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“The” Question

Given a polynomial
f (x1, . . . , xn) ∈ R (or)Q[x1, . . . , xn]
How can we verify/certify if f ≥ 0?
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Univariate case

f (x) ≥ 0 ∀x ∈ R ⇐⇒
f (x) = f1(x)2 + f2(x)2
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Univariate rational case?

f (x) ≥ 0 ∀x ∈ R ⇐⇒
f (x) =

f1(x)2+f2(x)2+f3(x)2+f4(x)2+f5(x)2

Pourchet – 1971
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5 is optimal

x2 + 7 = x2 + 22 + 12 + 12 + 12
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More variables

Not true anymore:
f (x1, x2) = 1 + x2

1x
2
2 (x2

1 + x2
2 − 3) ≥ 0

not a sum of any number of squares

Negative solution to Hilbert’s 17th
Problem
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Artin’s solution (1927)

f (x1, . . . , xn) ≥ 0 ⇐⇒
∃h, f1, . . . , fk ∈ R[x1, . . . , xn], h 6= 0,

with

h2 f = f 2
1 + . . . + f 2

k
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How do you compute this?

f (x1, . . . , xn) is a sos ⇐⇒
∃B ∈ RN×N , B t = B , positive

semidefinite, such that

f = (1 x1 . . . x
α . . .)·B ·(1 x1 . . . x

α . . .)t
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Testing s.o.s

f = (1 x1 . . . x
α . . .)·B ·(1 x1 . . . x

α . . .)t

Computing if a given semialgebraic
set is empty or not (Powers)
Solving a semidefinite linear
problem (Laserre)
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Reals versus racionals

40x4
0 + 8x2

0x
2
1 + 32x2

0x1x2 + 64x2
0x1x3

+16x2
0x

2
2 + 16x2

0x2x3 + 32x2
0x

2
3 + 2x4

1

+8x2
1x

2
2 + 8x2

1x2x3 + 16x1x2x
2
3

+8x2
2x

2
3 + 8x4

3 = f 2
1 + f 2

2 + f 2
3 + f 2

4

but cannot written as a sos with
polynomials in Q[x1, . . . , xn]
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Bounds for Artin’s representation

p2 f = f 2
1 + . . . + f 2

k

deg(f ) = d

deg(p, f1, . . . , fk) ≤ 222d
4n

Lombardi-Perrucci-Roy 2000
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A more general problem

How can I verify if f ≥ 0 in
{f1 ≥ 0, f2 ≥ 0, . . . fs ≥ 0}?
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The dictionary Algebra-Geometry

K a field
Given f1, . . . , fk ∈ K[x1, . . . , xn]

Algebra:
〈f1, . . . , fn〉 ⊂ K[x1, . . . , xn]
Geometry: V (f1, . . . , fn) ⊂ Kn

Hilbert’s Nullstellensatz: (K = K)
f |V (f1,...fk) = 0 ⇐⇒ f ` ∈ 〈f1, . . . , fk〉
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Real Nullstellensatz

K = R

f |V (f1,...fk) = 0
⇐⇒

f 2` + g 2
1 + . . . + g 2

r ∈ 〈f1, . . . , fk〉
Krivine–1964
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Algebraic and semialgebraic sets

V (f1, . . . , fn)
=

{x ∈ Kn : fi(x) = 0, 1 ≤ i ≤ k}

S(f1, . . . , fn)
=

{x ∈ Kn : fi(x) ≥ 0, 1 ≤ i ≤ k}
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The preordering & Positivstellensatz

PO(f1, . . . , fk)
= {

∑
e∈{0,1}k sef

e1
1 . . . f

ek
k }

,

se ∈ SOS(R[x ])
Positivstellensatz (Stengle 1974)

f |S(f1,...,fk) > 0 ⇐⇒
s f = 1 + t, s, t ∈ PO(f1, . . . , fk)
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Nichtnegativstellensatz

(Stengle 1974)

f |S(f1,...,fk) ≥ 0 ⇐⇒
s f = f 2` + t, ` ∈ N, s, t ∈
PO(f1, . . . , fk)

Computational aspects are hard!
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The quadratic module (easier)

M(f1, . . . , fk) :=
{g0 + g1f1 + . . . + gkfk}

with g0, . . . gk ∈ SOS(R[x1, . . . , xn])

M(f1, . . . , fk) ⊂ PO(f1, . . . , fk)

f ∈ M(f1, . . . , fk) can be easily
tested
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Quadratic modules and positivity

When do we have
f |S(f1,...,fk) ≥ 0⇒ f ∈ M(f1, . . . , fk)?

M(f1, . . . , fk) is called archimedean
if N − x2

1 − . . .− x2
n ∈ M(f1, . . . , fk)

for some N > 0
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Easy to check

M(f1, . . . , fk) archimedean
⇒ S(f1, . . . , fk) ⊂ Rn compact

Putinar’s Positivstellensatz
If M(f1, . . . , fk) is archimedean and
f |S(f1,...,fn) > 0 then f ∈ M(f1, . . . , fk)
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Cases of applications/extensions

Polytopes Powers 2004

Cylinders Escorcielo–Perrucci 2020

Zero-dimensional ideals
Krick-Mourrain-Szanto 2020 –
Baldi-Krick-Mourrain 2024

Carlos D’Andrea

Certificates of positivity for real polynomials



Cases of applications/extensions

Polytopes Powers 2004

Cylinders Escorcielo–Perrucci 2020

Zero-dimensional ideals
Krick-Mourrain-Szanto 2020 –
Baldi-Krick-Mourrain 2024

Carlos D’Andrea

Certificates of positivity for real polynomials



Cases of applications/extensions

Polytopes Powers 2004

Cylinders Escorcielo–Perrucci 2020

Zero-dimensional ideals
Krick-Mourrain-Szanto 2020 –
Baldi-Krick-Mourrain 2024

Carlos D’Andrea

Certificates of positivity for real polynomials



Cases of applications/extensions

Polytopes Powers 2004

Cylinders Escorcielo–Perrucci 2020

Zero-dimensional ideals
Krick-Mourrain-Szanto 2020 –
Baldi-Krick-Mourrain 2024

Carlos D’Andrea

Certificates of positivity for real polynomials



Barcelona Computational Algebra

Ana Belén de Felipe – UPC

Eulàlia Montoro – UB

Joel Hurtado – UPC

Teresa Cortadellas Beńıtez – URL
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Recent contributions

Given f1, . . . , fk ∈ Q[x1, . . . , xn], how
to certify if M(f1, . . . , fk) is

archimedean?

Joint work with Joel Hurtado
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Related question

Given f1, . . . , fk ∈ R[x1, . . . , xn], how
to certify if S(f1, . . . , fk) is compact?
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Sub-problem

Given f1, . . . , fk ∈ R[x1, . . . , xn],
knowing that S(f1, . . . , fk) is

compact
compute a bound for its diameter

Basu-Roy 2010

D-Hurtado 2026
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Another focus: Effective Pourchet

Input:
f (x) ∈ Q[x ], f (t) ≥ 0∀t ∈ R
Output: f1(x), . . . , f5(x) ∈ Q[x ],
f (x) = f1(x)2 + . . . + f5(x)2
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