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ABSTRACT. We introduce Cayley posets as posets arising naturally from pairs S < T of semi-
groups, much in the same way that a Cayley graph arises from a (semi)group and a subset. We show
that Cayley posets are a common generalization of several known classes of posets, e.g. posets of
numerical semigroups (with torsion) and more generally affine semigroups. Furthermore, we give
Sabidussi-type characterizations for Cayley posets and for several subclasses in terms of their en-
domorphism monoid. We show that large classes of posets are Cayley posets, e.g., series-parallel
posets and (generalizations of) join-semilattices, but also provide examples of posets which cannot
be represented this way. Finally, we characterize (locally finite) auto-equivalent posets (with a finite
number of atoms) - a class that generalizes a recently introduced notion for affine semigroups - as
those posets coming from a finitely generated submonoid of an abelian group.

1. INTRODUCTION

Cayley graphs of groups are a classical topic in algebraic graph theory. They play a prominent
role in (books devoted to) the area, see e.g. [10]. A particular and central result of the theory, due to
Sabidussi [44] characterizes Cayley graphs of groups via the action of their automorphism group.
Cayley graphs of monoids and semigroups have been less studied, but still there is a considerable
amount of work, see e.g. [30] for a book and the references therein. In semigroups, analogues of
the above result of Sabidussi remain open. Characterizations of Cayley graphs of certain classes of
semigroups have been subject to some research effort, see [1,11–13,18,20–24,26,32,35,36,50,51].
Conversely, also characterizations of semigroups admitting Cayley graphs with certain (mostly
topological) properties have been investigated extensively [15, 17, 19, 28, 29, 40, 45–47, 53]. With
respect to groups there is a well-known book concerning the topic [52].

In the present paper we pursue questions of this type in a setting which naturally excludes
groups from the picture. Namely, we study semigroups whose Cayley graph yields a partially
ordered set (poset). We call the resulting posets Cayley posets. Such objects arise also naturally
from considering (relative) Green’s relations on semigroups. An important class of Cayley posets
are numerical semigroups (see the books [2, 41, 43]), and more generally numerical semigroups
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with torsion (see [9, 31]) and affine semigroups (see the books [6, 37, 42, 49]). Further examples
include families defined in order to construct diamond free posets in [7].

Let us define the setting of this article in the slightly more general language of acts, see [27].
Let (X,S) be a semigroup (right) act, i.e., X is a set and (S, ·) a semigroup with an operation
such that xs ∈ X and (xs)s′ = x(s · s′) for all x ∈ X and s, s′ ∈ S. We define the binary relation
≤S on X via x ≤S y :⇐⇒ ∃s ∈ S : xs = y.1

In this paper we study acts such that ≤S is an order-relation. In this case, we denote the poset
given by ≤S on X as P (X,S) and call it the Cayley poset of (X,S). Another way of seeing the
objects we study is from the point of view of Green’s relations. The semigroup (acts) we consider
are such that the R-classes of their Green’s relations are trivial. Note that in the study of Green’s
relation the order based on the R-relation is often defined as x ≤S y :⇐⇒ ∃s ∈ S : sx = y, but
we stick to our convention motivated from directed (right) Cayley graphs. See standard semigroup
books such as [5, 14] for more details on Green’s relation.

Let us give a more detailed overview of the objects and results of the present paper. First, we
characterize the acts that generate posets as those that are s-unital and acyclic (Proposition 2.1).
Then we prove that in fact every poset is the Cayley poset of a monoid act (Theorem 2.2). We
thus consider natural special cases of Cayley posets of acts (always assuming them to be s-unital
and acyclic). If X = T is a semigroup such that S < T is a subsemigroup and the act consists
of right-multiplication, we say that the Cayley poset P (T, S) is a semigroup poset. If furthermore
S = T we say that P (T, S) = P (S, S) is full. If T and S are monoids N,M , and M < N is a
submonoid we say that P (T, S) = P (N,M) is a monoid poset. See Figure 1 for an example.
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FIGURE 1. The N-poset is a monoid poset via P (N, {a, c, d}) and is full as wit-
nessed by P (S, S).

With these definitions we can describe well-known classes of posets as special cases of the
above mentioned. An important class of Cayley posets are affine semigroups, that is, P (N,M)
where N = Zn with the usual addition, and M is a submonoid of Zn without invertible elements
different from 0. These posets have been studied due to their relation with (binomial) lattice ideals
(see, for example, [3, 8, 16, 37, 38, 49]). As a prominent subfamily of affine semigroups, one
has numerical semigroups, which can be seen as P (M,M) where M is a submonoid of N, see
Figure 2 for an example and [2,41,43] for literature on the topic. Recently, numerical semigroups
with torsion were studied in [9, 31], where N = N × T for a finite Abelian group T . Further
examples of monoid posets include families defined in order to construct diamond free posets
in [7]. Here for a group G and a set of generators H the corresponding Cayley poset is defined as
P (G× Z, 〈H × {1}〉 ∪ {(e, 0)}).

Here, we present Sabidussi-type characterization results for semigroup posets (Theorem 2.4),
monoid posets (Theorem 2.6), full posets (Corollary 2.5) and full monoid posets (Theorem 2.8),
i.e., these are characterizations in terms of the endomorphism monoid of the poset much like
Sabidussi’s classical characterization of Cayley graphs of groups [44].

There are natural inclusions among the considered classes, (as mentioned above Cayley posets
of acts coincide with all posets). In Sections 3, 4 and 5 we give some properties of different types

1Note that if X is a (semi)group, S ⊆ X is just a subset, and the · is right-multiplication, then the resulting relation
coincides with the Cayley graph of X with respect to S.
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FIGURE 2. The numerical semigroup P (M,M), where M is the submonoid of N
generated by 3 and 5.

of Cayley posets and show that all these inclusions are strict, by giving posets in the respective
difference sets. See the diagram in Figure 3 for an illustration.

all posets=monoid acts

semigroup

monoid

full monoid=semigroup with min

full

series-parallel

series-parallel with min

...

FIGURE 3. Inclusions among considered classes and posets witnessing strictness
of containment.

Partially thanks to the characterization theorems we are able to show that semigroup posets are
closed under natural poset operations such as addition of maxima or minima, Cartesian products,
retracts, series and parallel composition, and certain blow-up operations. This way we construct
large families of semigroup posets in Section 4. A particular result of this section is that series-
parallel posets are full.

In [4, Section 5] the authors characterize posets coming from finitely generated submonoids
M of Zm. In this result, there is a rather technical condition saying that a certain group has to
be saturated. Section 6 is devoted to a generalization of this result. In Theorem 6.3 we prove
that posets coming from finitely generated submonoids of an abelian group are characterized by
dropping this technical assumption.

We conclude by resuming several questions that come up through the paper in Section 7.
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2. CHARACTERIZATIONS

In this section we present several characterization results for classes of Cayley posets. First, let
us describe under which conditions on a semigroup act (X,S) the relation≤S is an order relation.

Proposition 2.1. Let (X,S) be a semigroup (right) act. The relation ≤S is an order relation if
and only if (X,S) satisfies

• ∀x ∈ X ∃s ∈ S : xs = x (s-unital)
• ∀x ∈ X ∀s, s′ ∈ S : x = xss′ =⇒ x = xs (acyclic)

Proof. Clearly, x ≤S y and y ≤S z implies xs = y and ys′ = z for some s, s′ ∈ S. Thus,
z = (xs)s′ = x(s · s′) and x ≤S z, i.e., ≤S is transitive.

Obviously, ≤S is reflexive if and only if the act is s-unital.
Let us now see that ≤S is anti-symmetric if and only if the act is acyclic. We can do the

following equivalent transformations starting with acyclicity, i.e., x ≤S y and y ≤S x =⇒ x =
y, which is equivalent to xs = y and ys′ = x =⇒ x = y, which in turn is equivalent to
xss′ = x =⇒ xs = x. �

Next, we show that indeed every poset is the Cayley poset of a monoid act.

Theorem 2.2. For every poset P there is a monoid act (X,M) such that P ∼= P (X,M).

Proof. Denote the ground set of the poset P byX and letM = {ϕ : P → P | ∀x ∈ P, x ≤ ϕ(x)}
with the operation ϕϕ′ := ϕ′ ◦ ϕ. We prove that the mapping x · φ := φ(x) is a monoid act such
that P ∼= P (X,M).

Let ϕ, ϕ′ ∈ M then ∀x ∈ P we have ϕϕ′(x) = ϕ′ ◦ ϕ(x) = ϕ′(ϕ(x)) ≥ ϕ(x) ≥ x thus
ϕϕ′ ∈ M and M is a semigroup. Moreover id ∈ M thus M is a monoid. Moreover, we clearly
have x · ϕ ∈ X and (x · ϕ)ϕ′ = x · (ϕϕ′) for all x ∈ X and ϕ, ϕ′ ∈M . Thus (X,M) is a monoid
act. Now, let us show that the relation x ≤◦ y ⇐⇒ ∃ϕ∈M : y = ϕ(x) is s-unital and acyclic.
First, ∀x ∈ M,x · id = x which shows that ≤◦ is s-unital. Second, for x ∈ P and ϕ, ϕ′ ∈ M
x · ϕϕ′ = x ⇒ ϕ(x) ≤ ϕ′(ϕ(x)) = x and x ≤ ϕ(x) then ϕ(x) = x thus ≤◦ is acyclic. Now we
will show that ∀x, y ∈ P we have x ≤ y ⇔ x ≤◦ y.

"⇒" : if x ≤ y then define ϕx,y(z) := y if z = x and z otherwise. Clearly, ϕx,y ∈ M and
ϕx,y(x) = y thus x ≤◦ y.

"⇐" : if x ≤◦ y then y = x · ϕ for some ϕ ∈ M . Thus, y = ϕ(x), which by the definition of
M implies x ≤ y.

This concludes the proof.
�

For a poset P , the monoid of order endomorphisms of P with the composition will be denoted
by End(P ). We recall that an upset (resp. a downset) in a poset P is an upward (resp. downward)
closed subset F ⊆ P . The principal upset and downset of x will be denoted by ↑ x := {y ∈ P |
x ≤ y} and ↓x := {y ∈ P | x ≥ y}, respectively2 .

For a semigroup T , we set L(T ) := {ϕt | t ∈ T}, where ϕt : T → T is defined as ϕt(x) = tx,
i.e., ϕt is the left-multiplication by t. Since ϕt◦ϕt′ = ϕt·t′ , it follows that L(T ) is a semigroup with
the composition and that t 7→ ϕt is a semigroup epimorphism from (T, ·) to (L(T ), ◦). Moreover,
L(T ) is a monoid whenever T has a left identity.

The following lemma will be useful for the upcoming characterizations of different types of
Cayley posets.

Lemma 2.3. Let S < T semigroups and P ∼= P (T, S) a semigroup poset. Then, L(T ) is a
subsemigroup of End(P ). Moreover, (L(T ), ◦) and (T, ·) are isomorphic semigroups.

2Upsets and downsets are sometimes called filters and ideals, respectively.
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Proof. Let ϕt ∈ L(T ) and consider t′, t′′ ∈ T such that t′ ≤ t′′. Taking s ∈ S such that t′s = t′′,
we have that ϕt(t

′) ≤ ϕt(t
′)s = tt′s = tt′′ = ϕt(t

′′). Thus, L(T ) ⊆ End(P ) and, hence, L(T ) is a
subsemigroup of End(P ). Finally, let us show that t 7→ ϕt is an injection. Assume that ϕt = ϕt′ .
Since P (T, S) is a semigroup poset it follows that ↑ t′ = ϕt′(S) = ϕt(S) =↑ t, which implies that
t′ = t. �

We now proceed to characterize semigroup posets.

Theorem 2.4. Let P be a poset. There are semigroups S < T such that P ∼= P (T, S) if and only
if there is a subsemigroup L < End(P ) and an upset F ⊆ P such that for every element x ∈ P
there is a unique ϕx ∈ L such that ϕx(F ) =↑x. Moreover, in this case S = F and L = L(T ).

Proof. "⇒": Let P ∼= P (T, S). By Lemma 2.3 we have T ∼= L(T ) < End(P ). For every x ∈ T
the mapping ϕx exists and is unique because T ∼= L(T ). By the definition of P (T, S), S is clearly
an upset of P and ϕx(S) =↑x.

"⇐": Let T be the ground set of P . For every x, y ∈ T , we define the operation xy := ϕx(y).
Before proving that this operation is associative we are going to show that ϕx ◦ ϕy = ϕϕx(y).
Indeed, ϕx ◦ ϕy = ϕw for some w ∈ P because L is a semigroup. Moreover, ↑ w = ϕw(F ) =
ϕx ◦ ϕy(F ) = ϕx(↑ y); and ϕx(↑ y) ⊆↑ϕx(y) because ϕx is an endomorphism of P . This proves
w ≥ ϕx(y). Taking s ∈ F so that ϕy(s) = y, we get that ϕx(y) = ϕx ◦ ϕy(s) = ϕw(s) ∈↑w, i.e.,
ϕx(y) ≥ w. Thus, w = ϕx(y) and we have that:

(xy)z = ϕxy(z) = ϕϕx(y)(z) = ϕx ◦ ϕy(z) = ϕx(ϕy(z)) = ϕx(yz) = x(yz).

Set S := F and let us see that S is a subsemigroup of T . Take x, y ∈ S, since S is an upset we
have that xy = ϕx(y) ∈↑ x ⊆ S. Finally, let x, y ∈ T such that x 6 y. Thus, y ∈ ϕx(S), i.e.,
y = xs for some s ∈ S. Conversely, if y ∈ ϕx(S), then y = ϕx(s) = xs for some s ∈ S and,
hence, y ≥ x. This proves that P ∼= P (T, S). �

Next, we quickly deduce a characterization of full posets.

Corollary 2.5. A poset P is a full semigroup poset if and only if there is a subsemigroup T <
End(P ) such that for every element x ∈ P there is a unique ϕx ∈ T such that ϕx(P ) =↑x.

Proof. By Theorem 2.4 we have that in a semigroup poset P (T, S) the upset F corresponds to S.
Thus, the fact that S = T corresponds to F = P . This yields the result. �

The following theorem gives a characterization of monoid posets.

Theorem 2.6. Let P be a poset. There are monoids M < N such that P ∼= P (N,M) if and only
if there is a submonoid L < End(P ) and a principal upset ↑ e ⊆ P such that for every element
x ∈ P there is a unique ϕx ∈ L such that ϕx(↑ e) =↑ x. Moreover, in this case ↑ e = M and
L = L(N) ∼= N .

Proof. "⇒": We first observe that M = ↑ e, where e ∈ N is the identity element. By Theorem 2.4
we have that N ∼= L(N) and L(N) is a subsemigroup of End(P ). Since ϕe = id, we conclude
that R is a submonoid of End(P ).

"⇐": We take N = L and M =↑ e, by Theorem 2.4 if suffices to prove that N is a monoid and
that M is a submonoid. Since L is a submonoid of End(P ), there exists x ∈ P such that ϕx = id.
Hence ϕx(e) = id(e), which implies that x = e ∈ M and e is the identity. Thus, N is a monoid
and M is a submonoid of N . �

We do not know, whether only requiring L to be a subsemigroup in Theorem 2.6 yields a
strictly larger class of semigroup posets. To finish this section, we provide a slightly different type
of characterization for full monoid posets. Before proving the characterization we introduce an
easy lemma that will be useful in the forthcoming.

Lemma 2.7. Let P ∼= P (T, S) and let m ∈ T . If m = mm, then x = mx for all x ∈↑m.
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Proof. If x ∈↑m, then there exists an y ∈ S such that x = my; then x = my = mmy = mx. �

Theorem 2.8. A poset P is a full monoid poset if and only if P is a semigroup poset with global
minimum.

Proof. "⇒": Assume that P ∼= P (M,M) and denote by e ∈ M its identity element. For all
x ∈M we have that ex = x, thus x > e. We conclude that e is the minimum of P .

"⇐" Assume that P ∼= P (T, S) and denote by m the minimum of P . We have that T = ↑m =
{ms | s ∈ S}. Then there exists an s ∈ S such that m = ms. Moreover, since m is the minimum,
it follows that m ≤ mm ≤ ms = m and we conclude that mm = m. By Lemma 2.7 and the
fact that T = ↑m, it follows that mx = x for all x ∈ T . Thus T = ↑m = {ms | s ∈ S} = S.
To finish the proof it suffices to verify that xm = x for all x ∈ T , but this follows easily because
↑ x = {xs | s ∈ S} and m is the minimum of S. Then we conclude that S = T is a monoid with
identity m and P is a full monoid poset. �

3. FIRST SEPARATIONS BETWEEN CLASSES OF POSETS

Figure 3 shows different classes of posets partially ordered by inclusion and examples separat-
ing the classes. This section is devoted to partially justify this figure, the rest of this proof will
be done in Sections 4 and 5. A first easy observation is that every full monoid poset has a global
minimum which corresponds to the neutral element (see Theorem 2.8). Hence the N-poset (which
is a full semigroup poset and a monoid poset, see Figure 1) is not a full monoid. Moreover, the
N-poset is not a series-parallel poset. Indeed, it is exactly the forbidden induced subposet for the
elements of this class, see [48].

The main results of this section are examples of:
(a) monoid posets which are not full semigroup posets (Theorem 3.1 for an infinite poset and

Corollary 3.3 for a finite one),
(b) full semigroup posets which are not monoid posets (Theorem 3.5), and
(c) posets which are not semigroup posets (Theorem 3.4).

From (a) and (b) we have that there is not containment between the classes of monoid posets and
full semigroup posets. From (c) we derive that semigroup posets form a strict subfamily of the
class of all posets.

The infinite poset mentioned in (a) consists of the natural numbers (N,≤) ordered by a < b
if and only if b − a ≥ 2 (see Figure 4). It turns out that this poset is isomorphic to the monoid
poset P (N, 〈2, 3〉) where N is the monoid of natural numbers with the addition and 〈2, 3〉 =
{2α + 3β |α, β ∈ N} is the submonoid of N spanned by 2 and 3.

Theorem 3.1. The poset (N,≤) with a < b if and only if b− a ≥ 2 is a monoid poset but is not a
full semigroup poset.

Proof. As we mentioned before, (N,≤) is isomorphic to P (N, 〈2, 3〉) and, thus, it is a monoid
poset. Assume by contradiction that (N,≤) is a full semigroup poset. Thus, N can be endowed
with an operation · so that S = (N, ·) is a semigroup and (N,≤) ∼= P (S, S).

We claim that either 0 · 0 = 0 or 0 · 1 = 0. Indeed, there exists an y ∈ N such that 0 · y = 0.
Moreover, 0 and 1 are the two minimal elements of (N,≤), so we have that either 0 ≤ 0 · 0 ≤
0 · y = 0, or 0 ≤ 0 · 1 ≤ 0 · y = 0; and the claim follows.

Assume first that 0 ·0 = 0. Then by Lemma 2.7 we have that 0 ·y = y for all y ∈ ↑ 0 = N−{1}.
Since the poset is full, then 0·1 ≥ 0. Moreover, 0·1 ≤ 0·3 = 3 and 0·1 ≤ 0·4 = 4, so we conclude
that 0 · 1 = 0. We also have that 1 · 1 = 1 because 1 · 1 ≥ 1 and 0 · (1 · 1) = (0 · 1) · 1 = 0 · 1 = 0.
So again by Lemma 2.7 we have that 1 · y = y for all y ∈ ↑ 1 = N − {0, 2}. Since the poset is
full, then 1 · 2 ≥ 1. Moreover, 1 · 2 ≤ 1 · 4 = 4; so we conclude that 1 · 2 ∈ {1, 4}. Finally, we
have that 2 = 0 · 2 = (0 · 1) · 2 = 0 · (1 · 2) ∈ {0 · 1, 0 · 4} = {0, 4}, a contradiction.
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FIGURE 4. (N,≤) with a < b ⇐⇒ b− a ≥ 2

Assume now that 0 · 0 > 0, then 0 · 1 = 0. As a consequence 0 · (1 · 0) = (0 · 1) · 0 = 0 · 0 > 0
and then 1 · 0 > 1. Therefore, we have that 1 · 1 = 1 and by Lemma 2.7 we have that 1 · y = y for
all y ∈ ↑ 1. Now we have that 1 · 2 ≥ 1 · 0 > 1, 1 · 2 ≤ 1 · 4 = 4, so 1 · 2 = 4. However, this is not
possible because 1 · 0 > 1, 1 · 0 ≤ 1 · 2 = 4 and 1 · 0 ≤ 1 · 3 = 3. �

For every c ∈ N, one can consider the subposet (Nc,≤) of (N,≤) induced by the interval of
integers [0, c]∩N. If one observes Theorem 3.1, when proving that (N,≤) is not a full semigroup
poset the argument only involves the vertices {0, 1, 2, 3, 4} of the poset. Hence, one can mimic
the proof of Theorem 3.1 to get the following result.

Corollary 3.2. (Nc,≤) is not a full semigroup poset for all c ≥ 4.

Moreover, for c = 4 we have that (N4,≤) is a monoid poset.

Corollary 3.3. (N4,≤) is a monoid poset which is not a full semigroup poset.

Proof. We know that (N4,≤) is not a full semigroup poset by Corollary 3.2. Moreover (N4,≤)
is a semigroup poset P (N,M), where N = N4, M = N4 − {1} and with multiplication table as
shown in Figure 5. �

01234
11434
24444
33333

01234

0
1
2
3

10

32

N4

4 44444

4

FIGURE 5. (N4,≤) is a monoid poset via P (N4, {0, 2, 3, 4}) and not full by Corol-
lary 3.2.

For c ∈ N, one can also consider the subposet of (N,≤) induced by the set {0, 2, . . . , c}, which
we will denote by N∗c . Our next goal is to prove that for all c ≥ 6, then N∗c is not a semigroup
poset. The poset N∗6 is depicted in Figure 3.

Theorem 3.4. Let c ≥ 6 and denote by (N∗c ,≤) the poset with ground set {0, 2, . . . , c} and ordered
by a < b⇐⇒ b− a ≥ 2. Then, (N∗c ,≤) is not a semigroup poset.
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Proof. Assume by contradiction that (N∗c ,≤) is a semigroup poset. We observe that N∗c has 0
as global minimum, then by Theorem 2.8 we have that (N∗c ,≤) is a full monoid poset with 0 as
identity element. We divide the proof depending of the value of 2 · 2.

Case I: If 2 · 2 = 2. One can follow the same ideas as in the proof of Theorem 3.1 to get that
this is not possible. More precisely, one can prove that: (i) 2 · x = x for all x ∈ ↑ 2, (ii) 2 · 3 = 2,
(iii) 3 · x = x for all x ∈ ↑ 3, (iv) 3 · 4 ∈ {3, 6}; and conclude that this is not possible since
4 = 2 · 4 = (2 · 3) · 4 = 2 · (3 · 4) ∈ {2 · 3, 2 · 6} = {3, 6}.

Case II: If 2 · 2 /∈ {2, 4, 5}. Since 4, 5 ∈ ↑ 2, there exist x, y ∈ N∗c such that 2 · x = 4 and
2 · y = 5. However, for all z ∈ N∗c − {3} we have that 2 · z /∈ {4, 5}, a contradiction.

Case III: If 2 · 2 = 5. Since 4, 6 ∈ ↑ 2, there exist x, y ∈ N∗c such that 2 · x = 4 and 2 · y = 6.
However, for all z ∈ N∗c − {3} we have that 2 · z /∈ {4, 6}, a contradiction.

Case IV: 2 · 2 = 4. We are going to prove by induction that 2 · x = 2 + x for all x ∈
{0, 2, . . . , c − 2}. The result holds for x = 0 and x = 2. Assume now that the result holds for
x ∈ {0, 2, . . . , k− 1} and let us prove it for x = k ∈ {3, . . . , c− 2}. Since k+ 2 ∈ ↑ 2, then there
exists x ∈ N∗c such that 2 · x = k+ 2. By induction hypothesis we have that 2 · y = y+ 2 6= k+ 2
for y ∈ {0, 2, . . . , k − 1}. Moreover, 2 · (k − 1) = k + 1 and, hence, for y ∈ ↑ (k − 1) =
{k−1, k+1, . . . , c} we have that 2 ·y ≥ k+1. Hence we can only have that 2 ·k = k+2. Finally
we have that 2 · (c − 2) = c and 2 · (c − 3) = c − 1, but this implies that 2 · c ≥ 2 · (c − 2) = c
and 2 · c ≥ 2 · (c− 3) = c− 1, which is not possible because c− 1 and c are the two maxima of
(N∗c ,≤). �

Note that similar to the definitions of (Nc,≤) and (N∗c ,≤) there is a natural set of types of
subposets of P (Z, 〈2, 3〉) obtained from selecting all points between up to two chosen maxima
and up to two chosen minima. We believe that it is interesting to study these posets. Probably,
large enough posets of a given type all behave the same with respect to their Cayley properties.

We finish this section considering (Ni)i∈N, a family of full semigroup posets that are not monoid
posets. The posetNi is obtained from the N-poset by adding i new elements and the cover relations
i < i− 1 < · · · < 1 < a (see Figure 6).

Theorem 3.5. The poset Ni described in Figure 6 is a full semigroup poset for all i ≥ 1 and is
not a monoid poset for all i ≥ 2.

1

ca

b d

i

i - 1

. . .

FIGURE 6. Drawing of the poset Ni.

Proof. Figure 7 shows a multiplication table witnessing that N1 is a full semigroup poset.
By recurrence we define the multiplications involving the element i (see Figure 8):
• x · i = x · i and i · x = 1 · x for x ∈ {a, b, c, d}, and
• i · n = n · i = n for all n ∈ {1, . . . , i}.

It is straightforward to check that Ni is a full semigroup poset with this multiplication table.
Moreover let i ≥ 2 and assume that Ni

∼= P (N,M) is a monoid poset. By Theorem 2.6, M
corresponds to a principal upset ↑ e where e is the identity element of N . Moreover, for the



CAYLEY POSETS 9

abbba
bbbbb
bbcdb
ddddd

abcd1

a
b
c
d

1

ca

N1

1 abbb1

b d

FIGURE 7. N1 is a full semigroup poset.

abbbaa...a
bbbbbb...b
bbcdbb...b
dddddd...d

abcd12...i

a
b
c
d

Ni

1 abbb11...1
2

i

abbb12...2

abbb12...i
...

FIGURE 8. Cayley table witnessing that Ni is a full semigroup poset.

element i ∈ Ni there is a map ϕi such that ϕi(↑ e) =↑ i. Then, in particular, the cardinality of ↑ e
is greater or equal to the one of ↑ i, which is i+ 2. Hence, we deduce that e = i. Now, we observe
that c ≤ b and c ≤ d. Then, there exist x, y ∈ ↑ i, such that b = c · x and d = c · y. Nevertheless,
↑ i is a chain, so either x ≥ y or y ≥ x. If x ≥ y we get that b = c · x ≥ c · y = d, a contradiction.
If x ≤ y we get that b = c · x ≤ c · y = d, a contradiction too. Thus Ni is not a monoid poset. �

4. CONSTRUCTIONS

In the present section we investigate the behavior of being a semigroup poset under standard
poset and semigroup operations. A very simple result of this kind is the following

Observation 4.1. If S is a semigroup such that P ∼= P (S, S) is full, then the poset P̌ obtained by
adding a minimum is a full monoid poset P̌ = P (S ∪ {e}, S ∪ {e}), where S ∪ {e} is the monoid
obtained from S by adjoining the neutral element e.

Another similar operation is the following:

Observation 4.2. If S < T are semigroups such that P ∼= P (T, S) is a (full) semigroup poset,
then the poset P̂ obtained by adding a maximum is a (full) semigroup poset P̂ = P (T ∪ {a}, S ∪
{a}), where S ∪ {a} is the semigroup obtained from S by adjoining an absorbing element a, i.e.,
at = ta = a for all t ∈ T .

The Cartesian product of two posets P × P ′ is defined on the product set by setting (x, x′) ≤
(y, y′) if and only if x ≤ y and x′ ≤ y′. The Cartesian product of two semigroups is just defined
by componentwise operation.

Observation 4.3. If P and P ′ are semigroup posets, then P ×P ′ is a semigroup poset. Moreover,
P × P ′ is full (resp. a monoid poset) whenever both P and P ′ so are.

Proof. If P ∼= P (N,M) and P ′ ∼= P (N ′,M ′), then P × P ′ ∼= P (N × N ′,M × M ′) and
M ×M ′ < N × N ′. We have that M ×M ′ = N × N ′ if and only if M = N and M ′ = N ′.
Moreover, N ×N ′ is a monoid and M ×M ′ is a submonoid of it if both N , N ′ are monoids and
M < N,M ′ < N ′ are submonoids. �
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For semigroups S < T we call a semigroup-endomorphism σ : T → S of T a retract if
σ(T ) = S and for the restriction to S we have σ|S = idS . Note that if P ∼= P (T, S) and
σ : T → S a retract, then σ also is an order endomorphism of P .

Proposition 4.4. Let S < T be semigroups such that P ∼= P (T, S) and let σ : T → S be a
retract, then there is a semigroup T ′ such that P ∼= P (T ′, T ′), i.e., P is full.

Proof. Let P ∼= P (T, S) and let σ : T → S be a retract. Define a new operation on T by
t · t′ := tσ(t′) and call the new semigroup T ′.

First, we check that · is associative. Transform t · (t′ · t′′) = tσ(t′σ(t′′)). Since σ is a homomor-
phism and since it is a retract it is idempotent, the latter equals tσ(t′)σ(t′′) = (t · t′) · t′′.

Now, observe that since σ is the identity on S we have t = t′s ⇐⇒ t = t′ · s, i.e., both orders
are the same.

We conclude that P ∼= P (T ′, T ′) is full. �

An element x of a semigroup T is called irreducible if x = ab =⇒ x ∈ {a, b} for all
a, b ∈ T . Note that for P ∼= P (T, S) the set of irreducibles of T is a subset of S ∪Min(P ), since
if y < x and x /∈ S, then there is s ∈ S such that ys = x. Furthermore, x is self-centered if
yx = x ⇐⇒ xy = x for all y ∈ T . Note that if x commutes with every element of T or if it is
(right and left) cancellative, then x is self-centered.

Let x ∈ P a poset element and Q another poset, we denote by PxQ the blowup of x by Q,
which is the poset where x has been replaced by a copy of Q and all elements of Q behave with
respect to the elements of P \ x as x did (see Figure 9 for an example).

x

P Q PxQ

FIGURE 9. Example of a blowup.

Theorem 4.5. Let P and Q be semigroup posets and x ∈ P irreducible and self-centered. If
x ∈ Min(P ) or Q is full, then PxQ is a semigroup poset. If P and Q are full, then PxQ is full. If
P is a monoid poset with neutral element eP 6= x or Q is a monoid poset as well, then PxQ is a
monoid poset.

Proof. Let P ∼= P (T, S) and Q ∼= P (V, U). We will show that PxQ ∼= P (T ∪ V \ x, S ∪ U \ x)
where the new operation is defined as

t · t′ =



tt′ t, t′ ∈ T or t, t′ ∈ V,
xt′ t ∈ V, t′ ∈ T and xt′ 6= x,

tx t′ ∈ V, t ∈ T and tx 6= x,

t′ t′ ∈ V, t ∈ T and tx = x,

t t ∈ V, t′ ∈ T and xt′ = x.

Since x is irreducible, the operation is well defined.
We start by arguing, that the above operation is a semigroup. In words the above operation

does the following: If the elements come both from the same set, i.e., either T or V , then their
composition is unchanged. If one comes from T and one from V , then replace the one from V
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with x, unless this results in x. In the latter case just replace the product by the element of V . So,
let t, t′, t′′ ∈ V ∪ T . We want to show (t · t′) · t′′ = t · (t′ · t′′). If all three are in V or all three are
in T , we clearly have associativity. The remaining cases have to be considered individually.

Case 1. t, t′ ∈ T and t′′ ∈ V .

Case 1.1. tt′x = x.

This implies (t · t′) · t′′ = t′′. On the other hand, irreducibility of x and t(t′x) = x implies
(t′x) = x and t · (t′ · t′′) = t · t′′. But since tx = t(t′x) = x, also t · t′′ = t′′.

Case 1.2. tt′x 6= x.

This implies (t · t′) · t′′ = tt′x. On the other hand, if t′x 6= x, then t · (t′ · t′′) = t · (t′x) = tt′x.
If t′x = x, then tt′x 6= x implies tx 6= x and t · t′′ = tx = tt′x.

Case 2. t, t′′ ∈ T and t′ ∈ V .

Case 2.1. tx = x and xt′′ = x.

We have (t · t′) · t′′ = t′ · t′′ = t′ = t · t′ = t · (t′ · t′′).

Case 2.2. tx = x and xt′′ 6= x.

We have (t · t′) · t′′ = t′ · t′′ = xt′′ = t(xt′′) = t · (t′ · t′′).

Case 2.3. tx 6= x and xt′′ = x.

We have (t · t′) · t′′ = (tx)t′ = tx == t · t′ = t · (t′ · t′′).

Case 2.4. tx 6= x and xt′′ 6= x.

We have (t · t′) · t′′ = txt′′ = t · (t′ · t′′).

Case 3. t ∈ V and t′, t′′ ∈ T .

This case works analogous to Case 1.

Case 4. t ∈ T and t′, t′′ ∈ V .

Case 4.1. tx = x

We have (t · t′) · t′′ = t′ · t′′ = t · (t′ · t′′).

Case 4.2. tx 6= x

Note that txx = x implies x2 = x by irreducibility of x and hence tx = x, i.e., tx 6= x =⇒
txx 6= x and we compute (t · t′) · t′′ = (tx) · t′′ = tx = t · (t′ · t′′).

Case 5. t, t′′ ∈ V and t′ ∈ T .

Case 5.1. xt′ = x

Since x is self-centered, we have t′x = x. Thus, we compute (t · t′) · t′′ = t · t′′ = t · (t′ · t′′).

Case 5.2. xt′ 6= x

Again, since x is self-centered, we have t′x 6= x. Note furthermore that by x being self-centered
xt′x = x implies t′xx = x = xxt′ and as argued in Case 4.2 this yields t′x = x = xt′. Thus, in the
present case we have xt′x 6= x and we compute (t ·t′) ·t′′ = (xt′) ·t′′ = xt′x = t ·(t′x) = t ·(t′ ·t′′).

Case 6. t, t′ ∈ V and t′′ ∈ T .
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This case works analogous to Case 4.

Let us now see, that all order relations of PxQ are realized by the new operation. Let y < z be
two elements of PxQ. If both y, z ∈ T or both y, z ∈ V , then clearly this is the case. If y ∈ T and
z ∈ V , then y < x in P , so ys = x for some s ∈ S. Since y 6= x and x is irreducible, this implies
that x = s, i.e., yx = x. Thus, y · z = z after the fourth part of “·”. Since x /∈ Min(P ), we have
that Q is full, i.e., z ∈ U and y < z. If y ∈ U and z ∈ T , then there is an s ∈ S so that xs = z in
P and we have ys = z by the second part of “·”.

Now we show that no new comparabilities can arise. Let t ∈ T ∪ V \ {x} and s ∈ S ∪U \ {x}
and t′ = t · s. We have to show that t ≤ t′ in PxQ. This clearly holds if t ∈ T and s ∈ S or t ∈ V
and s ∈ U .

If t ∈ T and s ∈ U , then t′ = tx if tx 6= x. Since x ∈ S, this yields t < t′ in PxQ. If tx = x,
then t′ = s, but again since x ∈ S by tx = x we have t < x in P and thus t < s in PxQ.

If t ∈ V and s ∈ S, then t′ = xs if xs 6= x by the second part of “·”, i.e., x < t′ in P and thus
t < t′ in PxQ. If xs = x, then t′ = t by the fifth part of “·” and we clearly have t ≤ t′ in PxQ.

It remains to show the last part of the proposition. Using the the characterization theorems from
Section 2 we get the following: Since x ∈ Min(P ) or Q is full (and x ∈ S), we have that S ∪ U
is an upset of PxQ. Thus, if both are full, then so is PxQ. Finally, if P is a monoid and x 6= eP ,
where eP is the neutral element of P , then in the new operation eP is the neutral element for PxQ.
However, if x = eP , but Q is a monoid with neutral element eQ, then eQ is the neutral element for
PxQ. �

Note that if x, y are irreducible and self-centered in P , then y is irreducible and self-centered in
PxQ and; moreover, the operations defined following in Theorem 4.5 in (PxQ)yR and (PyR)xQ
coincide. In particular, one can easily come up with an operation defined for the blowup of a (pos-
sibly infinite) set of elements of P , each replaced by a different Q. We will skip the proof of this
result, since it is similar to the one of Theorem 4.5. An interesting consequence of Theorem 4.5
is when considering the modular decomposition of a poset P , i.e., a module of P is an induced
subposet Q such that all elements of Q behave in the same way with respect to elements of P \Q.
This yields a recursive decomposition of P . Theorem 4.5 can be used to formulate minimality of
non-Cayley posets with respect to modular decompositions. In particular, it lead us to consider the
posets in the beginning of Section 3 since they are prime with respect to modular decomposition
and series-parallel posets in Corollary 4.8, because their modular decompositions are as simple as
possible.

Given a join semilattice, one obtains an antichain-blowup of a semilattice by replacing some of
its join-irreducible elements by antichains. See Figure 10 for an example of this construction.

Since antichains can be easily realized as full posets and join-semilattices are full (with the join
operation), we obtain the following result as a special case of Theorem 4.5.

Corollary 4.6. Antichain-blowups of join-semilattices are full.

Given two posets P,Q their series composition P ∗Q is the poset obtained by taking the disjoint
union of P and Q and making all elements of P inferior to all elements of Q. The parallel
composition of P + Q of P and Q is obtained by taking the disjoint union of P and Q and not
adding any further comparabilities.

Proposition 4.7. Let P,Q be semigroup posets, then P +Q is a semigroup poset. If P,Q are both
full, then so is P + Q. If P ∼= P (N,M) and Q ∼= P (N ′,M ′) are monoid posets and there is a
monoid homomorphism σ : N → N ′ with σ(M) = M ′, then P +Q is a monoid poset.

If Q is full, then P ∗Q is a semigroup poset. If additionally P is full or a monoid poset, then so
is P ∗Q.
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FIGURE 10. An antichain-blowup of a join-semilattice

Proof. Let P ∼= P (T, S) and Q ∼= P (T ′, S ′). Now consider P (T ∪ T ′, S ∪ S ′) where for t ∈ T
and t′ ∈ T ′ we define tt′ = t and t′t = t′. It is easy to see, that this gives a semigroup generating
P +Q. Clearly, if both P,Q are full, then so is P +Q.

Let P ∼= P (N,M) and Q ∼= P (N ′,M ′) monoids and σ : N → N ′ a monoid homomorphism
σ : N → N ′ with σ(M) = M ′. We show that P + Q ∼= P (N ∪ N ′,M) with respect to the
operation defined as

t · t′ =


tt′ t, t′ ∈ N or t, t′ ∈ N ′,
tσ(t′) t ∈ N ′, t′ ∈ N and xt′ 6= x,

σ(t)t′ t ∈ N, t′ ∈ N ′

Since σ is a monoid homomorphism it follows easily that “·” is a monoid. Moreover, the order
relation is easily seen to be the right one since σ(M) = M ′ and we only take M as submonoid
generating the order.

Let P ∼= P (T, S) and Q ∼= P (S ′, S ′). Now consider P (T ∪ S ′, S ∪ S ′) where for t ∈ T and
t′ ∈ S ′ we define tt′ = t′t = t′. It is easy to see, that this gives a semigroup generating P ∗ Q.
Clearly, if P is full or monoid, then so is P ∗Q. �

A poset is called series-parallel if it can be constructed from a singleton by series and parallel
compositions. Hence, a particular consequence of Proposition 4.7 is:

Corollary 4.8. Series parallel posets are full.

For a poset P and a positive integer k, we denote by kP , the poset in which every element of P
is replaced by an antichain of size k, as in the blow-up operation above.

Proposition 4.9. If P is a monoid poset P (N,M) for monoidsM < N , where nm = n⇒ m = e
for all n ∈ N,m ∈M , then for any k ≥ 1 the poset kP is a monoid poset.

Proof. Set N ′ = N × Zk and M ′ = ((M \ {e})× Zk) ∪ {(e, 0)}. Then P ∼= P (N ′,M ′). �

Another operation that we have decided not to describe in detail here is the one of taking semi-
group quotients and how this affects the poset structure. Some operations of this type will be used
in Section 6, though.

5. WEAK ORDERS

A poset P is called a weak order if it is a (possibly infinite) chain of antichains called levels
(. . . , Ai, Ai+1, . . .) such that x < y ⇐⇒ x ∈ Ai and y ∈ Aj with i < j.
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FIGURE 11. The bi-infinite weak order with levels of size 4.

Since any chain is a monoid poset but also a full poset and antichains are full posets, an applica-
tion of Observation 4.1, Theorem 4.5, and Proposition 4.9 is the following for which we however
give an independent proof:

Proposition 5.1. Any weak order P is a full semigroup poset. If P has a minimum or all levels
are of the same size, then P is a monoid poset.

Proof. To see the first part of the claim just identify every element of P with the tuple (i, j),
where i is the index of its level and j its positions within the level. We define (i, j) · (k, `) by
(max(i, k),m), where m = j if i > k, m = ` if i < k, and m = max(j, `) otherwise. It is
straightforward to check that · is associative. Thus, P is full. Clearly, by Theorem 2.8 if P has a
minimum, then it is a monoid poset.

If all levels of P are of the same size k, then letM be any monoid of size k with neutral element
e. We can represent P as P (Z×M,N\{0}×M ∪{(0, e)}), if P is bi-infinite. Otherwise, we can
represent a chain with minimum by N instead of Z. If there is a maximum layer, then we replace
the operation in the first component by addition followed by taking a maximum. �

In the rest of the section we want to study if further weak orders apart from those mentioned in
Proposition 5.1 can be monoid posets. For this we establish a couple of more general necessary
conditions on monoid posets.

Lemma 5.2. Let P be a monoid poset and let x ∈ P such that x ≤ e . There is an injective order
homomorphism from P \ (↑x∪ ↓x) to P \ (↑ e∪ ↓ e)
Proof. We will use that by Theorem 2.6 left-multiplication by x coincides with the order endo-
morphism ϕx. Since x ≤ e and ϕx :↑ e →↑ x is onto, there exists x′ ∈↑ e such that xx′ = e. Let
y, z ∈ P \ (↑x∪ ↓x) be different elements. Since ϕx ∈ End(P ), we have that

• x′y is not comparable with e. Indeed, if x′y ≤ e (or x′y ≥ e), then y = xx′y = ϕx(x′y) ≤
ϕx(e) = x (or y = xx′y = ϕx(x′y) ≤ ϕx(e) = x), which contradicts y ‖ x; and,
• x′y 6= x′z for all i 6= j; otherwise y = ϕx(x′y) = ϕx(x′z) = z.

This proves the result. �

Lemma 5.3. Let P be a monoid poset, x ∈ P , and A ⊆↑ x an antichain. If ϕ−1x (A) := B is a
maximal antichain of ↑ e, then ϕx :↓B ∩ ↑ e→↓A ∩ ↑x is onto.

Proof. Let us show that if y ∈↓ B∩ ↑ e, then ϕx(y) ∈↓ A∩ ↑ x. Since y ∈↓ B∩ ↑ e, there is
b ∈ B with y 6 b. Since ϕx ∈ End(P ) this implies ϕx(y) 6 ϕx(b) ∈ A. Thus, ϕx(y) ∈↓ A.
Moreover since x 6 e using Theorem 2.6 we get ϕx :↑ e →↑ x. More precisely, since y ∈↑ e we
have ϕx(y) ∈↑x and ϕx(y) ∈↓A∩ ↑x.
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It remains to show that ϕx :↓ B∩ ↑ e →↓ A∩ ↑ x is surjective. Let z ∈↓ A∩ ↑ x. Since
ϕx :↑ e ↪→↑ x is onto, there exists w ∈↑ e with ϕx(w) = z. If there is b ∈ B with w ≤ b
we are done. Otherwise, since B is a maximal antichain there is b ∈ B with b ≤ w. Thus,
ϕx(b) ≤ ϕx(w). Now, ϕx(b) ∈ A and ϕx(w) = z ∈↓ A imply ϕx(b) = ϕx(w) = z and in
particular z ∈ A. Thus, w ∈ B and we are done. �

Lemmas 5.2 and 5.3 give the following proposition.

Proposition 5.4. If a weak order without minimum is a monoid poset such that e ∈ A0, then
sup{`i | i ≥ k} is independent of k and `i ≤ `0 for all i ≤ 0.

The above proposition in particular yields that infinite weak orders with a maximum cannot be
monoid posets, see the example in Figure 3. More interestingly, weak orders without minimum
in which a level of maximum size appears only finitely many times, are not monoid posets. In
particular, if one level is of size 2 and all others are of size 1, the corresponding poset depicted in
Figure 3 is not a monoid poset, but a (full) semigroup poset. We believe the following to be true.

Conjecture 5.5. A bi-infinite weak order is a monoid poset if and only if all its levels are of the
same size.

6. AUTO-EQUIVALENT POSETS

In the present section we extend results of [4] by characterizing classes of so-called auto-
equivalent posets as Cayley posets of certain group-embeddable abelian monoids. More precisely,
we will characterize Cayley posets of finitely generated pointed submonoids abelian groups. For
the particular case when M is a submonoid of Zm, these posets were characterized in [4, Theorem
5.5].

Let us start with the introduction of the monoids that we consider. We will mostly consider sub-
monoids of groups. If M is a submonoid of a group G, then the binary relation ≤M of P (M,M)
can be rewritten as:

s ≤M t ⇐⇒ s−1t ∈M .
Since M is a monoid, a direct application of Proposition 2.1 yields that ≤M is an order relation
if and only if the acyclicity condition is satisfied. In this setting this is equivalent to the neutral
element e of M being its only invertible element, i.e., M ∩ M−1 = {e}. This property of M
is called pointed. The second property that we require for M is that M is finitely generated
and the group G containing it is abelian. Monoids of this kind have been considered extensively
due to their connections with (binomial) lattice ideals (see, for example, [3, 8, 37]). A feature of
these monoids, that we will make use of, is that they have a unique minimal set of generators. It
coincides with the set of atoms of P (M,M), i.e., the minimal elements of M \ {e} with respect
to ≤M .

Let us now give the necessary definitions to describe the resulting class of posets. We say that a
poset P is auto-equivalent if P has a global minimum and there exists a commutative submonoid
T < End(P ) such that for every x ∈ P there exists a unique ϕx ∈ T such that ϕx(P ) = ↑ x
and ϕx : P →↑x is an order isomorphism. Note that this definition corresponds to the one given
in [4]. Finally, a poset P is said to be locally finite if for all x, y ∈ P , there is a finite number of
elements in the interval [x, y] := {z ∈ P |x ≤ z ≤ y}.

Lemma 6.1. Let M be an acyclic abelian monoid. We have that P (M,M) is auto-equivalent.
Moreover, if M is a finitely generated submonoid of a group, then P (M,M) is locally finite and
has a finite number of atoms.

Proof. The poset P (M,M) has the identity element e ∈ M as minimum. Taking ϕs : M → M
as ϕs(s

′) = s + s′ we have that ϕe is the identity map on M and ϕy ◦ ϕz = ϕz ◦ ϕy = ϕy+z, for
all y, z ∈M . Thus, P (M,M) is auto-equivalent.
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IfM is finitely generated, then its unique minimal (finite) set of generatorsA corresponds to the
atoms of P (M,M). Moreover, since M is acyclic and the submonoid of a group, M is pointed.
Hence, a standard argument yields that P (M,M) is locally finite, see e.g. [3]. �

Lemma 6.2. Let P be a locally finite, auto-equivalent poset. We have that there is a pointed
submonoid M of an abelian group such that P ∼= P (M,M). Moreover, if P has a finite number
of atoms, then M is finitely generated.

Proof. Denote by A the set of atoms of P and take T = {ϕx}x∈P a commutative submonoid of
End(P ) such that ϕx(P ) = ↑x and ϕx : P →↑x is an order isomorphism.

We are going to associate to P a subgroup LP ⊆ ZA, where ZA is the set of mappings from A
to Z with finite support. Defining NA similarly, we consider f : NA −→ P defined inductively as
f(0) = e and f(α + ea) = ϕa(f(α)) for all α ∈ NA, where ea(x) = 1 if x = a and ea(x) = 0
otherwise for all x ∈ A. In particular, f(ea) = ϕa(f(0)) = ϕa(e) = a for all a ∈ A.

It is not difficult to check that f is well defined (because P is auto-equivalent) and surjective
(because P is locally finite) and the set LP := {α − β ∈ ZA | f(α) = f(β)} is a subgroup of ZA

(see [4, Section 5]). We set G = ZA/LP and M = NA/LP , where the latter is just the subset of
equivalence classes that have non-empty intersection with NA. Clearly, M is a submonoid of the
abelian group G, and if A is finite, then G ∼= Zm ⊕ T , where m = rk(Z|A|/LP ) and T is a finite
abelian group, i.e., G is finitely generated. Furthermore, M is pointed and (P,≤) and P (M,M)
are isomorphic. More precisely,

ψ : P −→ M
x 7−→

∑
a∈A α(a)ea, if f(α) = x

is an order isomorphism and M is generated by ψ(A). �

An immediate consequence of Lemmas 6.1 and 6.2 is the following:

Theorem 6.3. A poset (P,≤) is isomorphic to P (M,M) for a finitely generated pointed sub-
monoid M of an abelian group if and only if P is auto-equivalent, locally finite, and has a finite
number of atoms.

Note that local finiteness is essential in the previous result, as the following result shows. Here,
by ≤lex we denote the lexicographic order.

Proposition 6.4. The poset P = (N2,≤lex) is auto-equivalent, has exactly one atom, and is an
abelian monoid poset. However, there is no group-embeddable M such that P ∼= P (M,M).

Proof. Clearly, P has just one atom. Let us show that P ∼= P (M,M) for an abelian monoid.
Indeed, define

(i, j) · (k, `) =


(i, j) i > k,

(k, `) i < k,

(i,max(j, `)) i = k.

It is straightforward to check thatM is an abelian monoid such that P ∼= P (M,M). By Lemma 6.1
P is auto-equivalent.

Let M be a monoid on N2 such that P ∼= P (M,M). We show that M cannot be cancellative
and therefore is not the submonoid of a group. Let a ∈ {0} × N and consider a · (1, 0). If
a ·(1, 0) = (0,m) < (1, 0), then since left-multiplication is a endomorphism there are (0, k), (0, `)
such that a · (0, k) = a · (0, `) ≤ (0,m) and M is not cancellative. If a · (1, 0) > (1, 0), then
there is some (0,m) such that a · (0,m) = (1, 0), but then the elements between a and (0,m)
do not suffice to cover all elements between a and (1, 0). Hence, for all a ∈ {0} × N we have
a · (1, 0) = (1, 0) and M is not cancellative. �

We conclude that while locally finite auto-equivalent posets are group-embeddable (abelian)
monoid posets, this does not hold any longer when dropping the local finiteness. We do not know
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whether auto-equivalent posets are (abelian) monoid posets in general. A first relaxation of the
concept of auto-equivalent would be to drop the requirement that the submonoid T < End(P )
has to be abelian. Free monoids yield such posets that are upwards oriented regular trees, see
Figure 12. Adding relations one can obtain a big class of upwards oriented trees. What can be
said about these posets?

FIGURE 12. The Cayley poset of the free monoid on two generators.

Another relaxation is to allow posets without global minimum, but require that for all x, y ∈
P there is a unique ϕxy ∈ T such that ϕxy(↑ x) =↑ y and the restriction of ϕxy to ↑ x is an
order isomorphism. More generally, as mentioned in the introduction, a poset is called uniform
if for every pair of elements x, y the posets ↑ x and ↑ y are order isomorphic. This concept was
introduced in [39] (with respect to principal downsets in semilattices). Clearly, auto-equivalent
posets are uniform. In this most general setting we suspect:

Conjecture 6.5. There are uniform posets that are not monoid posets.

One strategy to construct such posets could be to take a transitive digraph D = (V,A), that is
not the Cayley graph of a monoid. Now, construct an infinite poset P = (V × Z,≤) such that
(u, i) ≤ (v, j) if there is a directed walk of length j − i from u to v in D.

While transitive digraphs, that are not Cayley graphs of groups were known for a long time,
see e.g. [34, Theorem 6] or [33, Proposition 8.5], only recently transitive digraphs of that are not
Cayley graphs of monoids were found [25]. It would thus be of interest whether Conjecture 6.5
can be proved using the above ideas. On the other hand, even if the conjecture were true it would
be possible that any uniform poset is a semigroup poset. This raises the following question of
independent interest:

Question 6.6. Are there transitive digraphs that are not the Cayley graph of a semigroup?

7. CONCLUSIONS

We have explored the notion of Cayley posets by giving a natural inclusion diagram of different
classes ad providing characterizations in terms of endomorphism monoids. In Theorem 2.6 we
give a characterization of monoid posets. However, we wonder if the following strengthening
could be true: If P is a poset, L < End(P ) a subsemigroup, and F ⊆ P a principal upset, such
that for every element x ∈ P there is a unique ϕx ∈ L such that ϕx(F ) =↑x, then P is a monoid
poset. By Theorem 2.4 we know that in this case P is a semigroup poset, but it is not clear if it is
a monoid poset.

We have shown strictness of all inclusions in Figure 3 and in particular, we provide small posets
that are not Cayley. One first set of questions concerns the types of posets studied in Section 3.
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There is a natural way to define subposets of P (Z, 〈2, 3〉) by choosing all elements between up
to two maxima and up to two minima. We suspect that for large enough posets the properties of
these posets depend only on the number of minima and maxima.

On the other hand, we give a rich set of constructions in order to obtain large classes of Cayley
posets. A particular example are weak orders. While we know that they are full semigroup posets
an open question is, whether bi-infinite weak orders are monoid posets only if all levels are of the
same size (Conjecture 5.5)?

The last part of the paper is concerned with auto-equivalent posets. We show that if locally
finite, such posets are (group-embeddable) monoid posets. We know that group-embeddability
is lost when dropping local finiteness, but are these posets still monoid posets? At the end of
Section 6 we discuss several further relaxations of this concept. Finally, one can ask, whether uni-
form posets, i.e., those where any two principal upsets are isomorphic, are monoid posets (Con-
jecture 6.5). A particularly intriguing question that comes up when studying the above conjecture,
is whether there are transitive digraphs that are not Cayley graphs of a semigroup (Question 6.6).
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