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ABSTRACT

We derive algorithms for computing p-bases of rational parametriza-
tions of surfaces having one of the partial degrees bounded by two.
This class of parametrizations include ruled and canal surfaces. Our
approach is based on a algorithmic treatment of the Smith Normal
Form of a matrix of univariate polynomials, and it allows us to
bound the degrees of the elements of a p-basis of the input. A free
implementation in SAGE of our method has been made by the first
author.
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1 INTRODUCTION

Let K be an infinite field. Given a polynomial parametrization of a
rational surface

P(s,t) = (a1(s, 1), az(s, 1), a3(s, 1), aa (s, 1)) € K[s,e]%, (1)
it is well-known that the syzygy module of the sequence
(a1(s, 1), az(s, 1), as (s, t), as(s, 1))

is free of rank 3, which is equivalent to say that there exist three
parametrizations

Xi(s, 1) = (x15(s, 1), %2 (s, £), %35 (5, 1), x4 (5, 1)), 1 < i <3, (2)
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such that
X1(s, 1) AXa(s,t) AX3(s,t) =A-P(s, 1), A€ K\ {0}. (3)

The family {X; (s, t), X2 (s, t), X3 (s, t) } is called a p-basis of the parametriza-

tion P(s,t), and each polynomial combination of the X;(s,t)’s a
moving plane following (1). By identifying the standard basis of
K[s, t]4 with the variables x1, X7, x3, X4 We can express (2) as

Xi(s,t) = x15(s, t) x1 + x4 (s, 1) x2 + %35 (5, 1) x3 + x4, (5, 1) x4, (4)

which justifies the label “moving plane” for polynomial combina-
tions of these elements.

In general, the computation of y-bases for rational parametriza-
tions is a hard problem, and even a bound for the degrees of the
Xi(s,t)’s is hard to find. In the Appendix of [Chen et al. 2005], it is
shown that for n > 2, the syzygy module

Syz(P) = {(A1(s,1), ..., Ans1(s, 1)) € K[s, 8]+ :

Ai(s,t)a(s,t) +...+ Aps1(s, t)ans1(s, t) = 0}

is free of rank n. In that paper, a p-basis of P(s,t) was defined
as any basis of Syz(P). A minimal u-basis was defined as a basis
{p1(s,1), ..., pu(s, 1)} of Syz(P) such that 3\7" | deg(p;(s,t)) is min-
imal among all the bases of Syz(P), and the question on explicit
bounds on the degree of such a minimal p-basis was raised. Algo-
rithms to compute p-bases for this case can be found in [Deng et al.
2005], but no bounds on the degree of these elements can be easily
derived from these algorithms.

In [Cid-Ruiz 2019] the first of such bounds is produced for sur-
faces in K3, i.e. when n = 3. Indeed, it is shown in [Cid-Ruiz 2019,
Theorem A] that a minimal p-basis in this situation has degree
bounded by O(d>?), and several sub-cases were considered with
better bounds in all of them. The last three authors of this paper
in [Cortadellas et al. 2020] obtained a bound of size get O(d'?) for
parametrization having a “shape basis”. However, it is not clear
yet whether these bounds are sharp, and there is definitely a lot of
room for improvements.

In this article, we focus on parametrizations with low degree
in one of the variables. We will show that the use of the Normal
Smith Form of the matrix of coefficients of the parametrization with
respect to the other variable can be of use to solve the problem.
If one of the partial degrees is one, the input parametrizes ruled
surfaces, which were studied in [Chen and Wang 2003; Chen et al.
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2001]. We show in Section 2 how to compute a p-basis via an
algorithmic treatment of the Normal Smith Form (Theorem 2.2),
and produce suitable degree bounds of the output as an outcome,
see Remarks 2.1 and 2.2.

The class of parametrizations with partial degree two is what
we will call “partially quadratic parametrization” in this paper, and
it contains canal surfaces, which were studied recently by [Yao and
Jia 2019]. In that paper, an algorithm to compute a pseudo p basis
for the parametrization of canal surfaces (i.e the parameter A in
(3) is actually a polynomial in K[s]). After that, the algorithm in
[Deng et al. 2005] is used to get a proper p-basis.

In Section 3 we show that we can compute a p-basis of partially
quadratic parametrizations with bounded degrees (cf. Theorem 3.6),
and derive an algorithm from it (Algorithm 3.2). This algorithm has
been implemented in SAGE by the first author, the code is publicly
available in

https://github.com/amrutha-b-nair/mu-Basis.git. We explain

the code in Section 4 and use it to compute several examples.

2 RULED SURFACES

We set deg(P(s, t))) := max;=1234(deg(a;(s, t)), and will pay atten-
tion to the partial degrees m := deg(P(s,t)), and n := deg, (P(s, t)).
In this section, we will deal with the case n = 1, i.e. the case of
ruled surfaces. In contrast with the approach made in [Chen and
Wang 2003; Chen et al. 2001], we will use the methods of [Hong
et al. 2017] to obtain our results. We will compare our approach
with previous results in Remark 2.2.
Set aj(s,t) = ajo(s) + ai1(s)t, i = 1,2,3,4, and

aio(s) az(s) aso(s) ago(s)

2x4
ain(s) az(s) asi(s) aql(s) L7

A(s) ==
Assume that none of the rows of A(s) is identically zero, otherwise

the parametrization would be degenerate and the computation of a
pi-basis straightforward.

PrOPOSITION 2.1. There exists a unimodular matrix M(s) €
K[s]*** of degree bounded by m such that

(a10(s) azo(s) azo(s) aso(s)) - My(s) = (ged(aio(s))1<i<a 000).

ProoF. Set g(s) := ged(aio(s))1<i<a- Thanks to Theorem 30 in
[Hong et al. 2017], there is a matrix Ml’(s) € K[s]**® with elements
of degree less than or equal to m such that its columns are a p-basis
of (a10(s) a2o0(s) a30(s) aso(s)). By the Hilbert Burch Theorem (see
for instance [Eisenbud 2005]), the signed maximal minors of Ml/ (s)
are equal to %(alo(s) azo(s) asop(s) aso(s)). Consider now the

g
Bézout identity

bi(s)aio(s) + ...+ ba(s)aso(s) = g(s)

with deg(b;) < m, i = 1,2,3,4. If we set now M (s) to have as its
first column the vector (b1(s) ba(s) b3(s) bs(s)), and the last three
columns of M;(s) being the remaining three columns, the claim
then follows straightforwardly. O

Set now

g(s) 0 0 0

A=A MO = {10 ay) @ @)

We have that deg(A;(s)) < 2m. If (aj(s) a3(s) ay(s)) = (000),
then the last three columns of Mj (s) are a p-basis of (1). Otherwise,
let My (s) € K[s]®*3 be a unimodular matrix as above such that

(a3 (s) a5(s) ay(s)) - Mz(s) = (ged(aj(s))2<j<4 00).

Denote with g’(s) the last gcd . Note that deg(Mz(s)) < 2m. We
finally set

1 0
M(s) :== My (s) - (0 Mg(s)) .
We have that M(s) is unimodular, and that deg(M(s)) < 3m. We
then have that

A

g(s) 0 0 o) 5)

A(S)'M(s):(a;@) g 0 of

Note that the degree of these three elements is bounded by 2m.

THEOREM 2.2. Denote with M!(s), M?(s), M3(s), M*(s) the
columns of M(s) and d(s, t) := ged(g(s) + aj(s)t,g"(s)t).
Ifg’(s) # 0, then a p-basis of P(s, t) is

{fo(s, M (s) + fi (s, )M? (5), M (5), M*(5)},

where fi(s,t) := %‘i%s)t and fo(s,t) = —5&%

Otherwise, a p-basis is

{M*(s), M>(s), M*(s)}.

PrOOF. As M(s) is unimodular, an element in
Syz(ai (s, 1), az(s, 1), a3 (s, 1), as (s, 1))

is a 4-tuple which can actually be written as Zj.:l hj(s, HMI(s)
with hj(s, t) € K[s, t]. From (5), we deduce then that

4
P(s,t) - (Zhj(s, HM(s)) = 0
j=1
is equivalent to hi(s,t)(g(s) + aj(s)t) + ha(s, t)g’(s)t = 0. From
here, the claim follows straightforwardly. O

Remark 2.1. The degree of f3(s, t)M'(s)+fi (s, t)M?(s) is bounded
by 5mins, and 1 in ¢. The other two elements have degree bounded
by 3m in s and do not depend on ¢.

Remark 2.2. In [Chen et al. 2001] it is shown that one can replace
M3 (s) and M*(s) with two moving planes of degrees bounded by
2m. In [Chen and Wang 2003] there is an algorithm to find the
third moving plane, the only one which is linear in ¢, of the lowest
possible degree in s, which is also shown to be bounded by 2m.

3 PARTIALLY QUADRATIC

PARAMETRIZATIONS
Now we have n = 2, and we write
ai(s,t) = ajo(s) + ai1 (s)t + ajz(s) 2 i=1,234. (6)

We assume that none of these four polynomials is identically zero.
Let
aio(s) azo(s) aso(s) aso(s)
A(s) =|an(s) an(s) as(s) an(s)|eK[s]”*  (7)
ai2(s) az(s) asa(s) as(s)



Bounds for the degrees of pi-bases of partially quadratic parametrizations

From Proposition 2.1 we know that there exists M (s) € K[s]***
an unimodular matrix of deg(M; (s)) < m such that

(a10(s) az(s) a3 (s) ago(s)) - Mi(s) = (ged(aio(s))1<i<a 000),
set as before go(s) := ged(aio(s))1<i<a4. Let us assume that go(s) #
0 (if go(s) = 0, dividing by ¢ we are in the case n = 1).

Set now
go(s) 0 0 0

A1(s) = A(s) - My (s) = ail () aél (s) aél (s) ag’}l ()| (8

ajp(s) ay(s) ap(s)  agy(s)

We then have that deg(A;(s)) < 2m.

Remark 3.1. If the last three columns Aj(s) are zero, then we are
done, as this would imply that the last three columns of M; (s) are
a pi-basis of (6).

PROPOSITION 3.1. The last three columns of M1 (s) are a p-basis
of the parametrization if and only if rank(A(s)) = 1.

PrOOF. As Mj(s) is unimodular, then
rank(A(s)) = rank(A(s) - My (s)) = rank(A1(s)).

And from (8) we have that rank(A;(s)) = 1 if and only if its last
three columns are 0. From here the claim follows straightforwardly.
O

Otherwise, let now My (s) € K[s]3*3 be the unimodular matrix
as above such that

(a5, (s) a5,(s) agy(s)) - Ma(s) = (gcd(aéj(s))szg 00).

Denote with g;(s) the gcd to the right. Note that deg(Mz(s)) < 2m.
Set now

My(s) = My(s) - (}, MZ"(S)) . ©)

We have now that deg(Ms3(s)) < 3m, and also

go(s) 0 0 0
A(s) - Ms(s) ={aj;(s)  gy(s) 0 0 ) (10)
al,(s)  ay,(s) az,(s) ag,(s)
and the degree of the elements in the right-most matrix is bounded
by 4m. If the last two columns of this matrix are identically zero,
then arguing as in the proof of Theorem 2.2, we can show that (1) has
a u—basis of the type {f2(s, t)M31 (s)+ fi(s, t)M32 (s), M;(s), M;l(s)}
for suitable fi (s, t), fo(s,t) € K[s, t]. As before, we can characterize
this case with the rank of A(s).

PROPOSITION 3.2. The parametrization (6) has a u—basis of the
type {fo(s, )M3 () + fi(s, )MZ(s), M3 (s), M5 (s)} if and only if
rank(A(s)) = 2.

If this is not the case, let My(s) € K[s]®*? the unimodular matrix

such that
(a35(s) agy(s)) - Ma(s) = (gy'(s) 0),

with g{(s) = ged(a3,(s), ay,(s)). Clearly deg(My(s)) < 4m, and if
we set

0

0
Mq(s)

M(s) = Ms(s) - , (11)

S O =
S = O
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we have finally that deg(M(s)) < 7m, and

go(s) 0 0 0
A(s) - M(s) = ag, () gy(s) 0 0]. (12)
Wys) dyls) g(s) 0

Now we need to operate on the rows of this matrix, but with extra
care because in our context it implies invertible changes of variables.
Recall from [Villard 1995] that a good conditioning in the matrix
A(s) is a change in its first row of the type Ry + a2R2 + @3R3 +— Ry,
with ag, a3 € K, in such a way that the gcd of the elements in
the first row is equal to the ged of all the elements in A(s). A good
conditioning for A(s) can be found if K has enough elements (which
is our case because we are assuming that K is infinite). It can be
represented as an invertible matrix U € K>3 of the type

1 a a3
U=|0 1 0],
0 0 1

such that U - A(s) has the desired properties. This does not change
the degree of A(s), so actually we will assume w.l.o.g. that at the
beginning of our algorithm A(s) is good conditioned by multiplying
to the left by such an invertible U.

In addition, by applying another a good conditioning to

(“él(s) az (s) “1/11(5))
az(s) ap(s)  ajy(s)

before computing the matrix Mz(s) above, which implies another
multiplication of U - A(s) by another invertible matrix

10 0
=10 1 o
0 0 1

to the left. Note that we have
1 a1 a
vr-u=[o 1 o, (13)
0 0

so we can actually put our matrix A(s) in a very good condition after
multiplying it to the left to a matrix like (13) with a1, ag, o’ € K
generic. After this operation, from (12) we arrive to an expression
of the form

g(s) 0 0 0
U™-U-A(s)-M(s) = (g(s)a’{1 (s) 9(s)g (s) 0 0)-
g(s)af,(s)  g(s)g' (s)ag,(s) g(s)g'(s)g”(s) 0

In terms of the representation of the parametrization (1), we have

that the columns of U* - U - A(s) now represent the coefficients of
ai(s,t), i = 1,2,3,4, withrespect to anew basis {¢1 (¢), ¢2(¢), ¢3(t)}
of K[t] <2 given by (1t t?) - (U* - U)~L.

Due to the nature of the problem, we can actually assume that
g(s) = 1, as the parametrization P(s, t) and the same one divided
by g(s) have the same p-basis.

In addition, if g’(s) = 0, then we will have straightforwardly
that the last three columns of M(s) are a p-basis of the input, so
suppose that this is not the case. We will see now that we can also
assume that g’ (s) = 1.
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LEmMA 3.3. Leth(s,t) € K[s, t]. The parametrization P(s, t) as in
(1) has a p-basis {X1(s, t), Xa(s, t), X3(s,t)} with X;(s,t) as in (4),
i=1,2,3, ifand only if

Py(s,t) := (al(s, t), h(s,t)az(s,t), h(s,t)as(s,t), h(s, t)aq(s, t))
has {)21(3, t), )Zg(s, 1), )~(3(s, t)} as u-basis, where
Xi(s,t) = h(s,t) x1i(s, £) x1 + %2 (s, £) X +x3i (5, £) X3+ x4, (5, 1) x4,
ProorF. Use (3) and the result follows straightforwardly. m)

With all of the above, we can actually assume w.l.o.g. that (12) is
of the form

1 0 0 0
U*-U-A(s) - M(s) = | aj,(s) 1 0 0).
aj,(s)  az,(s) g”’(s) 0

If 9" (s) = 0, then as in Theorem 2.2, we will have that, by setting
d(s,t) := ged(p1(t)+aj, ()P (t)+al,(s)$3(2), P2 (1) +a3, (s)p3 (1),

sty = BOOBOG O e D660

d(s,t) d(st)

the set

{G" () (fals, HM' (5) = fi(s, )MP(s)), M (s), M*(s)}
is a p-basis of (6), with

g’(s) 0 0 0
o o 100
G'(s) = 0 0o 1 o (14)
0 0 0 1
If g”(s) # 0, set
1 0 0 0
’
— ) —au(s) 1 0 0
M(s) :== M(s) 0 0 1 0
0 0 0 1

which will make increase the bound on the degree of M(s) to 9m,
then

1 0 0 0
U*-U-A(s) - M(s) =( 0 1 0 0), (15)
apy(s)  ay(s) g”(s) 0
with
deg(aty(s), ay,(s), g’ (s)) < 10m. (16)
Let

o) a2(t)  a1s()) _ (en(t) 2x3
a(t) = (0!21(t) aza(t) 023(f)) - (sz(f)) < K]
be a p-basis of (¢1(t), ¢2(t), ¢3(t)). As these three polynomials are
linearly independent, we have that deg(a(#)) = 1. As before, denote
with M1(s), M?(s), M3(s), M*(s) the columns of M(s). We proceed
as in the proof of Theorem 2.2, we have that Z;‘:l hi(s, )Mi(s) €
hy(s,t)
Zi Ei g is a K[s, t]-linear
ha(s, 1)
combination of a; (t), a2(t). From (15), we deduce that M*(s) is an
element of Syz(P(s, t)), and in addition we have that

! 0 0\ (hi(st) .
0 1 0 . hg(s, l’) = (al(t) 0(2(1’)) . (Vl(sa t)) ,
aly(s) az,(s)  g”(s)) \hs(s,1) 2(s,

Syz(P(s, t)) if and only if A(s) - M(s)

with vi(s,t), va(s,t) € K[s, t]. We multiply this equality by the
inverse of the matrix in the left-hand-side to get
hi(s,t) 1 0
hz (S, t) = 0 1 =

v1(s, t))

va(s,t)

17)

0
0 | 1) oo (t (
2o go ww L [Oe@)
S 9'() 9’(s)  g'(5)

an(t)  az(t)
| ezt an@ | (1 t) .
Gis(st)  ap(st) va(s, t)
gN(s) gll(s)
with @13(s, t) = —apy(s)a11(t) — aj, (s)ar2(t) + a13(t) and
d23(s, t) = —afy(s)az1 (t) — a5, (s)aza (t) +az3(t). This is equivalent
to requiring that

a13(s, t)vi(s, t) + azs(s, t)va(s, t)

should be a multiple of g’ (s), i.e. there exists v3(s, t) € K[s, ¢] such
that

a13(s, t)vi(s,t) + a3 (s, t)va(s, t) + g”" (s)vs(s,t) = 0. (18)
Note that the triplet
(CNt'13(S, l’), o3 (s, l’), g”(s)) (19)

does not really parametrize a ruled surface in K? (it has three
coordinates and not four), but we can apply the methods of the
previous section to it to deduce that there exists a p-basis of (19) of
the form {X; (s, t), X2(s, t)} with

Xi(S’ t) = (xil(s’ t)9xi2(s’ t): Xi3 (Ss t))s i=12.

of degree bounded by 5 - 10m = 50m (thanks to Remark 2.1).
The first two components of each of the members of the y-basis are
what we are looking for, i.e. by setting fori = 1,2

Lir(s, t) 1 0 0 (1)
. = 0 1 0 | XS,
i’_zgs’ 3 | ae o [@@e0) (xiz(s,t))’
i3S, - 7" (s) - 7" (s) 7°(s)
(20)

we have that this is a vector of polynomials in K[s, ], and that

3
Li(s,t) = ZL,- i(s, )M/ (s) € Syz(P(s,1)), i=12.  (21)
j=1

Moreover, from (18), we have that
(v1(s, £), va(s, ), v3(s, 1) = fi(s, £) - Xa(s, 1) + fa(s, 1) - Xa(s, 1)

for suitable fi(s,t), fa(s,t) € K[s, t]. This, combined with (17) and
(20) implies straightforwardly that

hl (S, t)
(hz(s, t)) = fi(s,t)L1(s,t) + fa(s, t)La(s, t).
h3(s, t)

So we have proven the following.

THEOREM 3.4. Given P(s,t) as in (6). If rank(A(s)) = 3, a u-basis
of this parametrization is given by {G’ (s)L1 (s, t), G’ (s)La(s, t), M*(s)},
where G’ (s) is as in (14).
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Note that the degree in ¢ of L;(s, t) is equal to one. To bound the
degree in s of these polynomials, from (20) and (16) we deduce that
the s-degree of L; (s, t), i = 1, 2 is bounded by 50m + 10m = 60m. So,
each L;j (s, t)MJ (s) has degree bounded by 60m+9m = 69m. We still
need to add ¢g’(s) to the first row of the p-basis (following Lemma
3.3), which makes the degree bound increase to 69m + 4m = 73m.
Note that the degree of M*(s) -the third syzygy- is bounded by 9m
but nevertheless this degree can be improved as a consequence of
the following Lemma.

LEMMA 3.5. Let
aio ajo Ako
[ai,aj,ar] =|ai1 aj1  ap
ail ajz Aako
withi, j,k € {1,2,3,4} and
§(s) = ged([a1, az, a3, [a1, az, a4, [a1, a3, aq), [a2, a3, a4]).
If§(s) # 0 then, up to a nonzero constant in K,

40y .- 1
M) = 205

([az, a3, ag], —[a1, a3, a4], [a1, az, a4], —[ a1, az, as])

(22)
Proor. It’s obvious that for i = 0, 1, 2 one has

ai 4z azp a4

aijp dzo G 440

ai;  dz1 Gz 44

a2 dzp a2 442
= aiilaz, a3, as] — azilay, as, as] + azilas, az, as] — asilas, az, as].
As g(s) # 0, the K[s]-syzygy module of (6) (i.e. the set of syzy-
gies which only depend on s) is free of rank one. Both M*(s) and
the syzygy to the right of (22) are K[s]-syzygies without a com-
mon polynomial factor. Hence, they must coincide up to a nonzero
constant in K. O

All together we have the following

THEOREM 3.6. Given P(s,t) as in (6), with deg (P(s,t)) = m. A
p-basis of this parametrization can be found of respective t-degrees
0,1, 1, and corresponding s-degrees bounded by 3m, 73m, 73m.

In light of these results, we can present the following algorithm:

Algorithm 3.2.
Input: A parametrization (a1, ag, a3, a4) as in (6).
Output: A p-basis of this parametrization.

(1) Compute the matrix A(s) from (7).

(2) Multiply to the left of A(s) a 3 X 3 matrix Uy of the shape
(13) for generic values of aj, ag, a’.

(3) Compute the matrix M;j (s) from (8).

(4) If A1(s) has the last three columns equal to zero, return the
last three columns of M (s) and stop the algorithm.

(5) Set (¢1(2) pa(t) ¢3(1)) = (1t t*)U .

(6) Compute the matrix M3 (s) from (9).

(7) If the last two columns of A(s) - M3(s) are zero, return
{fa(s, t)M31 (s) + fi(s, t)M32(s), Mg (s), M;*(s)}, with -using
the notation of (10)-

_ 90(9)92(1) + a5, ()45 (1)

_ 90(8)41(2) + a3, (5)42(2) + a3y (s) 43 (1)

fi d(s,t)

f2 d(s,t)
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with

d(s, 1) = ged(go(s)$1(£)+aj; (s)pa (£)+ay, () g3 (1), go () P2 (£)+as, (5) 3 (1)),

and stop the algorithm.
(8) Compute the matrix M(s) from (15).

)
(9) Compute {a1(t), a2(1)} a p—basis of {§1(t), $2(£), ¢3(1)}.
(10) Compute {X; (s, t), X2(s, )} a p—basis of (19).

(11) Compute L; (s, t) and Ly (s, t) from (21).
(12) Return {G’(s)L1(s, t), G’(s)La(s, t), M*(s)}.

Remark Note that this approach also covers the case n = 1, as
one can just set the last row of A(s) to be all of them equal to zero.

Example 3.7. Let
Pi(s,t) = (s? + 12, 251, 212, s* — 1?)
If we take (@1 (1), d2(1), ¢3(t)) = (t2,t,1) we obtain that
1 0 2 -1
A(s)=|0 25 0 0
s2 0 0 s

is a well-conditioned matrix. Moreover we have that

0 0
My (s) =

S O O =
= O O =

1 0
0 1
0 2

Ma(s) = Id, M(s) = Mi(s), Ma(s) = ((1) _11)’

and therefore

M(s) =

[

O O = O

N = O O
(=]

and

1 0 0 0
A(s)-M(s)=|0 25 0 Of.
s 0 252 0

Notice that g(s) = 1 and ¢’(s) = 2s. Moreover a1 (t) = (1, —t,0) and
ax(t) = (0,1,~t) is a p—basis of (¢ (1), $2(t), ¢3(1)). As ¢'(s) = 1,

then (17) is
h](S,t) 1 0
ha(s, ) [=|-t 1 .("I(SJ)).
h3(s, 1) _s -t va(s,t)

And a p-basis of (—s% —t,s) is given by X;i(s,t) = (1,0,s) and
Xa(s,t) = (0,5,1), s0

Li1(s, t) 1 0 1 1
Lia(s,t) | =] -t 1] (0) =|-t
L13(s, t) —S —§ —s

L1 (s, t) 1 0 0 0
(ng(s, t) (—l’ 1] ( ) = ( s
Las(s, t) - —é s -t

and
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Finally, we compute

1 0 0
0 1 0
Li(s,t) = LyM' + LipM? + LisM® = 1 ol tlol 51117
0 0 2
1
|-t
=l |
—2s
and
1 0 0
1 2 3 0 1 0
La(s,t) = LytM™ + LggM* + LysM® =0 0 +s 0 -t 1 =
0 0 2
0
| s
| -t
-2t

By applying Lemma 3.3, we conclude that a p—basis of P; (s, t) is

2s 0 1
-t N
—S —t
-2s) \—-2t) \-1

4 SAGE CODE AND EXAMPLES

In this section, we report on the SAGE code designed by the first
author which implements Algorithm 3.2, and can be accessed freely
through https://github.com/amrutha-b-nair/mu-Basis.git.

Below we list some explanations of the main commands of code.

(1) The algorithm checks for the t-degree of the given parametriza-
tion, and outputs the p—basis if the degree is at most two.

(2) The function vector_to_matrix takes the parametrization
as input and gives the matrix A(s) as output.

(3) The function good_conditioning will return a matrix of
good conditioning, say U and a modified matrix, say A; such
that U - A = A;

(4) The function GaussJordan can be used to compute the
pi—basis for univariate case following Proposition 2.1.

(5) The function reduce will take the parametriization P as
input and give the matrices U, A(s), M(s) and N(s) so that

U-A(s) - M(s) =N(s)
where, N(s) will have the form

1 0 0 0
N(s) =|aj,(s) g’ (s) 0 0
afy(s)  g'(s)az,(s) g'(s)g”(s) 0

(6) If at least two rows of N (s) are zero, the p—basis is computed
using the function mu_det_zero following Algorithm 3.2,
step 7.

(7) If three columns of N(s) are non-zero, it computes a y-basis
following Lemma 3.3 and Algorithm 3.2 Steps 9 to 12 with
the function mu_basis_two, which uses the commands de-
scribed above.

The following examples have been computed with the aid of this
code:

Example 4.1. Let P(s,t) = (t2 —1,st2+1%, 241, 1). We have then

-1 0 1 1
AGs)=[o 0o 0 ol
1 s+1 1 0

Note that rank(A(s)) # 2. If (¢1(t), 2(2), ¢3(t)) = (1, 1,2 — 1),
then

-1 1 0 1
As)=[1 s+1 1 0
1 s+1 1 0
is well-conditioned. In this case
0 1 3 s+1
0 0 0 -2
M(S) = -1 >
0 0 F s+1
1 1 1 0
and
1 0 0 O
A(s)M(s) =10 1 0 O0f.
0O 1 0 0

We have g’/ (s) = 0, then a p-basis of P(s, t) is

-1 % s+1
0 0 -2

2001 _ a2 a3 Ay —
{t*M" = M*, M°, M*} o [|-1|]s+1
2 -1 1 0

Example 4.2. Let
P(s,t) = (s3 +st% + 7st — 1, 2st + sz, t, P 1)

Taking ¢(t) = (1, ¢, tz), we obtain

s3—1 52 0 s°+1
A(s)=[ 7xs 2xs 1 0
S 0 0 1

which is a well-conditioned matrix. We compute

-1 0 -s+1 —1s?
s 0 -2 ~1(s+1)
M(s) = 7 ,
(s) —2s24+7s 1 7% -3s S+ %(s2 +5)
0 0 s2-s+1 %33
and have that
1 0 0 O
A(s)-M(s)=10 1 0 0.

- 0 1 0

In this case ¢g’(s) = 1 and a p—basis of (@1 (), P2 (1), P3(t)) is
a1 (t) = (¢,-1,0) and a2(t) = (0,t,—1). So, (17) is

hl(s, t) t 0
ho(s,t) |=[-1 ¢t |- (Vl (s, ?) ’
h3(s, t) st —1] %2 (s, 1)
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and a p—basis of (st,—1,1) is X1 (s,t) = (1,0, —st) and X5(s,t) =
(0,1,1). Hence,

Lia(s,t) |=]-1 t

Lll(s, l') t 0 (1) t

Li3(s, t) st -1 st
and
La1 (s, t) t 0 0 0
Loa(s,t)[=[-1 ¢t -(1): t
Las(s, t) st -1 -1
Finally
Li(s,t) = LiyM® + LigM? + LisM® =
-1 0 —s+1 —(s>=s+1)t
=t| ., Y L T e o
T -2+ 7s 1 752 —3s | | (783 =552 +7s)t — 1|
0 0 s —s+1 (3 -s2+9)t
and

Lo(s,t) = Loy MY + LygM? + LosM? =

-1 0 -s+1 s—1
-0 Zs it 0] 2—2 _ 2—st .
—2s“+7s 1 75 = 3s —7s“+3s+t
0 0 sZ—s+1 —s?+s—-1

So, a pi— basis of the input parametrization is {L1 (s, t), L2 (s, t), M4},

—(s? —s+1)t s—1 —%sz
—st —st —%(s+l)
(753 =552 +7s)t = 1| =7s2 +3s+ 1 | s> + Z(s2 +5)
(3 —s2+9)t —s2+s5-1 1s

Example 4.3. Set P(s,t) = (s9t +t2 41,22+ 8,5% + 7, t).
Taking (¢1 (1), ¢2(1), ¢3(t)) = (1,, %), we obtain

1 0 s247 0
Ais)=[s® 1 0o 1
1 2 0 0

which is a well-conditioned matrix. We have then

1 0 0 -2 -7
o o 1 L(s2+7)
— 2 2
M=o o o 1 :
-2 1 —% s“+7*39—%(32+7)
and
10 0 0
A(s) -M(s)=[0 1 0 O0f.
1 01 0

In this case we have g’(s) = 1 and a pu—basis of (¢1(¢), $2(£), #3(£))
is a1(t) = (t,—1,0) and a2(t) = (0, ¢, —1). Identity (17) turns into

h] (S, t) t 0
ha(s,t)|=|-1 ¢ | (Vl(s, t))’
h3(s, t) -t -1 va(s, t)

and a p—basis of (—t,—1,1) is Xy(s,t) = (=1,0,¢) and Xy(s,t) =
(0,1,1). Hence,

Lip(st)|=[-1 ¢

Li1(s,t) t 0 (—l) -t
Li3(s, 1) -t -1
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and
La1 (s, t) t 0 0
Loa(s,t) |=]|-1 ¢ (1) =|t
Las(s, t) -t -1 -1

We then compute

L1 (S, l’) = L11M1 +L12M2 + L13M3 =

1 0 0 —t

0 0 1 1

— _ 2 |- 2

Hol*1 o] t] 2 A
s’ 1 -3/ @ -nr+1

Lz(s, t) = L21M1 +L22M2 + L23M3 =

1 0 0 0
0 0 1 1
_ 42 (2| 2
Mol ol o 0
9 1 1
S 1 -5 t+3

A pu—Dbasis of the input parametrization is then {L; (s, t), L2 (s, t), M4}

-t 0 ——
1 1
_ ft % E(Sz+7)
0 I o | 1
%(239—1)t+1 t+% sll+7*39—%(sz+7)

Example 4.4. This parametrization is Example 3.1 in [Yao and
Jia 2019]:
P(s,t) = (433 +st2+4s% —12st+12+5+1, 45t + 5212 + 52 + 61, 612, 452 +
2 +1)
We apply algorithm 3.2 to this input to get

43 +4s%+5+1 4st+s%2 0 42 +1
A(s) = —12s 6 0 0
s+1 52 6 1

which is not a good conditioned matrix. So we take

1 1 0
U=[0 1
0 0
to get
453 +4s% —11s+1 4s*+s2+6 0 4s2+1
U-A(s) = —11s+1 s2+6 6 1
s+1 52 6 1

which is now good conditioned, and
(@1(0).42(1). $3(1) = (L£.4%) - U™ = (Lt =112~ 1+ 1),
Then, M(s) = [M', M?, M3, M*], with

3257 (160s® — 44s% — 635 — 69) 0
1 2
o - 0
Mi=| mssl 1605 31165+§87)1 s
m(3205 — 88s” — 46s ) - % 3
0 0
1 1
iz} —2
M3 = T2 M= =S
%32 0
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We have then
1 0 0 0
U-A(s)-M(s)=| 0 1 0 0
azi(s) 1 %+ ‘—11 0
with as; (s) = 757 (640s* — 176> + 68s% — 445 — 1174).
In this case ¢’(s) = 1 and g”’'(s) = s + ‘—11. A p—basis of

(P1(2), p2(t), $3(2)) is a1 (t) = (t = 1,-1,0) and a2 (t) = (1,1, -1).

Then, Identity (17) is

hi(s, t t—1 1
! (s ) _ -1 t . V1 (S, t)
ha(s,t) | = ,
h ¢ asi(st)  axn(st) va(s.t)
3(35 ) 7" (5) 77 (s)

with a1 (s, 1) = 1557 (640s* — 1765 + 68s% — 2(320s* — 885 + 3452 —
225 —587)t — 445 — 23), asp(s, 1) = 17e7 (640s* — 17653 +68s% — 445 +
1151t — 23) and g”’'(s) = (4s% + 1).
A p—basis of (a31(s, 1), asz(s, £), 9"’ (s)) is
X1(s,t) = (x11(5, 1), x12(5, £), ¥13(5, 1))

11
= (0,—s% = =, ———(160s% — 445 — 23)(4s® + 1) — 1)

4" 1151
and
Xa(s,t) = (x21(s, t), x22(s, 1), x23(5, 1))
( 1324801 1151 4, 12661 5 19567 , 12661 675637
=(——————, ——s" — s s° - -

> S N >

409600 ° 640~ 25600 102400 102400 204800

¢ 11 61 , 187 5 87 , 253 529
=+ ——5 - ——s" — s°+

s + s s s+ ).
20 1600 3200 25600 12800 102400
Hence,
Li1(s, t) t-1 1
Liz(s,t)|=| —1 N E (xu(s’ t))
Lis(s.) a(st)  an(st) | \x12(s1)
1305, 9;/(8) g"(s)
-1
= —(4st + 1)t ,
17 (640s* — 17653 + 6852 — 44s + t — 23)
and
La1(s,t) £-1 1
La(s,t)|=| 1 N B i t)) =
Los (s 1) ai(st)  as(st) | \x22(st)

9" (s) 9" (s)

1151 4 _ 126613 | 19567 (2 _ 12661 . _ 1324801, _ 26473
40 3 25600 102400° = 102400 409600 > 409600
=| o105 (320s* — 8857 + 34s% — 225 — 587)1 + L8
_ 6,1l 5_ 61 4 187 3 827 2 253 ~ 529
20 1600 3200 25600 12800 102400
Finally, we have
P11(s, 1)
s, t
Ly (S, t) = L11M1 +L12]VI2 +L13M3 = P12( ) s
P13(s, 1)
14(s, 1)

with p11(s, t) = ﬁ@oé + 6952 + 10s) + ﬁst + ﬁ, p12(s,t) =

zang (1605 +2765% — 111152 +695) — o (t+1), p13(s, 1) = 55 (452 —t+1)

_ 80 6_ 46 5, 1031 4 287 3, 173 2_ 1 (2
and p14(s,t) = —34535" — 11575 + 50065 ~ 59065 9208 ~ 24 (8" +

109 23
25 — 6)t — 13377 ~ 7504 and

pa1(s, 1)

p22(s,t)

p23(s,t) |
24(s, 1)

Lz(s, t) = L21M1 + L22M2 + L23M3 =

with pa1 (s, t) = —ﬁsS - %s4+ %83 - %52 - #%100 (160s3 -
4452—633—69)t+%s+%,p22 (s,t) = —2—156—%3%%34—
765005+ 2045005 + Tazsano (160s> +116s = 587)t — 52505 s — 53735,
p23(s,t) = —3g305" + 1956005° — 4005+ ga57ap (1608” — 4ds —
2132)9t +4%s7+ 1632725#307875242( s 5:54%_1438 ’ %2597 - 005"+ 2300°”
3192° T 1536005 + 983045 T 1228800° ~ 209600°

A p— basis of the input is then {L; (s, t), Lo (s, t), M*} as above.
Moreover, we can retrieve the parametization back from the y—
multiplied by a constant, as in (3):,

p12(s,t)  p13(s,t)  pia(s,t)
Li(s,t) ALy (s, ) AM* = |paza(s,t)  pas(s,t)  paals, b)|,

my my3 myq
p11(s,t)  p13(s,t)  pra(s,t)| [p1i(s,t)  pra(s,t)  pia(s,t)
—|p21(s,t)  pa3(s,t)  paa(s,b)|,|pai(s,t)  paz(s,t)  paals.t)|,

mq1 my3 myq my1 mq2 myq
p11(s,t)  p12(s,t)  p13(s.t) 1324801
—|P21 (S, t) P22 (S, t) P23 (S, t) = mp(s, t)‘
my1 m42 my3
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