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CHAPTER 1

Introduction

The aim of this document is to give an overview of my work since the end
of my PhD thesis in 2013 [00]. The topics presented cover different aspects of
polytope theory, with an emphasis on questions related to the interaction between
the geometric and combinatorial properties of convex polytopes. They concern
the study of the influence of geometric constraints on the combinatorial structure,
a combinatorial analysis of geometric constructions, and the search for geometric
realizations of given combinatorial objects. They range from very classical subjects,
such as inscribability, to very recent developments, like tropical polytopes and ν-
Tamari lattices. The point of view is mainly that of combinatorial geometry, but
during the path we will see many connections with other facets of the theory: linear
optimization, computational geometry, combinatorial topology, metric geometry,
enumerative combinatorics, tropical geometry, algebraic combinatorics. . .

A polytope is the convex hull of a finite set of points, and its combinatorial
structure is given by its poset of faces, ordered by inclusion. The set of all geo-
metric realizations of a fixed combinatorial isomorphism class is known as its re-
alization space. Starting at 4-dimensional polytopes, realization spaces can be
very complicated semialgebraic sets (topologically, algebraically, and algorithmi-
cally), a phenomenon revealed by the groundbreaking Universality Theorems of
Mnëv [Mnë88] and Richter-Gebert [RG96]. Chapter 2 starts with a result from
“The universality theorem for neighborly polytopes” [11], written in collaboration
with Karim Adiprasito, that provides the missing final step for proving Mnëv’s
Universality Theorem for simplicial polytopes. Sections 2.2 and 2.3 present results
from “A universality theorem for projectively unique polytopes and a conjecture
of Shephard” [07], written also with Karim Adiprasito. It concerns projectively
unique polytopes, the polytopes that have the most rigid realization space. We
prove that every polytope described by algebraic coordinates is the face of a pro-
jectively unique polytope, and disprove a classical conjecture of Shephard [She74]
by constructing a combinatorial type of 5-dimensional polytope that is not realiz-
able as a subpolytope of any stacked polytope. The chapter ends with a part of
“Extension complexity and realization spaces of hypersimplices” [13], coauthored
with Francesco Grande and Raman Sanyal, concerning the realization spaces of
hypersimplices.

Understanding which polytopes are inscribable, that is, have a realization with
all the vertices on the sphere, is a classical subject that was first asked by Steiner
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2 1. INTRODUCTION

in 1832 [Ste32]. Since then, the interest on inscribability of polytopes has soared,
partially because of tight relations with Delaunay subdivisions and hyperbolic ge-
ometry. Inscribability is a very restrictive constraint, and in general it is hard
to decide whether a polytope is inscribable. Nevertheless, Section 3.1 presents a
construction for many combinatorially distinct inscribable polytopes, to the point
that they give the current best lower bound for the number of combinatorial types
of polytopes. It presents the point of view from “Neighborly inscribed polytopes
and Delaunay triangulations” [08], joint work with Bernd Gonska, in which we
prove the inscribability (in any smooth strictly convex body) of a family of neigh-
borly polytopes first presented in “Many neighborly polytopes and oriented ma-
troids” [01] (a publication from my PhD thesis). Section 3.2 describes results from
“Universality theorems for inscribed polytopes and Delaunay triangulations” [02],
written in collaboration with Karim Adiprasito and Louis Theran, that show that
inscribed polytopes present Mnëv’s universality phenomenon. The polars of in-
scribable polytopes are circumscribable, and in between there is a full spectrum
of “scribability” notions. Some of them are studied in Section 3.3, which reports
joint work with Hao Chen from “Scribability problems for polytopes” [12]. The
open problems section presents some of the questions formulated in “Six topics on
inscribable polytopes” [17], written in collaboration with Günter Ziegler.

The Minkowski sum is one of the most important geometric operations on
polytopes. It is geometric in the sense that the combinatorial structure of P + Q
depends on the geometric realization of P and Q, not only their combinatorics.
Chapter 4 presents results on Minkowski sums of polytopes and colorful point con-
figurations from “Colorful simplicial depth, Minkowski sums, and generalized Gale
transforms” [15], written with Karim Adiprasito, Philip Brinkmann, Pavel Paták,
Zuzana Patáková, and Raman Sanyal. It consists of two very different parts. On
the one hand, we present an upper bound on the colorful simplicial depth of colorful
point configurations. The colorful simplicial depth is a measure of centrality of a
point in Rd with respect to d+1 point configurations, introduced by Deza, Huang,
Stephen, and Terlaky in [Dez+06] as a colorful generalization of Liu’s simplicial
depth [Liu90]. Our bound implies a conjectured upper bound from [Dez+06].
Furthermore, we introduce colorful Gale transforms and Minkowski transforms, a
bridge between colorful configurations and Minkowski sums. Through them, our
colorful upper bound yields a tight upper bound on the number of totally mixed
facets of certain Minkowski sums of simplices, resolving a conjecture of Burton in
the theory of normal surfaces [Bur03].

The extension complexity of a polytope is the minimal number of facets of
a (usually higher dimensional) polytope that can be projected onto it. It is a
geometric parameter, as it strongly depends on the geometric realization of the
polytope. Introduced by the combinatorial optimization community because of
its ties with the computational complexity of linear programming, it is also very
relevant in many other areas for its tight relation with nonnegative factorizations of
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nonnegative matrices and with communication complexity [Yan91]. Polytopes for
which the extension complexity is known are very rare, and a lot of effort is put on
finding bounds for relevant families of polytopes. Section 5.1 presents “Polygons
as sections of higher-dimensional polytopes” [06], written in collaboration with
Julian Pfeifle. Our main result is an upper bound for the extension complexity
of polygons, found independently by Shitov [Shi14a], that disproved a conjecture
of Beasley and Laffey [BL09]. Section 5.2 contains the complete classification
by extension complexity of all d-polytopes with up to d + 4 vertices or facets,
which form a super-exponentially large family of polytopes. This is a result from
“Extension complexity of polytopes with few vertices or facets” [09]. For one
particular case, the classification uses a combinatorial result from “Polytopes with
few vertices and few facets” [10], related to Perles’ Skeleton Theorem, that entails
(surprisingly low) upper bounds on the number of polytopes with few vertices
and facets. It is presented in Section 5.3. Section 5.4 gives lower bounds for
the extension complexity of generic polytopes, also from “Extension complexity
of polytopes with few vertices or facets” [09]. We end in Section 5.5 with results
from “Extension complexity and realization spaces of hypersimplices” [13], written
with Francesco Grande and Raman Sanyal, concerning the extension complexity
of hypersimplices. They complement the results on realization spaces presented in
Section 2.4.

The last chapter concerns triangulations of products of simplices. These are
very important combinatorial objects, among other things, because of their cor-
respondence with tropical (pseudo-)hyperplane arrangements [AD09; DS04]. In
“Geometry of ν-Tamari lattices in types A and B” [16], joint work with Cesar
Ceballos and Camilo Sarmiento, this correspondence is used to give a (tropical)
geometric realization of the ν-Tamari lattice, presented in Section 6.1. This gen-
eralization of the Tamari lattice, whose study originated in the study of higher
diagonal coinvariant spaces [BPR12], has been the object of a lot of attention
lately, and the geometric realizability of some particular cases as a polyhedral sub-
division of an associahedron was an open problem by F. Bergeron [Ber12]. As a
by-product of our construction, a new ν-Tamari poset in type B is introduced,
with its analogous geometric realization. This is the subject of Section 6.2. The
central tool for our realizations is the associahedral triangulation. A close rela-
tive, the Dyck path triangulation, is key for Section 6.3, which reports results on
extendability of partial triangulations of the product of two simplices from “Dyck
path triangulations and extendability” [03], also joint work with Cesar Ceballos
and Camilo Sarmiento.

Nearly all of my post-thesis journal publications are cited in the document in
some way or an other, but with different level of detail. In particular, “Enumera-
tion of neighborly polytopes and oriented matroids” [04], which is joint work with
Hiroyuki Miyata, and in which we do a computer search to enumerate new cases
of neighborly polytopes and neighborly oriented matroids, is only cited in relation
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to open problems in Sections 2.5 and 3.4. For most publications, one or two se-
lected results are presented in separated sections. Relevant notions and definitions
are introduced gradually, only when they are needed for the first time. Proofs
are mostly omitted, or just informally outlined. However, most sections are com-
plemented with a small appendix giving a glimpse to some of the technical tools
used for the proofs. These are independent from the main text and can be safely
skipped or left for a more detailed lecture. Nevertheless, they form the backbone
connecting the subjects together. Indeed, some of the tools pop up being used in
several very different contexts. Each chapter ends with some open problems and
perspectives for future research.

Results from my PhD thesis [00] are mostly omitted. Besides some results
not published elsewhere, it contains the papers “Many neighborly polytopes and
oriented matroids” [01], which presents a new construction for a large family of
neighborly polytopes that is mentioned in Section 3.1 as it is the starting point
for [08], and “The degree of point configurations: Ehrhart theory, Tverberg points
and almost neighborly polytopes” [05], written with Benjamin Nill, in which we
study a combinatorial parameter of polytopes motivated from Ehrhart theory for
lattice polytopes and related to neighborliness, the Generalized Lower Bound The-
orem and Tverberg theory.

Similarly, results that have not been published in a journal yet, or only very
recently, are barely discussed. This concerns particularly the article [14], that ap-
peared after the writing of this manuscript started, and the preprints [18; 19; 20],
that are completed and at different stages of the peer-review process. “Moser’s
shadow problem” [14], a collaboration with Jeffrey Lagarias and Yusheng Luo,
provides complete answers to several variants of Moser’s shadow problem [Mos66;
Mos91] concerning the maximal shadows of 3-dimensional polyhedra. “The ν-
Tamari lattice as the rotation lattice of ν-trees” [18], written with Cesar Ceballos
and Camilo Sarmiento, gives new interpretations of the ν-Tamari lattice and un-
covers its relation with several known combinatorial objects. Some of its open
questions are briefly mentioned in Section 6.4. “Associahedra for finite type clus-
ter algebras and minimal relations between g-vectors” [19], joint work with Yann
Palu, Vincent Pilaud and Pierre-Guy Plamondon, revisits and expands a con-
struction of the associahedron that recently appeared in the mathematical physics
community [AH+18], and its extension to generalized associahedra arising from
representation theory [BM+18]. It is cited in relation to open problems in Sec-
tion 2.5. Finally, “The convex dimension of hypergraphs and the hypersimpli-
cial Van Kampen-Flores Theorem” [20], written in collaboration with Leonardo
Martínez-Sandoval, computes the convex dimension of complete uniform hyper-
graphs, first asked by Halman, Onn and Rothblum [HOR07], by means of the
study of projections of hypersimplices.
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Passages from the aforementioned publications are quoted and paraphrased all
along the document. The figures are also reproduced from these articles. In par-
ticular, many figures from Chapter 6 were originally created by Camilo Sarmiento.

1.1. List of publications

This section contains my publication list1, ordered by publication date, and
omitting all conference proceedings. A schematic representation of the links be-
tween publications is given in Section 1.2.

PhD thesis.
[00] Arnau Padrol. “Neighborly and almost neighborly configurations,

and their duals”. Ph.D. Thesis. Advisor: Julian Pfeifle. Universitat
Politècnica de Catalunya, Mar. 2013.

Journal articles.
[01] Arnau Padrol. “Many neighborly polytopes and oriented matroids”.

In: Discrete Comput. Geom. 50.4 (2013), pp. 865–902.
[02] Karim Adiprasito, Arnau Padrol, and Louis Theran. “Universality

theorems for inscribed polytopes and Delaunay triangulations”. In:
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1These reference numbers are used for my publications throughout the document. The
remaining citations use alphanumberic style based on authors names and publication year.
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1.2. Publication scheme

The linear structure of this document makes it hard to display the logical de-
pendencies within the sections, and the separation into the chapters is a poor
representation of the distribution of topics. The following scheme attempts to
present a better picture of the underlying connections in the publication list. Ar-
rows represent logical dependence, understood in a loose sense: the explicit use or
the generalization of a result, considering a question that naturally arises from the
previous study, or using a concept introduced in the previous publication. There
are also plenty of common themes treated in different subsets of publications.
These key subjects are indicated by small tags.

[01]

en ne om gd

[04]
(Section 2.5)
en ne om

[11]
Section 2.1

rs ne gd om

[08]
Section 3.1

en ne sc ts

[02]
Section 3.2

rs ne sc ca ts

[17]
(Section 3.4)

sc

[12]
Section 3.3
sc ne st

[07]
Sects. 2.2 and 2.3

rs st ca

[06]
Section 5.1
xc ld re

[10]
Section 5.3
en ct

[09]
Sects. 5.2 and 5.4
xc gd rs pr

[13]
Sects. 2.4 and 5.5

xc rs hs

[05]

ne ca gd

[15]
Sects. 4.1 and 4.2
ms ct ca gd pr

[14]

ld pr

[20]

gd pr hs

[03]
Section 6.3

tr ts ca om

[16]
Sects. 6.1 and 6.2
tr ts as re ca

[18]

as re

[19]

as gd re ts ms

Backgrounds:
PhD ; Chapter 2 ; Chapter 3 ; Chapter 4 ; Chapter 5 ; Chapter 6 ; Preprint .

Tags:
rs : realization spaces; sc : (in)scribability; ms: Minkowski sums; xc : extension complexity;
tr : tropical hyperplane arrangements; ts : triangulations and subdivisions; en : enumeration;
om: oriented matroids; ct : combinatorial topology; gd : Gale duality; as : Tamari lattices and
associahedra; re : Realizability; pr : Projections; ne : neighborly pol.; st : stacked pol.; ld :

low-dimensional pol.; ca : Cayley and Lawrence pol.; hs : hypersimplices.





CHAPTER 2

Realization spaces and universality [07; 11; 13]

A vector configuration is a finite ordered collection V = (v1, . . . , vn) of vectors
in Rd, which we can identify with a matrix in Rd×n that we will assume to be
of full rank. Its conical hull is a polyhedral cone that is the image of the non-
negative orthant Rn

≥0 under the map ei 7→ vi: cone(V ) = {∑1≤i≤n λivi |λi ≥ 0}.
The face lattice of a cone C, denoted by F(C), is the set of faces ordered by
inclusion. Identifying each face with the indices of the vectors it contains, we in-
terpret it as an induced poset of the Boolean lattice of subsets of [n]. This induces
an equivalence relation which call the face-lattice equivalence of vector configura-
tions. (Usually called just labeled combinatorial equivalence if we are at the level
of polytopes/polyhedral cones.)

A finer equivalence relation on vector configurations is given by oriented ma-
troids. The oriented matroid of V is the equivalence class induced by the chirotope
map χV :

(
[n]
d

)
→ {+,−, 0} that sends a d-subset {i1<i2< · · ·<id} of [n] to the sign

of their determinant sign det(vi1 , . . . , vid), up to a global sign change. More gen-
erally, any non-zero alternating map that fulfills the Grassmann-Plücker relations
is called a chirotope, see [Bjö+99] for details on this and other cryptomorphic ax-
iomatizations of oriented matroids. Here, we will only consider oriented matroids
arising from real vector configurations, i.e., realizable over the reals. Note that,
since the chirotope determines the face lattice, oriented matroids induce a finer
stratification.

Of course, analogous definitions hold for the affine counterparts: point config-
urations, convex hulls, polytopes, affine oriented matroids, etc. They are inherited
from the linear setting through the homogenization map hom : Rd → Rd+1 given
by hom(p) = (p, 1). Linear properties of hom(A) correspond to affine properties
of A. It is usually more comfortable to work and do the proofs in the linear setup,
but to draw (and think about!) the affine counterparts, which are in one dimen-
sion less. This is the approach we will follow here, where sometimes the affine
configuration and its linearization are used interchangeably.

These two equivalence relations stratify the set of full-rank d×nmatrices. Since
both are invariant under linear transformations, we can consider the quotient mod-
ulo the action of GL(Rd) to obtain a stratification of the Grassmannian Grd(n).
The strata contain the set of all realizations of a given oriented matroid or poly-
hedral cone.

9
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• The realization space of an oriented matroid M (of rank d with n elements), that
we denote Rom(M)⊂ Rd×n, is the set of vector configurations that realize M :

Rom(M) = {V ∈ Rd×n |χV = M}
/

GL(Rd).

• The realization space of a polytope/polyhedral cone/face lattice P , that we de-
note Rpol(P )⊂ Rd×n, is the set of vector configurations whose face lattice is
combinatorially equivalent to P :

Rpol(P ) = {V ∈ Rd×n | F(V ) ∼= P}
/

GL(Rd).

For a vector configuration V , we abbreviate Rom(V ):= Rom(χV ) and Rpol(V ):=
Rpol(F(V )); and for a polytope P with vertex set A, Rpol(P ):= Rpol(hom(A)).

A general principle in the theory of realization spaces for (semi-)algebraically
defined objects is succinctly put in [Vak06]: “Unless there is some a priori reason
otherwise, the deformation space may be as bad as possible.”

Underlying a large number of these kinds of phenomena is a paradigmatic
result of Mnëv. The Universality Theorem for oriented matroids states that for
every primary basic semi-algebraic set there is an oriented matroid of rank 3 and
a polytope whose realization spaces are stably equivalent to it (see [RG99] for an
accessible presentation of this and related results). When the semi-algebraic sets
are open, one can furthermore require the oriented matroids to be uniform and
the polytopes to be simplicial. Section 2.1 presents the final step for the proof of
the Universality Theorem for simplicial polytopes, and shows that it even holds
for neighborly polytopes.

Projectively unique polytopes are those that have the smallest possible realiza-
tion space: they have a unique realization up to projective transformation. Projec-
tively unique polytopes are very rare. Only 11 projectively unique polytopes are
known in dimension 4, a list that has been conjectured to be complete [McM76].
The first infinite family of projectively uniques in fixed dimension was only re-
cently found, in dimension d = 69, answering an old question of Perles and Shep-
hard [AZ15]. Nevertheless, they have the following universality property: every
polytope described by algebraic coordinates is the face of a projectively unique
polytope. This result from [07] is described in Section 2.2. A closely related result
of Below is used in Section 2.3 to construct a combinatorial type of 5-dimensional
polytope that is not realizable as a subpolytope of any stacked polytope. This
disproves a classical conjecture in polytope theory, first formulated by Shephard
in the seventies [She74].

Realization spaces of hypersimplices are discussed in Section 2.4. They will be
later used to study the extension complexity of combinatorial hypersimplices in
Section 5.5.

Another result concerning universality of realization spaces, in this case of
inscribed polytopes, will be presented in Section 3.2.
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The final section states some open problems and provides ideas for future
research.

2.1. The universality theorem for (neighborly) simplicial polytopes

This section reports joint work with Karim Adiprasito from “The universality
theorem for neighborly polytopes” [11].

The Universality Theorem was a fundamental breakthrough in the theory of
oriented matroids and convex polytopes. It states that the realization spaces of
oriented matroids and polytopes, i.e. the spaces of point (vector) configurations
with fixed oriented matroid/face lattice, can be arbitrarily complex. It comes in
four flavours:

Theorem 2.1 (Universality Theorem [Mnë88]). Let V be a primary basic semi-
algebraic set defined over Z, then

(i) there is an oriented matroid of rank 3 whose realization space is stably
equivalent to V , and

(ii) there is a polytope whose realization space is stably equivalent to V ;
if moreover V is open, then

(iii) there is a uniform oriented matroid of rank 3 whose realization space
is stably equivalent to V , and

(iv) there is a simplicial polytope whose realization space is stably equivalent
to V .

Here, a basic semialgebraic set in Rd is the set of solutions to a finite number
of rational polynomial equalities and inequalities; it is called primary if all the
inequalities in its definition are strict. Realization spaces are primary basic semi-
algebraic sets. A basic semialgebraic set S ⊂ Rd is a stable projection of a basic
semialgebraic set T ⊂ Rd+d′ if, for the projection π : Rd+d′ → Rd, we have that
π(T ) = S and that for every x ∈ S, the fiber π−1(x) is the relative interior of
a non-empty polyhedron defined by equalities and strict inequalities that depend
polynomially on x. Two basic semialgebraic sets S and T are rationally equivalent
if there is a homeomorphism f : S → T such that f and f−1 are rational functions.
Two basic semialgebraic sets S and T are stably equivalent if they belong to the
same equivalence class generated by stable projections and rational equivalences.
See [RG96; RG99] for more detailed definitions of these concepts.

Mnëv announced this theorem in 1985 [Mnë85] and published a sketch of the
proof in 1988 [Mnë88]. A more detailed reasoning can be found in his thesis
[Mnë86] (in Russian). Shor [Sho91] simplified a key step in Mnëv’s line of rea-
soning for part (i). It is also used for (iii), which is proved using constructible
oriented matroids and a substitution technique from [Jag+89; Mnë88]. Moreover,
part (i) of Theorem 2.1 was later elaborated upon by Richter-Gebert [RG95] and
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Günzel [Gün96], who proved the stronger Universal Partition Theorem for oriented
matroids.

The Universality Theorem for oriented matroids in particular entails a negative
answer to Ringel’s 1956 isotopy problem, which asked whether, given two point
configurations A0 and A1 with the same oriented matroid (and orientation), is
it always possible to find a continuous path of point configurations {At}0≤t≤1
with the same oriented matroid? (This weaker result also follows via examples
from [Jag+89; RG96; Suv88; Tsu13; Ver88; Whi89].) Actually, the Universality
Theorem shows that there are oriented matroids that have realization spaces with
arbitrarily many connected components.

Another straightforward consequence of the Universality Theorem is that de-
termining realizability of oriented matroids is polynomially equivalent to the exis-
tential theory of the reals, and in particular NP-hard [Mnë88; Sho91].

Using Lawrence extensions to rigidify the face lattices, it is easy to prove part
(ii) from part (i) [Mnë88; RG99] (see also Section 2.2.B). Here, a face lattice
is called OM-rigid if it uniquely determines the oriented matroid defined by its
vertices (see Section 2.1.D). In principle, this polytope might be of a very high
dimension. However, Theorem 2.1(ii) was generalized greatly by Richter-Gebert,
who proved that already 4-dimensional polytopes exhibit universality [RGZ95;
RG96].

For a proof of part (iv), in contrast, only Mnëv’s original papers were available,
apart of some preliminary results of Sturmfels [Stu88b] and Bokowski–Guedes de
Oliveira [BO90]. Moreover, Mnëv’s elaborations for this case in [Mnë86; Mnë88]
are specially concise and, in our opinion, incomplete. Hence, we think part (iv)
of Theorem 2.1, although widely believed to be true, should be considered open
until our paper [11]. It is important to stress that, despite the wrong common
belief, Lawrence extensions cannot be used to deduce the universality theorem for
simplicial polytopes. We use a different approach to rigidify matroids, namely, one
based on neighborly polytopes.

A polytope is k-neighborly if every subset of vertices of size at most k is the
set of vertices of one of its faces, and simply neighborly if it is

⌊
d
2

⌋
-neighborly.

A paradigmatic example is the cyclic polytope Cd(n), the convex hull of n points
on the moment curve in Rd, {(t, t2, . . . , td) : t ∈ R}. McMullen’s Upper Bound
Theorem [McM70], a milestone of modern combinatorial geometry, states that the
number of i-dimensional faces of a d-polytope P with n vertices is maximized by
simplicial neighborly polytopes, for all i.

We show that (even-dimensional) neighborly polytopes are universal. Since
all neighborly polytopes of even dimension are simplicial, this provides a proof of
Theorem 2.1(iv).
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Theorem 2.2 ([11]). Every open primary basic semialgebraic set defined over Z
is stably equivalent to the realization space of some neighborly (2n−4)-dimensional
polytope on 2n vertices.

Note the contrast to the case of cyclic polytopes, who have trivial realization
spaces [BS86, Example 5.1]. This holds more generally for all Gale sewn poly-
topes [01; She82], a large family of nb d

2 cn(1−o(1)) many neighborly polytopes whose
construction is discussed in Section 3.1. This is a consequence of the fact that the
construction is based on performing a sequence of lexicographic extensions starting
on a configuration with trivial realization space (cf. Section 2.1.A).

Corollary 2.3. The realization space of any even-dimensional neighborly d-polytope
on n vertices constucted with the Gale sewing construction is contractible, and in
fact an open, piecewise smooth (d+ 1) · (n− d− 1)-ball.

Appendix 2.1. Tools for proving Theorem 2.2

2.1.A. Lexicographic extensions. Lexicographic extensions (see [Bjö+99,
Section 7.2]) are a way to extend vector configurations with strong combinatorial
control on the oriented matroid of the output.

For an oriented matroid realized by a configuration V , a lexicographic extension
is realized by V ∪ w, where w = σ1v1 + εσ2v2 + · · · + εk−1σkvk, for some vi ∈ V ,
σi = ±1, and ε > 0 small enough. Note that the oriented matroid of V ∪ w only
depends on the the order of the vi’s and the signs σi.

Figure 1. A lexicographic extension of a point configuration by p =
a4 − εa1 + ε2a6.

Lexicographic extensions (see Section 2.1.A) are very useful for the study of re-
alization spaces because they preserve them up to stable equivalence, see [Bjö+99,
Lemma 8.2.1 and Proposition 8.2.2].
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2.1.B. Gale (oriented matroid) duality. To each d-dimensional configura-
tion of n vectors V one can associate a dual (n− d)-dimensional configuration V ∗,
called its Gale dual that realizes oriented matroid duality (circuits of V correspond
to cocircuits of V ∗, and vice versa). This is just an incarnation of the Grassman-
nian duality that sends a linear subspace to its orthogonal dual.

Our constructions work with the dual configurations. The important property
for our purposes is that the realization space of a vector configuration and its Gale
dual are stably equivalent [Bjö+99, Sec. 8.1].

2.1.C. Kortenkamp’s construction. The next tool is a construction of Ko-
rtenkamp [Kor97, Thm. 1.2], who proved that every d-dimensional point configu-
ration of at most d + 4 points appears as a face figure of a neighborly polytope.
This construction uses lexicographic extensions and works on the dual.

Using it, we can extend a rank 3 oriented matroid M whose realization space
is stably equivalent to S from Theorem 2.1(iii) to the Gale dual of an even-
dimensional neighborly oriented matroid by performing lexicographic extensions.

2.1.D. OM-rigidity. A polytope is called OM-rigid if its face lattice deter-
mines the oriented matroid spanned by its vertices (see [Zie95, Section 6.6]). Note
that the realization space of an OM-rigid polytope coincides with the realization
space of the oriented matroid of its vertices. The OM-rigidity of neighborly poly-
topes is the last ingredient for the proof of Theorem 2.2.

Lemma 2.4 ([She82, Thm. 2.10] and [Stu88a, Thm. 4.2]). Every neighborly
polytope of even dimension is OM-rigid.

2.2. Faces of projectively unique polytopes

This section reports joint work with Karim Adiprasito from “A universality
theorem for projectively unique polytopes and a conjecture of Shephard” [07].
A polytope P ⊂ Rd is projectively unique if any polytope P ′ ⊂ Rd combi-

natorially equivalent to P is projectively equivalent to P . In other words, P is
projectively unique if for every polytope P ′ combinatorially equivalent to P , there
exists a projective transformation of Rd that realizes the given combinatorial iso-
morphism from P to P ′. These are the polytopes with the smallest possible realiza-
tion space. Their rigid structure makes them a perfect tool to disprove statements
of the kind “every polytope has a realization that...”, as it suffices to find a pro-
jectively unique counterexample. For example, they were used by Perles to find
the first polytope with no realization with rational coordinates [Grü03, Sec. 5.5,
Thm. 4]. If the statement one wants to disprove concerns a property that is inher-
ited by faces, then it suffices to find a projectively unique polytope that has the
desired counterexample as a face.
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By employing a technique developed by Adiprasito and Ziegler [AZ15], in [07]
we prove the following (different kind of) universality theorem for projectively
unique polytopes that characterizes its possible faces.

Theorem 2.5 ([07]). For any algebraic polytope P , there exists a polytope P̂
that is projectively unique and that contains a face projectively equivalent to P .

Here, a polytope is called algebraic if the coordinates of all of its vertices are
real algebraic numbers. Theorem 2.5 would fail without the condition of P being
algebraic: We cannot hope that every polytope is the face of a projectively unique
polytope. Indeed, it is a consequence of the Tarski-Seidenberg Theorem [BM88;
Lin71] that every combinatorial type of polytope has an algebraic realization. In
particular, every projectively unique polytope, and every single one of its faces,
must be projectively equivalent to an algebraic polytope. Hence, a d-dimensional
polytope with n ≥ d + 3 vertices whose set of vertex coordinates consists of al-
gebraically independent transcendental numbers is not a face of any projectively
unique polytope.

A consequence of Theorem 2.5 is that for every finite field extension F over Q,
there exists a combinatorial type of polytope that is projectively unique, but not
realizable in any vector space over F . This extends the famous result of Perles
cited before.

Appendix 2.2. Tools for proving Theorem 2.5

2.2.A. Von Staudt constructions and functional arrangements. As a
first step of our proof, we embed the algebraic vertices of our polytope inside a
projectively unique point configuration (as an oriented matroid). This is done
vertex by vertex.

Lemma 2.6. Let ζ be any point in Rd
+, d ≥ 3, with algebraic coordinates. Then

there is a projectively unique point configuration COOR [ζ] containing ζ and {0, 1, 2}d.

The key idea to construct COOR [ζ] is to realize the defining polynomials of
the vertex coordinates in a functional arrangement (cf. [KM99, Def. 9.6]) that fixes
them in any realization.

For a function f : Rk 7→ R, a functional arrangement FUNC [f ] (x) for f is a
k-parameter family of point configurations in R2 that for all x = (x1, . . . , xk) ∈ Rk,
the functional arrangement FUNC [f ] (x) contains the output point f(x)e1 and the
input points xie1, for 1 ≤ i ≤ k, and some fixed frame points; and that for any
point configuration combinatorially equivalent to FUNC [f ] (x) that fixes the frame
and input points, the corresponding output point is fixed too. That is, a functional
arrangement essentially computes a function by means of its point-line incidences
alone.

The constuction of functional arrangements is based on the classical von Staudt
constructions [Sta57] (compare also [RG11, Ch. 5], [RG96, Sec. 11.7] or [KM99,
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Sec. 5]); and composed of functional arrangements ADD(α, β) and MLT(α, β) for
the functions a(α, β) = α+ β and m(α, β) = α · β. Both functional configurations
are shown below in Figure 2.

This construction is better aprehended with an example. Figure 2 shows a
functional arrangement for x 7→ x2 − 2 = s(m(x, x), a(1, 1)), evaluated at

√
2 and√

3. Note that the functional arrangement can be written as combination of the
functional arrangements for addition, subtraction and multiplication:

FUNC
[
x2 − 2

]
(x) = FUNC [s(m(x1, x2), a(x3, x4))] (x, x, 1, 1)

= SUB(x2, 2) ∪MLT(x, x) ∪ ADD(1, 1),

where SUB(α, β) denotes the arrangement for s(α, β) = α − β, constructed from
ADD by switching input and output points.

(a) ADD(α, β) (b) MLT(α, β)

(c) FUNC
[
x2 − 2

]
(
√

2) (d) FUNC
[
x2 − 2

]
(
√

3)

Figure 2. Von Staudt constructions for addition, ADD(α, β), and mul-
tiplication, MLT(α, β). (The blue points of the configuration form the
input, the red points show Q2 + 1, the yellow points are auxiliary to the
construction and the green points give the output.) And two evaluations
of the functional arrangement FUNC

[
x2 − 2

]
.

2.2.B. Lawrence extensions. Lawrence extensions are a key ingredient for
the proofs of the Universality Theorem for polytopes [Mnë88; RG96].
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The Lawrence extension of a d-dimensional point configuration A on a ∈ A is
the (d+ 1)-dimensional point configuration

Λ(A, a) := (A \ a) ∪ a ∪ a,
where A is embedded in the hyperplane xd+1 = 0 and the new points are a := (a, 1)
and a := (a, 2). This operation does not change the realization space of the oriented
matroid up to stable equivalence. Let B ⊆ A, then Λ(A,B) is the point config-
uration obtained by Lawrence lifting the points of B one by one. The Lawrence
polytope of a point configuration A is the polytope Λ(A) = conv(Λ(A,A)).

Figure 3. A Lawrence extension.

An key property of Lawrence polytopes is their OM-rigidity, which allows to
translate between realization spaces of oriented matroids and polytopes.
Lemma 2.7 ([Zie95, Thms 6.26 and 6.27]). For any point configuration A, Λ(A,A)
is the set of vertices of a OM-rigid polytope.

2.2.C. Polytope–Point configurations. Performing a Lawrence extension
on all the points of a projectively unique point configuration would yeld a projec-
tively unique polytope, but it would not have the desired face.

The key is to work with the concept of polytope-point configurations (see also
[AZ15, Sec. 5.1 & 5.2], [Grü03, Sec. 4.8 Ex. 30] or [RG96, Pt. I]), which is an
equivalence class that interpolates between polytopes and oriented matroids.

A polytope–point configuration is a pair (P,R) where P is (the vertex set of)
a polytope and R a point configuration such that conv(P ) ∩ R = ∅. The combi-
natorial equivalence that one needs to consider is Lawrence equivalence, which is
the coarsening of the oriented matroid data given by the covectors that are non-
negative on P , i.e., the hyperplanes that do not intersect the interior of conv(P ).
Observe that if P = ∅, then Lawrence equivalence coincides with oriented matroid
equivalence on R; and if R = ∅, then we recover face lattice equivalence on P .

As it turns out, the face lattice of Λ(P∪R,R) encodes the Lawrence equivalence
class of (P,R) (cf. [AZ15, Prp. 5.2], [RG96, Lem. 3.3.3 & 3.3.5]). Hence, if (P,R) is
projectively unique (for Lawrence equivalence), then there is a projectively unique
polytope that has P as a face. The missing piece for the proof of Theorem 2.5
is a construction by Adiprasito and Ziegler [AZ15, Lem. 5.8.] that (under certain
conditions) lifts a convex subset of a projectively unique point configuration to a
projectively unique polytope–point configuration that has this subset as a face.
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2.3. A conjecture of Shephard

This section reports joint work with Karim Adiprasito from “A universality
theorem for projectively unique polytopes and a conjecture of Shephard” [07].
Our original motivation to prove Theorem 2.5 was to disprove a conjecture

of Shephard, who asked whether every polytope is a subpolytope of some stacked
polytope. A stacked polytope is a connected sum of simplices (see Section 2.3.B).
They are a very important family: By Barnette’s Lower Bound Theorem [Bar71;
Bar73], they have the minimum number of faces among all simplicial polytopes
with the same number of vertices. The subpolytopes of a polytope P are the
polytopes obtained as the convex hull of some subset of its vertices.

While Shephard disproved this statement in [She74], he conjectured it to be
true in a combinatorial sense.

Conjecture 2.8 (Shephard [She74], Kalai [Kal04, p. 468], [Kal12]). For every
d ≥ 0, every combinatorial type of d-dimensional polytope can be realized using
subpolytopes of d-dimensional stacked polytopes.

The conjecture was shown to be true for 3-dimensional polytopes by Kömhoff
in 1980 [Köm80], but it remained open for dimensions d > 3. Despite the publicity
by Kalai ([Kal04, p. 468], [Kal12]), no progress was done since.

Theorem 2.5 encourages to attempt a disproof of Shephard’s conjecture by
finding a projectively unique polytope that is not a subpolytope of any stacked
polytope. Since any admissible projective transformation of a stacked polytope is a
stacked polytope, no realization of the polytope provided this way is a subpolytope
of any stacked polytope. This works. However, the method of Theorem 2.5 is
highly ineffective: The counterexample to Shephard’s conjecture it yields is of a
very high dimension. In [07] we use a refined method, building on the same idea,
to refute Shephard’s conjecture.

Theorem 2.9 ([07]). There exists a combinatorial type of 5-dimensional poly-
tope that cannot be realized as a subpolytope of any stacked polytope.

It remains open to decide whether every combinatorial type of 4-dimensional
polytope can be realized as the subpolytope of some stacked polytope.

Appendix 2.3. Tools for proving Theorem 2.9

2.3.A. Below’s stamp polytopes. For our counterexample, instead of The-
orem 2.5, we use the following result of Below. Indeed, for projectivley fixing a
face, we do not need the whole polytope to be projectively unique. This allows us
to drastically reduce the dimension of the counterexamples.

Theorem 2.10 ([Bel02, Ch. 5], see also [Dob11, Thm. 4.1]). Let P be an
algebraic d-dimensional polytope. Then there is a polytope P̂ of dimension d + 2
that contains a face F that is projectively equivalent to P in every realization of P̂ .
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2.3.B. Shephard’s geometric counterexamples and [k-facet]-stacked
polytopes. A polytope P is the connected sum of two polytopes Q and R if
P = Q ∪ R and F := Q ∩ R is a common facet of Q and R whose boundary
complex ∂F is still present in ∂P (cf. [RG96, Sec. 3.2]). A polytope is [k-facet]-
stacked if it is the connected sum of polytopes with at most k facets each. With
this, a [(d+ 1)-facet]-stacked d-dimensional polytope is simply a stacked polytope.

(a) [4-facet]-stacked (b) [5-facet]-stacked

Figure 4. A [4-facet]-stacked 3-polytope (i.e. a stacked 3-polytope) and
a [5-facet]-stacked 3-polytope.

In [She74], Shephard proved that there are 3-dimensional polytopes that are
not subpolytopes of stacked polytopes. His ideas can be used to prove a slightly
stronger statement.
Lemma 2.11 ([07], based on [She74]). For any subpolytope P of a [k-facet]-stacked
d-dimensional polytope, d ≥ 3, we have

dH(P,Bd) ≥ 2−4k−10 · 3−2,

where dH(·, ·) denotes the Hausdorff distance between compact convex subsets of
Rd, cf. [Sch93, Sec. 1.8], and Bd is the unit ball.

In particular, every d-polytope P that approximates Bd closely is not the sub-
polytope of any stacked polytope, and the same holds for any polytope projectively
equivalent to P . We now only need to add a simple observation to Shephard’s ideas
to get all the pieces for the proof:
Lemma 2.12. If P is a subpolytope of a [k-facet]-stacked polytope S, then any
face σ of P is a subpolytope of a [k-facet]-stacked polytope as well.

Now we can consider a 3-dimensional polytope P that is not a subpolytope of
any [6-facet]-stacked polytope. Theorem 2.10 provides a polytope P̂ of dimension
5 that contains a face F that is projectively equivalent to P in every realization
of P̂ . Assume now that some polytope O combinatorially equivalent to P̂ is a
subpolytope of some stacked polytope. The property of being a subpolytope of a
[k-facet]-stacked polytope is inherited under taking faces, and hence any face ofO is
a subpolytope of some [6-facet]-stacked polytope. But the face of O corresponding
to F is projectively equivalent to P , and hence not obtained by deleting vertices
of a [6-facet]-stacked polytope. A contradiction.
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2.4. Realization spaces of hypersimplices

This section reports joint work with Francesco Grande and Raman Sanyal from
“Extension complexity and realization spaces of hypersimplices” [13].

As we have seen, realization spaces of polytopes are probably complicated
objects, and computing them can be very hard. This is so even for the most
elementary polytopes. In this section we illustrate this intrinsic difficulty with
some results on realization spaces of hypersimplices that emerged in our study of
the extension complexity of combinatorial hypersimplices in [13], which we relate
in Section 5.5.

For 0 < k < n, the (n, k)-hypersimplex ∆n,k is the polytope whose vertices are
the

(
n
k

)
incidence vectors of k-subsets of [n]. Hypersimplices were first described

(and named) in connection with moment polytopes of orbit closures in Grassman-
nians (see [Gel+87]) but, of course, are very natural polytopes that arise in very
diverse contexts.

The projective realization space of combinatorial (n, k)-hypersimplices Rn,k is
the quotientRpol(∆n,k)

/
R2n
>0 of the (conical) realization space modulo the action of

scaling by positive scalars, and parametrizes the polytopes combinatorially isomor-
phic to ∆n,k up to projective transformation. Despite the combinatorial simplicity
of the definition of hypersimplices, their realization spaces can be surprisingly
intricate.

For k = 2, n− 2, we are able to give a full description.

Theorem 2.13 ([13]). For n ≥ 4, Rn,2 is rationally equivalent to the interior
of a

(
n−1

2

)
-dimensional cube. In particular, Rn,2 is homeomorphic to an open ball

and hence contractible.

For 2 < k < n− 2, the realization spaces are more involved and, in particular,
deeply related to the algebraic variety of n-by-n matrices with vanishing principal
k-minors that was studied by Wheeler [Whe15], and which is far from being com-
pletely understood. In [13] we give an upper bound of

(
n−1

2

)
for the dimension of

Rn,k when 2 ≤ k ≤ n − 2. However, we can currently not exclude that Rn,k is
disconnected and has components of different dimensions.

One of the first manifestations of the phenomenon of universality is that the
realization of a facet of a high-dimensional polytope can not always be prescribed,
a feature that we have seen and exploited in Sections 2.2 and 2.3. In contrast,
the shape of any single facet of a 3-polytope can be prescribed [BG70]. In [13] we
show that, despite their combinatorial simplicity, facets of hypersimplices cannot
be prescribed in general. On the other hand, our description of Rn,2 allows us to
show that facets of (n, 2)-hypersimplices can be prescribed.
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Theorem 2.14 ([13]). Not every combinatorial (n, k)-hypersimplex is a facet of
a combinatorial (n+ 1, k+ 1)-hypersimplex. In particular, there is a combinatorial
(6, 2)-hypersimplex that is not a facet of any combinatorial (7, 3)-hypersimplex.

In contrast, every combinatorial (n, 2)-hypersimplex is a facet of a combinato-
rial (n+ 1, 2)-hypersimplex.

Appendix 2.4. Tools for proving Theorems 2.13 and 2.14

2.4.A. FG-genericity. Hypersimplices can be presented as the intersection
of the 0/1-cube with the affine hyperplane ∑xi = k. This presentation purports
that
Fi := ∆n,k ∩ {xi = 0} ∼= ∆n−1,k, and Gi := ∆n,k ∩ {xi = 1} ∼= ∆n−1,k−1,

are disjoint facets for any 1 ≤ i ≤ n. We call a combinatorial hypersimplex F -
generic (resp. G-generic) if the hyperplanes supporting the Fi facets (resp. Gi

facets) are not projectively concurrent, and we simply write FG-generic if it is
both.

These notions turn out to play a crucial role. In particular, the following
observation is instrumental in our study ofRn,k, and also on our study of extension
complexity in Section 5.5.
Lemma 2.15. Every combinatorial (n, k)-hypersimplex is F -generic if 2k < n+2,
and G-generic if 2k > n−2. In particular, every combinatorial (n, k)-hypersimplex
is FG-generic for n− 2 < 2k < n+ 2.

2.5. Open problems and perspectives

The major open problem in this area is to prove the universality theorem for
simplicial polytopes in fixed dimension. A universality conjecture for simplicial 4-
polytopes is supported by the existence of simplicial 4-polytopes with disconnected
realization space [BO90]. In view of Theorem 2.2, we can further conjecture that
universality holds even when we restrict to neighborly polytopes.
Conjecture 2.16 ([11]). Every open primary basic semialgebraic set defined over Z
is stably equivalent to the realization space of some neighborly (and hence simpli-
cial) 4-polytope.

Note that in, particular, such a result would imply that it is ETR-hard to de-
cide whether a given graph is the graph of a 4-polytope, as simple polytopes are
determined by their graph [BML87], and realization spaces are preserved by po-
larity. This does not follow directly from Richter-Gebert’s Universality Threorem
for 4-polytopes, as in general polytopes are not determined by their graphs.

Mimicking the strategy to prove Theorem 2.2, one could try capture a uniform
oriented matroid of rank 3 as the edge contraction of a neighborly 4 polytope.
Vertex figures of neighborly 4-polytopes are always 3-dimensional stacked poly-
topes [AS73]. Despite the fact that realization spaces of stacked polytopes are
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trivial, their oriented matroids can be complicated: Notice that if M is any planar
point configuration, then there exists a stacked 3-polytope P with a distinguished
vertex v such that the contraction of v in P coincides with M .

This motivates the study of a question of Altshuler and Steinberg, who asked
if every stacked 3-polytope is a vertex figure of a neighborly polytope [AS73,
Problem 1]. The little computational evidence that is available supports this
conjecture: Every stacked 3-polytope with at most 11 vertices is a vertex figure of a
rank 5 neighborly oriented matroid. (This is included in [04], done in collaboration
with Hiroyuki Miyata, where we enumerate new classes of neighborly polytopes
and oriented matroids.) Bokowski and Shemer [BS87] generalized Altshuler and
Steinberg’s question to whether every (m−1)-stacked (m−1)-neighborly (2m−1)-
polytope is a vertex figure of an m-neighborly 2m-polytope. So far we know that
every 2-stacked (2-)neighborly 5-polytope with up to 9 vertices is a vertex figure
of a (3-)neighborly 6-polytope, by exhaustive search [04].

This is of course related to the conjecture, attributed to Perles and Sturm-
fels [Stu88b, Conj. 7.1], that every simplicial polytope appears as quotient (face
contraction) of a neighborly polytope, and of which we used the resolution of the
case of d-polytopes with up to d + 4 vertices by Kortenkamp [Kor97]. Although
this conjecture sounds similar to the conjecture of Shephard that we disproved in
Section 2.3, they are of a very different nature.

Deciding whether the list of 11 projectively unique polytopes in dimension 4
is complete [McM76], or just constructing a low-dimensional infinite family, would
be enormous progress.

One way to define realization spaces of oriented matroids and polytopes is to
stratify the Grassmannian according to the combinatorial type of the orthogonal
projection of the standard basis vectors onto ξ, for each ξ ∈ Grd(n). If instead of
the whole Grassmannian one considers all d-subspaces containing a fixed (d− 1)-
subspace, then one can show that the polytope strata are actually contractible.
This begs the question of understanding what’s the first α such that the set of
all k-subspaces containing a fixed (k − α)-subspace presents universality. And in
more generality to try to understand the polytope/oriented matroid strata in other
Schubert varieties.

Actually, the structure they define is strongly related to the theory of secondary
fans and polytopes, which encode the set of regular subdivisions of point and vector
configurations [GKZ94] and can be constructed from the Gale transform [BFS90].
When one replaces the non-negative orthant by another cone, we recover the the-
ory of generalized Gale transforms and fiber fans and polytopes that generalize
secondary polytopes and fans [BS92]. See also Section 4.2.B.

The dual interpretation gives rise to McMullen’s theory of type cones [McM73],
which represent the set of polyhedra that have fixed facet normal vectors; that is,
all polyhedra of the form {x ∈ Rd |Ax ≤ b} for a fixed m×d matrix A and varying
b ∈ Rm, the strata being those b that give rise to the same combinatorial type.
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Our recent preprint [19] concerns the study of type-cones of certain generalizations
of the associahedron arising from representation theory. Our results extend a
construction from [BM+18] motivated by realizations of the associahedron that
arose from the mathematical physics community [AH+18]. Can this technique
be applied to study other generalizations of the associahedron? In particular, to
quotientopes [PS19], which are polytopes whose combinatorics encodes quotients
of the weak order on the symmetric group?





CHAPTER 3

Inscribability and related notions [02; 08; 12]

The history of “scribability” problems goes back to at least 1832, when Steiner
asked whether every 3-polytope is inscribable or circumscribable [Ste32]. A poly-
tope is inscribable if it can be realized with all its vertices on a sphere, and cir-
cumscribable if it can be realized with all its facets tangent to a sphere. Steiner’s
problem remained open for nearly 100 years, until Steinitz showed that inscriba-
bility and circumscribability are dual through polarity, and presented a technique
to construct infinitely many non-circumscribable 3-polytopes [Ste28]. A full char-
acterization of inscribable 3-polytopes had to wait still more than 60 years, until
Rivin gave one in terms of hyperbolic dihedral angles [Riv96] (see also [HRS92;
Riv94; Riv96; Riv03]). Rivin’s groundbreaking results allow to efficiently decide
whether a 3-polytope is inscribable, whereas in higher dimensions the question of
deciding inscribability is still wide open.

Inscribed polytopes have also been studied because, via stereographic projec-
tions, they are in correspondence with Delaunay subdivisions [Bro79]. These are
central objects in computational geometry [Ede06]. Their applications include
nearest-neighbors search, pattern matching, clustering and mesh generation.

The first topic we will consider is that of estimating the number of inscribable
polytopes. Inscribability is a very restricting geometric constraint, and it is reason-
able to expect that only very few combinatorial types are actually inscribable. For
example, most 3-polytopes are known to be not inscribable [Smi91]. Surprisingly,
the results in Section 3.1 go in the opposite direction. We present a construction
for many combinatorially different inscribed d-polytopes that matches the cur-
rent best lower bounds for the number of combinatorial types of d-polytopes (for
d ≥ 4). Even more, the constructed polytopes, which include cyclic polytopes,
are inscribable in the boundary of any smooth strictly convex body, not only the
sphere.

Once a polytope is known to be inscribable, it is natural to study its set of
inscribed realizations. This is the subject of Section 3.2. It contains universality
theorems for inscribed polytopes and Delaunay subdivisions the sets of inscribed
realizations can be complicated in the sense of Mnëv. In particular, our results
imply that the realizability problem for Delaunay triangulations is polynomially
equivalent to the existential theory of the reals.

Other kinds of “scribability” problems are considered in Section 3.3. First, the
classical k-scribability problem, studied by Steiner [Ste32] and Schulte [Sch87], that
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asks about the existence of d-polytopes that cannot be realized with all k-faces
tangent to a sphere. Then a weaker version that only considers the affine hulls of
k-faces. We finish the classification of the pairs d, k for which there is a d-polytope
that is not weakly k-scribable. This problem was proposed by Grünbaum and
Shephard [GS87], and almost solved by Schulte [Sch87]. Both versions generalize
to (i, j)-scribability problems, which ask about the existence of d-polytopes that
can not be realized with all their i-faces “avoiding” the sphere and all their j-faces
“cutting” the sphere.

There are many challenging open questions in this area, some of which are
related in Section 3.4 (see also [17]).

3.1. Many inscribable neighborly polytopes

This section reports joint work with Bernd Gonska from “Neighborly inscribed
polytopes and Delaunay triangulations” [08].

Asking for the number of different combinatorial types of d-polytopes with n
vertices or facets is a very natural question, so it comes as no surprise that this is
a problem that has intrigued several generations of geometers (see the historical
notes in [Grü03, Sec. 13.6]).

Steinitz’s Theorem makes the enumeration of 3-polytopes a purely combina-
torial problem. This allowed for enormous progress, and nowadays we have quite
precise knowledge on their number and the distribution of many combinatorial
parameters [RW82; BW88; BGR92].

Higher dimensional analogues of Steinitz’s Theorem fail badly, as the Univer-
sality Theorem illustrates, and deciding realizability poses a major problem (see
Section 2.1). This makes it very hard, if not infeasible, to obtain precise enumer-
ation results for high dimensional polytopes. For high values of d the estimations
for pl(n, d), the number of combinatorial types of vertex-labeled d-polytopes with
n vertices, are much weaker.

The first good lower bounds for pl(n, d) arose from constructions of neigh-
borly polytopes. In [She82], Shemer used a sewing construction to give a super-
exponential lower bound for the number of neighborly polytopes, of order ncdn(1+o(1)),
where cd → 1

2 when d → ∞, improving a previous exponential lower bound by
Barnette [Bar81]. (Here and below, the asymptotic notation o(1) refers to fixed d
and n→∞.)

A better lower bound for pl(n, d) was found by Alon in 1986 [Alo86], who
showed that pl(n, d) ≥ ((n−d)/d)nd/4 for n ≥ 2d. Nevertheless, the current best
lower bound for the number of polytopes is actually also valid for the number
of neighborly polytopes. This is one of the main results of my article [01], a
publication containing some of the results of my PhD thesis.

Theorem 3.1 ([01]). The number of combinatorial types of neighborly d-polytopes
with n labeled vertices is at least nbd/2cn(1+o(1)) for fixed d and n→∞.
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The current best upper bounds for the number of vertex-labeled d-polytopes
with n vertices, of order (n/d)d

2n(1+o(1)) when n/d → ∞, are due to Alon [Alo86],
who improved a similar bound for simplicial polytopes due to Goodman and Pol-
lack [GP86]. Both results follow from bounds on the topological complexity of the
real algebraic varieties defined by the chirotope map.

In this section we will study the enumeration problem for combinatorial types
of polytopes verifying the geometric constraint of inscribability.

By McMullen’s Upper Bound Theorem [McM70], the complexity of inscribed
polytopes (and Delaunay triangulations) is bounded by that of neighborly poly-
topes. The existence of inscribed cyclic polytopes was already known to Carathéodory
in 1911 [Car11]. While more inscribed realizations of the cyclic polytope have been
found since [Gon13; GZ13; Sei87; Sei91], no other example of inscribable neigh-
borly polytope was known. In [GZ13], Gonska and Ziegler stated:

One can then proceed and try to characterize inscribability for
some of these classes. This seems out of reach for neighborly
polytopes, as according to Shemer [She82] there are huge num-
bers of combinatorial types, and no combinatorial classification
in sight.

The main goal of this section is to present a result from [08] that shows that
all Gale sewn polytopes (those constructed for the proof of Theorem 3.1, which
strictly contain Shemer’s sewn polytopes [She82]) are inscribable. Actually, we
prove a much stronger result, and show that they are all K-inscribable for any
smooth strictly convex body K (i.e., that they admit a realization with all the
vertices on ∂K).

Theorem 3.2 ([08]). For any smooth strictly convex body K, the number of
combinatorial types of K-inscribable neighborly d-polytopes with n labeled vertices,
and the number of (d − 1)-dimensional K-Delaunay neighborly triangulations on
n− 1 labeled points, is at least nb

d
2cn(1+o(1)) for fixed d and n→∞.

These are the first non-trivial lower bounds for the number of high-dimensional
inscribable polytopes. Moreover, this is the first construction of arbitrarily large
families of universally inscribable polytopes (universal referring to all smooth
strictly convex bodies). In [08] we construct also a universally inscribable stacked
polytope (see Section 2.3), which shows that the Lower Bound Theorem is also
attained for simplicial polytopes in this family.

This concept is reminiscent of the renowned result of Schramm stating that
every 3-polytope admits a realization with all the edges tangent to any smooth
strictly convex body [Sch92]. In the converse direction, Ivanov proved that there
exist universally circumscribing convex bodies K ⊂ Rd that fulfill that every d-
polytope is K-inscribable [Iva12].



28 3. INSCRIBABILITY AND RELATED NOTIONS

Appendix 3.1. Tools for proving Theorem 3.2

3.1.A. Many neighborly polytopes. The starting point is the construction
from [01] that gives Theorem 3.1. It is an inductive construction that uses lexico-
graphic extensions (see Section 2.1.A) in the dual space, producing Gale duals of
neighborly polytopes instead (see Section 2.1.B).

The main insight from [01] is that every lexicographic extension can be fol-
lowed by certain ‘balancing’ lexicographic extension in order to keep the property
of being dual to neighborly. Note that every extension of the dual increases the
dimension of the primal. Hence, starting with a trivial configuration, we do es-
sentially dimension many extensions. Every two dimensions we have the choice of
v1 . . . vr (and of σ1, . . . , σr ∈ {+,−}). Since r = n − d, and we are considering
d fixed and n → ∞, at each iteration we have roughly nn choices, and this is
repeated bd/2c times, which gives the nbd/2cn from Theorem 3.1.

Of course, one still needs to make sure that the polytopes thus obtained are
different. With mild restrictions on the choices at each step, one can be sure to
obtain different oriented matroids. This is in principle not enough, as different
oriented matroids could give rise to the same polytope. Fortunately, this is not
the case for (even-dimensional) neighborly polytopes, which are OM-rigid (see
Section 2.1.D).

3.1.B. K-Delaunay subdivisions. A convex body (a full-dimensional com-
pact convex subset of Rd) K ⊂ Rd is strictly convex at a boundary point c ∈ ∂K
if ∂K does not contain any segment through c, and it is smooth at c if c has a
unique supporting hyperplane. K is called strictly convex/smooth if every point
c ∈ ∂K is strictly convex/smooth.

The stereographic projection sc from a smooth strictly convex point c ∈ ∂K
maps K \c to Rd−1, and defines a bijection between ∂K \c and Rd−1. We define K-
spheres and K-balls as the images sc(H ∩∂K) and sc(H ∩K) for some hyperplane
H ⊂ Rd \ c. An example is sketched in Figure 1.

Figure 1. A stereographic projection of a smooth strictly convex
body K, and a K-circumsphere.
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The K-Delaunay subdivision DK(A) of a point configuration A ⊂ Rd−1 consists
of all cells defined by the empty K-sphere condition: for S ⊆ A, conv(S) is a cell in
DK(A) if and only if there is a K-sphere that contains S and has all the remaining
points of A outside the corresponding K-ball.

Note that the conditions defining the face structure of K-Delaunay triangula-
tions are inherited from supporting hyperplanes of K-inscribed polytopes. From
the combinatorial point of view, both concepts are almost interchangeable.

3.1.C. Lexicographic liftings. The construction from Section 3.1.A uses
lexicographic extensions on the Gale dual. However, Gale duality is only defined
up to linear transformation, and hence does not capture which polytopes are K-
inscribed. We need an understanding of the effect of lexicographic extensions in
the primal setting.

This is easier to visualize with affine point configurations. Performing a lexico-
graphic lifting to the dual of A = {a1, . . . , an} can be interpreted as adding a new
point a0 at (0, . . . , 0,+∞) and then successively lifting the remaining points from
an to a1, in such a way that at each step we lift the point aj arbitrarily high/low so
that it is above/below all the hyperplanes spanned by the previous points. Such
a lifting is called a lexicographic lifting.

(a) (b) (c) (d)

Figure 2. A point configuration {a1, . . . , a5} and one of its K-Delaunay
lexicographic liftings {â0, â1, . . . , â5} (â0 is not visible since it is at
(0,+∞)), where K is the Euclidean ball.

If all the points of A are lifted up, then triangulation of A induced by the
lower enveloppe of Â is the so-called placing (or pushing) triangulation. The key
observation is that every lexicographic lifting can be performed in such a way that
the placing triangulation is the K-Delaunay triangulation, by lifting the points
outside the K-circumballs spanned by the previous points. This allows to control
the combinatorial type of the inverse of the K-stereographic projection.
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As it turns out, this is precisely the double lifting from Section 3.1.A, which
sends k-neighborly configurations to (k + 1)-neighborly configurations and con-
structs a family of polytopes with large combinatorial diversity.

3.2. Universality theorems for inscribed polytopes and Delaunay
triangulations

This section reports joint work with Karim Adiprasito and Louis Theran from
“Universality theorems for inscribed polytopes and Delaunay triangulations” [02].

The discovery of non-inscribable polytopes by Steinitz in 1928 [Ste28] naturally
raised the question of how to decide whether a polytope is inscribable.

This is a question about realization spaces of Delaunay triangulations and in-
scribed polytopes, and deciding whether they are empty. The realization space
of a Delaunay subdivision T , Rdel(T ), is a parametrization of the set of all con-
figurations of n labeled points whose Delaunay subdivision has the combinatorial
structure of T (as a labelled polytopal complex with vertex set [n]), modulo simi-
larity. Analogously, Rins(P ), the realization space of an inscribed polytope P , is a
parametrization of configurations of n points in the unit sphere whose convex hull
has the same face lattice as P , up to Möbius transformation.

In dimension 3, this fundamental question was answered in the already men-
tionned series of breakthrough papers by Rivin [HRS92; Riv94; Riv96; Riv03]
that connect 2-dimensional Delaunay subdivisions with metric properties of hy-
perbolic 3-dimensional polyhedra, and give a surprisingly sharp characterization
of the inscribable types and their realization spaces.

Rivin’s work in particular entailed that: (1) whether a (combinatorial) planar
graph has a drawing as a Delaunay triangulation can be tested in polynomial time;
(2) that the realization space of a planar Delaunay triangulation is homeomorphic
to a polyhedron of so-called angle structures, and, in particular, connected.

In the language of polyhedra, (1) says that whether a graph is the 1-skeleton
of an inscribable 3-polytope is efficiently checkable; and (2) says that the set of
inscribed realizations is convex (and in particular contractible) in the parameteri-
zation by dihedral angles.

Our main results in [02] show that in arbitrarily high dimensions, there is
again universality, and we cannot hope for Rivin-like characterizations. We have
not found yet an appropriate notion of stable equivalence for this context. This
forces us to separate the topological, algebraic and algorithmic statements:

Theorem 3.3 ([02]).
(i) For every primary basic semi-algebraic set there is an inscribed polytope

(resp. a Delaunay subdivision) whose realization space is homotopy equiv-
alent to it.
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(ii) For every finite field extension F/Q of the rationals, there is an inscribed
polytope (resp. a Delaunay subdivision) that cannot be realized with coor-
dinates in F .

(iii) The problem of deciding if a poset is the face lattice of an inscribed simpli-
cial polytope (resp. a Delaunay triangulation) is polynomially equivalent
to the existential theory of the reals (ETR). In particular, it is NP-hard.

The polytopes used to prove items (i) and (ii) are based on Lawrence polytopes
and far from being simplicial. Nevertheless, in the last point we can even ask the
polytopes to be simplicial. This follows from a weak universality theorem for
inscribed simplicial polytopes, in which we find polytopes whose realization space
retracts onto the semi-algebraic set, instead of having homotopy equivalence as in
the general case.

Appendix 3.2. Tools for proving Theorem 3.3

3.2.A. Inscribability of Lawrence polytopes. To go from realization spaces
of oriented matroids to those of inscribed polytopes, we use Lawrence extensions
(as the standard proof of the Universality Theorem for polytopes of unbounded
dimension [Mnë88]), see Section 2.2.B. For our proof, we need to expand a proof
of inscribability of Lawrence polytopes from [AZ15, Proposition 6.5.8] to make a
statement about realization spaces. Namely, we have that for every planar point
configuration A, Rom(A) ∼ Rins(Λ(A)), where ∼ denotes homotopy equivalence.

The proof is inductive, and considers realization spaces of point configurations
in which a fixed subset lies on the boundary of the unit ball Bd and all the remaining
points are outside. Figure 3 depicts the main idea for the inscribability of Lawrence
extensions (and the fiber of the natural projection of realization spaces).

Figure 3. Inscribing a Lawrence extension.

Now Theorem 3.3(i) follows directly from the Universality Theorem 2.1. The
algebraic universality (point (ii)) is deduced from the same construction.

3.2.B. The Universality Theorem for neighborly polytopes. To get
universality for inscribed simplicial polytopes, we combine two tools that we have
already presented. From any open primary basic semi-algebraic set S, we get from
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Theorem 2.2 a neighborly polytope with a stably equivalent realization space. Per-
forming the double lexicographic lifting from Section 3.1.C, we obtain an inscribed
neighborly polytope whose realization space retracts to S.

3.3. Other scribability problems

This section reports joint work with Hao Chen from “Scribability problems for
polytopes” [12].

A polytope is k-scribable if it has a realization with all its k-faces tangent to
a sphere. This concept was studied by Schulte [Sch87], who constructed examples
of d-polytopes that are not k-scribable for all the cases except for k = 1 and d = 3
and the trivial cases of d ≤ 2. In fact, every 3-polytope has a realization with
all its edges tangent to a sphere. This follows from Koebe–Andreev–Thurston’s
remarkable Circle Packing Theorem [Koe36; And71a; And71b; Thu79] (see [Che16;
Zie07] for the relation of edge-scribed polytopes and circle packings). This was
later greatly generalized by Schramm [Sch92], who showed that an edge-tangent
realization exists even if the sphere is replaced by an arbitrary smooth strictly
convex body.

Scribability problems expose the intricate interplay between combinatorial and
geometric properties of convex polytopes and arise naturally from several seemingly
unrelated contexts. However, our understanding on scribability problems is still
quite limited. As Grünbaum and Shephard put it in 1987 [GS87]: “it is surprising
that many simple and tangible questions concerning them remain unanswered.”
Very little progress has been made since then.

In [12] we study classical k-scribability for two important families of polytopes:
stacked polytopes and cyclic (and neighborly) polytopes.

Stacked polytopes are the family that minimizes f -vectors among simplicial
polytopes [Bar71; Bar73] (see Section 2.3). The triakis tetrahedron is a stacked
polytope among the first and smallest examples of non-inscribable polytopes found
by Steinitz [Ste28]. Recently, Gonska and Ziegler [GZ13] characterized inscribable
stacked polytopes. On the other hand, Eppstein, Kuperberg and Ziegler [EKZ03]
showed that stacked 4-polytopes are essentially not edge-scribable. In [12] we
completely answer the k-scribability problem for stacked polytopes.

Theorem 3.4 ([12]). For any d ≥ 3 and 0 ≤ k ≤ d − 3, there are stacked
d-polytopes that are not k-scribable. However, every stacked d-polytope is (d− 1)-
scribable (i.e. circumscribable) and (d− 2)-scribable (i.e. ridge-scribable).

On the other end of the face-numbers spectrum, we solve the k-scribability
problem for cyclic polytopes.

Theorem 3.5 ([12]). For any d > 3 and 1 ≤ k ≤ d − 1, a cyclic d-polytope
with sufficiently many vertices is not k-scribable.

Our results on k-scribability of general neighborly polytopes from [12] imply:
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Theorem 3.6 ([12]). For any d > 3 and 1 ≤ k ≤ d − 2, there are f -vectors
such that no d-polytope with those f -vectors are k-scribable.

Note that Theorem 3.5 implies that, for d ≥ 4, cyclic d-polytopes with suf-
ficiently many vertices are not circumscribable. Our bound for the number of
vertices that guarantee non-circumscribability has been greatly improved very re-
cently. A team formed by Doolittle, Labbé, Lange, Sinn, Spreer, and Ziegler has
shown that, for d ≥ 4, cyclic d-polytopes with at least d + 4 vertices are not cir-
cumscribable [Doo+19]. Their technique provides the first f -vector that is not the
f -vector of an inscribable polytope.

Schulte [Sch87] also proposed a weak version of k-scribability, following an idea
of Grünbaum and Shephard [GS87]. A d-polytope is weakly k-scribable if it can
be realized with the affine hulls of all its k-faces tangent to a sphere. Schulte was
able to construct examples of d-polytopes that are not weakly k-scribable for all
k < d − 2, and left open the cases k = d − 2 and k = d − 1. The main difficulty
that prevented Schulte from settling these cases was that weak scribability does
not behave well under polarity. For scribability problems, it is more natural to
consider polytopes as pointed polyhedral cones in Lorentzian space. In this set-up,
the definition of weak scribability is slightly weaker than in Euclidean space, but
behaves well under polarity. This allows us to settle the cases left open by Schulte.

Theorem 3.7 ([12]). For any d ≥ 3 and 0 ≤ k ≤ d − 1 with the exception
of (d, k) = (3, 1), there are d-polytopes that are not weakly k-scribable (both in
Euclidean and spherical spaces).

We also propose the new concept of (i, j)-scribability. A polytope is (i, j)-
scribable if it can be realized with all its i-faces “avoiding” the sphere and all its
j-faces “cutting” the sphere. The definitions are designed to behave well under
polarity, and to reduce to classical k-scribability when i = j = k. This makes
(i, j)-scribability a very useful tool for studying classical k-scribability problems.
They are also an interesting topic in their own right. Notably, (0, 1)-scribed 3-
polytopes have been studied as hyperideal polyhedra in hyperbolic space [BB02;
Sch05].

One of our main results is the following theorem, which constructs examples
of polytopes that are not (i, j)-scribable.

Theorem 3.8 ([12]). For d > 3 and 0 ≤ i ≤ j ≤ d − 1, there are d-polytopes
that are not strongly (i, j)-scribable for j−i ≤ d−2 when d is even, or j−i ≤ d−3
when d is odd.

Appendix 3.3. Tools for proving Theorems 3.5 and 3.8

3.3.A. Spherical polytopes and Lorentzian space. The most natural and
convenient framework for defining (i, j)-scribability is to consider spherical poly-
topes, which arise from pointed polyhedral cones in Lorentzian space. The main
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advantage is that, for spherical polytopes, polarity is always well-defined and well-
behaved.

We work with the polarity induced by the Lorentzian scalar product. The
Lorentzian space L1,d is Rd+1 endowed with the Lorentzian scalar product:

(x, y) := −x0y0 + x1y1 + · · ·+ xdyd, x, y ∈ Rd+1.

The role of the unit sphere for the scribability problems is played by the light cone:
L := {x ∈ L1,d | (x, x) ≤ 0, x0 ≥ 0}.

The passage to d-dimensional spherical space Sd is done by intersecting with the
unit d-sphere.

The use of spherical polytopes instead of Euclidean polytopes is specially rele-
vant in the context of weak scribability. The definition is weakened, but acquires
the desired properties with respect to polarity

3.3.B. k-ply systems and k-sets. Any point x 6∈ Bd can be associated with
a closed spherical cap on Sd−1, namely the set of points that are visible from x. A
set of spherical caps is said to be a k-ply system if no point belongs to the interior
of k caps. These systems were studied by Miller et al. [Mil+97], who proved the
following Separation Theorem. Here, the intersection graph is the graph where
every vertex represents a cap, and two caps form an edge if they intersect.

Proposition 3.9 (Sphere Separator Theorem [Mil+97]). The intersection graph of
a k-ply system consisting of n caps on a d-dimensional sphere can be separated into
two disjoint parts, each of size at most d+1

d+2n, by removing O(k1/dn1−1/d) vertices.

A subset S of cardinality k of a point configurationA is said to be a k-set if there
is a hyperplane strictly separating S and A \ S. Under the above correspondence,
A ⊂ Rd \Bd corresponds to a k-ply system on Sd−1 if and only if the convex hull of
every k-set intersects the sphere. In particular, the caps corresponding to x and y
have disjoint interiors if and only if the segment [x, y] intersects the ball.

The proof of Theorem 3.8 uses the fact that, for even d ≥ 4 and when k = k(d)
is large enough, every k-set of a cyclic d polytope contains a facet. This implies
that, for even d ≥ 4, any cyclic polytope with enough vertices is not (1, d − 1)-
scribable. Indeed, in a (1, d − 1)-scribed realization, every k-set intersects the
sphere, and hence the spherical caps corresponding to the vertices form a k-ply
system, and hence their intersection graph admits a small separator. But if the
edges avoid the sphere, the graph is a complete graph, a contradiction.

In particular, for even d ≥ 4, Cd(n) is not (i, j)-scribable for 1 ≤ i ≤ j ≤ d− 1
if n is large enough. Theorem 3.5 follows.

3.4. Open problems and perspectives

The combinatorial richness of the family of neighborly polytopes, as well as
the results in Section 5.3 that show that there are few polytopes with few vertices
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and few facets, support the hypothesis that typical polytopes (drawn at random
among all combinatorial types) have a large number of facets (which happens
with some geometric models, e.g. [DT05]). It is even conceivable that the average
number of facets has the same order of magnitude as the upper bound. One way
to derive this kind of results would be to consider the enumeration of polytopes
with respect to their number of vertices and facets. Good upper bounds for these
could be combined with the existing lower bounds to show that most polytopes
have many facets. Together with Eran Nevo, we even made the following daring
conjecture (unpublished):

Conjecture 3.10. The number of combinatorial types of (simplicial) d-polytopes
with n vertices and m facets is mn(1+o(1)).

This would imply that the bounds from Theorem 3.1 are tight. The few cases
that have been completely enumerated show that the polytopes that give the lower
bound are only a small fraction from all neighborly polytopes [04], but it is hard
to extrapolate whether this difference is asymptotically meaningful.

In [17], we present many open problems on inscribed polytopes and related
topics, none of which has been solved yet to the best of my knowledge. Some of
them are inspired by the results presented here. In particular, the results from Sec-
tion 3.1 beg the question, first asked in [08], of whether every neighborly polytope
is inscribable. So far we do not know any counterexample. Moritz Firsching [Fir17]
found inscribed realizations for: every neighborly 4-polytope with n ≤ 11 vertices,
every simplicial neighborly 5-polytope with n ≤ 10 vertices, every neighborly 6-
polytope with n ≤ 11 vertices, and every simplicial neighborly 7-polytope with
n ≤ 11 vertices. These collections, enumerated in [04], include many neighborly
polytopes not constructible with our methods. Even more, every simplicial 2-
neighborly 6-polytope with n ≤ 10 vertices is also inscribable. This lead Firsching
to ask whether the even stronger statement that all 2-neighborly polytopes are in-
scribable might be true [Fir17]. Dillencourt and Smith proved that any 3 polytope
with a “sufficiently rich” collection of Hamiltonian graphs is inscribable [DS96]. It
would be interesting to know if similar conditions also hold in higher dimensions.
Recall that the graph of a 2-neighborly polytope is complete, and hence has the
richest possible structure of Hamiltonian subgraphs.

Another natural question is to find other universally inscribable polytopes. One
observation of Karim Adiprasito shows that being inscribable on the sphere is not
sufficient for being universally inscribable, see [08].

Concerning Section 3.2, the inscribed analogue to Richter-Gebert’s result for 4-
polytopes is still missing. Is there universality for inscribed polytopes in bounded
dimension, say for inscribed 4-polytopes?

The proof of Theorem 3.3 strongly relies on the results of Mnëv. The strategy
is to start with certain polytopes with intricate realization spaces, and then to
show that their inscribed realization spaces are equally involved. In particular,
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it does not prove that it is hard to decide inscribability once we already know
that the face lattice corresponds to a polytope. However, inscribability is itself a
complex condition, and hence one can expect that it increases the complexity of
the corresponding realization spaces. This could lead to a proof of universality
that is intrinsic to inscribed polytopes, and hopefuly to advances in the previous
question. A first step in this direction could be to find a polytope P such that
Rins(P ) is disconnected while Rpol(P ) is not.

The results from [12] leave open the question of whether every polytope has a
realization where every vertex avoids the ball and every facet cuts the ball. For
d = 3, the edge-scribed realization is also (0, d − 1)-scribed. Every inscribable
polytope has directly a (0, d − 1)-scribed realization too. So, in particular, cyclic
polytopes and many (all?) neighborly polytopes have such realizations. And since
the property is self-polar, circumscribable polytopes also have such a realization.
This includes stacked polytopes, which are always circumscribable. We suspect
nevertheless that there exist polytopes that are not (0, d− 1)-scribable.



CHAPTER 4

From colorful configurations to Minkowski sums [15]

This chapter presents results from [15] on two different topics concerning col-
orful point configurations and their relation to Minkowski sums.

The first topic is the colorful simplicial depth of colorful configurations. The
Colorful Carathéodory Theorem was proved by Bárány in 1982 [Bár82], and it
became an instant classic in discrete geometry. Inspired by it, Deza, Huang,
Stephen, and Terlaky introduced in [Dez+06] a colorful generalization of Liu’s
simplicial depth [Liu90]: The colorful simplicial depth of a collection of d+ 1 finite
sets of points in Euclidean d-space is the number of choices of a point from each
set such that the origin is contained in their convex hull. Deza et al. conjectured
upper and lower bounds for the special case where all the sets have size d + 1.
While the lower bound was later settled by Sarrabezolles [Sar15], the upper bound
remained open.

Section 4.1 presents a tight upper bound on the colorful simplicial depth, proved
in [15] using methods from combinatorial topology. It implies the upper bound
conjectured in [Dez+06]. Our result yields also a tight upper bound on the number
of totally mixed facets of certain Minkowski sums of simplices. The case of triangles
resolves in the positive a completely independent conjecture of Burton in the theory
of normal surfaces [Bur03].

These seemingly disparate conjectures (now turned into theorems) are con-
nected by Colorful Gale transforms and Minkowski transforms, which are the sub-
ject of Section 4.2. The Gale transform is an incarnation of oriented matroid
duality that has been extensively used in polytope theory, in particular to study
polytopes with few vertices with respect to their dimension, and that we have
already referred to in Section 2.1.B. One way to present it is in terms of projec-
tions, using the fact that every polytope is naturally associated to a projection of
a simplex. This point of view can be generalized to arbitrary polytope projections,
giving rise to generalized Gale transforms, first described by McMullen [McM79].
Colorful Gale transforms and Minkowski transforms are two alternative ways to
apply (generalized) Gale transforms to study the combinatorics of Minkowski sums
in terms of colorful point configurations.

37
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4.1. An upper bound for Colorful simplicial depth

This section reports joint work with Karim Adiprasito, Philip Brinkmann, Pavel
Paták, Zuzana Patáková, and Raman Sanyal from “Colorful simplicial depth,

Minkowski sums, and generalized Gale transforms” [15].
Bárány’s celebrated colorful generalization of Carathéodory’s Theorem [Bár82]

can be stated by saying that every centered colorful configuration contains a hitting
colorful simplex. Here, a colorful configuration C = (C0, . . . , Cd) is a collection
of d + 1 point configurations in Rd; a subset S ⊆ ⋃

iCi is a colorful simplex if
|S ∩ Ci| ≤ 1 for all i; C is called centered if 0 ∈ relint(conv(Ci)) for all 0 ≤ i ≤ d;
and S is hitting if dimS = |S| − 1 = d and 0 ∈ conv(S).

Generalizing the simplicial depth introduced in [Liu90], Deza, Huang, Stephen
and Terlaky [Dez+06] introduced the colorful simplicial depth, cs-depth(C), of a
colorful configuration C as the number of hitting colorful simplices of C. They
conjectured a lower bound of

1 + d2 ≤ cs-depth(C)

when |Ci| = d+ 1 and ⋂i conv(Ci) is of full-dimension d and contains the origin in
its interior. The Colorful Carathéodory Theorem says that cs-depth(C) ≥ 1. This
initial lower bound was improved in a series of papers [BM07; Dez+06; DMS14;
DSX11; ST08] culminating in the resolution of the conjectured (tight) lower bound
by Sarrabezolles [Sar15].

In [Dez+06] also a conjectured upper bound was proposed.

Conjecture 4.1 ([Dez+06, Conj. 4.4.]). Let C = {C0, . . . , Cd} be a centered color-
ful configuration in Rd with |Ci| = d+ 1 for all 0 ≤ i ≤ d and 0 ∈ int⋂i conv(Ci).
Then

cs-depth(C) ≤ 1 + dd+1.

In [15], we give a topological proof of this conjecture in the following stronger
form.

Theorem 4.2 ([15]). Let C = {C0, . . . , Cd} be a centered colorful configuration
in relative general position in Rd with |Ci| ≥ 2 for all 0 ≤ i ≤ d. Then

cs-depth(C) ≤ 1 +
d∏
i=0

(|Ci| − 1).

And this bound is tight.

Here, a colorful configuration C in Rd is called in relative general position if no
colorful simplex S of C of dimension d − 1 contains the origin in its convex hull.
This is a natural assumption to avoid trivial pathologic examples.

The tightness of the bound is easily seen with this example.
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Figure 1. Configuration from Example 4.3 for (n0, n1, n2) = (2, 3, 4).

Example 4.3. Let v0, . . . , vd ∈ Rd be the vertices of a simplex containing the
origin in its interior and for n0, . . . , nd ≥ 2 define

Ci := {vi,−vi,−2vi, . . . ,−(ni − 1)vi}
for 0 ≤ i ≤ d. Then C = {C0, . . . , Cd} is a centered colorful configuration with
exactly 1 + (n0 − 1) · · · (nd − 1) hitting simplices.

Recall that the Minkowski sum of P0, . . . , Ps ⊂ Rd is P0 +· · ·+Ps = {p0 +· · ·+
ps : pi ∈ Pi}. This operation is key to many deep results in many areas, notably
convex geometry [Sch93] and computational commutative algebra (eg. [GS93]).
The combinatorial complexity of Minkowski sums of polytopes has been subject of
several studies [AS16; MPP11; RS12]. Using Gale transforms and Cayley embed-
dings, we introduce colorful Gale transforms associated to a collection P0, . . . , Ps
that, similar to ordinary Gale transforms, capture the facial structure of Minkowski
sums in the combinatorics of colorful configurations (see Section 4.2). Under this
correspondence, Theorem 4.2 implies:
Corollary 4.4. For d0, . . . , ds ≥ 1 and D = d0 + · · · + ds − s, let Pi ⊂ RD be di-
dimensional simplices whose Minkowski sum is of full dimension D, for 0 ≤ i ≤ s.
Then the number of totally mixed facets of P0 + · · ·+ Ps is at most

1 + d0d1 · · · ds.

Here, a face F = F0 + · · ·+Fs of the Minkowski sum P = P0 + · · ·+Ps is called
totally mixed if each Fi ⊂ Pi is a facet of Pi.

As it turns out, this also solves an at first sight unrelated conjecture of Ben-
jamin Burton [Bur03, Conj. 5.5.14] about the complexity of projective edge weight
solution spaces in normal surface theory. Edge weights are coordinates used to
represent normal surfaces in a one-vertex triangulation with n tetrahedra as vec-
tors in Rn+1 instead of the standard triangle and quadrilateral coordinates in R7n.
Burton’s conjecture has a formulation in terms of certain balanced fans that can be
interpreted as normal fans of triangles embedded in Rd, and asks for the maximal
number of totally mixed faces of a Minkowski sum of d − 1 triangles embedded
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in Rd. His conjectured bound of 1 + 2d−1 is exactly the outcome of our Corol-
lary 4.4 with these parameters. See [Bur03, Ch. 5] for the original formulation,
the topological connections, and implications.

Appendix 4.1. Tools for proving Theorem 4.2

4.1.A. Betti numbers of avoiding complexes. In [15] we introduce the
notion of the avoiding complex associated to a colorful point configuration C =
(C0, . . . , Cd). It is the simplicial complex A(C) on the vertex set C0 ∪ · · · ∪ Cd
consisting of the colorful simplices that do not contain the origin in their convex
hull. That is, S ∈ A(C) if and only if |S∩Ci| ≤ 1 for all 0 ≤ i ≤ d and 0 /∈ conv(S).

Using the Euler-Poincaré formula and computing the reduced Euler character-
istic χ̃(A) in two different ways, one can see that:

Lemma 4.5. Let C = (C0, . . . , Cd) be a centered colorful configuration in relative
general position in Rd with ni = |Ci| ≥ 2 for 0 ≤ i ≤ d. Then

cs-depth(C) ≤
d∏
i=0

(ni − 1) + β̃d−1(A),

where β̃k(S) = dimZ2 H̃k(S) denotes the k-th reduced Betti number of S.

Hence, to prove Theorem 4.2 it suffices to show that the (d − 1)-Betti num-
ber of the avoiding complex is always constant equal to one independently of the
configuration. To prove this, we introduce the notion of flips between colorful
configurations, and we prove our result by ‘flipping’ any configuration to the con-
figuration of Example 4.3 whose avoiding complex is homotopy equivalent to a
(d− 1)-sphere.

4.2. Colorful Gale transforms and Minkowski transforms

This section reports joint work with Karim Adiprasito, Philip Brinkmann, Pavel
Paták, Zuzana Patáková, and Raman Sanyal from “Colorful simplicial depth,

Minkowski sums, and generalized Gale transforms” [15].
In this section, we present colorful Gale transforms and Minkowski transforms,

two techniques that allow to translate between results on colorful configurations
and results on Minkowski sums. In particular, they allow to derive Corollary 4.4
from Theorem 4.2, and hence to solve Burton’s conjecture. Even if both techniques
coincide for the case of simplices, they can be of independent interest in future
applications beyond this scope, as they present different features.

The usual Gale transform assigns a configuration G = (g1, . . . , gn) of n vectors
in Rn−d−1 to every (full-dimensional) configuration A = (a1, . . . , an) of n points
in Rd. The configuration G encodes the (dual) oriented matroid of A (see Sec-
tion 2.1.B), and in particular its face lattice, but can be of a much lower dimension.
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Because of this, Gale duality has been a very powerful tool in the study of poly-
topes with few vertices (see [Mat02, Section 5.6] for a very accessible treatment in
terms of matrices and to [Zie95, Lecture 5] for its relation to oriented matroids).

We may adapt the notion of Gale transforms to Minkowski sums by way of Cay-
ley embeddings (see Section 4.2.A), and what we recover is a colorful configuration
that encodes the combinatorics of the Minkowski sum and all its subsums:

Theorem 4.6 ([15]). Let A = (A0, . . . , As) be a colorful point configuration
in Rd with full-dimensional Minkowski sum. Then there is a centered colorful
point configuration G = (G0, . . . , Gs) in Rn−d−s−1, where n = ∑

0≤i≤s ni and ni =
|Ai| = |Gi|, called the colorful Gale transform of A, with the following property:

For ∅ 6= Ji ⊂ [ni], let Bi = {aj ∈ Ai | j ∈ Ji} ⊂ Ai and Hi = {gj ∈ Gi | j /∈
Ji} ⊂ Gi for 0 ≤ i ≤ s. Then ∑0≤i≤sBi is a face of ∑0≤i≤sAi if and only if

0 ∈ relint conv
⋃

0≤i≤s
Hi.

More generally, for I ⊆ [s], we have that ∑i∈I Bi is a face of ∑i∈I Ai if and
only if

0 ∈ relint conv
⋃
i∈I
Hi ∪

⋃
i/∈I
Gi

 .
Example 4.7. Figure 2 depicts the Minkowski sums T + Ti with i = 1, 2, 3 for
the following triangles in R3:
T = conv{(2, 0, 0), (0, 1, 0), (0,−1, 0)}, T1 = conv{(2, 0, 0), (0, 0, 1), (0, 0,−1)},
T2 = conv{(0, 2, 0), (0, 0, 1), (0, 0,−1)}, T3 = conv{(−2, 0, 0), (0, 0, 1), (0, 0,−1)}.
The figure also shows the one-dimensional colorful Gale transforms associated to
each of these Minkowski sums. We invite the reader to verify how the condition
of Theorem 4.6 allows to recover the full face structure of T + Ti from its colorful
Gale transform.

Minkowski transforms are a strongly related alternative way to associate a
colorful configuration to a Minkowski sum. This is by way of generalized Gale
transforms that were first described by McMullen [McM79] (see Section 4.2.B).
This construction works at the level of polytopes, their facets, and their vertex
sets.

Theorem 4.8. Let P0, . . . , Ps ⊂ Rd be polytopes with full-dimensional Minkowski
sum, where Pi is di-dimensional and has mi facets. Then there is a centered col-
orful point configuration M = (M0, . . . ,Ms) in Rd0+···+ds−d, with |Mi| = mi, called
the Minkowski transform of P = P0 + · · ·+ Ps, with the following property:

For faces Fi ⊆ Pi, 0 ≤ i ≤ s, we have that ∑0≤i≤s Fi is a proper face of∑
0≤i≤s Pi if and only if

0 ∈ relint conv
⋃

0≤i≤s
Ni.
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Figure 2. Three different Minkowski sums of two triangles in R3, and
their corresponding colorful Gale transforms in R1.

where Ni = {mj ∈ Mi | j ∈ I(Fi)}, and I(Fi) ⊆ [mi] indexes the facets of Pi that
contain Fi.

Note that Minkowski transforms can be of much lower dimension than colorful
Gale transforms. Moreover, the number of elements of the Minkowski transform is
indexed by facets, whereas colorful Gale transforms are indexed by vertices. Hence,
for polytopes with much fewer facets than vertices, this approach can reduce the
complexity considerably.

One reason for this drop in complexity is that the colorful Gale transform also
contains information about subsums ∑i∈I Pi for any I ⊆ [s], and in particular, of
each of the individual summands. This is not true any more for the Minkowski
transform M .

However, for any collection of simplices P0, . . . , Ps ⊂ Rd, the Minkowski trans-
form and the colorful Gale transform coincide up to a choice of coordinates.
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Appendix 4.2. Tools for proving Theorems 4.6 and 4.8

4.2.A. Cayley embeddings. Let A = (A0, . . . , As) be a collection of point
configurations in Rd. Its Cayley embedding is the configuration Cay(A) in Rs+d

consisting of the points (ek, aj) for aj ∈ Ak, where e0 := 0 and e1, . . . , es is the
standard basis of Rs. Let b = 1

s+1(e0 + · · · + es) be the barycenter of e0, . . . , es
and consider the affine subspace Λ = {(x, y) ∈ Rs × Rd : x = b}. Then it is
straightforward to check that

conv(Cay(A)) ∩ Λ ∼= conv (A0 + · · ·As) .
In particular, this induces a bijection between faces of Cay(A) and the Minkowski
sum ∑

0≤i≤sAi. Cayley embeddings have many favorable properties, in particular
in relation to triangulations and mixed subdivisions; see [HRS00].

The colorful Gale transform of A = (A0, . . . , As) is the Gale transform of
Cay(A). This centered point configuration encodes the combinatorics of the Cayley
embedding, and hence of the Minkowski sum A0 + · · ·+ As and its subsums.

4.2.B. Generalized Gale transforms. McMullen’s generalized Gale trans-
forms [McM79] are a very powerful tool to study polytopes under projections; see
for example [SZ10; RS12]. They generalize ordinary Gale transforms, and also the
so-called zonal and central transforms, that is, Gale transforms tailor made for
zonotopes [McM71] and centrally symmetric polytopes [MS68].

Let P ⊂ Rd be a full-dimensional polytope containing the origin in its interior,
and consider its presentation

P = {x ∈ Rd : `(x) ≤ 1 for all i = 1, . . . ,m}.
for linear forms `1, . . . , `m : Rd → R. We are interested in the facial structure of
π(P ), where π : Rd → Re is a linear projection with e ≤ d.

The adjoint of π is an injection π∗ : (Re)∗ ↪→ (Rd)∗. Let L ⊆ (Rd)∗ be its
image. Finally, let φ : (Rd)∗ � (Rd)∗/L ∼= Rd−e be the canonical projection. We
define the P -transform of π as the point configuration G = {g1, . . . , gm} given by
gi = φ(`i) for i = 1, . . . ,m. This, in a strong way, depends on the geometry of P .

The following projection lemma has been discovered in different contexts.
See [SZ10; Zie04] for strengthenings.

Lemma 4.9. Let P ⊂ Rd be a full-dimensional polytope. For π : Rd → Re,
let G be the associated P -transform. For a proper face F ⊂ P the following are
equivalent

(i) F ′ = π(F ) is a proper face of π(P ) and π−1(F ′) ∩ P = F ,
(ii) 0 ∈ relint conv{gi | i ∈ I}, where I = {i ∈ [m] | `i(x) = 1 for all x ∈ F}.

The ordinary Gale transforms are exactly ∆n-transforms for the standard pro-
jection from a simplex ∆n to the polytope; and central transforms and zonal trans-
forms P -transforms for projections of crosspolytopes and cubes, respectively.
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Of course, we may also fix the projection π : Rd → Re and vary the polytope
P ⊂ Rd. For fixed s and d, the Minkowski projection is the linear map µ :
(Rd)s+1 → Rd given by (x0, . . . , xs) 7→ x0+· · ·+xs. For polytopes P0, . . . , Ps ⊂ Rd

one has µ(P0 × · · · × Ps) = P0 + · · ·+ Ps.
The Minkowski transform of P0, . . . , Ps is then the (P0 × · · · × Ps)-transform

for the Minkowski projection µ.

4.3. Open problems and perspectives

The assumption of centeredness is very natural in our framework, as colorful
Gale transforms and Minkowski transforms are always centered. However, the
conclusion of the Colorful Carathéodory Theorem has been shown to hold with
diverse weaker assumptions [Aro+09; Bár82; HPT08; MD13]. This prompts the
question of under which conditions other than centeredness does the upper bound
of Theorem 4.2 hold. In particular, what are other conditions that guarantee
that β̃d−1(A) = 1?

Lower bounds for the colorful simplicial depth can be seen as quantitative
versions of the Colorful Carathéodory Theorem. The bound 1+d2 ≤ cs-depth(C)
by Sarrabezolles [Sar15] only concerns the case considered in [Dez+06] in which
all color classes have d + 1 points. However, our setup in Section 4.1 works more
generally with color classes that have an arbitrary number of points. What is the
appropriate general lower bound?

Concerning the second part of the chapter, we expect colorful Gale transforms
and Minkowski transforms to become a useful tool in the study of Minkowski
sums of polytopes with few vertices or facets. Moreover, the generalized Gale
duality setup used for their definition (and the relation between both concepts)
invites to develop Gale transforms for projections followed by sections, or viceversa.
Many existing theories could be unified within this new framework, which could
be particularly useful in the study of non-negative factorizations and extended
formulations, the subject of Chapter 5 (see Section 5.6 for more details).



CHAPTER 5

Extension complexity bounds and a structural result on
polytopes with few vertices and facets [06; 09; 10; 13]

The extension complexity of a polytope P , denoted by xc(P ), is the minimal
number of facets of a polytope P̂ , called an extended formulation, that can be
linearly projected onto P . This terminology is motivated by applications in com-
binatorial optimization, as polytopes with small extension complexity correspond
to optimization problems that have efficient formulations as linear programs. This
is because the computational complexity of the simplex algorithm is intimately tied
to the number of linear inequalities and hence it can be advantageous to optimize
over P̂ instead of P . Many well-known problems are naturally associated with
polytopes whose number of facets is exponential, but admit extended formulations
of polynomial size. This has had both theoretical and practical applications (see
the surveys [CCZ10; Kai11]).

The study of extension complexity is strongly related to nonnegative matrix
factorizations. The nonnegative rank of a nonnegative n×m matrix M , denoted
rank+(M), is the minimal number r such that there exist n×r and r×m nonnega-
tive matrices R and S such that M = RS. A seminal result of Yannakakis [Yan91]
states that the extension complexity of a polytope coincides with the nonnegative
rank of its slack matrix (the matrix whose entries are the evaluations of the facet-
defining functionals on the vertices). General nonnegative matrix factorizations
have a related geometric interpretation (cf. [GG12]), and several applications in
diverse disciplines such as linear algebra [Ber73; BL09], statistics [CR93; KRS15],
and data analysis [Ber+07; LS99]. Yannakakis also discovered deep connections
with communication complexity theory [Yan91].

Extended formulations are also a very interesting and intriguing topic from
the point of view of combinatorial polytope theory. Many applications show that
it is often advantageous to treat polytopes as affine shadows of higher dimen-
sional polytopes. For example, this observation is already key in the proof of the
Minkowski-Weyl Theorem via Fourier-Motzkin Elimination [Zie95, Lec. 1]. It is
at the heart of Gale duality, which later gave rise to McMullen’s theory of trans-
forms, diagrams and representations [McM71; McM79; MS68]. It is related to the
introduction of mixed subdivisions of Minkowski sums [HRS00; HS95], and later to
Billera and Sturmfels’ fiber polytopes [BS92]. More recently, projection techniques
have been fruitfully used for polytope constructions [JZ00; MPP11; SZ10; Zie04].
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Despite being the subject of extensive research, the extension complexity is a
geometric parameter of polytopes still very far from being well understood, and
many basic questions are still unresolved (see the reports [Bea+13; Kla+15] for the
latest results and many open problems). In particular, there are very few polytopes
for which the exact extension complexity is known. Examples are cubes, Birkhoff
polytopes and bipartite matching polytopes [Fio+13]. Exponential lower bounds
for important classes of polytopes, obtained recentlty in [Fio+15; Rot13; Rot14],
solved problems asked more than 30 years ago and attracted renewed interest in
the field.

Actually, determining extension complexity is a very challenging problem al-
ready for d = 2, and even the possible range of values of the extension complexity
of an n-gon is still unknown. This is the subject of Section 5.1, where an upper
bound for the extension complexity of n-gons is presented. This result, found inde-
pendently by Shitov [Shi14a], disproved a conjecture of Beasley and Laffey [BL09].

Section 5.2 presents the complete classification of d-polytopes with at most
d+4 vertices according to their extension complexity. My main motivation for this
project was to provide examples of high-dimensional polytopes for which the ex-
plicit determination of the extension complexity is still treatable, in order to obtain
a ground set for testing open problems and looking for examples and counterexam-
ples. The first of the goals is largely fulfilled, as this is a super-exponentially large
family. However, in view of the final classification, it is not clear that this fam-
ily will be a rich source of interesting examples and counterexamples. Complete
understanding of the extension complexity of the next natural family, d-polytopes
with d+ 5 vertices, seems out of reach right now, specially if we take into account
that this was a highly non-trivial problem already for d = 2, as we will see in
Section 5.1.

A special case of this classification concerns d-polytopes with d+4 vertices and
at most d + 3 facets. It turns out that there are only finitely many (eight) non-
pyramidal such polytopes. This observation is generalized in Section 5.3, where it
is proven that the number of combinatorial types of d-polytopes with d + 1 + α
vertices and d + 1 + β facets is bounded by a constant independent of d. This
follows from a structural result on polytopes with few vertices and facets related
to Perles’ Skeleton Theorem.

Section 5.4 gives a lower bound for the extension complexity of generic realiza-
tions of combinatorial types of polytopes. It implies that generic simplicial/simple
d-polytopes with d + 1 + α vertices/facets have extension complexity at least
2
√
d(d+ α) − d + 1, which shows that for all d > (α−1

2 )2 there are d-polytopes
with d+ 1 + α vertices or facets and extension complexity d+ 1 + α.

Finally, in Section 5.5 we explicitly determine the extension complexity of all
hypersimplices as well as of certain classes of combinatorial hypersimplices.

The chapter ends with some open problems and perpectives.
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5.1. The extension complexity of polygons

This section reports joint work with Julian Pfeifle from “Polygons as sections of
higher-dimensional polytopes” [06].

Obviously, every n-gon has extension complexity at most n, and for those with
n ≤ 5 it is indeed exactly n. It is not hard to check that hexagons can have
complexity 5 or 6 (cf. [GPT13, Example 3.4]). Our first result in [06] shows that
it is easy to decide which is the exact value.
Proposition 5.1 ([06]). For a hexagon P , the following are equivalent:

(i) xc(P ) = 5,
(ii) P = π(Q) for Q ∼= ∆1 ×∆2, and
(iii) P is Desarguian; that is, the lines p0 ∧ p1, p5 ∧ p2 and p3 ∧ p4 are (projec-

tively) concurrent for some cyclic labeling of its vertices p0, . . . , p5.

Figure 1. A Desarguian hexagon.

Then we turn our attention to heptagons. We show that every heptagon is
a section of a 3-polytope with no more than 6 vertices, and a projection of a 3-
polytope with no more than 6 facets. Our proof reveals the geometry behind a
result found independently by Shitov in [Shi14a].

Theorem 5.2. Every heptagon has extension complexity 6.
In general, the minimal extension complexity of an n-gon is θ(log n), which

is attained by regular n-gons [BTN01; FRT12]. On the other hand, there exist
n-gons whose extension complexity is at least 2

√
2n− 2−1 (see Section 5.4). As a

consequence of Theorem 5.2 we automatically get upper bounds for the complexity
of arbitrary n-gons, and for the nonnegative rank of rank 3 matrices.

Theorem 5.3 ([06]). The nonnegative rank of any nonnegative n×m matrix
of rank 3 is at most

⌈
6
7 min(n,m)

⌉
. In particular, xc(P ) ≤

⌈
6n
7

⌉
for every n-gon P

with n ≥ 7.
This disproved a conjecture of Beasley and Laffey (originally stated in [BL09,

Conjecture 3.2] in a more general setting), who asked if for any n ≥ 3 there is an
n× n nonnegative matrix M of rank 3 with rank+(M) = n. Subsequently, Shitov
improved Theorem 5.3 and announced a sublinear upper bound for the intersec-
tion/extension complexity of n-gons [Shi14b]. In higher dimensions, no non-trivial
upper bound for extension complexity in terms of the number of vertices/facets is
known yet.
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Appendix 5.1. Tools for proving Theorem 5.2

5.1.A. Stretchability of pseudoline arrangements. After a combinato-
rial and geometric analysis, we reduce the problem of determining the extension
complexity of heptagons to a problem about stretchability of pseudoline arrange-
ments; that is, about oriented matroid realizability. In short, we prove that the
arrangement from Figure 2 is not realizable by straight lines, which allows us to
conclude Theorem 5.2.

Figure 2. A non-stretchable pseudo-line arrangement.

5.2. The extension complexity of polytopes with few vertices or facets

This section reports work from “Extension complexity of polytopes with few
vertices or facets” [09].

In this section, we vastly generalize Proposition 5.1 to determine the extension
complexity of all d-polytopes with up to d + 4 vertices. Of course, since the
extension complexity is preserved by polar duality, this is equivalent to studying
the extension complexity of d-polytopes with up to d+ 4 facets.

Many properties shared by d-polytopes with at most d+ 3 vertices start failing
for d-polytopes with d+ 4 vertices (in a similar way as properties of polytopes of
dimension at most 3 usually start failing for 4-polytopes). This led Sturmfels to
call d-polytopes with d+ 4 vertices the “threshold for counterexamples” [Stu88b].
As we have seen in previous sections, this concerns the combinatorial diversity
(there are super-exponentially many combinatorial types of d-polytopes with d+4
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vertices) and the realization spaces (d-polytopes with d+4 vertices present Mnëv’s
universality).

One is tempted to ask whether d-polytopes with d + 4 vertices are also the
threshold of counterexamples for extension complexity. This would have been of
particular interest in the context of the long-term open question that asked whether
the rational and real nonnegative rank always coincide [BL09; CR93], and that
has been recently disproved by two independent teams [Chi+17; Shi16b]. Shitov
has even proved a much stronger result, a universality theorem for nonnegative
factorizations [Shi16a].

Unfortunately, the answer to this question is negative. They all have com-
plexity d+ 4 except for some sporadic instances that can be constructed via some
elementary operations from a finite collection of polytopes. In particular, it is easy
to compute the extension complexity of every d-polytope with d + 4 vertices (or
facets, by duality).

Theorem 5.4. Let P be a d-polytope with d+ 4 vertices, then

(1) xc(P ) = d+ 2 if and only if P has d+ 2 facets.
(2) xc(P ) = d+ 3 if and only if:

(2.1) P has d+ 3 facets, or
(2.2) P = π(Q), where Q ∼= pyrd−2(∆1×∆2) for some affine projection π.

In this case, either
(2.2.1) P = pyrk(Q) where Q is a Desarguian hexagon, or
(2.2.2) P has a subset of 6 vertices forming a triangular prism.

(3) xc(P ) = d+ 4 otherwise.

Here, ∆d denotes a d-dimensional simplex; P ⊕ Q and P × Q represent, re-
spectively, the direct sum and the Cartesian product of the polytopes P and Q;
and pyrk(P ) denotes the k-fold pyramid over P . See [HRGZ04, Sec. 15.1.3] for the
corresponding definitions.

More precisely, for a d-polytope P with d+ 4 vertices:

(1) xc(P ) = d+ 2 if and only if P ∼= pyrd−4(∆1 ×∆3);
(2) xc(P ) = d+ 3 if and only if:

(2.1) P is an iterated pyramid over one of the 8 sporadic non-pyramidal
d-polytopes with d+ 4 vertices and d+ 3 facets, or

(2.2) P = π(Q), where Q ∼= pyrd−2(∆1 ×∆2) for some affine projection π.
In this case, either

(2.2.1) P = pyrk(Q) where Q is a Desarguian hexagon, or
(2.2.2) P has a subset of 6 vertices forming a triangular prism. Which

means that either
(2.2.2.1) P ∼= pyrk(∆1×∆2)?(∆n⊕∆m)) (where n+m+k = d−4),

or
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(2.2.2.2) P can be obtained from ∆1 × ∆2 via the operations of
pyramid, one-point-suspension or Lawrence extension on
an extra (projective) point.

(3) xc(P ) = d+ 4 otherwise.
Here, P?Q denotes the join of the polytopes P andQ (see [HRGZ04, Sec. 15.1.3]).

Lawrence extensions were defined in Section 2.2.B. See [DLRS10, Sec. 4.2.5] for
the definition of one-point-suspensions.

In the families corresponding to the cases (1), (2.1) and (2.2.2.1), the extension
complexity is completely determined by the combinatorial type. Deciding the
extension complexity in the cases (2.2.1) and (2.2.2.2) amounts to checking whether
certain lines are concurrent.

The finitude of the family (2.1) is the subject of Section 5.3. For fixed d,
families (2.2.2.1) and (2.2.2.2) have a size quadratic in d. Hence, out of the super-
exponentially many combinatorial types of d-polytopes with d + 4 vertices, there
are only θ(d2) that have realizations with extension complexity smaller than d+ 4.

The proof makes extensive use of generalized Gale diagrams (see Section 4.2.B).

5.3. There are few polytopes with few vertices and facets

This section reports work from “Polytopes with few vertices and few facets” [10].
In this section we take a break from extension complexity and show that there

are few (combinatorial types of) polytopes that have both few vertices and few
facets. This result, combined with a computer assisted search, lead to the state-
ment from Section 5.2 claiming that there are only 8 sporadic non-pyramidal d-
polytopes with d+ 4 vertices and d+ 3 facets.

Theorem 5.5 ([10]). For each pair of nonnegative integers α and β there is a
constant K(α, β), independent from d, such that the number of combinatorial types
of d-polytopes with no more than d + 1 + α vertices and no more than d + 1 + β
facets is bounded above by K(α, β).

This might come as a surprise, considering that the number of d-polytopes
with d+3 vertices is exponential in d [Fus06], and the number of d-polytopes with
d + 4 vertices is already super-exponential in d (this follows from the full version
of Theorem 3.1 from [01]). Of course, the same numbers apply for polytopes with
few facets, by polarity.

Theorem 5.5 is a direct consequence of the following structural result.

Proposition 5.6 ([10]). For each pair of nonnegative integers α and β there is a
constant D(α, β) such that every d-polytope with no more than d + 1 + α vertices
and no more than d+ 1 + β facets is a join of a simplex and an at most D(α, β)-
dimensional polytope.

Equivalently, every d-polytope with d > D(α, β) either is a pyramid, has more
than d+ 1 + α vertices or has more than d+ 1 + β facets.
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Indeed, this proposition shows that for every d the number of combinatorial
types of d-polytopes with no more than d+1+α vertices and no more than d+1+β
facets is bounded above by those in dimension D(α, β). Since the vertex-facet
incidences determine the combinatorial type, we get the following crude estimate
for K(α, β):

K(α, β) < 2(D(α,β)+α+1)(D(α,β)+β+1).

Appendix 5.3. Tools for proving Proposition 5.6

5.3.A. Unneighborly polytopes. The proof is based on a result of Marcus
on minimal positively 2-spanning configurations [Mar81; Mar84], which via Gale
duality provides lower bounds on the number of vertices of what Wotzlaw and
Ziegler call unneighborly polytopes [WZ11]. A polytope P is unneighborly if for
every vertex v of P there is some vertex w such that (v, w) does not form an edge
of the graph of P .

Theorem 5.7 ([Mar81]). If P is an unneighborly d-polytope with d + α + 1
vertices, then

d ≤

3α− 1 if α ≤ 5,(
α
2

)
+ 4 if α ≥ 5.

As Wotzlaw and Ziegler point out in [WZ11], this upper bound is actually tight
up to a constant factor. A slightly worse, but still quadratic, upper bound can
also be deduced from [Wot09, Theorem 7.2.1]. This is a quantitative version of
Perles’ Skeleton Theorem, a remarkable result first proved by Perles (unpublished,
ca. 1970), reported by Kalai [Kal94] and elaborated upon by Wotzlaw [Wot09,
Part II].

A quadratic upper bound for D(α, β) is given in [10]. The proof is inductive
along the following lines: If P is a d-polytope with d+ 1 +α vertices and d+ 1 +β
facets and d is large enough, then by Marcus’s result P has a neighborly vertex v
connected to all the other vertices of P by an edge. If P is not a pyramid with
apex v, then the vertex figure P/v has (d − 1) + 1 + α vertices and strictly less
than (d− 1) + 1 + β facets. We deduce by induction that P/v is a pyramid, which
implies that P is also a pyramid because v is a neighborly vertex.

5.4. Lower bounds for the extension complexity of generic polytopes

This section reports work from “Extension complexity of polytopes with few
vertices or facets” [09].

In view of Theorem 5.2, one is tempted to ask whether there is an α such that
every d-polytope with d+ 1 + α vertices has extension complexity at most d+ α,
as this would similarly provide upper bounds for the extension complexity of d-
polytopes in terms of their number of vertices. (It is still an open problem whether
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for each n there exist d-polytopes with n vertices and extension complexity n; for
which we only know the answer, in the negative, for the case d ≤ 2.)

Unfortunately, such an α does not exist. In this section we provide a lower
bound for the extension complexity of generic polytopes in terms of the dimension
of their realization space. It entails that for every d, α, β ≥ 0,
• a generic (simplicial) d-polytope P with d + 1 + α vertices has extension com-
plexity

xc(P ) ≥ 2
√
d(d+ α)− d+ 1;

• a generic (simple) d-polytope P with d+ 1 + β facets has extension complexity

xc(P ) ≥ 2
√
d(d+ β)− d+ 1.

Here, generic has to be understood in terms of the vertex coordinates and the
inequality description, respectively.

In particular, when d > (α−1
2 )2 there are d-polytopes with d + 1 + α vertices

(or facets) with extension complexity d+ 1 + α.
Observe also that the bounds above, when specialized to d = 2, give a lower

bound of 2
√

2n− 2 − 1 for the extension complexity of a generic (even rational)
n-gon. This bound is tight for n ≤ 15 [Van+15], but also for general n up to a mul-
tiplicative constant, as the admissible n-gons of Shitov show [Shi14b]. This order
of magnitude was already attained by the previous best lower bound of

√
2n for the

extension complexity of generic n-gons, by Fiorini, Rothvoß and Tiwary [FRT12].
However, their approach did not extend directly to the rational case, where they
got a lower bound of order Ω(

√
n/log n).

The precise statement of the lower bound uses unreduced realization spaces of
polytopes. This is the set R̃(P ) of realizations of P , parametrized by the vertex
coordinates or by the facet defining inequalities, without taking the quotient by
any transformation group. We use R̃xc≤K(P ) to denote the subset containing those
instances with extension complexity at most K.

Theorem 5.8 ([09]). Let P be a polytope whose unreduced realization space
has dimension r, then R̃(P )\R̃xc≤K(P ) is a full-dimensional dense semi-algebraic
subset of R̃(P ) for every

K < 2
√
r − d− d+ 1.

In particular:
(1) For every Q ∈ R̃(P ) there is some polytope Q′ ∈ R̃(P ) arbitrarily close

to P in Hausdorff distance such that
xc(Q′) ≥ 2

√
r − d− d+ 1.

(2) If R is drawn randomly from a continuous probability distribution on R̃(P ),
then almost surely

xc(R) ≥ 2
√
r − d− d+ 1.
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To recover the statements above, observe that the realization space of a simpli-
cial d-polytope with n vertices always has dimension dn; and the realization space
of a simple d-polytope with m facets always has dimension dm. Moreover, poly-
topes with rational coordinates are dense in these realization spaces, and hence
one can also impose the approximating polytope Q′ to be rational.

Appendix 5.4. Tools for proving Theorem 5.8

5.4.A. Bounds for real algebraic geometry. Theorem 5.8 follows from an
estimation of the dimension of R̃xc≤K(P ), obtained by counting degrees of freedom.
Both R̃(P ) and R̃xc≤K(P ) are semi-algebraic sets, and R̃xc≤K(P ) is the union of
the R̃N,D(P ) that contain all realizations of P that arise as projections of D-
polytopes with N facets, for all N ≤ K and d ≤ D ≤ N −1. Fixing the projection
π : RD → Rd, and setting QN,D(P ) the set of D-polytopes Q with N facets such
that π(Q) = P , one can easily construct a continuous semi-algebraic surjective map
φ : QN,D(P ) → R̃N,D(P ). Our bounds for dim R̃xc≤K(P ) come from estimating
the dimensions of QN,D(P ) and the fibers of φ, with classical dimension bounds
from real algebraic geometry related to semialgebraic triviality of continuous semi-
algebraic mappings (see [BCR98, Thm. 9.3.2] and [Cos00, Cor. 4.2]).

5.5. The extension complexity of hypersimplices

This section reports joint work with Francesco Grande and Raman Sanyal from
“Extension complexity and realization spaces of hypersimplices” [13].

In this section we explicitly determine the extension complexity of the family
of hypersimplices. Recall that for 0 < k < n, the (n, k)-hypersimplex is the convex
polytope

∆n,k = conv {x ∈ {0, 1}n : x1 + · · ·+ xn = k} .
They are prominent objects in combinatorial optimization, appearing in connection
with packing problems, and also in matroid theory as ∆n,k is the matroid base
polytope of the uniform matroid Un,k. This marks hypersimplices as polytopes
of considerable interest and naturally prompts the question as to their extension
complexity.

Note that ∆n,k is affinely isomorphic to ∆n,n−k. The hypersimplex ∆n,1 =
∆n−1 is the standard simplex of dimension n − 1 and xc(∆n−1) = n. Our first
result concerns the extension complexity of the proper hypersimplices, that is, the
hypersimplices ∆n,k with 2 ≤ k ≤ n− 2.

Theorem 5.9 ([13]). The hypersimplex ∆4,2 has extension complexity 6, the
hypersimplices ∆5,2 ∼= ∆5,3 have extension complexity 9. For any n ≥ 6 and
2 ≤ k ≤ n− 2, we have xc(∆n,k) = 2n.

As we have seen, the extension complexity is not an invariant of the combina-
torial type (see for example Proposition 5.1). On the other hand, the extension
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complexity of any polytope combinatorially isomorphic to the n-dimensional cube
is always 2n. The close connection to simplices and cubes and Theorem 5.9 raises
the question whether all combinatorial (n, k)-hypersimplices are extension maxi-
mal (have extension complexity equal to their number of facets) when n ≥ 6 and
2 ≤ k ≤ n− 2.

Our understanding of Rn,2 (see Section 2.4) allows us to show in [13] that
generic combinatorial (5, 2)-hypersimplices have extension complexity 10, even if
the standard realization verifies xc(∆5,2) = 9. For n ≥ 6, we still do not know
of any realization of a (n, k)-hypersimplex of extension complexity less than 2n,
but we do not think that every combinatorial (n, k)-hypersimplex with n ≥ 6 and
2 ≤ k ≤ n is extension maximal. All we can say is that the locus En,k ⊆ Rn,k

of extension maximal (n, k)-hypersimplices is open and non-empty for n ≥ 6 and
2 ≤ k ≤ n− 2.

Our best bound for the extension complexity of generic hypersimplices is:

Theorem 5.10 ([13]). If P is a combinatorial (n, k)-hypersimplex with n ≥ 6
and 2 ≤ k ≤ dn2 e, then

xc(P ) ≥

n+ 2k + 1 if k <
⌊
n
2

⌋
,

2n otherwise.

Appendix 5.5. Tools for proving Theorems 5.9 and 5.10

5.5.A. Rectangle covering numbers. The rectangle covering number, in-
troduced in [Fio+13], is a very elegant combinatorial approach to lower bounds on
the nonnegative rank of a polytope. A rectangle of a nonnegative m × n matrix
SP is an index set R = I × J with I ⊆ [m], J ⊆ [n] such that (SP )ij > 0 for all
(i, j) ∈ R. The rectangle covering number rc(SP ) is the smallest number of rect-
angles R1, . . . , Rs such that (SP )ij > 0 if and only if (i, j) ∈ ⋃tRt. As explained
in [Fio+13, Section 2.4], we have rc(SP ) ≤ xc(P ), if SP is the slack matrix of a
polytope P .

In [13], we use the rectangle covering number to compute the extension com-
plexity of “small” hypersimplices (with n ≤ 6). This is done computationally,
reducing it to a satisfiability problem and using a SAT solver.

The extension complexity of “large” hypersimplices (with n ≥ 7) is then
solved using an inductive argument that combines the combinatorics and geometry
of ∆n,k.

5.5.B. FG-genericity. The geometric part of our proof extends to all FG-
generic hypersimplices (see Section 2.4.A for the definition), showing that they
are extension maximal. Unfortunately, FG-genericity is not a property met by all
hypersimplices, which is confirmed by the existence of a non-FG-generic realization
of ∆6,2. On the other hand, Lemma 2.15 shows that that hypersimplices with n ≥ 6
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and bn2 c ≤ k ≤ dn2 e are FG-generic. This, together with an inductive argument,
gives Theorem 5.10.

5.6. Open problems and perspectives

Extension complexity is a very active field, and our knowledge has greatly
advanced during the past years. Many longstanding open questions have been
resolved, and many new challenging problems have arisen. Some of these are
reported in [Bea+13; Kla+15].

Despite being far from the applications in optimization, our knowledge on the
extension complexity of polygons is a very good indicator of the difficulty of the
topic, and serves as a testing field for new questions. Shitov’s sublinear upper
bound on the extension complexity of n-gons is of order n(ln ln ln ln ln lnn)−1/2

[Shi14b]. This bound is unlikely to be tight, and in any case, it is very far from
2
√

2n− 2−1, the current best lower bound for the worst-case extension complexity
obtained using generic polygons in Section 5.4. It is even conceivable that this
lower bound is optimal, as it happens when n ≤ 15 [Van+15]. Finding non-
trivial upper bounds for the extension complexity of d-polytopes with n vertices
for d > 2 would be an exciting development, for its possible consequences in terms
of linear optimization. A starting step would be to study cyclic polytopes, as the
higher dimensional version of the Erdös-Szekeres Theorem states that every large
enough point configuration in general position contains a cyclic polytope with n
vertices [Suk14].

Planar configurations also form a building block for many higher dimensional
constructions. For example, they are the starting point in the recent proof of the
Universality Theorem for nonnegative factorizations by Shitov [Shi16a]. It states
that the set of nonnegative factorizations of a nonnegative matrix can be ratio-
nally equivalent to any bounded semialgebraic set. A very tempting strengthening
of this result would be a universality theorem for extended formulations, which
would in particular entail that it is algorithmically hard to compute the exten-
sion complexity of a polytope. There is no straightforward way to adapt Shitov’s
construction to get a result on extended formulations, and hence the proof would
probably need to start from scratch. A related result, the universality theorem for
nested polytopes, has been recently proved [DHM19].

The classification of Section 5.2 exploits generalized Gale duality (see Sec-
tion 4.2.B) in an essential way. Together with the constructions of Section 4.2, they
hint that the generalized Gale transform of a projection of a polytope P should be
considered simultaneously with the Gale diagram of its polar polytope P ◦. This
amounts to extending Gale duality to the context of polytopes obtained by com-
bining first a section and then a projection, or vice versa. The study of extended
formulations is, in its core, the study of such constructions. Even more, this can
be generalized to arbitrary nonnegative factorizations if one considers arbitrary
polytope pairs fulfilling Q ⊆ P ◦
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Motivated by its geometric interpretation, nonnegative matrix factorization
has been also generalized to the so-called cone factorizations [GPT13], in which
the non-negative orthant is replaced by other convex cones. When this is the cone
of symmetric positive semidefinite matrices, one obtains psd-factorizations, which
are of particular interest for their consequences in semidefinite programming. In
this set-up one tries to approximate polytopes by spectrahedral shadows, which
are projections of sections of the psd cone. The framework of Gale transforms for
projections and sections seems to fit perfectly in this context.

Our original motivation for studying the nonnegative rank of hypersimplices
in [13] comes from matroid theory [Oxl11]. The (n, k)-hypersimplex is the matroid
base polytope of the uniform matroid Un,k. In [GS17], Grande and Sanyal studied
2-level matroids, which are those that can be constructed from uniform matroids
by taking direct sums or 2-sums. They exhibit extremal behavior with respect to
various geometric and algebraic measures of complexity. In particular, it is shown
that M is 2-level if and only if its matroid polytope PM has minimal psd-rank,
dimPM + 1. Our starting point was the natural question whether the class of 2-
level matroids also exhibits an extremal behavior with respect to the nonnegative
rank. To extend Theorem 5.9 to all 2-level matroids, it would be necessary to
understand the effect of taking direct and 2-sums on the nonnegative rank. The
direct sum of matroids translates into the Cartesian product of matroid polytopes.
The following conjecture, first asked by François Glineur during a Dagstuhl seminar
in 2013 [Bea+13], remains surprisingly elusive.

Conjecture 5.11. The extension complexity is additive with respect to Cartesian
products, that is,

xc(P1 × P2) = xc(P1) + xc(P2),
for polytopes P1 and P2.

We show in [13] that the conjecture holds whenever one of the factors is a
simplex, which has been later improved to the case when one of the factors is a
pyramid [TWZ17].

Finally, concerning Section 5.3, [10] gives the upper boundD(α, β) ≤
(
α
2

)
+β+3

when α ≥ 5. The lack of symmetry suggests that it might not be optimal. Which
is the optimal value for D(α, β)? As far as we know, it could be linear in both α
and β, like in our current best examples. These are based on the join of n squares,
which is (3n − 1)-dimensional and has 4n vertices and facets. Our proof method
cannot provide a linear bound because, despite Marcus’ original conjecture, the
maximal dimension of an unneighborly polytope is quadratic in α (see [Man74;
WZ11]). However, this does not take into account the number of facets. In fact,
the unneighborly polytopes with few vertices from [Man74] and [WZ11] have many
facets and do not improve the join of squares. So it is conceivable that a different
approach might yield better bounds.



CHAPTER 6

Triangulations of products of simplices and tropical
oriented matroids [03; 16]

The Cartesian product of two simplices is the convex polytope:

∆m ×∆n := conv
{

(ei, ej) : 0 ≤ i ≤ m, 0 ≤ j ≤ n
}
⊂ Rn+m+2,

where ei and ej denote the standard basis vectors of Rm+1 and Rn+1, respectively;
and overlined indices are used to distinguish the labels of the two factors.

Their triangulations are very interesting intricate objects [DLRS10, Sec. 6.2]
that have been extensively studied with various purposes. They are a key in-
gredient for understanding triangulations of products of polytopes [DL96; Hai91;
OS03; San00]. Via the Cayley trick, they are in bijection with fine mixed subdivi-
sions of a dilated simplex m∆n−1 [San05], which provides the relation to tropical
(pseudo-)hyperplane arrangements and tropical oriented matroids [AD09; DS04].
Moreover, they have also attracted interest in algebraic geometry and commutative
algebra [BB98; CHT07; GKZ94; Stu96], and in Schubert calculus [AB07].

This chapter revolves around two sibling triangulations of ∆n×∆n with a deep
combinatorial structure: the associahedral/cyclohedral triangulation and the Dyck
path triangulation.

The associahedral triangulation is introduced in Section 6.1. It serves as the
starting point to construct a polyhedral realization of Prévile-Ratelle and Viennot’s
ν-Tamari lattice [PRV17]. In particular, we use it in [16] to obtain geometric re-
alizations of m-Tamari lattices as polyhedral subdivisions of associahedra induced
by an arrangement of tropical hyperplanes, giving a positive answer to an open
question of F. Bergeron [Ber12]. This reveals a simplicial complex structure un-
derlying the ν-Tamari lattice, which generalizes the classical associahedron, whose
combinatorics is governed by the so-called (I, J)-trees.

The associahedral triangulation does not cover all of ∆n×∆n, only a subpoly-
tope. However, it is amenable to a cyclic symmetry, giving rise to a full triangu-
lation of ∆n ×∆n. This is the cyclohedral triangulation, presented in Section 6.2.
Its name refers to the cyclohedron, the generalized associahedron associated to
the Bn root system [CFZ02; FZ03b]. It naturally provides type B analogues of
our constructions. Notably, it gives rise to a partial order that generalizes the
type B Tamari lattice, introduced independently by Thomas [Tho06] and Read-
ing [Rea06], along with its corresponding tropical geometric realization.

57
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With the right presentation, the associahedral triangulation can be consid-
ered a “non-crossing” combinatorial object. It has a “non-nesting” analogue, also
amenable to the same cyclic action, resulting in the Dyck path triangulation. Its
study is motivated by extendability problems of partial triangulations of products
of two simplices. The main result of Section 6.3 states that whenever m ≥ k > n,
any triangulation of the product of the k-skeleton of ∆m with ∆n extends to a
unique triangulation of ∆m × ∆n. The Dyck path triangulation is used to show
that the bound k > n is optimal. These results can be interpreted in the language
of tropical oriented matroids, providing analogues to classical results in oriented
matroid theory.

The last section of this chapter is devoted to open questions and conjectures.

6.1. Tropical ν-Associahedra

This section reports joint work with Cesar Ceballos and Camilo Sarmiento from
“Geometry of ν-Tamari lattices in types A and B” [16].

The ν-Tamari lattice is a partial order on the set of lattice paths weakly above
a given path ν that generalizes the Dyck/ballot-path formulation of the classical
Tamari lattice [MHPS12; Tam51]. It has been recently introduced by Préville-
Ratelle and Viennot [PRV17] as a further generalization of them-Tamari lattice on
Fuss-Catalan paths, which was first considered by F. Bergeron and Préville-Ratelle
in connection to the combinatorics of higher diagonal coinvariant spaces [BPR12].
These lattices have attracted considerable attention in other areas such as repre-
sentation theory and Hopf algebras [BMCPR13; NT14; Nov14], and remarkable
enumerative, algebraic, combinatorial, and geometric properties have been discov-
ered [Ber12; BMFPR11; Cha05; FPR17].

One of the striking characteristics of the Tamari lattice is that its Hasse diagram
can be realized as the edge graph of a polytope, the associahedron. The realiza-
tion problem of this “mythical polytope” [Hai84] was explicitly posed by Stasheff
in 1963 [Sta63], who constructed it as a cellular ball. After its first constructions
as a polytope [Hai84; Lee89], many systematic construction methods emerged,
with different remarkable geometric and combinatorial properties [CSZ15; CFZ02;
FZ03b; GZK90; GZK91; HL07; HLT11; JK10; Lod04; Pos09; RSS03; SS93].

It is natural to ask if ν-Tamari lattices admit similar constructions. This ques-
tion was posed by Bergeron, who in [Ber12, Figures 4 and 6] presented geometric
realizations of a few small m-Tamari lattices as the edge graph of a subdivision of
an associahedron and asked if such realizations exist in general. In [16] we provide
a positive answer to this question (see Figure 1 for examples of such geometric
realizations) by means of tropical geometry (see Section 6.1.B).

Theorem 6.1 ([16]). Let ν be a lattice path from (0, 0) to (a, b). The Hasse
diagram of the ν-Tamari lattice Tamν can be realized geometrically as the edge
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1-Tamari n = 4 4-Tamari n = 3 2-Tamari n = 4

Figure 1. Geometric realizations of m-Tamari lattices by cutting clas-
sical associahedra with tropical hyperplanes.

graph of a polyhedral complex induced by an arrangement of tropical hyperplanes
(in TPa ∼= Ra and in TPb ∼= Rb).

The associated polyhedral complex is called the ν-associahedron Assoν ; and
in the Fuss-Catalan case we refer to it as the m-associahedron. Although it is
not always a subdivision of a classical associahedron (it can even be non-pure in
some cases), this holds for the m-associahedron. In more generality, if ν does
not contain two (non-initial) consecutive north steps, then the ν-associahedron
is a regular subdivision of a classical associahedron into Cartesian products of
associahedra. Moreover, the edges of the ν-associahedron can be oriented by a
linear functional to give rise to the ν-Tamari lattice, mimicking a property of the
classical associahedron.

Our starting point is a triangulation of a subpolytope Un of the Cartesian
product of simplices ∆n × ∆n, which we call the associahedral triangulation An,
that is flag, regular and, as a simplicial complex, isomorphic to the join of a simplex
with the boundary of a simplicial (n− 1)-associahedron.

The fact that An is embedded in the product of two simplices has several
advantages. First, for each lattice path ν there is a pair I, J ⊆ [n], [n] such that
the restriction of An to its face ∆I×∆J induces a triangulation AI,J dual to Tamν .
Moreover, there is a correspondence between regular triangulations of ∆m×∆n and
tropical hyperplane arrangements, conceived by Develin and Sturmfels in [DS04]
and further developed in [AD09; FR15]. We exploit it to get the desired polyhedral
realizations.

The triangulation AI,J provides a full simplicial complex structure supported
on ν-paths, the ν-Tamari complex, which shares several properties with the clas-
sical simplicial associahedron and provides definitions for their Fuss-Catalan and
rational-Catalan extensions. For example, the `th entry of its h-vector is the num-
ber of ν-Dyck paths with exactly ` valleys, generalizing the classical Narayana
numbers for classical Dyck paths. In the Fuss-Catalan case, these numbers were
considered in [Ath05; AT06; FR05; Tza06]; and in the rational Catalan case, they
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appear in the work of Armstrong, Rhoades, and Williams [ARW13], who intro-
duced a simplicial complex called the rational associahedron, different from ours,
whose h-vector entries are given by the corresponding ν-Narayana numbers too.
It would be interesting to understand the relation between the ν-Tamari complex
and the rational associahedron.

Our construction from [16] has been subsequently extended by Pilaud to the
Cambrian setting [Pil20].

Appendix 6.1. Tools for proving Theorem 6.1

6.1.A. (I, J)-trees and the (I, J)-associahedral triangulation. Consider
two copies of the natural numbers N and N, and regard NtN as the totally ordered
set with covering relations i ≺ i ≺ i + 1. Let I and J be nonempty finite subsets
of N and N, respectively, such that min(I t J) ∈ I and max(I t J) ∈ J . An
(I, J)-forest is a subgraph of KI,J , the complete bipartite graph with node set
I t J , that is

(1) Increasing: each arc (i, j) fulfills i ≺ j (i.e. i ≤ j); and
(2) Non-crossing: it does not contain two arcs (i, j) and (i′, j′) satisfying

i ≺ i′ ≺ j ≺ j
′ (i.e. i < i′ ≤ j < j′).

An (I, J)-tree is a maximal (I, J)-forest.

Lemma 6.2. The set of (I, J)-forests indexes the simplices of a flag regular tri-
angulation of

UI,J := conv
{

(ei, ej) : i ∈ I, j ∈ J and i ≺ j
}
,

called the (I, J)-associahedral triangulation AI,J .

When (I, J) = ([n], [n]), one recovers a triangulation that is dual to the classi-
cal associahedron. Relatives of this triangulation have been found independently
several times, under various guises, in a number of different contexts [GGP97;
SP02; Més11; RSS03; JK10]. Every (I, J)-associahedral triangulation arises as
the intersection of certain ([n], [n])-associahedral triangulation with a supporting
hyperplane.

The set of (I, J)-trees can be turned into a partial order (which is actually a
lattice) by considering a cover relation induced by flips (akin to the description
of the Tamari lattice as a rotation lattice). This lattice is isomorphic to the ν-
Tamari lattice for certain ν(I, J) (and for every ν, there are some (I, J) such that
ν = ν(I, J)). An example is depicted in Figure 2.

6.1.B. Tropical hyperplane arrangements. Tropical geometry refers to
geometry in the tropical semiring (R ∪ ∞,⊕,�) where the tropical addition ⊕
and tropical multiplication � are defined by a ⊕ b = min(a, b) and a � b = a + b
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Figure 2. The (I, J)-Tamari lattice for I = {0, 1, 3, 4, 6, 7} and J =
{2, 5, 8}, and the corresponding representation in terms of ν(I, J)-paths.

(see [MS15] for an introduction to the subject). The tropical projective space is

TPd =
(
(R ∪∞)d+1 \ (∞,∞, . . . ,∞)

)
/R(1, 1, . . . , 1),

and a tropical hyperplane is the “tropical vanishing locus” of a tropical linear
equation ⊕ ai ⊕ xi, where the tropical vanishing locus is the set of points where
the minimum min(ai + xi) is attained at least twice. Each tropical hyperplane
subdivides the space as the normal fan of a simplex.

Combinatorial types of arrangements of (possibly degenerate) tropical hyper-
planes in tropical projective space are in correspondence with regular subdivisions
of subpolytopes of products of simplices [DS04; AD09; FR15]. Regular subdivisions
are those obtained by considering the lower envelope of a lift of the vertices into
an extra dimension (see [DLRS10] for details). The heights of the lift determine
the coefficients of the equations of the tropical hyperplanes of an arrangement
that induces a polyhedral decomposition of TPd whose poset of bounded cells is
anti-isomorphic to the poset of interior cells of the triangulation (see [DS04]).

6.2. ν-Tamari posets and ν-Associahedra in type B

This section reports joint work with Cesar Ceballos and Camilo Sarmiento from
“Geometry of ν-Tamari lattices in types A and B” [16].

There are several connections between associahedra and Coxeter groups. The
generalized associahedra are a family of simple polytopes that encode the mutation
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graphs of cluster algebras of finite types [FZ02; FZ03a; FZ03b], and for which
various realizations have been found [CFZ02; HLT11; PS15; RS09; Ste12]. For
the An root system, one obtains a classical n-dimensional associahedron. The
generalized associahedron corresponding to Bn is the n-dimensional cyclohedron,
a polytope that had appeared first in the work of Bott and Taubes [BT94], and
was later realized as a convex polytope by Markl [Mar99] and Simion [Rod03].

The associahedral triangulation An admits a cyclic action whose orbit gives a
flag regular triangulation of ∆n×∆n that, combinatorially, is the join of a simplex
with the boundary complex of a simplicial n-cyclohedron. For this reason we call
it the cyclohedral triangulation Cn, and see it as a type B analogue of An.

Figure 3. The Hasse diagram of the type Bn Tamari lattice for n = 3
from [Tho06, Figure 5] on the left, and the Hasse diagram of the cyclic
([3], [3])-Tamari poset on the right.

Maximal simplices of the restriction of Cn to ∆I × ∆J are indexed by cyclic
(I, J)-trees. These are cyclically non-crossing subgraphs KI,J that can be drawn
on the surface of a cylinder to make the parallelism with (I, J)-trees more evident.
By analogy with (I, J)-trees, they can be naturally given the structure of a poset
that we call the cyclic (I, J)-Tamari poset. This new poset is a generalization
of the type B Tamari lattice, independently discovered by Thomas [Tho06] and
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Reading [Rea06], and whose Hasse diagram can be realized geometrically as the
edge graph of the cyclohedron. The n = 3 case is shown in Figure 3.

The same techniques used for Theorem 6.1 in type A can be used to get tropical
realizations of these posets.

Theorem 6.3 ([16]). The Hasse diagram of cyclic (I, J)-Tamari poset can
be realized geometrically as the edge graph of a polyhedral complex induced by an
arrangement of tropical hyperplanes.

Figures 4 and 5 display (I, J)-cyclohedra corresponding to the first few Fuss-
Catalan cases in dimensions two and three. Note that they are polyhedral subdi-
visions of classical cyclohedra into Cartesian products of associahedra and at most
one cyclohedron. The support of the (I, J)-cyclohedron is convex whenever (I, J)
does not have two cyclically consecutive elements of J (when |I| ≥ 2 and |J | ≥ 3),
and in this case the convex hull is a classical cyclohedron.

Figure 4. Some Fuss-Catalan (I, J)-cyclohedra in dimension two.

Figure 5. Some Fuss-Catalan (I, J)-cyclohedra in dimension three.
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6.3. Dyck path triangulations and extendability

This section reports joint work with Cesar Ceballos and Camilo Sarmiento from
“Dyck path triangulations and extendability” [03].

In this section, we introduce another nice family of triangulations of ∆n×∆n.
Our presentation describes the associahedral triangulation An as “non-crossing”.
Its “non-nesting” counterpart is the restriction of the staircase triangulation of
∆n ×∆n to Un, and its maximal simplices are described in terms of Dyck paths.
Relatives of this triangulation have also appeared under different guises along-
side An in [GGP97; PPS10; SSW17; SP02; Sta86]. We can apply the same cyclic
action that constructed the cyclohedral triangulation Cn from the associahedral
triangulation An to obtain a full triangulation of ∆n × ∆n called the Dyck path
triangulation Dn+1.

The study of the Dyck path triangulation is motivated by extendability prob-
lems of partial triangulations of ∆m×∆n. The k-skeleton of ∆m, which we denote
by ∆(k)

m , is the polyhedral complex of all faces of ∆m of dimension less than or
equal to k. A partial triangulation of ∆m×∆n is a triangulation of the polyhedral
complex ∆(k)

m ×∆n. Such a triangulation is said to be extendable if it is equal to the
restriction of a triangulation of ∆m×∆n to ∆(k)

m ×∆n. The question of extendabil-
ity of triangulations of ∆(k)

m ×∆n was first systematically considered for k = 1 by
Ardila and Ceballos in [AC13], who completely characterized the extendable tri-
angulations of ∆(1)

2 ×∆n. There, in an attempt to prove the Spread Out Simplices
Conjecture of Ardila and Billey [AB07, Conjecture 7.1], the authors formulated
the Acyclic System Conjecture [AC13, Conjecture 5.7], which concerned a suffi-
cient condition for the extendability of triangulations of ∆(1)

m ×∆n. Shortly after,
however, the Acyclic System Conjecture was disproved by Santos [San13]. These
results motivate the search for necessary and sufficient conditions for extendability.

Our first contribution in [03] is the following extendability theorem.
Theorem 6.4 ([03]). Let m,n, k be nonnegative integers such that m ≥ k > n.

Every triangulation of ∆(k)
m ×∆n extends to a unique triangulation of ∆m ×∆n.

In considering whether the bound k > n in Theorem 6.4 is optimal, we are led
to the Dyck path triangulation of ∆n×∆n. This triangulation is the main tool to
explicitly construct a family of partial triangulations that shows that the assertion
of Theorem 6.4 does not generally hold when m > k = n.

Theorem 6.5 ([03]). For every positive n there is a non-extendable triangula-
tion of ∂ (∆n+1)×∆n.

Apart from providing a characterization of extendable triangulations of ∆(k)
m ×

∆n, these results admit additional interpretations that render them of broader
interest.

In particular, Theorems 6.4 and 6.5 naturally translate into the language of
tropical oriented matroids (which we abbreviate as TOMs). This concept was
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introduced by Ardila and Develin as an analogue of classical oriented matroids
for the tropical semiring [AD09]. The combinatorics of an arrangement of m
tropical pseudohyperplanes in the tropical space Tn−1 is captured by its TOM.
The Topological Representation Theorem establishes a correspondence between
TOMs (with parameters (m,n)) and subdivisions of ∆m × ∆n [AD09; Hor12;
OY11]. More concretely, triangulations of ∆m ×∆n correspond to generic TOMs
and triangulations of ∆(k)

m × ∆n correspond to compatible collections of generic
subarrangements of k pseudohyperplanes. In this context, our results imply the
following statement.

Corollary 6.6 ([03]). The TOM of any generic arrangement of tropical pseudo-
hyperplanes in Tn−1 is completely determined by the TOMs of its subarrangements
of n pseudohyperplanes.

IfM is a TOM of an arrangement whose pseudohyperplanes have labels in [m],
denote byM|S the TOM of the subarrangement corresponding to the hyperplanes
with labels in S ⊆ [m]. Theorem 6.4 can be read as follows.

Corollary 6.7 ([03]). For each S ∈
(

[m]
n+1

)
, let MS be the TOM of a generic

arrangement of n + 1 pseudohyperplanes in Tn−1 with labels in S. If the TOMs
in this collection are compatible in their intersections, then there exists a unique
arrangement of m pseudohyperplanes in Tn−1 whose TOMM fulfillsM|S =MS.

These corollaries should be compared with analogous results in classical ori-
ented matroid theory: every oriented matroid of rank n − 1 is completely de-
termined by its submatroids with n elements and every compatible collection of
submatroids with n + 1 elements can be completed to a full oriented matroid
(cf. [Bjö+99, Corollaries 3.6.3 and 3.6.4]).

Appendix 6.3. Tools for proving Theorem 6.4

6.3.A. Matching ensemble representation. Identifying the vertices of ∆m×
∆n with the edges of Kn,m, every triangulation of ∆m × ∆n gives rise to a col-
lection of perfect matchings on all subgraphs of Kn,m induced by subsets I ⊂ [m]
and J ⊂ [n] of the same cardinality. Roughly, it collects the information of what
subset of every circuit of ∆m ×∆n appears as a simplex of the triangulation.

Suho Oh and Hwanchul Yoo [OY13] found a concise characterization of those
collections of perfect matchings which correspond to triangulations of ∆m × ∆n,
hence discovering a novel matching ensemble representation for triangulations of
∆m×∆n. This combinatorial description turns out to be very practical to describe
triangulations and determine their extendability.

6.3.B. The Dyck path triangulation (and some relatives). The Dyck
path triangulation Dn can be described in terms of Dyck paths in the grid repre-
sentation �n×n, that is, monotonically increasing paths from the square (1, 1) to
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the square (n, n) of �n×n, in which every square (i, j) satisfies i ≤ j. The maximal
simplices of Dn are the Dyck paths in �n×n, together with the orbit of simplices
they generate under an action that cyclically shifts the indices in both factors of
∆n−1 ×∆n−1 simultaneously. One example is depicted in Figure 6(a).

(a) The triangulation D3 of ∆2 ×∆2. (b) The triangulation D3 of ∆2 ×∆2.

Figure 6. The Dyck path triangulation of ∆2×∆2 and its flipped version
in the grid and mixed subdivisions representations.

For us, the crucial property of Dn that underlies the construction for Theo-
rem 6.5 is that it admits a geometric bistellar flip supported on the central cir-
cuit. Performing this flip does not alter the restriction of Dn to the boundary of
∆n−1 × ∆n−1. The resulting triangulation is the flipped Dyck path triangulation
Dn; illustrated for n = 2 in Figure 6(b).
The next ingredient is a natural extension ofDn to a triangulation of ∆n×∆n−1

called the extended Dyck path triangulation and denoted by Dext
n . The simplices

of the extended Dyck path triangulation for n = 3 are shown in Figure 7. The
restriction of Dext

n to ∂ (∆n)×∆n−1 gives a partial triangulation whose restriction
to a facet coincides with Dn. Replacing this instance of Dn by Dn, without
modifying the triangulation of the remaining facets of ∂ (∆n)×∆n−1 provides our
non-extendable partial triangulation.

Figure 7. The triangulation Dext
3 of ∆3 × ∆2 in the grid and mixed

subdivision representations. (The grid of a simplex is colored with more
than one color if it appears in more than one cyclic shift.)

6.4. Open problems and perspectives

In the original applications of tropical geometry, one tropicalizes an algebraic
variety to get a piecewise linear object. Algebraic properties of the original variety
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become combinatorial features of a polyhedral complex, which are hopefully more
approachable. Tropicalization has also been succesfully used to simplify polyhe-
dra and answer computational complexity questions [All+18]. In [16] we use a
somehow reverse strategy. We answer a question from combinatorial geometry by
means of tropical geometry. Of course, many other problems on polytopal realiz-
ability can be approached with this technique; specially if one considers general
tropical varieties and not only tropical hyperplane arrangements. A first chal-
lenge would be to find polytopal realizations for the s-permutahedra introduced
in [CP19], which are a kind of permutahedral analogues of ν-Tamari complexes.

The generalization of triangulations to multitriangulations naturally leads to
the definition of the (simplicial) multiassociahedron, which is the simplicial com-
plex of (k+ 1)-crossing-free subsets of diagonals of a convex (n+ 2)-gon. It is con-
jectured that this complex should be realizable as the boundary complex of a sim-
plicial polytope [Jon05], whose dual would be a simple polytope ∆∗n+2,k known as
the simple multiassociahedron. Surprisingly, despite the multiple different known
realizations of the associahedron, only for very few cases this is known to hold
(see the introductions of [BCL15] and [Man17], and the references therein, for the
current knowledge on the existence of these polytopes). Proving the polytopality
of general multiassociahedra is wide open.

In [18], we give new interpretations of the ν-Tamari lattice based on the notion
of ν-tree. In particular, we show that the Hasse diagram of the ν-Tamari lattice
can be obtained as the facet adjacency graph of certain subword complex. Sub-
word complexes are simplicial complexes introduced by Knutson and Miller in their
study of the Gröbner geometry of Schubert varieties [KM04; KM05]. Thanks to
this interpretation, the definition of the multiassociahedron can be naturally gener-
alized to ν-trees, giving rise to the (k, ν)-Tamari complex, which is also a subword
complex (these are the complexes of k-north-east fillings considered in [SS12]). It
specializes to the ν-Tamari complex when k = 1, and for ν = (NE)n it is the
classical k-multiassociahedron.

When k = 1, the (1, ν)-Tamari complex is realized by the ν-associahedron
that we just presented. And when ν = (NEm)k+1, we show in [18] that the facet
adjacency graph of the (k, ν)-Tamari complex can be realized as the edge graph
of a polytopal subdivision of one of the few simple multiassociahedra that are
known to be polytopal. It is very tempting to ask whether a similar result might
hold for more general k and ν, generalizing our results from Section 6.1 to other
multiassociahedra.
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“Newton polytopes of principal A-determinants”. In: Soviet Math.
Doklady 40 (1990), pp. 278–281.

[GZK91] Izrail M. Gel’fand, Andrei V. Zelevinskĭı, and Mikhail M. Kapranov.
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