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ABSTRACT
We derive algorithms for computing 𝜇-bases of rational parametriza-

tions of surfaces having one of the partial degrees bounded by two.

This class of parametrizations include ruled and canal surfaces. Our

approach is based on a algorithmic treatment of the Smith Normal

Form of a matrix of univariate polynomials, and it allows us to

bound the degrees of the elements of a 𝜇-basis of the input. A free

implementation in SAGE of our method has been made by the first

author.
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1 INTRODUCTION
Let K be an infinite field. Given a polynomial parametrization of a

rational surface

𝑃 (𝑠, 𝑡) = (𝑎1 (𝑠, 𝑡), 𝑎2 (𝑠, 𝑡), 𝑎3 (𝑠, 𝑡), 𝑎4 (𝑠, 𝑡)) ∈ K[𝑠, 𝑡]4, (1)

it is well-known that the syzygy module of the sequence(
𝑎1 (𝑠, 𝑡), 𝑎2 (𝑠, 𝑡), 𝑎3 (𝑠, 𝑡), 𝑎4 (𝑠, 𝑡)

)
is free of rank 3, which is equivalent to say that there exist three

parametrizations

𝑋𝑖 (𝑠, 𝑡) =
(
𝑥1𝑖 (𝑠, 𝑡), 𝑥2𝑖 (𝑠, 𝑡), 𝑥3𝑖 (𝑠, 𝑡), 𝑥4𝑖 (𝑠, 𝑡)

)
, 1 ≤ 𝑖 ≤ 3, (2)
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such that

𝑋1 (𝑠, 𝑡) ∧ 𝑋2 (𝑠, 𝑡) ∧ 𝑋3 (𝑠, 𝑡) = 𝜆 · 𝑃 (𝑠, 𝑡), 𝜆 ∈ K \ {0}. (3)

The family {𝑋1 (𝑠, 𝑡), 𝑋2 (𝑠, 𝑡), 𝑋3 (𝑠, 𝑡)} is called a 𝜇-basis of the parametriza-

tion 𝑃 (𝑠, 𝑡), and each polynomial combination of the 𝑋𝑖 (𝑠, 𝑡)’s a
moving plane following (1). By identifying the standard basis of

K[𝑠, 𝑡]4 with the variables 𝑥1, 𝑥2, 𝑥3, 𝑥4 we can express (2) as

𝑋𝑖 (𝑠, 𝑡) = 𝑥1𝑖 (𝑠, 𝑡) 𝑥1 + 𝑥2𝑖 (𝑠, 𝑡) 𝑥2 + 𝑥3𝑖 (𝑠, 𝑡) 𝑥3 + 𝑥4,𝑖 (𝑠, 𝑡) 𝑥4, (4)

which justifies the label “moving plane” for polynomial combina-

tions of these elements.

In general, the computation of 𝜇-bases for rational parametriza-

tions is a hard problem, and even a bound for the degrees of the

𝑋𝑖 (𝑠, 𝑡)’s is hard to find. In the Appendix of [Chen et al. 2005], it is

shown that for 𝑛 ≥ 2, the syzygy module

𝑆𝑦𝑧 (𝑃) = {(𝐴1 (𝑠, 𝑡), . . . , 𝐴𝑛+1 (𝑠, 𝑡)) ∈ K[𝑠, 𝑡]𝑛+1 :
𝐴1 (𝑠, 𝑡)𝑎1 (𝑠, 𝑡) + . . . +𝐴𝑛+1 (𝑠, 𝑡)𝑎𝑛+1 (𝑠, 𝑡) = 0}

is free of rank 𝑛. In that paper, a 𝜇-basis of 𝑃 (𝑠, 𝑡) was defined
as any basis of 𝑆𝑦𝑧 (𝑃). A minimal 𝜇-basis was defined as a basis

{𝑝1 (𝑠, 𝑡), . . . , 𝑝𝑛 (𝑠, 𝑡)} of 𝑆𝑦𝑧 (𝑃) such that
∑𝑛
𝑖=1 deg(𝑝𝑖 (𝑠, 𝑡)) is min-

imal among all the bases of 𝑆𝑦𝑧 (𝑃), and the question on explicit

bounds on the degree of such a minimal 𝜇-basis was raised. Algo-

rithms to compute 𝜇-bases for this case can be found in [Deng et al.

2005], but no bounds on the degree of these elements can be easily

derived from these algorithms.

In [Cid-Ruiz 2019] the first of such bounds is produced for sur-

faces in K3, i.e. when 𝑛 = 3. Indeed, it is shown in [Cid-Ruiz 2019,

Theorem A] that a minimal 𝜇-basis in this situation has degree

bounded by O(𝑑33), and several sub-cases were considered with

better bounds in all of them. The last three authors of this paper

in [Cortadellas et al. 2020] obtained a bound of size get O(𝑑12) for
parametrization having a “shape basis”. However, it is not clear

yet whether these bounds are sharp, and there is definitely a lot of

room for improvements.

In this article, we focus on parametrizations with low degree

in one of the variables. We will show that the use of the Normal

Smith Form of the matrix of coefficients of the parametrization with

respect to the other variable can be of use to solve the problem.

If one of the partial degrees is one, the input parametrizes ruled

surfaces, which were studied in [Chen and Wang 2003; Chen et al.
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2001]. We show in Section 2 how to compute a 𝜇-basis via an

algorithmic treatment of the Normal Smith Form (Theorem 2.2),

and produce suitable degree bounds of the output as an outcome,

see Remarks 2.1 and 2.2.

The class of parametrizations with partial degree two is what

we will call “partially quadratic parametrization” in this paper, and

it contains canal surfaces, which were studied recently by [Yao and

Jia 2019]. In that paper, an algorithm to compute a pseudo 𝜇 basis

for the parametrization of canal surfaces (i.e the parameter 𝜆 in

(3) is actually a polynomial in K[𝑠]). After that, the algorithm in

[Deng et al. 2005] is used to get a proper 𝜇-basis.

In Section 3 we show that we can compute a 𝜇-basis of partially

quadratic parametrizations with bounded degrees (cf. Theorem 3.6),

and derive an algorithm from it (Algorithm 3.2). This algorithm has

been implemented in SAGE by the first author, the code is publicly

available in

https://github.com/amrutha-b-nair/mu-Basis.git.We explain

the code in Section 4 and use it to compute several examples.

2 RULED SURFACES
We set deg(𝑃 (𝑠, 𝑡))) := max𝑖=1,2,3,4 (deg(𝑎𝑖 (𝑠, 𝑡)), andwill pay atten-
tion to the partial degrees𝑚 := deg𝑠 (𝑃 (𝑠, 𝑡)), and𝑛 := deg𝑡 (𝑃 (𝑠, 𝑡)) .
In this section, we will deal with the case 𝑛 = 1, i.e. the case of

ruled surfaces. In contrast with the approach made in [Chen and

Wang 2003; Chen et al. 2001], we will use the methods of [Hong

et al. 2017] to obtain our results. We will compare our approach

with previous results in Remark 2.2.

Set 𝑎𝑖 (𝑠, 𝑡) = 𝑎𝑖0 (𝑠) + 𝑎𝑖1 (𝑠)𝑡, 𝑖 = 1, 2, 3, 4, and

𝐴(𝑠) :=
(
𝑎10 (𝑠) 𝑎20 (𝑠) 𝑎30 (𝑠) 𝑎40 (𝑠)
𝑎11 (𝑠) 𝑎21 (𝑠) 𝑎31 (𝑠) 𝑎41 (𝑠)

)
∈ K[𝑠]2×4 .

Assume that none of the rows of 𝐴(𝑠) is identically zero, otherwise

the parametrization would be degenerate and the computation of a

𝜇-basis straightforward.

Proposition 2.1. There exists a unimodular matrix 𝑀1 (𝑠) ∈
K[𝑠]4×4 of degree bounded by𝑚 such that

(𝑎10 (𝑠) 𝑎20 (𝑠) 𝑎30 (𝑠) 𝑎40 (𝑠)) ·𝑀1 (𝑠) =
(
gcd(𝑎𝑖0 (𝑠))1≤𝑖≤4 0 0 0).

Proof. Set 𝑔(𝑠) := gcd(𝑎𝑖0 (𝑠))1≤𝑖≤4 . Thanks to Theorem 30 in

[Hong et al. 2017], there is a matrix𝑀 ′
1
(𝑠) ∈ K[𝑠]4×3 with elements

of degree less than or equal to𝑚 such that its columns are a 𝜇-basis

of (𝑎10 (𝑠) 𝑎20 (𝑠) 𝑎30 (𝑠) 𝑎40 (𝑠)) . By the Hilbert Burch Theorem (see

for instance [Eisenbud 2005]), the signed maximal minors of𝑀 ′
1
(𝑠)

are equal to
1

𝑔 (𝑠) (𝑎10 (𝑠) 𝑎20 (𝑠) 𝑎30 (𝑠) 𝑎40 (𝑠)) . Consider now the

Bézout identity

𝑏1 (𝑠)𝑎10 (𝑠) + . . . + 𝑏4 (𝑠)𝑎40 (𝑠) = 𝑔(𝑠)

with deg(𝑏𝑖 ) ≤ 𝑚, 𝑖 = 1, 2, 3, 4. If we set now 𝑀1 (𝑠) to have as its

first column the vector (𝑏1 (𝑠) 𝑏2 (𝑠) 𝑏3 (𝑠) 𝑏4 (𝑠)), and the last three

columns of 𝑀 ′
1
(𝑠) being the remaining three columns, the claim

then follows straightforwardly. □

Set now

𝐴1 (𝑠) := 𝐴(𝑠) ·𝑀1 (𝑠) =
(
𝑔(𝑠) 0 0 0

𝑎′
1
(𝑠) 𝑎′

2
(𝑠) 𝑎′

3
(𝑠) 𝑎′

4
(𝑠)

)
.

We have that deg(𝐴1 (𝑠)) ≤ 2𝑚. If (𝑎′
2
(𝑠) 𝑎′

3
(𝑠) 𝑎′

4
(𝑠)) = (0 0 0),

then the last three columns of𝑀1 (𝑠) are a 𝜇-basis of (1). Otherwise,
let𝑀2 (𝑠) ∈ K[𝑠]3×3 be a unimodular matrix as above such that

(𝑎′
2
(𝑠) 𝑎′

3
(𝑠) 𝑎′

4
(𝑠)) ·𝑀2 (𝑠) =

(
gcd(𝑎′𝑗 (𝑠))2≤ 𝑗≤4 0 0

)
.

Denote with 𝑔′(𝑠) the last gcd . Note that deg(𝑀2 (𝑠)) ≤ 2𝑚. We

finally set

𝑀 (𝑠) := 𝑀1 (𝑠) ·
(
1 0
0 𝑀2 (𝑠)

)
.

We have that 𝑀 (𝑠) is unimodular, and that deg(𝑀 (𝑠)) ≤ 3𝑚. We

then have that

𝐴(𝑠) ·𝑀 (𝑠) =
(
𝑔(𝑠) 0 0 0

𝑎′
1
(𝑠) 𝑔′(𝑠) 0 0

)
. (5)

Note that the degree of these three elements is bounded by 2𝑚.

Theorem 2.2. Denote with 𝑀1 (𝑠), 𝑀2 (𝑠), 𝑀3 (𝑠), 𝑀4 (𝑠) the
columns of𝑀 (𝑠) and 𝑑 (𝑠, 𝑡) := gcd(𝑔(𝑠) + 𝑎′

1
(𝑠)𝑡, 𝑔′(𝑠)𝑡) .

If 𝑔′(𝑠) ≠ 0, then a 𝜇-basis of 𝑃 (𝑠, 𝑡) is

{𝑓2 (𝑠, 𝑡)𝑀1 (𝑠) + 𝑓1 (𝑠, 𝑡)𝑀2 (𝑠), 𝑀3 (𝑠), 𝑀4 (𝑠)},

where 𝑓1 (𝑠, 𝑡) :=
𝑔 (𝑠)+𝑎′

1
(𝑠)𝑡

𝑑 (𝑠,𝑡 ) and 𝑓2 (𝑠, 𝑡) := − 𝑔′ (𝑠)
𝑑 (𝑠,𝑡 ) .

Otherwise, a 𝜇-basis is

{𝑀2 (𝑠), 𝑀3 (𝑠), 𝑀4 (𝑠)}.

Proof. As𝑀 (𝑠) is unimodular, an element in

Syz(𝑎1 (𝑠, 𝑡), 𝑎2 (𝑠, 𝑡), 𝑎3 (𝑠, 𝑡), 𝑎4 (𝑠, 𝑡))
is a 4-tuple which can actually be written as

∑
4

𝑗=1 ℎ 𝑗 (𝑠, 𝑡)𝑀 𝑗 (𝑠)
with ℎ 𝑗 (𝑠, 𝑡) ∈ K[𝑠, 𝑡] . From (5), we deduce then that

𝑃 (𝑠, 𝑡) ·
( 4∑
𝑗=1

ℎ 𝑗 (𝑠, 𝑡)𝑀 𝑗 (𝑠)
)
= 0

is equivalent to ℎ1 (𝑠, 𝑡) (𝑔(𝑠) + 𝑎′
1
(𝑠)𝑡) + ℎ2 (𝑠, 𝑡)𝑔′(𝑠)𝑡 = 0. From

here, the claim follows straightforwardly. □

Remark 2.1. The degree of 𝑓2 (𝑠, 𝑡)𝑀1 (𝑠)+𝑓1 (𝑠, 𝑡)𝑀2 (𝑠) is bounded
by 5𝑚 in 𝑠, and 1 in 𝑡 . The other two elements have degree bounded

by 3𝑚 in 𝑠 and do not depend on 𝑡 .

Remark 2.2. In [Chen et al. 2001] it is shown that one can replace

𝑀3 (𝑠) and𝑀4 (𝑠) with two moving planes of degrees bounded by

2𝑚. In [Chen and Wang 2003] there is an algorithm to find the

third moving plane, the only one which is linear in 𝑡 , of the lowest

possible degree in 𝑠, which is also shown to be bounded by 2𝑚.

3 PARTIALLY QUADRATIC
PARAMETRIZATIONS

Now we have 𝑛 = 2, and we write

𝑎𝑖 (𝑠, 𝑡) = 𝑎𝑖0 (𝑠) + 𝑎𝑖1 (𝑠)𝑡 + 𝑎𝑖2 (𝑠)𝑡2, 𝑖 = 1, 2, 3, 4. (6)

We assume that none of these four polynomials is identically zero.

Let

𝐴(𝑠) := ©­«
𝑎10 (𝑠) 𝑎20 (𝑠) 𝑎30 (𝑠) 𝑎40 (𝑠)
𝑎11 (𝑠) 𝑎21 (𝑠) 𝑎31 (𝑠) 𝑎41 (𝑠)
𝑎12 (𝑠) 𝑎22 (𝑠) 𝑎32 (𝑠) 𝑎42 (𝑠)

ª®¬ ∈ K[𝑠]3×4 . (7)
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From Proposition 2.1 we know that there exists𝑀1 (𝑠) ∈ K[𝑠]4×4
an unimodular matrix of deg(𝑀1 (𝑠)) ≤ 𝑚 such that

(𝑎10 (𝑠) 𝑎20 (𝑠) 𝑎30 (𝑠) 𝑎40 (𝑠)) ·𝑀1 (𝑠) =
(
gcd(𝑎𝑖0 (𝑠))1≤𝑖≤4 0 0 0),

set as before 𝑔0 (𝑠) := gcd(𝑎𝑖0 (𝑠))1≤𝑖≤4 . Let us assume that 𝑔0 (𝑠) .
0 (if 𝑔0 (𝑠) ≡ 0, dividing by 𝑡 we are in the case 𝑛 = 1).

Set now

𝐴1 (𝑠) := 𝐴(𝑠) ·𝑀1 (𝑠) =
©­«
𝑔0 (𝑠) 0 0 0

𝑎′
11
(𝑠) 𝑎′

21
(𝑠) 𝑎′

31
(𝑠) 𝑎′

41
(𝑠)

𝑎′
12
(𝑠) 𝑎′

22
(𝑠) 𝑎′

32
(𝑠) 𝑎′

42
(𝑠)

ª®¬ . (8)

We then have that deg(𝐴1 (𝑠)) ≤ 2𝑚.

Remark 3.1. If the last three columns 𝐴1 (𝑠) are zero, then we are

done, as this would imply that the last three columns of𝑀1 (𝑠) are
a 𝜇-basis of (6).

Proposition 3.1. The last three columns of𝑀1 (𝑠) are a 𝜇-basis
of the parametrization if and only if rank(𝐴(𝑠)) = 1.

Proof. As𝑀1 (𝑠) is unimodular, then

rank(𝐴(𝑠)) = rank(𝐴(𝑠) ·𝑀1 (𝑠)) = rank(𝐴1 (𝑠)) .
And from (8) we have that rank(𝐴1 (𝑠)) = 1 if and only if its last

three columns are 0. From here the claim follows straightforwardly.

□

Otherwise, let now𝑀2 (𝑠) ∈ K[𝑠]3×3 be the unimodular matrix

as above such that

(𝑎′
21
(𝑠) 𝑎′

31
(𝑠) 𝑎′

41
(𝑠)) ·𝑀2 (𝑠) =

(
gcd(𝑎′

2𝑗 (𝑠))2≤ 𝑗≤4 0 0
)
.

Denote with 𝑔′
0
(𝑠) the gcd to the right. Note that deg(𝑀2 (𝑠)) ≤ 2𝑚.

Set now

𝑀3 (𝑠) := 𝑀1 (𝑠) ·
(
1 0
0 𝑀2 (𝑠)

)
. (9)

We have now that deg(𝑀3 (𝑠)) ≤ 3𝑚, and also

𝐴(𝑠) ·𝑀3 (𝑠) =
©­«
𝑔0 (𝑠) 0 0 0

𝑎′
11
(𝑠) 𝑔′

0
(𝑠) 0 0

𝑎′
12
(𝑠) 𝑎∗

22
(𝑠) 𝑎∗

32
(𝑠) 𝑎∗

42
(𝑠)

ª®¬ , (10)

and the degree of the elements in the right-most matrix is bounded

by 4𝑚. If the last two columns of this matrix are identically zero,

then arguing as in the proof of Theorem 2.2, we can show that (1) has

a 𝜇−basis of the type {𝑓2 (𝑠, 𝑡)𝑀1

3
(𝑠) + 𝑓1 (𝑠, 𝑡)𝑀2

3
(𝑠), 𝑀3

3
(𝑠), 𝑀4

3
(𝑠)}

for suitable 𝑓1 (𝑠, 𝑡), 𝑓2 (𝑠, 𝑡) ∈ K[𝑠, 𝑡] . As before, we can characterize
this case with the rank of 𝐴(𝑠).

Proposition 3.2. The parametrization (6) has a 𝜇−basis of the
type {𝑓2 (𝑠, 𝑡)𝑀1

3
(𝑠) + 𝑓1 (𝑠, 𝑡)𝑀2

3
(𝑠), 𝑀3

3
(𝑠), 𝑀4

3
(𝑠)} if and only if

rank(𝐴(𝑠)) = 2.

If this is not the case, let𝑀4 (𝑠) ∈ K[𝑠]2×2 the unimodular matrix

such that

(𝑎∗
32
(𝑠) 𝑎∗

42
(𝑠)) ·𝑀4 (𝑠) = (𝑔′′

0
(𝑠) 0),

with 𝑔′′
0
(𝑠) = gcd(𝑎∗

32
(𝑠), 𝑎∗

42
(𝑠)). Clearly deg(𝑀4 (𝑠)) ≤ 4𝑚, and if

we set

𝑀 (𝑠) := 𝑀3 (𝑠) ·
©­«
1 0 0
0 1 0
0 0 𝑀4 (𝑠)

ª®¬ , (11)

we have finally that deg(𝑀 (𝑠)) ≤ 7𝑚, and

𝐴(𝑠) ·𝑀 (𝑠) = ©­«
𝑔0 (𝑠) 0 0 0

𝑎′
11
(𝑠) 𝑔′

0
(𝑠) 0 0

𝑎′
12
(𝑠) 𝑎∗

22
(𝑠) 𝑔′′

0
(𝑠) 0

ª®¬ . (12)

Now we need to operate on the rows of this matrix, but with extra

care because in our context it implies invertible changes of variables.

Recall from [Villard 1995] that a good conditioning in the matrix

𝐴(𝑠) is a change in its first row of the type 𝑅1 + 𝛼2𝑅2 + 𝛼3𝑅3 ↦→ 𝑅1,

with 𝛼2, 𝛼3 ∈ K, in such a way that the gcd of the elements in

the first row is equal to the gcd of all the elements in 𝐴(𝑠). A good

conditioning for𝐴(𝑠) can be found ifK has enough elements (which

is our case because we are assuming that K is infinite). It can be

represented as an invertible matrix𝑈 ∈ K3×3 of the type

𝑈 =
©­«
1 𝛼2 𝛼3
0 1 0

0 0 1

ª®¬ ,
such that𝑈 · 𝐴(𝑠) has the desired properties. This does not change

the degree of 𝐴(𝑠), so actually we will assume w.l.o.g. that at the

beginning of our algorithm𝐴(𝑠) is good conditioned by multiplying

to the left by such an invertible𝑈 .

In addition, by applying another a good conditioning to(
𝑎′
21
(𝑠) 𝑎′

31
(𝑠) 𝑎′

41
(𝑠)

𝑎′
22
(𝑠) 𝑎′

32
(𝑠) 𝑎′

42
(𝑠)

)
before computing the matrix𝑀2 (𝑠) above, which implies another

multiplication of𝑈 · 𝐴(𝑠) by another invertible matrix

𝑈 ∗ =
©­«
1 0 0

0 1 𝛼 ′

0 0 1

ª®¬
to the left. Note that we have

𝑈 ∗ ·𝑈 =
©­«
1 𝛼1 𝛼2
0 1 𝛼 ′

0 0 1

ª®¬ , (13)

so we can actually put ourmatrix𝐴(𝑠) in a very good condition after
multiplying it to the left to a matrix like (13) with 𝛼1, 𝛼2, 𝛼

′ ∈ K
generic. After this operation, from (12) we arrive to an expression

of the form

𝑈 ∗ ·𝑈 ·𝐴(𝑠) ·𝑀 (𝑠) = ©­«
𝑔 (𝑠) 0 0 0

𝑔 (𝑠)𝑎′′
11
(𝑠) 𝑔 (𝑠)𝑔′ (𝑠) 0 0

𝑔 (𝑠)𝑎′′
12
(𝑠) 𝑔 (𝑠)𝑔′ (𝑠)𝑎′′

22
(𝑠) 𝑔 (𝑠)𝑔′ (𝑠)𝑔′′ (𝑠) 0

ª®¬ .
In terms of the representation of the parametrization (1), we have

that the columns of𝑈 ∗ ·𝑈 · 𝐴(𝑠) now represent the coefficients of

𝑎𝑖 (𝑠, 𝑡), 𝑖 = 1, 2, 3, 4,with respect to a new basis {𝜙1 (𝑡), 𝜙2 (𝑡), 𝜙3 (𝑡)}
of K[𝑡]≤2 given by (1 𝑡 𝑡2) · (𝑈 ∗ ·𝑈 )−1 .

Due to the nature of the problem, we can actually assume that

𝑔(𝑠) = 1, as the parametrization 𝑃 (𝑠, 𝑡) and the same one divided

by 𝑔(𝑠) have the same 𝜇-basis.

In addition, if 𝑔′(𝑠) = 0, then we will have straightforwardly

that the last three columns of 𝑀 (𝑠) are a 𝜇-basis of the input, so

suppose that this is not the case. We will see now that we can also

assume that 𝑔′(𝑠) = 1.
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Lemma 3.3. Let ℎ(𝑠, 𝑡) ∈ K[𝑠, 𝑡] . The parametrization 𝑃 (𝑠, 𝑡) as in
(1) has a 𝜇-basis {𝑋1 (𝑠, 𝑡), 𝑋2 (𝑠, 𝑡), 𝑋3 (𝑠, 𝑡)} with 𝑋𝑖 (𝑠, 𝑡) as in (4),
𝑖 = 1, 2, 3, if and only if

𝑃ℎ (𝑠, 𝑡) :=
(
𝑎1 (𝑠, 𝑡), ℎ(𝑠, 𝑡)𝑎2 (𝑠, 𝑡), ℎ(𝑠, 𝑡)𝑎3 (𝑠, 𝑡), ℎ(𝑠, 𝑡)𝑎4 (𝑠, 𝑡)

)
has {𝑋̃1 (𝑠, 𝑡), 𝑋̃2 (𝑠, 𝑡), 𝑋̃3 (𝑠, 𝑡)} as 𝜇-basis, where
𝑋̃𝑖 (𝑠, 𝑡) = ℎ(𝑠, 𝑡) 𝑥1𝑖 (𝑠, 𝑡) 𝑥1 + 𝑥2𝑖 (𝑠, 𝑡) 𝑥2 + 𝑥3𝑖 (𝑠, 𝑡) 𝑥3 + 𝑥4,𝑖 (𝑠, 𝑡) 𝑥4,

Proof. Use (3) and the result follows straightforwardly. □

With all of the above, we can actually assume w.l.o.g. that (12) is

of the form

𝑈 ∗ ·𝑈 · 𝐴(𝑠) ·𝑀 (𝑠) = ©­«
1 0 0 0

𝑎′
11
(𝑠) 1 0 0

𝑎′
12
(𝑠) 𝑎∗

22
(𝑠) 𝑔′′(𝑠) 0

ª®¬ .
If 𝑔′′(𝑠) = 0, then as in Theorem 2.2, we will have that, by setting

𝑑 (𝑠, 𝑡) := gcd(𝜙1 (𝑡)+𝑎′
11
(𝑠)𝜙2 (𝑡)+𝑎′

12
(𝑠)𝜙3 (𝑡), 𝜙2 (𝑡)+𝑎∗

22
(𝑠)𝜙3 (𝑡)),

𝑓1 (𝑠, 𝑡) =
𝜙1 (𝑡 )+𝑎′

11
(𝑠)𝜙2 (𝑡 )+𝑎′

12
(𝑠)𝜙3 (𝑡 )

𝑑 (𝑠,𝑡 ) and 𝑓2 (𝑠, 𝑡) =
𝜙2 (𝑡 )+𝑎∗

22
(𝑠)𝜙3 (𝑡 )

𝑑 (𝑠,𝑡 )
the set

{𝐺 ′(𝑠) (𝑓2 (𝑠, 𝑡)𝑀1 (𝑠) − 𝑓1 (𝑠, 𝑡)𝑀2 (𝑠)), 𝑀3 (𝑠), 𝑀4 (𝑠)}
is a 𝜇-basis of (6), with

𝐺 ′(𝑠) =
©­­­«
𝑔′(𝑠) 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

ª®®®¬ . (14)

If 𝑔′′(𝑠) ≠ 0, set

𝑀 (𝑠) := 𝑀 (𝑠) ·
©­­­«

1 0 0 0

−𝑎′
11
(𝑠) 1 0 0

0 0 1 0

0 0 0 1

ª®®®¬
which will make increase the bound on the degree of𝑀 (𝑠) to 9𝑚,

then

𝑈 ∗ ·𝑈 · 𝐴(𝑠) ·𝑀 (𝑠) = ©­«
1 0 0 0

0 1 0 0

𝑎′′
12
(𝑠) 𝑎∗

22
(𝑠) 𝑔′′(𝑠) 0

ª®¬ , (15)

with

deg(𝑎′′
12
(𝑠), 𝑎∗

22
(𝑠), 𝑔′′(𝑠)) ≤ 10𝑚. (16)

Let

𝛼 (𝑡) :=
(
𝛼11 (𝑡) 𝛼12 (𝑡) 𝛼13 (𝑡)
𝛼21 (𝑡) 𝛼22 (𝑡) 𝛼23 (𝑡)

)
=

(
𝛼1 (𝑡)
𝛼2 (𝑡)

)
∈ K[𝑡]2×3

be a 𝜇-basis of (𝜙1 (𝑡), 𝜙2 (𝑡), 𝜙3 (𝑡)) . As these three polynomials are

linearly independent, we have that deg(𝛼 (𝑡)) = 1. As before, denote

with𝑀1 (𝑠), 𝑀2 (𝑠), 𝑀3 (𝑠), 𝑀4 (𝑠) the columns of𝑀 (𝑠).Weproceed

as in the proof of Theorem 2.2, we have that

∑
4

𝑖=1 ℎ𝑖 (𝑠, 𝑡)𝑀𝑖 (𝑠) ∈

Syz(𝑃 (𝑠, 𝑡)) if and only if 𝐴(𝑠) · 𝑀 (𝑠)
©­­­«
ℎ1 (𝑠, 𝑡)
ℎ2 (𝑠, 𝑡)
ℎ3 (𝑠, 𝑡)
ℎ4 (𝑠, 𝑡)

ª®®®¬ is a K[𝑠, 𝑡]-linear
combination of 𝛼1 (𝑡), 𝛼2 (𝑡) . From (15), we deduce that𝑀4 (𝑠) is an
element of Syz(𝑃 (𝑠, 𝑡)), and in addition we have that

©­«
1 0 0

0 1 0

𝑎′′
12
(𝑠) 𝑎∗

22
(𝑠) 𝑔′′(𝑠)

ª®¬ · ©­«
ℎ1 (𝑠, 𝑡)
ℎ2 (𝑠, 𝑡)
ℎ3 (𝑠, 𝑡)

ª®¬ =
(
𝛼1 (𝑡) 𝛼2 (𝑡)

)
·
(
𝜈1 (𝑠, 𝑡)
𝜈2 (𝑠, 𝑡)

)
,

with 𝜈1 (𝑠, 𝑡), 𝜈2 (𝑠, 𝑡) ∈ K[𝑠, 𝑡] . We multiply this equality by the

inverse of the matrix in the left-hand-side to get

©­«
ℎ1 (𝑠, 𝑡)
ℎ2 (𝑠, 𝑡)
ℎ3 (𝑠, 𝑡)

ª®¬ =
©­­«

1 0 0

0 1 0

−𝑎′′
12
(𝑠)

𝑔′′ (𝑠) −𝑎∗
22
(𝑠)

𝑔′′ (𝑠)
1

𝑔′′ (𝑠)

ª®®¬·
(
𝛼1 (𝑡) 𝛼2 (𝑡)

)
·
(
𝜈1 (𝑠, 𝑡)
𝜈2 (𝑠, 𝑡)

)
=

(17)

=
©­­«
𝛼11 (𝑡) 𝛼21 (𝑡)
𝛼12 (𝑡) 𝛼22 (𝑡)
𝛼̃13 (𝑠,𝑡 )
𝑔′′ (𝑠)

𝛼̃23 (𝑠,𝑡 )
𝑔′′ (𝑠)

ª®®¬ ·
(
𝜈1 (𝑠, 𝑡)
𝜈2 (𝑠, 𝑡)

)
.

with 𝛼13 (𝑠, 𝑡) = −𝑎′′
12
(𝑠)𝛼11 (𝑡) − 𝑎∗

22
(𝑠)𝛼12 (𝑡) + 𝛼13 (𝑡) and

𝛼23 (𝑠, 𝑡) = −𝑎′′
12
(𝑠)𝛼21 (𝑡) −𝑎∗

22
(𝑠)𝛼22 (𝑡) +𝛼23 (𝑡) . This is equivalent

to requiring that

𝛼13 (𝑠, 𝑡)𝜈1 (𝑠, 𝑡) + 𝛼23 (𝑠, 𝑡)𝜈2 (𝑠, 𝑡)

should be a multiple of 𝑔′′(𝑠), i.e. there exists 𝜈3 (𝑠, 𝑡) ∈ K[𝑠, 𝑡] such
that

𝛼13 (𝑠, 𝑡)𝜈1 (𝑠, 𝑡) + 𝛼23 (𝑠, 𝑡)𝜈2 (𝑠, 𝑡) + 𝑔′′(𝑠)𝜈3 (𝑠, 𝑡) = 0. (18)

Note that the triplet

(𝛼13 (𝑠, 𝑡), 𝛼23 (𝑠, 𝑡), 𝑔′′(𝑠)) (19)

does not really parametrize a ruled surface in K3 (it has three

coordinates and not four), but we can apply the methods of the

previous section to it to deduce that there exists a 𝜇-basis of (19) of

the form {𝑋1 (𝑠, 𝑡), 𝑋2 (𝑠, 𝑡)} with

𝑋𝑖 (𝑠, 𝑡) = (𝑥𝑖1 (𝑠, 𝑡), 𝑥𝑖2 (𝑠, 𝑡), 𝑥𝑖3 (𝑠, 𝑡)), 𝑖 = 1, 2.

of degree bounded by 5 · 10𝑚 = 50𝑚 (thanks to Remark 2.1).

The first two components of each of the members of the 𝜇-basis are

what we are looking for, i.e. by setting for 𝑖 = 1, 2

©­«
𝐿𝑖1 (𝑠, 𝑡)
𝐿𝑖2 (𝑠, 𝑡)
𝐿𝑖3 (𝑠, 𝑡)

ª®¬ :=
©­­«

1 0 0

0 1 0

−𝑎′′
12
(𝑠)

𝑔′′ (𝑠) −𝑎∗
22
(𝑠)

𝑔′′ (𝑠)
1

𝑔′′ (𝑠)

ª®®¬·
(
𝛼1 (𝑡) 𝛼2 (𝑡)

)
·
(
𝑥𝑖1 (𝑠, 𝑡)
𝑥𝑖2 (𝑠, 𝑡)

)
,

(20)

we have that this is a vector of polynomials in K[𝑠, 𝑡], and that

𝐿𝑖 (𝑠, 𝑡) :=
3∑
𝑗=1

𝐿𝑖 𝑗 (𝑠, 𝑡)𝑀 𝑗 (𝑠) ∈ Syz(𝑃 (𝑠, 𝑡)), 𝑖 = 1, 2. (21)

Moreover, from (18), we have that

(𝜈1 (𝑠, 𝑡), 𝜈2 (𝑠, 𝑡), 𝜈3 (𝑠, 𝑡)) = 𝑓1 (𝑠, 𝑡) · 𝑋1 (𝑠, 𝑡) + 𝑓2 (𝑠, 𝑡) · 𝑋2 (𝑠, 𝑡)

for suitable 𝑓1 (𝑠, 𝑡), 𝑓2 (𝑠, 𝑡) ∈ K[𝑠, 𝑡] . This, combined with (17) and

(20) implies straightforwardly that

©­«
ℎ1 (𝑠, 𝑡)
ℎ2 (𝑠, 𝑡)
ℎ3 (𝑠, 𝑡)

ª®¬ = 𝑓1 (𝑠, 𝑡)𝐿1 (𝑠, 𝑡) + 𝑓2 (𝑠, 𝑡)𝐿2 (𝑠, 𝑡).

So we have proven the following.

Theorem 3.4. Given 𝑃 (𝑠, 𝑡) as in (6). If rank(𝐴(𝑠)) = 3, a 𝜇-basis
of this parametrization is given by {𝐺 ′(𝑠)𝐿1 (𝑠, 𝑡), 𝐺 ′(𝑠)𝐿2 (𝑠, 𝑡), 𝑀4 (𝑠)},
where 𝐺 ′(𝑠) is as in (14).
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Note that the degree in 𝑡 of 𝐿𝑖 (𝑠, 𝑡) is equal to one. To bound the

degree in 𝑠 of these polynomials, from (20) and (16) we deduce that

the 𝑠-degree of 𝐿𝑖 (𝑠, 𝑡), 𝑖 = 1, 2 is bounded by 50𝑚 + 10𝑚 = 60𝑚. So,

each 𝐿𝑖 𝑗 (𝑠, 𝑡)𝑀 𝑗 (𝑠) has degree bounded by 60𝑚+9𝑚 = 69𝑚.We still

need to add 𝑔′(𝑠) to the first row of the 𝜇-basis (following Lemma

3.3), which makes the degree bound increase to 69𝑚 + 4𝑚 = 73𝑚.

Note that the degree of𝑀4 (𝑠) -the third syzygy- is bounded by 9𝑚

but nevertheless this degree can be improved as a consequence of

the following Lemma.

Lemma 3.5. Let

[𝑎𝑖 , 𝑎 𝑗 , 𝑎𝑘 ] =

������𝑎𝑖0 𝑎 𝑗0 𝑎𝑘0
𝑎𝑖1 𝑎 𝑗1 𝑎𝑘1
𝑎𝑖1 𝑎 𝑗2 𝑎𝑘2

������
with 𝑖, 𝑗, 𝑘 ∈ {1, 2, 3, 4} and

𝑔(𝑠) = 𝑔𝑐𝑑 ( [𝑎1, 𝑎2, 𝑎3], [𝑎1, 𝑎2, 𝑎4], [𝑎1, 𝑎3, 𝑎4], [𝑎2, 𝑎3, 𝑎4]).
If 𝑔(𝑠) . 0 then, up to a nonzero constant in K,

𝑀4 (𝑠) := 1

𝑔(𝑠) ( [𝑎2, 𝑎3, 𝑎4],−[𝑎1, 𝑎3, 𝑎4], [𝑎1, 𝑎2, 𝑎4],−[𝑎1, 𝑎2, 𝑎3])
(22)

Proof. It’s obvious that for 𝑖 = 0, 1, 2 one has

0 =

��������
𝑎1𝑖 𝑎2𝑖 𝑎3𝑖 𝑎4𝑖
𝑎10 𝑎20 𝑎30 𝑎40
𝑎11 𝑎21 𝑎31 𝑎41
𝑎12 𝑎22 𝑎32 𝑎42

�������� =
= 𝑎1𝑖 [𝑎2, 𝑎3, 𝑎4] − 𝑎2𝑖 [𝑎1, 𝑎3, 𝑎4] + 𝑎3𝑖 [𝑎1, 𝑎2, 𝑎4] − 𝑎4𝑖 [𝑎1, 𝑎2, 𝑎3] .
As 𝑔(𝑠) ≠ 0, the K[𝑠]-syzygy module of (6) (i.e. the set of syzy-

gies which only depend on 𝑠) is free of rank one. Both𝑀4 (𝑠) and
the syzygy to the right of (22) are K[𝑠]-syzygies without a com-

mon polynomial factor. Hence, they must coincide up to a nonzero

constant in K. □

All together we have the following

Theorem 3.6. Given 𝑃 (𝑠, 𝑡) as in (6), with deg𝑠 (𝑃 (𝑠, 𝑡)) = 𝑚. A
𝜇-basis of this parametrization can be found of respective 𝑡-degrees
0, 1, 1, and corresponding 𝑠-degrees bounded by 3𝑚, 73𝑚, 73𝑚.

In light of these results, we can present the following algorithm:

Algorithm 3.2.
Input: A parametrization (𝑎1, 𝑎2, 𝑎3, 𝑎4) as in (6).

Output: A 𝜇-basis of this parametrization.

(1) Compute the matrix 𝐴(𝑠) from (7).

(2) Multiply to the left of 𝐴(𝑠) a 3 × 3 matrix 𝑈0 of the shape

(13) for generic values of 𝛼1, 𝛼2, 𝛼
′.

(3) Compute the matrix𝑀1 (𝑠) from (8).

(4) If 𝐴1 (𝑠) has the last three columns equal to zero, return the

last three columns of𝑀1 (𝑠) and stop the algorithm.

(5) Set (𝜙1 (𝑡) 𝜙2 (𝑡) 𝜙3 (𝑡)) = (1 𝑡 𝑡2)𝑈 −1
0

.

(6) Compute the matrix𝑀3 (𝑠) from (9).

(7) If the last two columns of 𝐴(𝑠) · 𝑀3 (𝑠) are zero, return

{𝑓2 (𝑠, 𝑡)𝑀1

3
(𝑠) + 𝑓1 (𝑠, 𝑡)𝑀2

3
(𝑠), 𝑀3

3
(𝑠), 𝑀4

3
(𝑠)}, with -using

the notation of (10)-

𝑓1 =
𝑔0 (𝑠)𝜙1 (𝑡 ) + 𝑎′

11
(𝑠)𝜙2 (𝑡 ) + 𝑎′

12
(𝑠)𝜙3 (𝑡 )

𝑑 (𝑠, 𝑡 ) , 𝑓2 =
𝑔′
0
(𝑠)𝜙2 (𝑡 ) + 𝑎∗

22
(𝑠)𝜙3 (𝑡 )

𝑑 (𝑠, 𝑡 ) ,

with

𝑑 (𝑠, 𝑡 ) = gcd(𝑔0 (𝑠)𝜙1 (𝑡 )+𝑎′11 (𝑠)𝜙2 (𝑡 )+𝑎′12 (𝑠)𝜙3 (𝑡 ), 𝑔′0 (𝑠)𝜙2 (𝑡 )+𝑎∗22 (𝑠)𝜙3 (𝑡 )),

and stop the algorithm.

(8) Compute the matrix𝑀 (𝑠) from (15).

(9) Compute {𝛼1 (𝑡), 𝛼2 (𝑡)} a 𝜇−basis of {𝜙1 (𝑡), 𝜙2 (𝑡), 𝜙3 (𝑡)}.
(10) Compute {𝑋1 (𝑠, 𝑡), 𝑋2 (𝑠, 𝑡)} a 𝜇−basis of (19).
(11) Compute 𝐿1 (𝑠, 𝑡) and 𝐿2 (𝑠, 𝑡) from (21).

(12) Return {𝐺 ′(𝑠)𝐿1 (𝑠, 𝑡), 𝐺 ′(𝑠)𝐿2 (𝑠, 𝑡), 𝑀4 (𝑠)}.

Remark Note that this approach also covers the case 𝑛 = 1, as

one can just set the last row of 𝐴(𝑠) to be all of them equal to zero.

Example 3.7. Let

𝑃1 (𝑠, 𝑡) = (𝑠2 + 𝑡2, 2𝑠𝑡, 2𝑡2, 𝑠2 − 𝑡2)

If we take (𝜙1 (𝑡), 𝜙2 (𝑡), 𝜙3 (𝑡)) = (𝑡2, 𝑡, 1) we obtain that

𝐴(𝑠) = ©­«
1 0 2 −1
0 2𝑠 0 0

𝑠2 0 0 𝑠2

ª®¬
is a well-conditioned matrix. Moreover we have that

𝑀1 (𝑠) =
©­­­«
1 0 0 1

0 1 0 0

0 0 1 0

0 0 2 1

ª®®®¬ ,
𝑀2 (𝑠) = 𝐼𝑑, 𝑀3 (𝑠) = 𝑀1 (𝑠), 𝑀4 (𝑠) =

(
1 −1
0 1

)
,

and therefore

𝑀 (𝑠) =
©­­­«
1 0 0 1

0 1 0 0

0 0 1 −1
0 0 2 −1

ª®®®¬ ,
and

𝐴(𝑠) ·𝑀 (𝑠) = ©­«
1 0 0 0

0 2𝑠 0 0

𝑠2 0 2𝑠2 0

ª®¬ .
Notice that 𝑔(𝑠) = 1 and 𝑔′(𝑠) = 2𝑠 . Moreover 𝛼1 (𝑡) = (1,−𝑡, 0) and
𝛼2 (𝑡) = (0, 1,−𝑡) is a 𝜇−basis of (𝜙1 (𝑡), 𝜙2 (𝑡), 𝜙3 (𝑡)). As 𝑔′(𝑠) = 1,

then (17) is

©­«
ℎ1 (𝑠, 𝑡)
ℎ2 (𝑠, 𝑡)
ℎ3 (𝑠, 𝑡)

ª®¬ = ©­«
1 0

−𝑡 1

−𝑠 − 𝑡
𝑠

ª®¬ ·
(
𝜈1 (𝑠, 𝑡)
𝜈2 (𝑠, 𝑡)

)
.

And a 𝜇−basis of (−𝑠2,−𝑡, 𝑠) is given by 𝑋1 (𝑠, 𝑡) = (1, 0, 𝑠) and
𝑋2 (𝑠, 𝑡) = (0, 𝑠, 𝑡), so

©­«
𝐿11 (𝑠, 𝑡)
𝐿12 (𝑠, 𝑡)
𝐿13 (𝑠, 𝑡)

ª®¬ = ©­«
1 0

−𝑡 1

−𝑠 − 𝑡
𝑠

ª®¬ ·
(
1

0

)
=
©­«
1

−𝑡
−𝑠

ª®¬
and ©­«

𝐿21 (𝑠, 𝑡)
𝐿22 (𝑠, 𝑡)
𝐿23 (𝑠, 𝑡)

ª®¬ = ©­«
1 0

−𝑡 1

−𝑠 − 𝑡
𝑠

ª®¬ ·
(
0

𝑠

)
=
©­«
0

𝑠

−𝑡

ª®¬
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Finally, we compute

𝐿1 (𝑠, 𝑡) = 𝐿11𝑀
1 + 𝐿12𝑀

2 + 𝐿13𝑀
3 = 1

©­­­«
1

0

0

0

ª®®®¬ − 𝑡

©­­­«
0

1

0

0

ª®®®¬ − 𝑠

©­­­«
0

0

1

2

ª®®®¬ =
=

©­­­«
1

−𝑡
−𝑠
−2𝑠

ª®®®¬ ,
and

𝐿2 (𝑠, 𝑡) = 𝐿21𝑀
1 + 𝐿22𝑀

2 + 𝐿23𝑀
3 = 0

©­­­«
1

0

0

0

ª®®®¬ + 𝑠
©­­­«
0

1

0

0

ª®®®¬ − 𝑡

©­­­«
0

0

1

2

ª®®®¬ =
=

©­­­«
0

𝑠

−𝑡
−2𝑡

ª®®®¬ .
By applying Lemma 3.3, we conclude that a 𝜇−basis of 𝑃1 (𝑠, 𝑡) is

©­­­«
2𝑠

−𝑡
−𝑠
−2𝑠

ª®®®¬ ,
©­­­«
0

𝑠

−𝑡
−2𝑡

ª®®®¬ ,
©­­­«
1

0

−1
−1

ª®®®¬


4 SAGE CODE AND EXAMPLES
In this section, we report on the SAGE code designed by the first

author which implements Algorithm 3.2, and can be accessed freely

through https://github.com/amrutha-b-nair/mu-Basis.git.
Below we list some explanations of the main commands of code.

(1) The algorithm checks for the 𝑡-degree of the given parametriza-

tion, and outputs the 𝜇−basis if the degree is at most two.

(2) The function vector_to_matrix takes the parametrization

as input and gives the matrix 𝐴(𝑠) as output.
(3) The function good_conditioning will return a matrix of

good conditioning, say𝑈 and a modified matrix, say𝐴1 such

that𝑈 · 𝐴 = 𝐴1

(4) The function GaussJordan can be used to compute the

𝜇−basis for univariate case following Proposition 2.1.

(5) The function reduce will take the parametriization 𝑃 as

input and give the matrices𝑈 ,𝐴(𝑠), 𝑀 (𝑠) and 𝑁 (𝑠) so that

𝑈 · 𝐴(𝑠) ·𝑀 (𝑠) = 𝑁 (𝑠)
where, N(s) will have the form

𝑁 (𝑠) = ©­«
1 0 0 0

𝑎′
11
(𝑠) 𝑔′(𝑠) 0 0

𝑎′′
12
(𝑠) 𝑔′(𝑠)𝑎∗

22
(𝑠) 𝑔′(𝑠)𝑔′′(𝑠) 0

ª®¬
(6) If at least two rows of 𝑁 (𝑠) are zero, the 𝜇−basis is computed

using the function mu_det_zero following Algorithm 3.2,

step 7.

(7) If three columns of 𝑁 (𝑠) are non-zero, it computes a 𝜇-basis

following Lemma 3.3 and Algorithm 3.2 Steps 9 to 12 with

the function mu_basis_two, which uses the commands de-

scribed above.

The following examples have been computed with the aid of this

code:

Example 4.1. Let 𝑃 (𝑠, 𝑡) = (𝑡2−1, 𝑠𝑡2 +𝑡2, 𝑡2 +1, 1).We have then

𝐴(𝑠) = ©­«
−1 0 1 1

0 0 0 0

1 𝑠 + 1 1 0

ª®¬ .
Note that 𝑟𝑎𝑛𝑘 (𝐴(𝑠)) ≠ 2. If (𝜙1 (𝑡), 𝜙2 (𝑡), 𝜙3 (𝑡)) = (1, 𝑡, 𝑡2 − 𝑡),

then

𝐴(𝑠) = ©­«
−1 1 0 1

1 𝑠 + 1 1 0

1 𝑠 + 1 1 0

ª®¬
is well-conditioned. In this case

𝑀 (𝑠) =
©­­­«
0 1

1

2
𝑠 + 1

0 0 0 −2
0 0

−1
2

𝑠 + 1

1 1 1 0

ª®®®¬ ,
and

𝐴(𝑠)𝑀 (𝑠) = ©­«
1 0 0 0

0 1 0 0

0 1 0 0

ª®¬ .
We have 𝑔′′(𝑠) = 0, then a 𝜇-basis of 𝑃 (𝑠, 𝑡) is

{𝑡2𝑀1 −𝑀2, 𝑀3, 𝑀4} =


©­­­«

−1
0

0

𝑡2 − 1

ª®®®¬ ,
©­­­«

1

2

0

− 1

2

1

ª®®®¬ ,
©­­­«
𝑠 + 1

−2
𝑠 + 1

0

ª®®®¬
 .

Example 4.2. Let

𝑃 (𝑠, 𝑡) = (𝑠3 + 𝑠𝑡2 + 7𝑠𝑡 − 1, 2𝑠𝑡 + 𝑠2, 𝑡, 𝑠2 + 𝑡2 + 1)

Taking 𝜙 (𝑡) = (1, 𝑡, 𝑡2), we obtain

𝐴(𝑠) = ©­«
𝑠3 − 1 𝑠2 0 𝑠2 + 1

7 ∗ 𝑠 2 ∗ 𝑠 1 0

𝑠 0 0 1

ª®¬
which is a well-conditioned matrix. We compute

𝑀 (𝑠) =
©­­­«

−1 0 −𝑠 + 1 − 1

7
𝑠2

𝑠 0 −2 − 1

7
(𝑠 + 1)

−2𝑠2 + 7𝑠 1 7𝑠2 − 3𝑠 𝑠3 + 2

7
(𝑠2 + 𝑠)

0 0 𝑠2 − 𝑠 + 1
1

7
𝑠3

ª®®®¬ ,
and have that

𝐴(𝑠) ·𝑀 (𝑠) = ©­«
1 0 0 0

0 1 0 0

−𝑠 0 1 0

ª®¬ .
In this case 𝑔′(𝑠) = 1 and a 𝜇−basis of (𝜙1 (𝑡), 𝜙2 (𝑡), 𝜙3 (𝑡)) is
𝛼1 (𝑡) = (𝑡,−1, 0) and 𝛼2 (𝑡) = (0, 𝑡,−1). So, (17) is

©­«
ℎ1 (𝑠, 𝑡)
ℎ2 (𝑠, 𝑡)
ℎ3 (𝑠, 𝑡)

ª®¬ = ©­«
𝑡 0

−1 𝑡

𝑠𝑡 −1

ª®¬ ·
(
𝜈1 (𝑠, 𝑡)
𝜈2 (𝑠, 𝑡)

)
,



Bounds for the degrees of 𝜇-bases of partially quadratic parametrizations

ISSAC 2022,
,

and a 𝜇−basis of (𝑠𝑡,−1, 1) is 𝑋1 (𝑠, 𝑡) = (1, 0,−𝑠𝑡) and 𝑋2 (𝑠, 𝑡) =

(0, 1, 1) . Hence,

©­«
𝐿11 (𝑠, 𝑡)
𝐿12 (𝑠, 𝑡)
𝐿13 (𝑠, 𝑡)

ª®¬ = ©­«
𝑡 0

−1 𝑡

𝑠𝑡 −1

ª®¬ ·
(
1

0

)
=
©­«
𝑡

−1
𝑠𝑡

ª®¬ ,
and ©­«

𝐿21 (𝑠, 𝑡)
𝐿22 (𝑠, 𝑡)
𝐿23 (𝑠, 𝑡)

ª®¬ = ©­«
𝑡 0

−1 𝑡

𝑠𝑡 −1

ª®¬ ·
(
0

1

)
=
©­«
0

𝑡

−1

ª®¬ .
Finally

𝐿1 (𝑠, 𝑡) = 𝐿11𝑀
1 + 𝐿12𝑀

2 + 𝐿13𝑀
3 =

= 𝑡

©­­­«
−1
𝑠

−2𝑠2 + 7𝑠

0

ª®®®¬ − 1

©­­­«
0

0

1

0

ª®®®¬ + 𝑠𝑡
©­­­«

−𝑠 + 1

−2
7𝑠2 − 3𝑠

𝑠2 − 𝑠 + 1

ª®®®¬ =
©­­­«

−(𝑠2 − 𝑠 + 1)𝑡
−𝑠𝑡

(7𝑠3 − 5𝑠2 + 7𝑠)𝑡 − 1

(𝑠3 − 𝑠2 + 𝑠)𝑡

ª®®®¬ ,
and

𝐿2 (𝑠, 𝑡) = 𝐿21𝑀
1 + 𝐿22𝑀

2 + 𝐿23𝑀
3 =

= 0

©­­­«
−1
𝑠

−2𝑠2 + 7𝑠

0

ª®®®¬ + 𝑡

©­­­«
0

0

1

0

ª®®®¬ − 1

©­­­«
−𝑠 + 1

−2
7𝑠2 − 3𝑠

𝑠2 − 𝑠 + 1

ª®®®¬ =
©­­­«

𝑠 − 1

−𝑠𝑡
−7𝑠2 + 3𝑠 + 𝑡

−𝑠2 + 𝑠 − 1

ª®®®¬ .
So, a 𝜇− basis of the input parametrization is {𝐿1 (𝑠, 𝑡), 𝐿2 (𝑠, 𝑡), 𝑀4},

©­­­«
−(𝑠2 − 𝑠 + 1)𝑡

−𝑠𝑡
(7𝑠3 − 5𝑠2 + 7𝑠)𝑡 − 1

(𝑠3 − 𝑠2 + 𝑠)𝑡

ª®®®¬ ,
©­­­«

𝑠 − 1

−𝑠𝑡
−7𝑠2 + 3𝑠 + 𝑡

−𝑠2 + 𝑠 − 1

ª®®®¬ ,
©­­­«

− 1

7
𝑠2

− 1

7
(𝑠 + 1)

𝑠3 + 2

7
(𝑠2 + 𝑠)
1

7
𝑠3

ª®®®¬
 .

Example 4.3. Set 𝑃 (𝑠, 𝑡) = (𝑠9𝑡 + 𝑡2 + 1, 2𝑡2 + 𝑡, 𝑠2 + 7, 𝑡) .
Taking (𝜙1 (𝑡), 𝜙2 (𝑡), 𝜙3 (𝑡)) = (1, 𝑡, 𝑡2), we obtain

𝐴(𝑠) = ©­«
1 0 𝑠2 + 7 0

𝑠9 1 0 1

1 2 0 0

ª®¬
which is a well-conditioned matrix. We have then

𝑀 (𝑠) =
©­­­«
1 0 0 −𝑠2 − 7

0 0
1

2

1

2
(𝑠2 + 7)

0 0 0 1

−𝑠9 1 − 1

2
𝑠11 + 7 ∗ 𝑠9 − 1

2
(𝑠2 + 7)

ª®®®¬ ,
and

𝐴(𝑠) ·𝑀 (𝑠) = ©­«
1 0 0 0

0 1 0 0

1 0 1 0

ª®¬ .
In this case we have 𝑔′(𝑠) = 1 and a 𝜇−basis of (𝜙1 (𝑡), 𝜙2 (𝑡), 𝜙3 (𝑡))
is 𝛼1 (𝑡) = (𝑡,−1, 0) and 𝛼2 (𝑡) = (0, 𝑡,−1). Identity (17) turns into

©­«
ℎ1 (𝑠, 𝑡)
ℎ2 (𝑠, 𝑡)
ℎ3 (𝑠, 𝑡)

ª®¬ = ©­«
𝑡 0

−1 𝑡

−𝑡 −1

ª®¬ ·
(
𝜈1 (𝑠, 𝑡)
𝜈2 (𝑠, 𝑡)

)
,

and a 𝜇−basis of (−𝑡,−1, 1) is 𝑋1 (𝑠, 𝑡) = (−1, 0, 𝑡) and 𝑋2 (𝑠, 𝑡) =

(0, 1, 1) . Hence,

©­«
𝐿11 (𝑠, 𝑡)
𝐿12 (𝑠, 𝑡)
𝐿13 (𝑠, 𝑡)

ª®¬ = ©­«
𝑡 0

−1 𝑡

−𝑡 −1

ª®¬ ·
(
−1
0

)
=
©­«
−𝑡
1

𝑡

ª®¬ ,

and ©­«
𝐿21 (𝑠, 𝑡)
𝐿22 (𝑠, 𝑡)
𝐿23 (𝑠, 𝑡)

ª®¬ = ©­«
𝑡 0

−1 𝑡

−𝑡 −1

ª®¬ ·
(
0

1

)
=
©­«
0

𝑡

−1

ª®¬ .
We then compute

𝐿1 (𝑠, 𝑡) = 𝐿11𝑀
1 + 𝐿12𝑀

2 + 𝐿13𝑀
3 =

= −𝑡
©­­­«
1

0

0

𝑠9

ª®®®¬ + 1

©­­­«
0

0

0

1

ª®®®¬ + 𝑡

©­­­«
0

1

2

0

− 1

2

ª®®®¬ =
©­­­«

−𝑡
1

2
𝑡

0

1

2
(2𝑠9 − 1)𝑡 + 1

ª®®®¬
𝐿2 (𝑠, 𝑡) = 𝐿21𝑀

1 + 𝐿22𝑀
2 + 𝐿23𝑀

3 =

= 0

©­­­«
1

0

0

𝑠9

ª®®®¬ + 𝑡

©­­­«
0

0

0

1

ª®®®¬ − 1

©­­­«
0

1

2

0

− 1

2

ª®®®¬ =
©­­­«

0

1

2

0

𝑡 + 1

2

ª®®®¬ .
A 𝜇− basis of the input parametrization is then {𝐿1 (𝑠, 𝑡), 𝐿2 (𝑠, 𝑡), 𝑀4}

=


©­­­«

−𝑡
1

2
𝑡

0

1

2
(2𝑠9 − 1)𝑡 + 1

ª®®®¬ ,
©­­­«

0

1

2

0

𝑡 + 1

2

ª®®®¬ ,
©­­­«

−𝑠2 − 7

1

2
(𝑠2 + 7)
1

𝑠11 + 7 ∗ 𝑠9 − 1

2
(𝑠2 + 7)

ª®®®¬
 .

Example 4.4. This parametrization is Example 3.1 in [Yao and

Jia 2019]:

𝑃 (𝑠, 𝑡) = (4𝑠3+𝑠𝑡2+4𝑠2−12𝑠𝑡 +𝑡2+𝑠+1, 4𝑠4+𝑠2𝑡2+𝑠2+6𝑡, 6𝑡2, 4𝑠2+
𝑡2 + 1)
We apply algorithm 3.2 to this input to get

𝐴(𝑠) = ©­«
4𝑠3 + 4𝑠2 + 𝑠 + 1 4𝑠4 + 𝑠2 0 4𝑠2 + 1

−12𝑠 6 0 0

𝑠 + 1 𝑠2 6 1

ª®¬
which is not a good conditioned matrix. So we take

𝑈 =
©­«
1 1 0

0 1 1

0 0 1

ª®¬
to get

𝑈 · 𝐴(𝑠) = ©­«
4𝑠3 + 4𝑠2 − 11𝑠 + 1 4𝑠4 + 𝑠2 + 6 0 4𝑠2 + 1

−11𝑠 + 1 𝑠2 + 6 6 1

𝑠 + 1 𝑠2 6 1

ª®¬
which is now good conditioned, and

(𝜙1 (𝑡), 𝜙2 (𝑡), 𝜙3 (𝑡)) = (1, 𝑡, 𝑡2) ·𝑈 −1 = (1, 𝑡 − 1, 𝑡2 − 𝑡 + 1) .

Then,𝑀 (𝑠) = [𝑀1, 𝑀2, 𝑀3, 𝑀4], with

𝑀1 =

©­­­«
1

3453
(160𝑠3 − 44𝑠2 − 63𝑠 − 69)

1

3453
(−160𝑠2 − 116𝑠 + 587)

1

3453
(320𝑠4 − 88𝑠3 − 46𝑠2) − 1

6

0

ª®®®¬ , 𝑀
2 =

©­­­«
0

0

1

6

0

ª®®®¬ ,

𝑀3 =

©­­­«
1

12
𝑠

− 1

24

1

6
𝑠2

− 1

24
(𝑠2 + 2𝑠 − 6)

ª®®®¬ , 𝑀
4 =

©­­­«
− 1

2

−𝑠
0

𝑠3 + 1

2
(𝑠 + 1)

ª®®®¬ .
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We have then

𝑈 · 𝐴(𝑠) ·𝑀 (𝑠) = ©­«
1 0 0 0

0 1 0 0

𝑎31 (𝑠) 1 𝑠2 + 1

4
0

ª®¬
with 𝑎31 (𝑠) = 1

1151
(640𝑠4 − 176𝑠3 + 68𝑠2 − 44𝑠 − 1174).

In this case 𝑔′(𝑠) = 1 and 𝑔′′(𝑠) = 𝑠2 + 1

4
. A 𝜇−basis of

(𝜙1 (𝑡), 𝜙2 (𝑡), 𝜙3 (𝑡)) is 𝛼1 (𝑡) = (𝑡 − 1,−1, 0) and 𝛼2 (𝑡) = (1, 𝑡,−1).
Then, Identity (17) is

©­«
ℎ1 (𝑠, 𝑡)
ℎ2 (𝑠, 𝑡)
ℎ3 (𝑠, 𝑡)

ª®¬ =
©­­«
𝑡 − 1 1

−1 𝑡
𝛼31 (𝑠,𝑡 )
𝑔′′ (𝑠)

𝛼32 (𝑠,𝑡 )
𝑔′′ (𝑠)

ª®®¬ ·
(
𝜈1 (𝑠, 𝑡)
𝜈2 (𝑠, 𝑡)

)
,

with 𝛼31 (𝑠, 𝑡) = 4

1151
(640𝑠4 − 176𝑠3 + 68𝑠2 − 2(320𝑠4 − 88𝑠3 + 34𝑠2 −

22𝑠 − 587)𝑡 − 44𝑠 − 23), 𝛼32 (𝑠, 𝑡) = 4

1151
(640𝑠4 − 176𝑠3 + 68𝑠2 − 44𝑠 +

1151𝑡 − 23) and 𝑔′′(𝑠) = (4𝑠2 + 1) .
A 𝜇−basis of (𝛼31 (𝑠, 𝑡), 𝛼32 (𝑠, 𝑡), 𝑔′′(𝑠)) is

𝑋1 (𝑠, 𝑡) = (𝑥11 (𝑠, 𝑡), 𝑥12 (𝑠, 𝑡), 𝑥13 (𝑠, 𝑡))

= (0,−𝑠2 − 1

4

,− 1

1151

(160𝑠2 − 44𝑠 − 23) (4𝑠2 + 1) − 𝑡)
and

𝑋2 (𝑠, 𝑡) = (𝑥21 (𝑠, 𝑡), 𝑥22 (𝑠, 𝑡), 𝑥23 (𝑠, 𝑡))

= (−1324801

409600

,
1151

640

𝑠4 − 12661

25600

𝑠3 + 19567

102400

𝑠2 − 12661

102400

𝑠 − 675637

204800

,

𝑠6 − 11

20

𝑠5 + 61

1600

𝑠4 − 187

3200

𝑠3 − 827

25600

𝑠2 + 253

12800

𝑠 + 529

102400

) .
Hence,

©­«
𝐿11 (𝑠, 𝑡)
𝐿12 (𝑠, 𝑡)
𝐿13 (𝑠, 𝑡)

ª®¬ =
©­­«
𝑡 − 1 1

−1 𝑡
𝛼31 (𝑠,𝑡 )
𝑔′′ (𝑠)

𝛼32 (𝑠,𝑡 )
𝑔′′ (𝑠)

ª®®¬ ·
(
𝑥11 (𝑠, 𝑡)
𝑥12 (𝑠, 𝑡)

)

=
©­«

−𝑠2 − 1

4

− 1

4
(4𝑠2 + 1)𝑡

1

1151
(640𝑠4 − 176𝑠3 + 68𝑠2 − 44𝑠 + 𝑡 − 23)

ª®¬ ,
and ©­«

𝐿21 (𝑠, 𝑡)
𝐿22 (𝑠, 𝑡)
𝐿23 (𝑠, 𝑡)

ª®¬ =
©­­«
𝑡 − 1 1

−1 𝑡
𝛼31 (𝑠,𝑡 )
𝑔′′ (𝑠)

𝛼32 (𝑠,𝑡 )
𝑔′′ (𝑠)

ª®®¬ ·
(
𝑥21 (𝑠, 𝑡)
𝑥22 (𝑠, 𝑡)

)
=

=
©­«
1151

640
𝑠4 − 12661

25600
𝑠3 + 19567

102400
𝑠2 − 12661

102400
𝑠 − 1324801

409600
𝑡 − 26473

409600

1151

204800
(320𝑠4 − 88𝑠3 + 34𝑠2 − 22𝑠 − 587)𝑡 + 1324801

409600

−𝑠6 + 11

20
𝑠5 − 61

1600
𝑠4 + 187

3200
𝑠3 + 827

25600
𝑠2 − 253

12800
𝑠 − 529

102400

ª®¬ .
Finally, we have

𝐿1 (𝑠, 𝑡) = 𝐿11𝑀
1 + 𝐿12𝑀

2 + 𝐿13𝑀
3 =

©­­­«
𝑝11 (𝑠, 𝑡)
𝑝12 (𝑠, 𝑡)
𝑝13 (𝑠, 𝑡)
𝑝14 (𝑠, 𝑡)

ª®®®¬ ,
with 𝑝11 (𝑠, 𝑡) = 1

3453
(40𝑠3 + 69𝑠2 + 10𝑠) + 1

12
𝑠𝑡 + 23

4604
, 𝑝12 (𝑠, 𝑡) =

1

6906
(160𝑠4+276𝑠3−1111𝑠2+69𝑠)− 1

24
(𝑡+1), 𝑝13 (𝑠, 𝑡) = 1

24
(4𝑠2−𝑡+1)

and 𝑝14 (𝑠, 𝑡) = − 80

3453
𝑠6− 46

1151
𝑠5 + 1031

6906
𝑠4− 287

6906
𝑠3 + 173

9208
𝑠2− 1

24
(𝑠2 +

2𝑠 − 6)𝑡 − 109

13812
𝑠 − 23

4604
, and

𝐿2 (𝑠, 𝑡) = 𝐿21𝑀
1 + 𝐿22𝑀

2 + 𝐿23𝑀
3 =

©­­­«
𝑝21 (𝑠, 𝑡)
𝑝22 (𝑠, 𝑡)
𝑝23 (𝑠, 𝑡)
𝑝24 (𝑠, 𝑡)

ª®®®¬ ,

with 𝑝21 (𝑠, 𝑡) = − 1

48
𝑠5− 29

960
𝑠4+ 589

76800
𝑠3− 733

307200
𝑠2− 1151

1228800
(160𝑠3−

44𝑠2−63𝑠−69)𝑡+ 989

307200
𝑠+ 529

409600
, 𝑝22 (𝑠, 𝑡) = − 1

24
𝑠6− 29

480
𝑠5+ 4033

12800
𝑠4−

6697

76800
𝑠3 + 7841

204800
𝑠2 + 1151

1228800
(160𝑠2 +116𝑠 −587)𝑡 − 5537

307200
𝑠 − 26473

2457600
,

𝑝23 (𝑠, 𝑡) = − 1151

3840
𝑠4 + 12661

153600
𝑠3 − 19567

614400
𝑠2 + 1151

2457600
(160𝑠2 − 44𝑠 −

23)𝑡 + 12661

614400
𝑠 + 675637

1228800
𝑝24 (𝑠, 𝑡) = 1

24
𝑠8+ 29

480
𝑠7− 11299

38400
𝑠6+ 3539

25600
𝑠5−

129

8192
𝑠4 + 1957

153600
𝑠3 + 977

98304
𝑠2 − 5543

1228800
𝑠 − 529

409600
.

A 𝜇− basis of the input is then {𝐿1 (𝑠, 𝑡), 𝐿2 (𝑠, 𝑡), 𝑀4} as above.
Moreover, we can retrieve the parametization back from the 𝜇−
multiplied by a constant, as in (3): ,

𝐿1 (𝑠, 𝑡) ∧ 𝐿2 (𝑠, 𝑡) ∧𝑀4 =
©­«
������𝑝12 (𝑠, 𝑡) 𝑝13 (𝑠, 𝑡) 𝑝14 (𝑠, 𝑡)
𝑝22 (𝑠, 𝑡) 𝑝23 (𝑠, 𝑡) 𝑝24 (𝑠, 𝑡)
𝑚42 𝑚43 𝑚44

������ ,
−

������𝑝11 (𝑠, 𝑡) 𝑝13 (𝑠, 𝑡) 𝑝14 (𝑠, 𝑡)
𝑝21 (𝑠, 𝑡) 𝑝23 (𝑠, 𝑡) 𝑝24 (𝑠, 𝑡)
𝑚41 𝑚43 𝑚44

������ ,
������𝑝11 (𝑠, 𝑡) 𝑝12 (𝑠, 𝑡) 𝑝14 (𝑠, 𝑡)
𝑝21 (𝑠, 𝑡) 𝑝22 (𝑠, 𝑡) 𝑝24 (𝑠, 𝑡)
𝑚41 𝑚42 𝑚44

������ ,
−

������𝑝11 (𝑠, 𝑡) 𝑝12 (𝑠, 𝑡) 𝑝13 (𝑠, 𝑡)
𝑝21 (𝑠, 𝑡) 𝑝22 (𝑠, 𝑡) 𝑝23 (𝑠, 𝑡)
𝑚41 𝑚42 𝑚43

������ª®¬ = 1324801

117964800

𝑃 (𝑠, 𝑡).
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