $> \mu$, then there is only one and it has multiplicity $d \mu$

(Bernardi-Gimigliano-Idà 2015, Madsen 2015) The curve has a point of multiplicity $d-\mu \iff \mu'=0$

```
(Bernardi-Gimigliano-Idà 2015, Madsen 2015)
The curve has a point of multiplicity
d - \mu \iff \mu' = 0
\phi(t_0:t_1)
=
\varphi_{\mu}(t_0:t_1) \qquad \qquad \wedge \qquad \psi_{d-\mu}(t_0:t_1)
```

(Bernardi-Gimigliano-Idà 2015, Madsen 2015) The curve has a point of multiplicity $d - \mu \iff \mu' = 0$ $\phi(t_0:t_1)$ $\varphi_{\mu}(t_0:t_1)$ $\psi_{d-u}(t_0:t_1)$ $\left(\varphi'_{\mu'}(t_0:t_1) \wedge \varphi'_{\mu-\mu'}(t_0:t_1) \right)$ $\psi_{d-u}(t_0:t_1)$

Conics instead of lines?

Conics instead of lines?

$$\mathcal{O}(\underline{T})X_0^2 + \mathcal{P}(\underline{T})X_0X_1 + \mathcal{Q}(\underline{T})X_0X_2 + \mathcal{R}(\underline{T})X_1^2 + \mathcal{S}(\underline{T})X_1X_2 + \mathcal{T}(\underline{T})X_2^2 \in \mathbb{K}[\underline{T},\underline{X}]$$
 is a **moving conic** following the parametrization if

Conics instead of lines?

$$\mathcal{O}(\underline{T})X_0^2 + \mathcal{P}(\underline{T})X_0X_1 + \mathcal{Q}(\underline{T})X_0X_2 + \mathcal{R}(\underline{T})X_1^2 + \mathcal{S}(\underline{T})X_1X_2 + \mathcal{T}(\underline{T})X_2^2 \in \mathbb{K}[\underline{T},\underline{X}]$$
 is a **moving conic** following the parametrization if
$$\mathcal{O}(\underline{T})a(\underline{T})^2 + \mathcal{P}(\underline{T})a(\underline{T})b(\underline{T}) + \mathcal{Q}(\underline{T})a(\underline{T})c(\underline{T}) + \mathcal{R}(\underline{T})b(\underline{T})^2 + \mathcal{S}(\underline{T})b(\underline{T})c(\underline{T}) + \mathcal{T}(\underline{T})c(\underline{T})^2 = 0$$

Syz(a, b, c)

moving lines

Syz
$$(a, b, c)$$
 moving lines
Syz $(a^2, b^2, c^2, ab, ac, bc)$ moving conics

Syz
$$(a, b, c)$$
 moving lines
Syz $(a^2, b^2, c^2, ab, ac, bc)$ moving conics
Syz $(a^3, b^3, c^3, a^2b, ...)$ moving cubics

The method of moving curves

The method of moving curves

The implicit equation can be computed as the determinant of a **small** matrix with entries

The method of moving curves

The implicit equation can be computed as the determinant of a **small** matrix with entries

some moving lines some moving conics some moving cubics

The method of moving curves

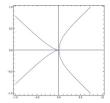
The implicit equation can be computed as the determinant of a **small** matrix with entries

some moving lines some moving conics some moving cubics

The more **singular** the curve, the **simpler** the description of the determinant

Extreme case

Extreme case



If the curve has a point of multiplicity d-1

Extreme case

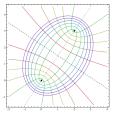
If the curve has a point of multiplicity d-1 the implicit equation is always a 2×2 determinant

$$\left|\begin{array}{cc} \mathcal{L}_{1,1}(\underline{X}) & \mathcal{L}'_{1,1}(\underline{X}) \\ \mathcal{L}_{1,d-1}(\underline{X}) & \mathcal{L}'_{1,d-1}(\underline{X}) \end{array}\right|$$

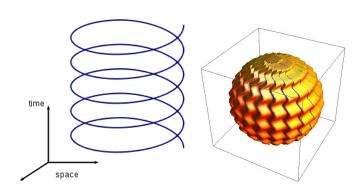
In general, we do not know..

In general, we do not know..

which moving lines? which moving conics? which moving cubics?



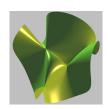
Spatial Curves/Surfaces



Rational Surfaces

$$\phi_{S}: \qquad \mathbb{P}^{2} \qquad \longrightarrow \quad \mathbb{P}^{3}$$

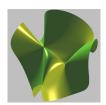
$$\underline{t} = (t_{0}: t_{1}: t_{2}) \longmapsto (a(\underline{t}): b(\underline{t}): c(\underline{t}): d(\underline{t}))$$



Rational Surfaces

$$\phi_{S}: \qquad \mathbb{P}^{2} \qquad \longrightarrow \quad \mathbb{P}^{3}$$

$$\underline{t} = (t_{0}: t_{1}: t_{2}) \longmapsto (a(\underline{t}): b(\underline{t}): c(\underline{t}): d(\underline{t}))$$



There are base points!

And David goes...

And David goes...

Cox, Goldman, Zhang
On the validity of implicitization by moving quadrics of rational surfaces with no base points

JSC 2000

Main result

The "method of moving quadrics" works without base points, for proper parametrizations with the "right number" of moving planes of degree d-1

Main result

The "method of moving quadrics" works without base points, for proper parametrizations with the "right number" of moving planes of degree d-1

Proof uses Commutative Algebra (Cohen-Macaulay rings) and Algebraic Geometry (sheaf cohomology)

■ Laurent Busé

- Laurent Busé
- Marc Chardin

- Laurent Busé
- Marc Chardin

- Laurent Busé
- Marc Chardin
- William Hoffman

- Laurent Busé
- Marc Chardin
- William Hoffman
- Jean-Pierre Jouanolou

- Laurent Busé
- Marc Chardin
- William Hoffman
- Jean-Pierre Jouanolou
- Amit Khetan

- Laurent Busé
- Marc Chardin
- D
- William Hoffman
- Jean-Pierre Jouanolou
- Amit Khetan
- Hao Hao Wang

- Laurent Busé
- Marc Chardin
- William Hoffman
- Jean-Pierre Jouanolou
- Amit Khetan
- Hao Hao Wang

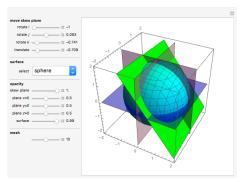
And David goes...

And David goes...

Chen, Cox, Liu The μ -basis and implicitization of a rational parametric surface JSC 2005

Main result

Every parametrization of a rational surface has a μ -basis.



■ Nicolás Botbol

- Nicolás Botbol
- Yairon Cid Ruiz

- Nicolás Botbol
- Yairon Cid Ruiz
- Alicia Dickenstein

- Nicolás Botbol
- Yairon Cid Ruiz
- Alicia Dickenstein
- Eliana Duarte

- Nicolás Botbol
- Yairon Cid Ruiz
- Alicia Dickenstein
- Eliana Duarte
- Hoon Hong

- Nicolás Botbol
- Yairon Cid Ruiz
- Alicia Dickenstein
- Eliana Duarte
- Hoon Hong
- Irina Kogan

- Nicolás Botbol
- Yairon Cid Ruiz
- Alicia Dickenstein
- Eliana Duarte
- Hoon Hong
- Irina Kogan
- Hal Schenck

- Nicolás Botbol
- Yairon Cid Ruiz
- Alicia Dickenstein
- Eliana Duarte
- Hoon Hong
- Irina Kogan
- Hal Schenck

And David goes...

And David goes...

Cox, Kustin, Polini, Ulrich
A study of singularities on rational curves via syzygies

MAMS 2013

Study of the singularities of a rational curve via the Hilbert-Burch matrix

- Study of the singularities of a rational curve via the Hilbert-Burch matrix
- Classification of curves with points of "highest" multiplicity

- Study of the singularities of a rational curve via the Hilbert-Burch matrix
- Classification of curves with points of "highest" multiplicity
- . . .

■ Alessandra Bernardi

- Alessandra Bernardi
- Eduardo Casas-Alvero

- Alessandra Bernardi
- Eduardo Casas-Alvero
- Louiza Fouli

- Alessandra Bernardi
- Eduardo Casas-Alvero
- Louiza Fouli
- Tony larrobino

- Alessandra Bernardi
- Eduardo Casas-Alvero
- Louiza Fouli
- Tony larrobino
- Kuei-Nuan Lin

- Alessandra Bernardi
- Eduardo Casas-Alvero
- Louiza Fouli
- Tony larrobino
- Kuei-Nuan Lin
- Aron Simis

- Alessandra Bernardi
- Eduardo Casas-Alvero
- Louiza Fouli
- Tony larrobino
- Kuei-Nuan Lin
- Aron Simis
- Wolmer Vasconcelos

- Alessandra Bernardi
- Eduardo Casas-Alvero
- Louiza Fouli
- Tony larrobino
- Kuei-Nuan Lin
- Aron Simis
- Wolmer Vasconcelos

And David scores

And David scores

Cox

The moving curve ideal and the Rees algebra TCS 2008

What did we learn there?

 $\mathcal{K}_{\phi} := \{ \text{Moving curves following } \phi \} = \text{homogeneous elements in the kernel of }$

$$\mathbb{K}[T_0, T_1, X_0, X_1, X_2] \rightarrow \mathbb{K}[T_0, T_1, s]$$

$$T_i \mapsto T_i$$

$$X_0 \mapsto a(T_0, T_1)s$$

$$X_1 \mapsto b(T_0, T_1)s$$

$$X_2 \mapsto c(T_0, T_1)s$$

What did we learn there?

 $\mathcal{K}_{\phi} := \{ \text{Moving curves following } \phi \} = \text{homogeneous elements in the kernel of }$

$$\mathbb{K}[T_0, T_1, X_0, X_1, X_2] \rightarrow \mathbb{K}[T_0, T_1, s]$$

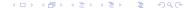
$$T_i \mapsto T_i$$

$$X_0 \mapsto a(T_0, T_1)s$$

$$X_1 \mapsto b(T_0, T_1)s$$

$$X_2 \mapsto c(T_0, T_1)s$$

"The ideal of moving curves following ϕ "



The implicit equation should be obtained as the determinant of a matrix with

The implicit equation should be obtained as the determinant of a matrix with

some minimal generators of \mathcal{K}_{ϕ} and relations among them ...

The implicit equation should be obtained as the determinant of a matrix with

some minimal generators of \mathcal{K}_{ϕ} and relations among them \dots

The more singular the curve, the simpler the description of \mathcal{K}_{ϕ}

Goal!

Compute a minimal system of generators of \mathcal{K}_{ϕ}

Compute a minimal system of generators of \mathcal{K}_{ϕ} for any ϕ

Compute a minimal system of generators of \mathcal{K}_{ϕ} for any ϕ

Known for

• $\mu = 1$ (Hong-Simis-Vasconcelos, Cox-Hoffmann-Wang, Busé, Cortadellas-**D**)

Compute a minimal system of generators of \mathcal{K}_{ϕ} for any ϕ

Known for

- $\mu = 1$ (Hong-Simis-Vasconcelos, Cox-Hoffmann-Wang, Busé, Cortadellas- \mathbf{D})
- $\blacksquare \mu = 2$ (Busé, Cortadellas-**D**, Kustin-Polini-Ulrich)

Compute a minimal system of generators of \mathcal{K}_{ϕ} for any ϕ

Known for

- $\mu = 1$ (Hong-Simis-Vasconcelos, Cox-Hoffmann-Wang, Busé, Cortadellas- \mathbf{D})
- $\mu = 2$ (Busé, Cortadellas-**D**, Kustin-Polini-Ulrich)
- $(\mathcal{K}_{\phi})_{(1,2)} \neq 0$ (Cortadellas- **D**)

Compute a minimal system of generators of \mathcal{K}_{ϕ} for any ϕ

Known for

- $\mu = 1$ (Hong-Simis-Vasconcelos, Cox-Hoffmann-Wang, Busé, Cortadellas- \mathbf{D})
- $\mu = 2$ (Busé, Cortadellas-**D**, Kustin-Polini-Ulrich)
- $(\mathcal{K}_{\phi})_{(1,2)} \neq 0$ (Cortadellas- D)
- Monomial Parametrizations (Cortadellas-D)

A coarser problem

A coarser problem

Compute $n_0(\mathcal{K}_{\phi})$, the number of minimal generators of \mathcal{K}_{ϕ}

A coarser problem

Compute $n_0(\mathcal{K}_{\phi})$, the number of minimal generators of \mathcal{K}_{ϕ} Show that if ϕ is "more singular" than ϕ' then $n_0(\mathcal{K}_{\phi}) \leq n_0(\mathcal{K}_{\phi'})$

Example: $\mu = 2$

Example: $\mu = 2$

The curve has either

■ one point of multiplicity d-2 $n_0 = \mathcal{O}\left(\frac{d}{2}\right)$ (Cortadellas-**D**, Kustin-Polini-Ulrich)

Example: $\mu = 2$

The curve has either

• one point of multiplicity d-2 $n_0 = \mathcal{O}\left(\frac{d}{2}\right)$ (Cortadellas-**D**, Kustin-Polini-Ulrich)

or only double points

$$n_0 = \mathcal{O}\left(\frac{d^2}{2}\right)$$
 (Busé)

Last Progress

Last Progress

- Madsen, arXiv:1511.04073
- Cortadellas-Cox-D, JPAA to appear

Last Progress

- Madsen, arXiv:1511.04073
- Cortadellas-Cox-D, JPAA to appear

Describe the bi-degrees of all minimal generators in \underline{T} -degree larger than or equal to μ

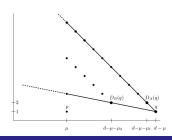
We "got" this region

We "got" this region

$$\phi(t_0:t_1) \\
= \\
\left(\varphi'_{\mu_1}(t_0:t_1) \wedge \psi'_{\mu_2}(t_0:t_1)\right) \wedge \psi_{d-\mu}(t_0:t_1)$$

We "got" this region

$$\phi(t_0:t_1) \\
= \\
\left(\varphi'_{\mu_1}(t_0:t_1) \wedge \psi'_{\mu_2}(t_0:t_1)\right) \wedge \psi_{d-\mu}(t_0:t_1)$$



Implicitization

Implicitization

Quadratic and cubic surfaces (Chen-Shen-Deng)

Implicitization

- Quadratic and cubic surfaces (Chen-Shen-Deng)
- Steiner surfaces (Wang-Chen)

Implicitization

- Quadratic and cubic surfaces (Chen-Shen-Deng)
- Steiner surfaces (Wang-Chen)
- Revolution surfaces (Shi-Goldman)
- **.** . . .

Implicitization

- Quadratic and cubic surfaces (Chen-Shen-Deng)
- Steiner surfaces (Wang-Chen)
- Revolution surfaces (Shi-Goldman)
- **.** . . .

Rees Algebras

Implicitization

- Quadratic and cubic surfaces (Chen-Shen-Deng)
- Steiner surfaces (Wang-Chen)
- Revolution surfaces (Shi-Goldman)
- **.** . . .

Rees Algebras

"Monoid" Surfaces (Cortadellas - D)

Implicitization

- Quadratic and cubic surfaces (Chen-Shen-Deng)
- Steiner surfaces (Wang-Chen)
- Revolution surfaces (Shi-Goldman)
- **.** . . .

Rees Algebras

- "Monoid" Surfaces (Cortadellas D)
- de Jonquières surfaces (Hassanzadeh- Simis)
- D-modules approach (Cid Ruiz)

This was quite a journey...

This was quite a journey...

(Do not clap yet!)

A gift for David

A gift for David

Happy Retirement, David!



Happy Retirement, David!

 $\left\{ \text{talk} \right\}$

