#### Towards an effective Pourchet's Theorem

Carlos D'Andrea

Hangzhou, October 23rd 2025







## **BCN Comp Algebra Seminar**

- Ana Belén de Felipe UPC
- Eulàlia Montoro UB
- Joel Hurtado UPC
- Teresa Cortadellas Benítez URL



## "The" Question

### "The" Question

## Given a polynomial

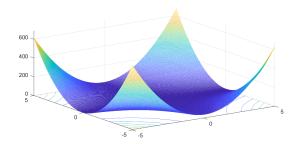
$$f(x_1,\ldots,x_n)\in\mathbb{R}/\mathbb{Q}[x_1,\ldots,x_n]$$

### "The" Question

# Given a polynomial

$$f(x_1,\ldots,x_n)\in\mathbb{R}/\mathbb{Q}[x_1,\ldots,x_n]$$

How can we verify/certify if  $f \ge 0$ ?



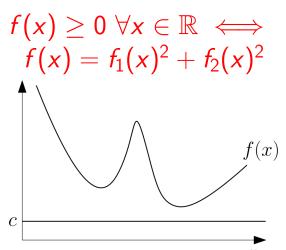


## Univariate case

#### Univariate case

$$f(x) \geq 0 \ \forall x \in \mathbb{R} \iff$$

#### Univariate case



### **Univariate rational case?**



#### **Univariate rational case?**



$$f(x) \geq 0 \ \forall x \in \mathbb{R} \iff$$

#### **Univariate rational case?**



$$f(x) \ge 0 \ \forall x \in \mathbb{R} \iff$$

$$f(x) =$$

$$f_1(x)^2 + f_2(x)^2 + f_3(x)^2 + f_4(x)^2 + f_5(x)^2$$
Pourchet - 1971

## Five is sharp



### Five is sharp

$$x^2 + 7 = x^2 + 2^2 + 1^2 + 1^2 + 1^2$$



### **Effective Pourchet**

#### **Effective Pourchet**

### **■ Input:**

$$f(x) \in \mathbb{Q}[x], \ f(t) > 0 \forall t \in \mathbb{R}$$

#### **Effective Pourchet**

**■ Input:** 

$$f(x) \in \mathbb{Q}[x], \ f(t) > 0 \forall t \in \mathbb{R}$$

■ Output:  $f_1(x), ..., f_5(x) \in \mathbb{Q}[x],$  $f(x) = f_1(x)^2 + ... + f_5(x)^2$ 



$$f(x) = f_1(x)^2 + \ldots + f_5(x)^2 \iff$$

$$f(x) = f_1(x)^2 + \ldots + f_5(x)^2 \iff$$
  
 $f(x) = f_{1p}(x)^2 + \ldots + f_{5p}(x)^2$   
for all  $p \in \{2, 3, 5, \ldots, \} \cup \{\infty\}$ 

$$f(x) = f_1(x)^2 + \ldots + f_5(x)^2 \iff f(x) = f_{1p}(x)^2 + \ldots + f_{5p}(x)^2$$
  
for all  $p \in \{2, 3, 5, \ldots, \} \cup \{\infty\}$ 

■ Local-global principle



$$f(x) = f_1(x)^2 + \ldots + f_5(x)^2 \iff$$
  
 $f(x) = f_{1p}(x)^2 + \ldots + f_{5p}(x)^2$   
for all  $p \in \{2, 3, 5, \ldots, \} \cup \{\infty\}$ 

- Local-global principle
- Highly non-algorithmic



$$p=\infty$$

Theorem (Easy)

$$f(x) \ge 0 \iff y_1^2 + y_2^2 = f(x)$$
 can be solved in  $\mathbb{R}[x]$ 

$$p=\infty$$

## Theorem (Easy)

$$f(x) \ge 0 \iff y_1^2 + y_2^2 = f(x)$$
 can be solved in  $\mathbb{R}[x]$ 

$$x^2 + ax + b = (x - c)^2 + d^2$$
 if  $a^2 - 4b < 0$ 



$$p=\infty$$

## Theorem (Easy)

$$f(x) \ge 0 \iff y_1^2 + y_2^2 = f(x)$$
 can be solved in  $\mathbb{R}[x]$ 

#### Proof:

$$x^2 + ax + b = (x - c)^2 + d^2 \text{ if } a^2 - 4b < 0$$
  
 $(x - a)^{2k} = ((x - a)^k)^2 + 0^2$ 



$$p=\infty$$

## Theorem (Easy)

$$f(x) \ge 0 \iff y_1^2 + y_2^2 = f(x)$$
 can be solved in  $\mathbb{R}[x]$ 

#### Proof:

$$x^{2} + ax + b = (x - c)^{2} + d^{2} \text{ if } a^{2} - 4b < 0$$

$$(x - a)^{2k} = ((x - a)^{k})^{2} + 0^{2}$$

$$(u^{2} + v^{2}) \cdot (w^{2} + z^{2}) = \alpha^{2} + \beta^{2}$$



## Almost all p

### Almost all p

Any  $f(x) \in \mathbb{Q}_p[x]$  is a sum of up to four squares if  $p \notin \{2, \infty\}$ 

### Almost all p

Any  $f(x) \in \mathbb{Q}_p[x]$  is a sum of up to four squares if  $p \notin \{2, \infty\}$  five squares is enough if p = 2

$$(x_1^2 + x_2^2 + x_3^2 + x_4^2)(y_1^2 + y_2^2 + y_3^2 + y_4^2)$$
  
=  $(z_1^2 + z_2^2 + z_3^2 + z_4^2)$ 

$$(x_1^2 + x_2^2 + x_3^2 + x_4^2)(y_1^2 + y_2^2 + y_3^2 + y_4^2)$$
  
=  $(z_1^2 + z_2^2 + z_3^2 + z_4^2)$ 

#### Theorem (Pourchet, 71)

$$f(x) = f_1^2 + f_2^2 + f_3^2 + f_4^2 \text{ in } K[x] \iff$$

 $\blacksquare$  lc(f) is a so4s in K, and

$$(x_1^2 + x_2^2 + x_3^2 + x_4^2)(y_1^2 + y_2^2 + y_3^2 + y_4^2)$$
  
=  $(z_1^2 + z_2^2 + z_3^2 + z_4^2)$ 

#### Theorem (Pourchet, 71)

$$f(x) = f_1^2 + f_2^2 + f_3^2 + f_4^2 \text{ in } K[x] \iff$$

- $\blacksquare$  lc(f) is a so4s in K, and
- for all prime divisor p(x) of f(x) of odd multiplicity, there is a nontrivial solution of  $x_1^2 + x_2^2 + x_3^2 + x_4^2 = 0$  in K[x]/(p(x))



### A criteria



#### A criteria

## Theorem (Pourchet, 71)

Let  $f \in \mathbb{Q}[x] \setminus \{0\}$ . TFAE: • f is a so4s in  $\mathbb{Q}[x]$ 

#### A criteria

## Theorem (Pourchet, 71)

Let  $f \in \mathbb{Q}[x] \setminus \{0\}$ . TFAE:

- If is a so4s in  $\mathbb{Q}[x]$

$$x^2 + 7 = (x - \alpha) \cdot (x + \alpha)$$
 in  $\mathbb{Q}_2[x]$ 

$$x^2 + 7 = (x - \alpha) \cdot (x + \alpha) \text{ in } \mathbb{Q}_2[x]$$
  
 $\implies$  it is not a so4s in  $\mathbb{Q}[x]$ 

$$x^2 + 7 = (x - \alpha) \cdot (x + \alpha) \text{ in } \mathbb{Q}_2[x]$$
  
 $\implies$  it is not a so4s in  $\mathbb{Q}[x]$ 

$$u \in \mathbb{Q}_2$$
 is a square  $\iff$   $u = 2^{2a}(8b+1), a \in \mathbb{Z}, b \in \mathbb{Q}_2$ 

# Algorithmic approach

# Pourchet's theorem in action: decomposing univariate nonnegative polynomials as sums of five squares

Victor Magron CNRS LAAS & Institut de Mathématiques de Toulouse Toulouse, France victor.magron@laas.fr Przemysław Koprowski University of Silesia in Katowice, Institute of Mathematics Katowice, Poland przemyslaw.koprowski@us.edu.pl Tristan Vaccon
Université de Limoges; CNRS, XLIM
UMR 7252
Limoges, France
tristan vaccon@unilim.fr

**ISSAC 2023** 



### Sums of 2 squares

**Algorithm 1** Computing a decomposition of a polynomial as a sum of two squares

Input: A polynomial  $f \in \mathbb{Q}[x]$ , which is a priori known to be a sum of two squares in  $\mathbb{Q}[x]$ .

**Output:** Polynomials  $a, b \in \mathbb{Q}[x]$  such that  $a^2 + b^2 = f$ .

1: Construct the quadratic field extension 
$$\mathbb{O}(i)/\mathbb{O}$$
.

2: Solve the norm equation

$$lc(f) = N_{\mathbb{Q}(i)/\mathbb{Q}}(x)$$

- and denote a solution by  $a+bi\in \mathbb{Q}(i).$
- 3: Factor f into a product of monic irreducible polynomials

$$f = \mathrm{lc}(f) \cdot p_1^{e_1} \cdots p_k^{e_k}.$$

- for every factor p<sub>j</sub>, such that the corresponding exponent e<sub>j</sub> is odd do
- 5: Factor  $p_j$  over  $\mathbb{Q}(i)$  into a product  $p_j = g_j \cdot h_j$  with  $g_j, h_j \in \mathbb{Q}(i)[x]$ .
- 6: Set

$$a_j := \frac{1}{2} \cdot (g_j + h_j), \qquad b_j := \frac{1}{2i} \cdot (g_j - h_j).$$

7: Update a and b setting:

$$a := aa_i + bb_i$$
 and  $b := ab_i - ba_i$ .

8: Update a and b setting:

potate 
$$a$$
 and  $b$  setting:  
 $a := a \cdot \prod_{j \le k} p_j^{2\lfloor e/2 \rfloor}$  and  $b := b \cdot \prod_{j \le k} p_j^{2\lfloor e/2 \rfloor}$ .

9: return a, b.



### Sums of 3 or 4 squares

#### Algorithm 3 Initial solution: modular sum of squares

**Input:** An irreducible polynomial  $f \in \mathbb{Q}[x]$ , which is a priori known to be a sum of 3 or 4 squares.

**Output:** Polynomials h and  $g_1, \ldots, g_4$  in  $\mathbb{Q}[x]$ , such that  $\deg h \leq \deg f - 2$  and  $fh = g_1^2 + \cdots + g_4^2$ .

1: Construct the number fields:

$$K := \mathbb{Q}[x]/(f)$$
 and  $L := K(i)$ .

2: Solve the norm equation

$$-1 = N_{L/K}(x)$$

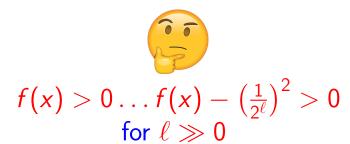
and denote the solution by  $\xi = \overline{g}_1 + \overline{g}_2 i$ , where  $g_1, g_2 \in \mathbb{Q}[x]$  are polynomials of degree strictly less than deg f and  $\overline{g}_j$  denotes the image of  $g_j$  under the canonical epimorphism  $\mathbb{Q}[x] \twoheadrightarrow K$ .

- 3: Set  $g_3 := 1$ ,  $g_4 := 0$  and let  $h := (g_1^2 + \dots + g_4^2)/f$ .
- 4: **return**  $h, g_1, g_2, g_3, g_4$ .











$$f(x) > 0 \dots f(x) - \left(\frac{1}{2^{\ell}}\right)^2 > 0$$
 for  $\ell \gg 0$ 

$$f(x) - \left(\frac{1}{2^{\ell}}\right)^2 = f_1^2 + f_2^2 + f_3^2 + f_4^2$$
?



# Algorithm 6

# Algorithm 6

Algorithm 6 Reduction to a sum of 4 squares: odd valuation case

**Input:** A positive square-free polynomial  $f = c_0 + c_1x + \cdots + c_dx^d \in \mathbb{Q}[x]$ . The 2-adic valuations of the coefficients of f are  $k_j := \operatorname{ord}_2 c_j$  for  $0 \le j \le d$ . Ensure  $k_d$  is odd. It is assumed that f is not a sum of 4 squares.

**Output:** A polynomial  $h \in \mathbb{Q}[x]$  such that  $f - h^2$  is a sum of 4 (or fewer) squares.

1: Find a positive number  $\varepsilon$  such that

$$\varepsilon < \inf\{f(x) \mid x \in \mathbb{R}\}.$$

2: Set 
$$l_1 := \left[ -\frac{1}{2} \cdot \lg \varepsilon \right]$$
.

3: Set 
$$l_2 := \lceil -k_0/2 \rceil + 1$$
.

4: Set

$$l_3 := \left\lceil \max \left\{ \frac{jk_d - dk_j}{2d - 2j} \mid 0 < j < d \right\} \right\rceil.$$

- 5: Initialize  $l := \max\{l_1, l_2, l_3\}$ .
- 6: **while**  $gcd(d, 2l + k_d) \neq 1$  **do**
- 7: l := l + 1.
- 8: **return**  $h := 2^{-l}$

### Sum of 6 squares

 ${\bf Algorithm~8~Decomposition~of~a~nonnegative~univariate~rational~polynomial~into~a~sum~of~6~squares}$ 

**Input:** A nonnegative polynomial  $f \in \mathbb{Q}[x]$ . **Output:** Polynomials  $f_1, \ldots, f_6 \in \mathbb{Q}[x]$  such that  $f_1^2 + \cdots + f_6^2 = f$ .

- 1: **if** f is a square **then**
- 2: **return**  $f_1 := \sqrt{f}, f_2 := \cdots f_6 := 0.$
- Execute Algorithm 1 to obtain f<sub>1</sub>, f<sub>2</sub> ∈ Q[x] such that f<sub>1</sub><sup>2</sup> + f<sub>2</sub><sup>2</sup> = f.
- 5: **return**  $f_1, f_2 \text{ and } f_3 := \cdots f_6 := 0.$
- 6: if f is a sum of 4 squares {Use [36, Theorem 17.2] to check it} then
- Execute Algorithm 5, to obtain f<sub>1</sub>,..., f<sub>4</sub> ∈ Q[x] such that f<sub>1</sub><sup>2</sup> + ··· + f<sub>4</sub><sup>2</sup> = f.
- 8: **return**  $f_1, \ldots, f_4$  and  $f_5 := f_6 := 0$
- Compute the square-free decomposition of f = g · h², where g, h ∈ Q[x] and g is square-free.
- 10: Execute Algorithm 7 with g as an input to obtain  $g_1, g_2 \in \mathbb{Q}[x]$  such that  $g g_1^2 g_2^2$  is a sum of 4 squares in  $\mathbb{Q}[x]$ .
- 11: Execute Algorithm 5 to decompose  $g g_1^2 g_2^2$  into a sum of 4 squares in  $\mathbb{Q}[x]$ . Denote the output by  $g_3, \dots, g_6$ .
- 12: **return**  $f_1 := g_1 h, \ldots, f_6 := g_6 h.$



### **Conjectural Algorithm**

```
Algorithm 9 Reduction to a sum of 4 squares
```

```
Input: A positive square-free polynomial f = c_0 + c_1 x + \cdots + c_d x^d \in
     \mathbb{O}[x].
Output: A polynomial h \in \mathbb{O}[x] such that f - h^2 is a sum of 4 (or
     fewer) squares.
  1: if f is a sum of 4 squares then
        return h := 0
 3: Set f_* := c_d + c_{d-1}x + \cdots + c_0x^d.
 4: Find a positive number \varepsilon such that
        \varepsilon < \inf\{f(x) \mid x \in \mathbb{R}\}\ and \varepsilon < \inf\{f_*(x) \mid x \in \mathbb{R}\}.
 5: Initialize l := \lceil -1/2 \cdot \lg \varepsilon \rceil.
 6: while True do
        if f - 2^{-2l} is irreducible in \mathbb{Q}_2[x] then
           return h := 2^{-l}.
      if f - 2^{-2l}x^d is irreducible in \mathbb{Q}_2[x] then
      return h := 2^{-l} x^{d/2}
        I := I + 1
```

### **Our contributions**

(CDDHM)

#### Our contributions

■ The conjectural algorithm works if deg(f(x)) = 4k

#### **Our contributions**

# (CDDHM)

- The conjectural algorithm works if deg(f(x)) = 4k
- Fails for this family:

$$f_{k,N}(x) = \frac{4x^{2(2k+1)} + x^{2k+1} + 4}{N^2}$$

$$k = 0, 1, \ldots, N \in \mathbb{N} \text{ odd}, N > 64$$



### An extension

(CDDHM)

#### An extension

(CDDHM)

### Theorem

If 
$$f(x) \in \mathbb{Q}[x]$$
 of degree  $d = 2(2k+1), k \in \mathbb{N}, \ell \in \mathbb{N}$  such that  $f(t) - \frac{1}{2^{2\ell}}(t^2 + t + 1)^{2k}t^2 > 0 \forall t$ ,

#### An extension

(CDDHM)

#### **Theorem**

If 
$$f(x) \in \mathbb{Q}[x]$$
 of degree  $d=2(2k+1), \ k \in \mathbb{N}, \ \ell \in \mathbb{N}$  such that  $f(t)-\frac{1}{2^{2\ell}}(t^2+t+1)^{2k}t^2>0 \forall t,$  then  $f(x)-\frac{1}{2^{2\ell}}(x^2+x+1)^{2k}x^2$  is a so4s iff  $f(0)$  is not a square in  $\mathbb{Q}_2$ 

# Work in Progress

### Work in Progress

What to do if f(0) is a square in  $\mathbb{Q}_2$ ?

### Work in Progress

What to do if f(0) is a square in  $\mathbb{Q}_2$ ?  $4x^6 + 4x^3 + 9 = (1 + 2x^3)^2 + 8$ 



You do not need 5 or 6 polynomials to test positivity:

$$f \geq 0 \iff f = \sum_{i=1}^{N} f_i^2$$

You do not need 5 or 6 polynomials to test positivity:

$$f \geq 0 \iff f = \sum_{i=1}^{N} f_i^2$$

semidefinitive optimization (over the reals)

You do not need 5 or 6 polynomials to test positivity:

$$f \geq 0 \iff f = \sum_{i=1}^{N} f_i^2$$

- semidefinitive optimization (over the reals)
- over the rationals
  Baldo-Krick-Mourrain 2025



### Not true anymore:

$$f(x_1, x_2) = 1 + x_1^2 x_2^2 (x_1^2 + x_2^2 - 3) \ge 0$$

### Not true anymore:

$$f(x_1, x_2) = 1 + x_1^2 x_2^2 (x_1^2 + x_2^2 - 3) \ge 0$$
  
but not a sum of finite squares



Not true anymore:

$$f(x_1, x_2) = 1 + x_1^2 x_2^2 (x_1^2 + x_2^2 - 3) \ge 0$$
  
but not a sum of finite squares



Negative solution to Hilbert's 17th

Problem

### Reals versus racionals

#### Reals versus racionals

$$40x_0^4 + 8x_0^2x_1^2 + 32x_0^2x_1x_2 + 64x_0^2x_1x_3 +16x_0^2x_2^2 + 16x_0^2x_2x_3 + 32x_0^2x_3^2 + 2x_1^4 +8x_1^2x_2^2 + 8x_1^2x_2x_3 + 16x_1x_2x_3^2 +8x_2^2x_3^2 + 8x_3^4 = f_1^2 + f_2^2 + f_3^2 + f_4^2$$

#### Reals versus racionals

$$40x_0^4 + 8x_0^2x_1^2 + 32x_0^2x_1x_2 + 64x_0^2x_1x_3 +16x_0^2x_2^2 + 16x_0^2x_2x_3 + 32x_0^2x_3^2 + 2x_1^4 +8x_1^2x_2^2 + 8x_1^2x_2x_3 + 16x_1x_2x_3^2 +8x_2^2x_3^2 + 8x_3^4 = f_1^2 + f_2^2 + f_3^2 + f_4^2$$

but cannot written as a sos with polynomials in  $\mathbb{Q}[x_0, x_1, x_2, x_3]$ 



# References

#### References

- Magron, Victor; Koprowski, Przemyslaw; Vaccon, Tristan. Pourchet's theorem in action: decomposing univariate nonnegative polynomials as sums of five squares. Proceedings of ISSAC 2023
- Pourchet, Y. Sur la représentation en somme de carrés des polynômes à une indéterminée sur un corps de nombres algébriques. Acta Arith. 19 (1971)

### Thanks!



