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Classifying glaucoma exclusively with OCT: comparison of 
three clustering algorithms derived from machine learning
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BACKGROUND/AIMS: To objectively classify eyes as either healthy or glaucoma based exclusively on data provided by 
peripapillary retinal nerve fiber layer (pRNFL) and ganglion cell-inner plexiform (GCIPL) measurements derived from spectral- 
domain optical coherence tomography (SD-OCT) using machine learning algorithms.
METHODS: Three clustering methods (k-means, hierarchical cluster analysis -HCA- and model-based clustering-MBC-) were used 
separately to classify a training sample of 109 eyes as either healthy or glaucomatous using solely 13 SD-OCT parameters: pRNFL 
average and sector thicknesses and GCIPL average and minimum values together with the six macular wedge-shaped regions. 
Then, the best-performing algorithm was applied to an independent test sample of 102 eyes to derive close estimates of its actual 
performance (external validation).
RESULTS: In the training sample, accuracy was 91.7% for MBC, 81.7% for k-means and 78.9% for HCA (p value = 0.02). The best 
MBC model was that in which subgroups were allowed to have variable volume and shape and equal orientation. The MBC 
algorithm in the independent test sample correctly classified 98 out of 102 cases for an overall accuracy of 96.1% (95% CI, 
92.3–99.8%), with a sensitivity of 94.3 and 100% specificity. The accuracy for pRNFL was 92.2% (95% CI, 86.9–97.4%) and for GCIPL 
98.0% (95% CI, 95.3–100%).
CONCLUSIONS: Clustering algorithms in general (and MBC in particular) seem promising methods to help discriminate between 
healthy and glaucomatous eyes using exclusively SD-OCT-derived parameters. Understanding the relative merits of one method 
over others may also provide insights into the nature of the disease.

Eye; https://doi.org/10.1038/s41433-023-02785-5

INTRODUCTION
Glaucoma is one of the main causes of global irreversible 
blindness [1]. Still today, the gold standard for diagnosis is the 
glaucoma expert’s assessment derived from integrating the visual 
field-testing results with the optic disc examination. However, 
relying only on the ophthalmologists’ criteria could be sub-
optimal [2], since the agreement in the evaluation of optic disc 
glaucomatous damage [3] or progression [4] on fundus exam 
even among glaucoma specialists is not perfect. Moreover, in real- 
world conditions, the first diagnosis is often made by practice 
trainees and comprehensive ophthalmologists that have been 
shown to underestimate clinical findings [5], potentially leading 
to late diagnosis and referrals.

On the other hand, spectral-domain optical coherence tomo-
graphy (SD-OCT) has become a game-changer in glaucoma 
diagnosis. It provides objective peripapillary retinal nerve fiber 
layer (pRNFL) and macular measurements (like Ganglion cell-inner 
plexiform layer -GCIPL-) comparing them with a normative 
database, achieving an excellent ability to discriminate glaucoma 
from healthy eyes [6]. In fact, adding SD-OCT data to the 

glaucoma specialist assessment has been shown to increase 
agreement between examiners [7], decreasing the number of 
unnecessary referrals from screening programs [8]. Although 
current knowledge suggests that combining different peripapil-
lary and macular measurements further improves SD-OCT 
diagnostic accuracy [9], the best set of parameters is yet to be 
determined.

Could we find, then, a way to detect glaucoma patients only 
using SD-OCT parameters? One potential way could be clustering 
algorithms (CA). CA, derived from unsupervised machine learning, 
classifies patients according to a set of features using the clinical 
exam as the ground truth. They can group a set of eyes without 
supervision in a way that eyes in the same group (a cluster) are 
more similar to each other than to those in other groups/clusters. 
This is a common technique for statistical data analysis used in 
many fields including pattern recognition, image analysis, 
information retrieval, bioinformatics, and data compression.

Two of the most used clustering algorithms are heuristic and 
include k-means and hierarchical clustering analysis (HCA) [10]. In 
k-means the whole sample is separated into “k” groups pre- 
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specified by the researcher that minimize within-cluster and 
maximize between-cluster variances. In (agglomerative) HCA, all 
patients begin as their own cluster and are gathered one at a time 
given their similarities, until they all form a single cluster. On the 
contrary, model-based clustering (MBC) is based on a statistical 
approach; with assumptions that can be tested considering that 
data must fit a certain model [11]. Each patient has a given 
probability of belonging to a specific cluster allowing a certain 
variation of means, variances, and shapes of clusters, which is 
probably more realistic.

The purpose of this study was to evaluate the performance of 
these three algorithms to objectively classify eyes as either 
healthy or glaucoma based exclusively on data provided by 
pRNFL and GCIPL measurements derived from SD-OCT.

METHODS
Study design
This retrospective cohort study included a training sample of consecutive 
patients attending the Glaucoma and Ophthalmology Primary Care 
Departments at Hospital Clínic Barcelona from June 2019 to June 2021. 
Similarly, a secondary test sample for external validation was obtained 
from patients visited consecutively from July 2021 to July 2022 in the 
Glaucoma and Ophthalmology Primary Care Departments of three 
different Spanish centres: Hospital Clínic Barcelona (Barcelona), Hospital 
Sagrat Cor (Barcelona), and Instituto Fernández-Vega (Oviedo).

The study protocol was approved by Hospital Clínic of Barcelona Ethics 
committee and adhered to the tenets of the Declaration of Helsinki. A 
waiver of the written informed consent was granted due to the 
retrospective nature of the study and because the data were collected 
from regular clinical practice.

Eligibility criteria and clinical exam
Inclusion criteria were as follows: age ≥18 years old, spherical equivalent 
within ±5.0 diopters (D), astigmatism ≤ −3.0 D, best-corrected visual acuity 
(BCVA) ≥20/40, and open-angle on gonioscopy. Exclusion criteria included 
corneal or retinal diseases, amblyopia, systemic or neurologic disorders that 
could affect test results, intraocular surgery other than uncomplicated 
phacoemulsification less than 6 months before the examination, and poor 
image quality (see OCT section). Only one eye from each patient was 
included in the study; if both eyes met the eligibility criteria, the study eye 
was selected with simple randomization (1:1 ratio).

All participants underwent a complete ophthalmic examination with 
BCVA, pachymetry, slit-lamp examination, Goldmann applanation tonome-
try, gonioscopy; and 24-2 SITA-Standard Automated Perimetry (SAP) with 
the Humphrey Field Analyzer, and Cirrus® high-definition OCT imaging (Carl 
Zeiss Meditec Inc., Dublin, CA, USA). Clinical examination and testing were 
performed within 2 months of each other. All patients had reliable SAP with 
fixation losses, false positives, and negatives <25%. Both sets of healthy 
subjects and glaucoma patients were examined by the three glaucoma 
specialists (MP, NVA, and IRU). Healthy subjects were recruited in the 
Ophthalmology Primary Care unit who came for an ordinary ophthalmic 
examination, patients who came for refraction, or requiring a medical 
certificate assuring that they did not present any ophthalmic disease. 
Healthy controls had a normal optic nerve head appearance, intraocular 
pressure (IOP) ≤ 21 mmHg, and a normal SAP. Glaucoma was defined as 
untreated IOP > 21 mmHg, glaucomatous optic disc appearance (neuror-
etinal rim thinning and/or notching and/or peripapillary hemorrhages) with 
a correspondent, reproducible visual field defect as described by Anderson 
et al. [12]. SD-OCT was not used to make the diagnosis.

Optical coherence tomography acquisition and analysis
SD-OCT scans were performed with Cirrus® high-definition device using 
the standard Optic Disc Cube 200 × 200 protocol centered on the optic 
nerve head and the Macular Cube 200 × 200 centered on the fovea. For 
this study, only 13 parameters: 5 pRNFL thickness (average, superior, 
inferior, temporal, and nasal sectors) and 8 GCIPL thicknesses (average 
and minimum values, and the six wedge-shaped sectors: superior 
temporal, superior, superior nasal, inferior nasal, inferior and inferior 
temporal) were considered. Only images with good quality (signal 
strength > 6/10), no artifacts, and correct segmentation, as reviewed by 
the three glaucoma specialists, were included.

Statistical analysis
The normality—and homoscedasticity in normally distributed variables— 
were checked. The sample was described using the mean and standard 
deviation (SD) for normally distributed quantitative variables, median 
(interquartile range) for non-normally distributed quantitative variables, 
and n (percentage) for categorical variables. A comparison of baseline 
characteristics between healthy and glaucomatous eyes was made using 
unpaired Student’s t test, Mann–Whitney, or Fisher exact test, as 
appropriate.

The variables inspected were derived exclusively from the 13 SD-OCT 
parameters mentioned previously. To gain early insights into the ability of 
these parameters to classify eyes as either glaucomatous or healthy, the 
first two components derived from principal component analysis (PCA) 
were plotted (SM Fig. 1).

The main analyses involved two phases. In the first phase, three 
clustering methods were used separately to classify each eye in the 
training sample as healthy or glaucomatous using solely those 13 SD-OCT 
variables: 

● In “k-means” the number of groups is pre-specified by the researcher 
and the corresponding centroids or points in space representing the 
reference for each cluster are randomly chosen. Each eye is assigned 
to the closer centroid based on its similarities to the 13 variables. The 
position of each centroid is updated based on the mean values for 
each variable of eyes belonging to it, and each eye is then reallocated 
to its nearest new centroid. This process is repeated until no eye 
changes its centroid. The whole process was repeated after n = 100 
random starts.

● In agglomerative “HCA” each eye begins as its own cluster and they 
are merged one at a time with the closest observation, based on the 
Euclidean distance until all eyes form a single cluster. When ≥2 eyes 
form a cluster, the measure of similarity (linkage) was taken as the 
average distance between each observation in one cluster and each 
observation in other clusters.

● “MBC” models the probability of each eye belonging to each group. 
This allows the clusters to have different sizes, shapes, and 
orientations; the combination of these three characteristics generates 
14 models. The optimal model was that with the best Bayesian 
Information Criterion. The expectation-maximization algorithm was 
used for maximum-likelihood estimation and a hierarchical clustering 
algorithm was used to define its optimal starting value. For a more 
detailed explanation of these methods, see Giordani et al. [10].

In the second phase, the best-performing algorithm in the training 
sample was applied to an independent (test) sample of healthy and 
glaucomatous eyes from hospitals in different geographical locations. This 
was used for external validation of results.

The primary outcome was the accuracy of each clustering algorithm, 
defined as the number of correctly classified eyes divided by the total 
number of eyes. Secondary outcomes included the diagnostic parameters 
sensitivity, specificity, positive/negative predictive values, false positives 
(FP)/negatives (FN), and the adjusted Rand index (ARI), a measure of 
agreement between two classifications that ranges from 0 (random 
partition) to 1 (perfect agreement) [13]. These parameters were also 
compared between the best-performing algorithm and the color-coded 
analysis of the pRNFL and GCIPL sector parameters on SD-OCT (classified 
as glaucoma when one or more sectors were yellow [borderline] or red 
[abnormal], and as healthy otherwise). Venn diagrams were plotted to 
determine concordant/discordant cases of each approach with the 
ground truth.

The analyses were conducted using software R (version 4.0.1, available 
on www.r-project.org, and its library mclust, version 5.4.9) and Stata IC 
(version 15; StataCorp, College Station, Texas, US). A p value < 0.05 was 
considered statistically significant.

RESULTS
We consecutively reviewed the medical records of 10,457 
(training sample) and 3823 (test sample) subjects from the 
Glaucoma and Ophthalmology Primary Care Departments. From 
each set, 160 and 135 patients were eligible and further 
evaluated; after a second review, 109 and 102 patients meeting 
all the inclusion/exclusion criteria were included in the study; the 
reasons for exclusion are detailed in SM Fig. 2. The distribution of 
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the visual field mean deviation values for all 80 healthy and 131 
glaucoma eyes is represented in SM Fig. 3.

Training sample
This sample included 109 eyes of 109 patients. There were 62 
females (56.9%), the mean age was 68.1 years (SD 12.0), and there 
were 48 healthy and 61 glaucomatous eyes (Table 1). Of those 
with glaucoma, 43 and 18 had early and moderate disease, 
respectively (SM Fig. 3).

In the scatterplot matrix of the SD-OCT parameters, there was a 
fair to good correlation among all variables with a trend for the 
glaucomatous eyes to occupy the lower left location of the graph 
(thinner thicknesses) (SM Fig. 4). When representing the PCA of 
these 13 SD-OCT parameters, we found that the first two 
components gathered 82.0% of all the variance and that despite 
a considerable overlap of some healthy and glaucomatous eyes, 
there was a substantial clustering of eyes by diagnosis (SM Fig. 5).

Algorithm accuracy (Table 2 and SM Table 1) was highest for MBC 
(91.7%), followed by k-means (81.7%) and HCA (78.9%; p value =  
0.02). The best MBC model was that in which subgroups were 
allowed to have variable volume and shape and equal orientation 
(“VVE”). K-means and HCA showed a similar and reasonable ability to 
separate observations into the healthy and glaucoma subgroups, 
but the separation was sharper for k-means than for HCA, explaining 
its slightly better accuracy results (SM Fig. 6). The classical graph for 
HCA, the dendrogram or tree plot, is shown in SM Fig. 7.

Regarding the classification metrics for each algorithm (SM 
Table 2), MBC obtained the best outcomes in every parameter 
measured, while k-means and HCA showed similar results 
between them, with modest sensitivities (~65%) and a rate of 
false negatives around 30%. The ARI provided a clear separation 
of values between algorithms, with the best results for MBC (0.69), 
followed by k-means (0.40) and HCA (0.33).

Test sample
Given the previous results, MBC was chosen as the best algorithm 
and then applied to the test sample for external validation. This 
consisted of 102 eyes of 102 patients from Hospital Sagrat Cor 
(n = 43), Hospital Clínic (n = 34), and Instituto Oftalmológico 
Fernández-Vega (n = 25). There were 32 healthy and 70 glaucoma-
tous eyes (Table 1). Of those with glaucoma, 37 had early, 25 had 
moderate, and 8 advanced disease (SM Fig. 8). A description by site 
is provided in SM Table 3. Again, there was a good correlation 
between all SD-OCT parameters with glaucomatous eyes showing 
thinner layer thicknesses, as expected (SM Fig. 9).

The best model in the test set using MBC was again the VVE, 
which correctly classified 98 out of 102 cases for an overall 
accuracy of 96.1% (95% CI, 92.3–99.8%). There were 4 FNs 
(glaucomatous eyes classified as healthy by the MBC algorithm): 
three of them were early stage, and in one the damage was early- 
moderate (MD −6.12 dB). If we exclude the 8 advanced glaucoma 
cases from the test sample, the accuracy would be 95.7% (95% CI, 
89.5–98.8%). If we now further restrict the analysis to a 
comparison of healthy and early glaucoma cases, the accuracy 
of the MBC model would then be 66/69 or 95.7% (95% CI, 
87.8–99.1%). The diagnostic accuracy of OCT conventional 
parameters was as follows: 92.2% (95% CI, 86.9–97.4%) for sector 
pRNFL and 98.0% (95% CI, 95.3–100%) for GC-IPL. There were no 
statistically significant differences between the accuracy of MBC 
and GCIPL (p value = 0.41), MBC and pRNFL (p value = 0.23), and 
they were borderline for the GCIPL-pRNFL comparison (p = 0.052). 
The corresponding 2 × 2 tables are shown in Table 3, additional 
metrics in Table 4, and Venn diagrams in Fig. 1.

DISCUSSION
Clustering algorithms are widely used data-analyses techniques. 
They provide an unbiased way to classify observations, although 

input from the researcher is required for variable selection, 
distance, and initialization method, among others [14]. Surpris-
ingly, these algorithms have hardly been employed in glaucoma, 
and the very few works available, have applied these techniques 
to find subgroups in normal-tension [15] and juvenile-onset 
glaucoma [16], molecular [17] associations with the disease, and 
rates of progression depending on patterns observed in optic 
nerve imaging [18], but not in classification. Most of these studies 
have used HCA and none of them has applied more recent 
techniques based on MBC.

The purpose of our study was to evaluate three clustering 
algorithms derived exclusively from data provided by pRNFL and 
GCIPL parameters from the SD-OCT to obtain an unsupervised 
glaucoma classification model. We found that MBC was superior 
to k-means and HCA, with accuracies of 91.7% for MBC, 81.7% for 
k-means, and 78.9% for HCA (p value = 0.02; Table 2). Likewise, 
other measures of discrimination (SM Table 2) and the ARI were 

Table 1. Baseline features of study participants as classified in two 
groups, normal and glaucoma in the training and test samples.

Training sample (n = 109)

Healthy, 
n = 48

Glaucoma, n = 61 p valuea

Age, years 61.1 
(11.5)

73.5 (9.4) <0.0001a

Sex, females 33 (68.8) 29 (47.5) 0.03a

IOP, mmHg* 16 (4) 24 (3) <0.0001b

Mean deviation, 
dB

−0.30 
(1.05)

−5.14 (2.44) <0.0001a

Pachymetry, 
μm

548.9 
(40.3)

538.3 (37.0) 0.21a

Quality, papilar 7.8 (1.1) 7.4 (0.9) 0.04a

Quality, 
macular

8.6 (0.9) 7.9 (1.2) 0.0006a

Test sample (n = 102)

Healthy, 
n = 32

Glaucoma, n = 70 p value

Age, years 57.7 (10.8) 71.4 (12.5) <0.0001a

Sex, females 20 (62.5) 38 (54.3) 0.52a

IOP, mmHg 16.6 (3.0) 24.2 (3.0) <0.0001a

Mean deviation, 
dB*

−0.03 (1.29) −5.90 (4.29) <0.0001b

Pachymetry, μm 538.3 (43.0) 533.3 (34.4) 0.55a

Quality, papilar 8.1 (1.3) 7.8 (1.1) 0.26a

Quality, macular 8.9 (1.2) 8.6 (1.2) 0.35a

Values represent mean (standard deviation) or *median (interquartile range) 
for quantitative and n (%) for categorical variables.
dB decibels, IOP intraocular pressure.
at-test.
bMann–Whitney U test.

Table 2. Comparison of accuracies of the different algorithms.

Algorithm Accuracy (95% CI), % p value

K-means 81.7 (73.1–88.4) 0.02

Hierarchical clustering analysis 78.9 (70.0–86.1)

Model-based clustering 91.7 (84.9–96.2)

Model-based clustering showed the highest accuracy.
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also higher for MBC (0.69 vs. 0.40 for k-means and 0.33 for HCA). 
The MBC algorithm was then externally validated in a different 
sample (test sample) achieving even better accuracy (96.1%) with 
a sensitivity of 94.3 and 100% specificity. When compared to SD- 
OCT standard color-coded classification, MBC accuracy was not 
inferior to the best-performing SD-OCT parameter, GCIPL (96.1% 
vs. 98.0%, p value = 0.41). Classification based on pRNFL 
numerically showed the lowest accuracy (92.2%) although, again, 
differences were not statistically significant to either MBC or 
GCIPL (p values > 0.05).

There are several possible explanations for these results. First, 
even though pRNFL thickness usually outperforms the rest of 
individual SD-OCT parameters [19, 20] there are previous publica-
tions in which GCIPL diagnostic performance has been shown to be 
comparable to that of pRNFL [20] or even higher [21], although 
these differences were found to be not clinically relevant. Second, 
the color-coded classification values of pRNFL and GCIPL are 
obtained from a comparison with a built-in age-adjusted normative 
database [22], whereas the MBC algorithm is based only on SD-OCT 
parameters without taking age or any other input into account. 
Third, our definition used to classify eyes as glaucomatous on 
pRNFL and GCIPL was biased toward increased sensitivity (a single 
borderline or yellow sector was considered as indicative of the 
disease), which may explain the slightly improved sensitivity of 
GCIPL relative to MBC, at the expense of some loss on specificity. 
Overall, the results with the MBC algorithm are promising, especially 
considering that the sample included predominantly cases with 
early disease and that the parameters were only derived from SD- 
OCT without using any other clinical or demographical variable, 
which allows room for improvement.

Why does MBC achieve better outcomes than the other 
models? A potential explanation is that in classical heuristic 
methods, clusters are required to be spherical; that is, the 
distances between the center of the cluster and the more 
peripheral individuals are forced to be the same. In MBC they 

are allowed to be elliptical, with different shapes and orientations 
in the multivariable space formed by all pRNFL and GCIPL 
measurements [23]. In fact, the optimal MBC model was the VVE, 
which allows for variable size, variable shape, and equal 
orientation of the major axes of the ellipse in each subgroup. 
This suggests that the increased flexibility of this model fitted 
better the data, allowing improvements in the classification.

What are the potential applications of these algorithms? SD- 
OCT can detect, quantify, and monitor structural glaucomatous 
damage objectively. However, SD-OCT testing is not yet included 
in the definition of diagnosis or progression of the disease [24]. 
Furthermore, SD-OCT changes typically precede functional 
abnormalities in early glaucoma in which visual defects are often 
very scarce or even absent [20, 25]. Considering our results, we 
believe that SD-OCT-based algorithms can be useful in a 
screening context or when a glaucoma diagnosis cannot be 
made with certainty. In this scenario, highly specific tests like the 
one designed here could be very useful, since only patients with 
the disease will screen positive, optimizing resources for further 
necessary diagnostic procedures. Despite the very good sensitiv-
ity values (>90%), in an irreversible and potentially treatable 
disease like glaucoma, FNs are also concerning. We reviewed the 
four FNs of the testing sample, finding that all of them had very 
focal damage that could have been missed in the SD-OCT 
regional analyses. Since these clustering modeling techniques are 
objective and unsupervised, they may also provide new insights 
into the nature of glaucomatous neuropathy. Some studies have 
found ganglion cell layer thinning at early stages of the disease 
[26], but to date, pRNFL thickness measurements have not been 
overcome by other SD-OCT parameters [20]. Although it is 
possible that axonal thinning occurs before soma degeneration 
[27, 28], it may also be that current technologies are not able to 
completely identify prompt damage occurring in different areas 
at the same time. Moreover, the location of the glaucomatous 
structural loss can be very variable among patients, and even 

Table 3. Contingency (2 × 2) table of the classification into healthy or 
glaucoma cases in the test set using model-based clustering, sector 
pRNFL and sector GCIPL.

Clinical exam (ground truth)

Glaucoma Healthy

MBC

Diseased 66 0

Non-diseased 4 32

pRNFL

Diseased 63 1

Non-diseased 7 31

GCIPL

Diseased 69 1

Non-diseased 1 31

GCIPL ganglion cell-inner plexiform layer, MBC model-based clustering, 
pRNFL peripapilar retinal nerve fiber layer.

Table 4. Classification parameters for the model-based clustering with the VVE covariance matrix, sector pRNFL and sector GCIPL in the test sample.

Method Sensitivity Specificity PPV NPV FP FN ARI

MBC 94.3 (86.0–98.4) 100 (89.1–100) 100 (89.1–100) 88.9 (75.5–95.4) 0 (0.0–10.9) 5.7 (1.6–14.0) 0.85

pRNFL 90.0 (80.5–95.9) 96.9 (83.8–99.9) 98.4 (91.6–100.0) 81.6 (65.7–92.3) 3.1 (0.0–16.2) 10 (4.1–19.5) 0.71

GCIPL 98.6 (92.3–100) 96.9 (83.8–99.9) 98.6 (92.3–100) 96.9 (83.8–99.9) 3.1 (0.0–16.2) 1.4 (0.0–7.7) 0.92

ARI adjusted Rand index, FN false negatives, FP false positives, GCIPL ganglion cell-inner plexiform layer, HCA hierarchical cluster analysis, MBC model-based 
clustering, NPV negative predictive value, PPV positive predictive value, pRNFL peripapilar retinal nerve fiber layer.

Fig. 1 Venn diagrams for model-based clustering in patients 
diagnosed with glaucoma as compared with pRNFL and GCIPL. 
GCIPL ganglion cell-inner plexiform layer, pRNFL peripapilar retinal 
nerve fiber layer.
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though the superior and inferior disc thinning (“vulnerability 
zones”) are the most common, widespread damage has also been 
identified [29]. Actually, in our recent work, a diffuse representa-
tion of both macular and pRNFL parameters was found to have 
the most discriminative ability between healthy and glaucoma-
tous subjects [30]. Currently, different combinations of peripapil-
lary and macular SD-OCT parameters have been able to achieve 
better diagnostic performances than using isolated SD-OCT 
parameters. In this regard, Hood and colleagues have extensively 
analyzed the macular and peripapillary areas, addressing the fact 
that the RNFL -axons- (macula and optic nerve) and ganglion cell 
layer -cell bodies- (macula) damage are not separate [29] and that 
the use of probability maps including both areas probably 
improves structure-function relationship [31]. Although their 
research is based on probability maps and ours is derived from 
thickness measurements, using information coming from both 
areas may help the clinician to detect glaucoma cases that, 
relying only on pRNFL thickness, would have been either missed 
[29], or erroneously classified [32], as observed in the four FNs 
missed by our algorithm. However, further research is needed to 
elucidate if both methods are addressing the same clinical 
problem since combining both probability maps and thickness 
could potentially worsen the model specificity.

Another area of discussion is the optimization of the model 
variable selection. In this regard, some SD-OCT parameters may 
have little relevance for the detection of glaucoma and therefore 
may only induce noise in the model (i.e., nasal pRNFL); others may 
be redundant (does average pRNFL or GCIPL measurements 
increase accuracy if all sectors in these locations have already 
been considered?). The present research was performed with 
Cirrus OCT: parameters such as isolated macular retinal nerve 
fiber layer (Spectralis SD-OCT) [30], or the lack of agreement 
between the devices [33] may influence the outcomes using the 
clustering approach in different instruments. Although using the 
instrument probability color-coded values (green, yellow, red) is 
more similar to what we do in clinical practice (especially among 
comprehensive ophthalmologists), it may have a different 
accuracy behavior than the usually reported quantitative isolated 
SD-OCT best cut-off values, and that might have led to the 
previously mentioned increased sensitivity of GCIPL

In this study using only OCT data, despite not using any clinical 
variable for the model configuration like IOP, central corneal 
thickness or age—all very known risk factors for glaucoma—the 
MBC algorithm showed very good accuracy with little overfitting 
in the test sample. Nevertheless, since color-coded values 
obtained by the in-built comparative age-adjusted database were 
used as a classificatory comparator, the effect of age was 
somehow indirectly incorporated into the model which could 
also further explain its excellent results. Adding other relevant 
clinical characteristics (hemorrhages, IOP, MD…) may further 
improve the model outcomes.

Our study has some limitations. First, its exploratory nature. 
Second, the sample size: the relatively small sample size limits the 
range of presentations of both healthy and glaucoma cases. 
However, we believe these results are still applicable, considering 
that the characteristic glaucomatous focal and/or diffuse thinning of 
the pRNFL and GCIPL are aspects well captured by our model and 
the good results obtained in the validation in an independent 
sample. Third, the sampling method. In trials with less than 
100 subjects per subgroup, block randomization is advisable to 
reduce the risk of imbalance [34, 35]; however, it is not expected to 
have a significant impact on the results because of the retro-
spective, non-interventional design of the study; and also because 
the randomization was done for sampling between the right or left 
eye from the same (either a healthy control or a glaucoma case) 
patient, and not between glaucoma and healthy patients. Fourth, 
our results may have been positively influenced by a similar age 
difference between healthy and glaucoma eyes in both the training 

and the test sets. However, despite not directly including age in the 
model, the MBC algorithm showed very good accuracy with little 
overfitting in the test sample. Evaluating model accuracy in samples 
with a different age distribution from that observed in our samples 
will shed light on this area. Additionally, we expect that adding 
other relevant characteristics (peripapillary hemorrhages, IOP, 
pachymetry, MD) may overcome any potential bias introduced by 
a shift in age and other non-detected imbalances between groups 
and improve the model outcomes. Fifth, the diagnostic accuracy 
overestimation in case-control studies. A perfect reference standard 
for glaucoma diagnosis is still lacking and therefore, glaucoma 
suspects are not commonly involved in diagnostic accuracy studies 
evaluating OCT for glaucoma detection, which often adopt a case- 
control design, like in our study. Such design includes healthy 
controls separately from glaucoma cases; thus, it can overestimate 
accuracy and reduce the applicability of the results to daily practice. 
Therefore, ocular hypertensives and eyes with pre-perimetric 
glaucoma were not considered and the present algorithm cannot 
be applied to those eyes. Long-term follow-up in uncertain cases 
would be useful to determine their conversion rate and the 
corresponding performance of the algorithm, but this is beyond the 
scope of the current study. Sixth, the performance of these methods 
specifically in early glaucoma, where the diagnosis is more 
challenging, should be evaluated in future studies to minimize 
spectrum bias; the current sample included almost 30% of cases 
with moderate disease, which are arguably easier to detect. Finally, 
the study design must minimize incorporation bias, a common 
issue in clinical glaucoma research. These potential improvements 
in classification accuracy deserve further consideration.

In summary, clustering algorithms in general (and MBC in 
particular) seem promising methods to help discriminate 
between healthy and glaucomatous eyes using exclusively SD- 
OCT-derived parameters. Understanding their relative merits may 
also provide insights into the nature of the disease.

SUMMARY

What was known before

● Adding optic nerve and macular optical coherence tomo-
graphy (OCT) parameters to the visual field and optic nerve 
examinations for glaucoma diagnosis has increased the 
agreement among specialists.

● Combining OCT parameters could further improve diagnostic 
accuracy, but the best combination is yet to be determined.

What this study adds

● Unsupervised clustering algorithms (especially model-based 
clustering) using only OCT parameters can discriminate 
between healthy and glaucoma cases with very good 
accuracy, sensitivity, and specificity.

● A further comprehension of the merits of clustering models 
for classifying the cases could improve knowledge (structure- 
wise) of the disease.

● These algorithms could be implemented for glaucoma 
screening.
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