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Abstract. In his seminal 1983 paper, Jim Lawrence introduced lopsided sets and featured them as asym-
metric counterparts of oriented matroids, both sharing the key property of strong elimination. Moreover,
symmetry of faces holds in both structures as well as in the so-called affine oriented matroids. These two
fundamental properties (formulated for covectors) together lead to the natural notion of “conditional oriented
matroid” (abbreviated COM). These novel structures can be characterized in terms of three cocircuits axioms,
generalizing the familiar characterization for oriented matroids. We describe a binary composition scheme by
which every COM can successively be erected as a certain complex of oriented matroids, in essentially the
same way as a lopsided set can be glued together from its maximal hypercube faces. A realizable COM is
represented by a hyperplane arrangement restricted to an open convex set. Among these are the examples
formed by linear extensions of ordered sets, generalizing the oriented matroids corresponding to the permuto-
hedra. Relaxing realizability to local realizability, we capture a wider class of combinatorial objects: we show
that non-positively curved Coxeter zonotopal complexes give rise to locally realizable COMs.
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1. INTRODUCTION

1.1. Avant-propos. Co-invented by Bland & Las Vergnas [11] and Folkman &
Lawrence [21], and further investigated by Edmonds & Mandel [20] and many other au-
thors, oriented matroids represent a unified combinatorial theory of orientations of ordinary
matroids, which simultaneously captures the basic properties of sign vectors representing the
regions in a hyperplane arrangement in R” and of sign vectors of the circuits in a directed
graph. Furthermore, oriented matroids find applications in point and vector configurations,
convex polytopes, and linear programming. Just as ordinary matroids, oriented matroids may
be defined in a multitude of distinct but equivalent ways: in terms of cocircuits, covectors,
topes, duality, basis orientations, face lattices, and arrangements of pseudospheres. A full
account of the theory of oriented matroids is provided in the book by Bjorner, Las Vergnas,
White, and Ziegler |10] and an introduction to this rich theory is given in the textbook by
Ziegler [39].

Lopsided sets of sign vectors defined by Lawrence [29] in order to capture the intersection
patterns of convex sets with the orthants of R? (and further investigated in [3,4]) have found
numerous applications in statistics, combinatorics, learning theory, and computational ge-
ometry, see e.g. [34] for further details. Lopsided sets represent an “asymmetric offshoot” of
oriented matroid theory. According to the topological representation theorem, oriented ma-
troids can be viewed as regular CW cell complexes decomposing the (d — 1)-sphere. Lopsided
sets on the other hand can be regarded as particular contractible cubical complexes.

In this paper we propose a common generalization of oriented matroids and lopsided sets
which is so natural that it is surprising that it was not discovered much earlier. It also
generalizes such well-known and useful structures as convex geometries and CAT(0) cube
(and zonotopal) complexes. In this generalization, global symmetry and the existence of the
zero sign vector, required for oriented matroids, are replaced by local relative conditions.
Analogous to conditional lattices (see [22, p. 93]) and conditional antimatroids (which are
particular lopsided sets |3]), this motivates the name “conditional oriented matroids” (abbre-
viated: COMs) for these new structures. Furthermore, COMs can be viewed as complexes
whose cells are oriented matroids and which are glued together in a lopsided fashion. To
illustrate the concept of a COM and compare it with similar notions of oriented matroids
and lopsided sets, we continue by describing the geometric model of realizable COMs.



1.2. Realizable COMs: motivating example. Let us begin by considering the follow-
ing familiar scenario of hyperplane arrangements and realizable oriented matroids; compare
with [10, Sections 2.1, 4.5] or [39, p. 212]. Given a central arrangement of hyperplanes of
R? (i.e., a finite set F of (d — 1)-dimensional linear subspaces of R%), the space R? is parti-
tioned into open regions and recursively into regions of the intersections of some of the given
hyperplanes. Specifically, we may encode the location of any point from all these regions
relative to this arrangement when for each hyperplane one of the corresponding halfspaces
is regarded as positive and the other one as negative. Zero designates location on that hy-
perplane. Then the set £ of all sign vectors representing the different regions relative to £
is the set of covectors of the oriented matroid of the arrangement E. The oriented matroids
obtained in this way are called realizable. If instead of a central arrangement one consid-
ers finite arrangements E of affine hyperplanes (an affine hyperplane is the translation of a
(linear) hyperplane by a vector), then the sets of sign vectors of regions defined by E are
known as realizable affine oriented matroids [27] and [3, p.186]. Since an affine arrangement
on R? can be viewed as the intersection of a central arrangement of RT! with a translate
of a coordinate hyperplane, each realizable affine oriented matroid can be embedded into a
larger realizable oriented matroid.

Now suppose that F is a central or affine arrangement of hyperplanes of R% and C is
an open convex set, which may be assumed to intersect all hyperplanes of E in order to
avoid redundancy. Restrict the arrangement pattern to C', that is, remove all sign vectors
which represent the open regions disjoint from C. Denote the resulting set of sign vectors
by L(E,C) and call it a realizable COM. Figure displays an arrangement comprising
two pairs of parallel lines and a fifth line intersecting the former four lines within the open
4-gon. Three lines (nos. 2, 3, and 5) intersect in a common point. The line arrangement
defines 11 open regions within the open 4-gon, which are represented by their topes, viz. £1
covectors. The dotted lines connect adjacent topes and thus determine the tope graph of the
arrangement. This graph is shown in Figure unlabeled, but augmented by the covectors
of the 14 one-dimensional and 4 two-dimensional faces.

Our model of realizable COMs generalizes realizability of oriented and affine oriented
matroids on the one hand and realizability of lopsided sets on the other hand. In the case
of a central arrangement F with C being any open convex set containing the origin (e.g.,
the open unit ball or the entire space R?), the resulting set £(E, C) of sign vectors coincides
with the realizable oriented matroid of E. If the arrangement E is affine and C is the entire
space, then L£(E, C) coincides with the realizable affine oriented matroid of E. The realizable
lopsided sets arise by taking the (central) arrangement E of all coordinate hyperplanes E
restricted to arbitrary open convex sets C' of R%. In fact, the original definition of realizable
lopsided sets by Lawrence [29] is similar but used instead an arbitrary (not necessarily open)
convex set K and as regions the closed orthants. Clearly, K can be assumed to be a polytope,
namely the convex hull of points representing the closed orthants meeting K. Whenever the
polytope K does not meet a closed orthant then some open neighborhood of K does not
meet that orthant either. Since there are only finitely many orthants, the intersection of



FIGURE 1. An arrangement of five lines and its tope graph. @ Faces
and edges of the tope graph are labeled with corresponding covectors. Sign

vectors are abbreviated as strings of +, —, and 0 and to be read from left to
right.

these open neighborhoods results in an open set C' which has the same intersection pattern
with the closed orthants as K. Now, if an open set meets a closed orthant it will also meet the
corresponding open orthant, showing that both concepts of realizable lopsided sets coincide.

1.3. Properties of realizable COMs. For the general scenario of realizable COMs, we can
attempt to identify its basic properties that are known to hold in oriented matroids. Let X
and Y be sign vectors belonging to £, thus designating regions represented by two points x
and y within C relative to the arrangement F; see Figure 2 (compare with Fig. 4.1.1 of |10]).
Connect the two points by a line segment and choose € > 0 small enough so that the open
ball of radius e around x intersects only those hyperplanes from E on which x lies. Pick
any point w from the intersection of this e-ball with the open line segment between x and y.
Then the corresponding sign vector W is the composition X oY as defined by

(XoY)e=X.if X #0and (X oY), =Y, if X, =0.
Hence the following rule is fulfilled:
(Composition) X oY belongs to £ for all sign vectors X and Y from L.

If we select instead a point u on the ray from y via x within the e-ball but beyond x, then
the corresponding sign vector U has the opposite signs relative to W at the coordinates
corresponding to the hyperplanes from E on which x is located and which do not include the
ray from y via x. Therefore the following property holds:

(Face symmetry) X o —Y belongs to £ for all X, Y in L.



Next assume that the hyperplane e from E separates x and y, that is, the line segment
between x and y crosses e at some point z. The corresponding sign vector Z is then zero at
e and equals the composition X oY at all coordinates where X and Y are sign-consistent,
that is, do not have opposite signs:

(Strong elimination) for each pair X,Y in £ and for each e € E with X.Y. = —1 there exists
Z € L such that Z, =0 and Zy = (X oY)y for all f € E with XYy # —1.

Now, the single property of oriented matroids that we have missed in the general scenario is
the existence of the zero sign vector, which would correspond to a non-empty intersection of
all hyperplanes from E within the open convex set C':

(Zero vector) the zero sign vector 0 belongs to L.

On the other hand, if the hyperplanes from E happen to be the coordinate hyperplanes, then
wherever a sign vector X has zero coordinates, the composition of X with any sign vector
from {#1,0}¥ is a sign vector belonging to £. This rule, which is stronger than composition
and face symmetry, holds in lopsided systems, for which the “tope” sets are exactly the
lopsided sets sensu Lawrence [29]:

(Ideal composition) X oY € L for all X € £ and all sign vectors Y, that is, substituting any
zero coordinate of a sign vector from £ by any other sign yields a sign vector of L.

FIGURE 2. Motivating model for the three axioms.

In the model of hyperplane arrangements we can retrieve the cells which constitute ori-
ented matroids. Indeed, consider all non-empty intersections of hyperplanes from E that
are minimal with respect to inclusion. Select any sufficiently small open ball around some
point from each intersection. Then the subarrangement of hyperplanes through each of these
points determines regions within these open balls which yield an oriented matroid of sign
vectors. Taken together all these constituents form a complex of oriented matroids, where
their intersections are either empty or are faces of the oriented matroids involved. These com-
plexes are still quite special as they conform to global strong elimination. The latter feature
is not guaranteed in general complexes of oriented matroids, which were called “bouquets of
oriented matroids” [15].



It is somewhat surprising that the generalization of oriented matroids defined by the three
fundamental properties of composition, face symmetry, and strong elimination have appar-
ently not yet been studied systematically. On the other hand, the preceding discussion shows
that the properties of composition and strong elimination hold whenever C is an arbitrary
convex set. We used the hypothesis that the set C' be open only for deriving face symme-
try. The following example shows that indeed face symmetry may be lost when C' is closed:
take two distinct lines in the Euclidean plane, intersecting in some point x and choose as C'
a closed halfspace which includes = and the entire ++ region but is disjoint from the ——
region. Then +—,+0,+4,0+, —+, and 00 comprise the sign vectors of the regions within
C, thus violating face symmetry. Indeed, the obtained system can be regarded as a lopsided
system with an artificial zero added. On the other hand, one can see that objects obtained
this way are realizable oriented matroid polyhedra |10, p. 420].

1.4. Structure of the paper. In Section [2] we will continue by formally introducing the
systems of sign vectors considered in this paper. In Section |3| we prove that COMs are
closed under minors and simplification, thus sharing this fundamental property with oriented
matroids. We also introduce the fundamental concepts of fibers and faces of COMs, and
show that faces of COMs are OMs. Section 4] is dedicated to topes and tope graphs of
COMs and we show that both these objects uniquely determine a COM. Section [f]is devoted
to characterizations of minimal systems of sign-vectors which generate a given COM by
composition. In Section [] we extend these characterizations and, analogously to oriented
matroids, obtain a characterization of COMs in terms of cocircuits. In Section [7] we define
carriers, hyperplanes, and halfspaces, all being COMs naturally contained in a given COM.
We present a characterization of COMs in terms of these substructures. In Section [§ we
study decomposition and amalgamation procedures for COMs and show that every COM
can be obtained by successive amalgamation of oriented matroids. In Section [9) we extend
the Euler-Poincaré formula from OMs to COMs and characterize lopsided sets in terms of a
particular variant of it. In Section [I0] as a resuming example we study the COMs provided
by the ranking extensions — aka weak extensions — of a partially ordered set and illustrate
the operations and the results of the paper on them. In Section [L1| we consider a topological
approach to COMs and study them as complexes of oriented matroids. In particular, we
show that non-positively curved Coxeter zonotopal complexes give rise to COMs. We close
the paper with several concluding remarks and two conjectures in Section

2. BASIC AXIOMS

We follow the standard oriented matroids notation from |10]. Let E be a non-empty finite
(ground) set and let £ be a non-empty set of sign vectors, i.e., maps from E to {£1,0} =
{—1,0,4+1}. The elements of L are also referred to as covectors and denoted by capital letters
X,Y,Z, etc. For X € L, the subset X = {e € E: X, # 0} is called the support of X and
its complement X° = E\ X = {e € E: X, = 0} the zero set of X (alias the kernel of X).
Simlaly, we denote Xt ={e€ F: X, =+} and X~ ={e € E: X, = —}. We can regard a



sign vector X as the incidence vector of a +1 signed subset X of E such that to each element
of E one element of the signs {£1,0} is assigned. We denote by < the product ordering on
{#£1,0}* relative to the standard ordering of signs with 0 < —1 (sic!) and 0 < +1.

For X,Y € L, we call S(X,Y) = {f € E: X;Y; = —1} the separator of X and Y. The
elements of S(X,Y) are said to separate X and Y. If the separator is empty, then X and
Y are said to be sign-consistent. In particular, this is the case when X is below Y, that is,
X <Y holds. The composition of X and Y is the sign vector X oY, where (X oY), = X, if
Xe#0and (X oY), =Y, if X, =0. Note that X < X oY for all sign vectors X,Y".

Given a set of sign vectors L, its topes are the maximal elements of £ with respect to <.
Further let

L :={Y e {£1,0}¥ : X <Y forsome X € L} ={X oW :X € Land W € {£1,0}F}

be the upset of £ in the ordered set ({£1,0}¥, <).

If a set of sign vectors is closed with respect to o, then the resulting idempotent semigroup
(indeed a left regular band alias skew semilattice [31,32]) is called the braid semigroup, see
e.g. [8]. The composition operation naturally occurs also elsewhere: for a single coordinate,
the composite zoy on {£1,0} is actually derived as the term ¢(x, 0, y) (using 0 as a constant)
from the ternary discriminator ¢ on {£1,0}, which is defined by t(a,b,c) = a if a # b and
t(a,b,c) = c¢ otherwise. Then in this context of algebra and logic, “composition” on the
product {41,0}* would rather be referred to as a “skew Boolean join” [6].

We continue with the formal definition of the main axioms as motivated and discussed in
the previous section.

Composition:
(C) XoY eLforal X,Y € L.

Condition (C) is taken from the list of axioms for oriented matroids. Since o is associative,
arbitrary finite compositions can be written without bracketing X; o ... o X so that (C)
entails that they all belong to £. Note that contrary to a convention sometimes made in
oriented matroids we do not consider compositions over an empty index set, since this would
imply that the zero sign vector belonged to £. We highlight condition (C) here although it
will turn out to be a consequence of another axiom specific in this context. The reason is
that we will later use several weaker forms of the axioms which are no longer consequences
from one another.

Strong elimination:

(SE) for each pair X,Y € £ and for each e € S(X,Y") there exists Z € £ such that Z, =0
and Zy = (X oY) forall fe E\S(X,Y).
Note that (X oY) = (Y o X); holds exactly when f € E\ S(X,Y). Therefore the sign
vector Z provided by (SE) serves both ordered pairs X,Y and Y, X.

Condition (SE) is one of the axioms for covectors of oriented matroids and is implied by
the property of route systems in lopsided sets, see Theorem 5 of [29)].



Symmetry:
(Sym) —L={-X:X € L} = L, that is, £ is closed under sign reversal.

Symmetry restricted to zero sets of covectors (where corresponding supports are retained)
is dubbed:

Face symmetry:

(FS) Xo-Y e Lforall X,Y € L.

This condition can also be expressed by requiring that for each pair X,Y in £ there exists
Z € L with X oZ = Z such that X = (X oY + X 0 Z). Face symmetry trivially implies (C)
because by (FS) we first get X o —Y € £ and then X oY = (X o—X)oY =X o —(X oY)
for all X,Y € L.

Ideal composition:
(IC) 1£=_L.
Notice that (IC) implies (C) and (FS). We are now ready to define the main objects of our
study:
Definition 1. A system of sign vectors (E, £) is called a:

strong elimination system if L satisfies (C) and (SE),
conditional oriented matroid (COM) if L satisfies (FS) and (SE),
oriented matroid (OM) if L satisfies (C), (Sym), and (SE),
lopsided system if L satisfies (IC) and (SE).

For oriented matroids one can replace (C) and (Sym) by (FS) and

Zero vector:
(Z) the zero sign vector 0 belongs to L.

Notice that the axiom (SE) can be somewhat weakened in the presence of (C), i.e., in
particular in Definition |1} If (C) is true in the system (E, L), then for X,Y € £ we have
XoY =(XoY)o(YoX), XoV =YoX =XUY, and also for the separators we have
S(XoY,Y o X)=S(X,Y).

Therefore, if (C) holds, we may substitute (SE) by
(SE™) for each pair X,Y € £ with X =Y and for each e € S(X,Y) there exists Z € L such

that Zc =0and Zy = (X oY) for all f € E\ S(X,Y),

The axioms (C), (FS), (SET) (plus a fourth condition) were used by Karlander [27] in his
study of affine oriented matroids that are embedded as “halfspaces” (see Section [7] below) of
oriented matroids.

3. MINORS, FIBERS, AND FACES

In the present technical section we show that the class of COMs is closed under taking
minors, defined as for oriented matroids. We use this to establish that simplifications and



semisimplifications of COMs are minors of COMs and therefore COMs. We also introduce
fibers and faces of COMs, which will be of importance for the rest of the paper.

Let (E,L) be a COM and A C E. Given a sign vector X € {#1,0}¥ by X \ A we refer to
the restriction of X to E\ A, that is X\ A € {£1,0}\ with (X \ A), = X, foralle € E\ A.
The deletion of A is defined as (E'\ A, L\ A), where L\ A := {X\ A : X € L}. The contraction
of A is defined as (E'\ A, L/A), where L/A:={X\A: X € Land X N A= g}. If a system
of sign vectors arises by deletions and contractions from another one it is said to be minor
of it.

Lemma 1. The properties (C), (FS), and (SE) are all closed under taking minors. In par-
ticular, if (E,L) is a COM and A C E, then (E\ A, L\ A) and (E\ A,L/A) are COMs as

well.

Proof. We first prove that (E\ A, £\ A) is a COM. To see (C) and (FS) let X\ A,Y\A € £\ A.
Then X o(£Y) e Land (Xo(£Y))\A=X\ Ao (xY \A)e L\ A

To see (SE) let X \ A, Y\ A€ £\ A and e an element separating X \ A and Y \ A. Then
there is Z € £ with Z, =0 and Zy = (X oY)y for all f € E\ S(X,Y). Clearly, Z\ Aec L\ A
satisfies (SE) with respect to X \ 4,Y \ A.

Now, we prove that (E\ A, L/A) isa COM. Let X\ A,Y\A € L/Aie, XNA=YNA=0.
Hence X o (£Y) N A = @ and therefore X \ Ao (£Y \ A) € L/A, proving (C) and (FS).

To see (SE) let X \ A, Y \ A € £/A and e an element separating X \ A and Y\ A. Then
there is Z € £ with Z, = 0 and Zy = (X oY)y for all f € £\ S(X,Y). In particular, if
X =Yy =0, then Zy = 0. Therefore, Z\ A € L/A and it satisfies (SE). O

Lemma 2. If (E, L) is a system of sign vectors and A,B C E with AN B = &, then
(E\(AUB),(L\A)/B) = (E\ (AUB),(L£/B)\ A).

Proof. 1t suffices to prove this for A and B consisting of single elements e and f, respectively.
Now X \ {e, f} € (L\ {e})/{f} if and only if X € £ with X; = 0 which is equivalent to

X\ {e} € £\ {e} with (X \ {e}); = 0. Thisis, X \ {e, f} € (C/{f})\ {e}. 0

Next, we will define simple and semisimple systems of sign vectors. These are motivated
by the hyperplane model for COMs, that possesses additional properties, reflecting that we
have a set of hyperplanes rather than a multiset and that the given convex set is open. This is
also motivated by the requirement of defining systems of sign vectors not containing coloops
and parallel elements, which is relevant, for example, for the identifications of topes.

A coloop of (E, L) is an element e € E such that X, =0 for all X € £. Hence (E, L) does
not have coloops if and only if for each element e, there exists a covector X with X, # 0.
Two elements e, e’ € E of (E, L) are parallel, denoted e || €, if either X, = X,/ for all X € L
or X, = —Xg for all X € L. It is easy to see that || is an equivalence relation. The condition
that (F, L) does not contain parallel elements can be expressed by the requirement that for
each pair e # f in E, there exist X,Y € £ with X, # Xy and Y. # —Y}.



Simple systems are defined by two axioms which are slightly stronger than those which
ensure that the absence of coloops and parallel elements. We call the system (F, £) simple if
it satisfies the following non-redundancy axioms:

Simplicity:

(N1) foreach e € E, {+1,0} ={X.: X € L};
(IN2) for each pair e # f in F, there exist X,Y € £ with {X. X7, Y. Y} = {£1}.

We will also consider the weaker notion of semisimple systems, which are the simple systems
when restricted to the set

Ei ={ecEF:{X.: X e L} #{+1},{-1}}

of those elements e at which £ is not non-zero constant. We call the system (E, £) semisimple
if it satisfies the following restricted non-redundancy axioms:

Semisimplicity:

(RN1) for each e € By, {£1,0} = {X.: X € L};
(RN2) for each pair e # f in Ey4, there exist X,Y € £ with {X X, Y. Y} = {£1}.

Let Ey:={e€ E: X, =0 for all X € L} be the set of all coloops. Condition (RN1) yields
that Ey = @. The condition that there are no coloops is relevant for the identification of
topes. Recall that a tope of L is any covector X that is maximal with respect to the standard
sign ordering defined above. In the presence of (C), the covector X is a tope precisely when
XoY =X forall Y € L, that is, for each e € E either X, € {1} or Yo =0for all Y € L.
In particular, if both (C) and Ey = @ hold, then the topes are exactly the covectors with
full support E. Notice also that condition (N2) yields that there are no parallel elements.
Consequently, simple systems do not contain coloops, parallel elements, and their topes are
the covectors with full support (while semisimple systems satisfy the first and the third
conditions).

Further put

Ei={ccE:#{X.: XLl =1} = EyU(E\ Ed),
Ey:={ec E:#{X.: X € L} =2}

The sets Ep U Eo and E; U Ey comprise the positions at which £ violates (RN1) or (N1),
respectively. Hence the deletions (E'\ (EgUE>), L\ (EgUE>)) and (E\ (E1UE2), L\ (E1UE>?))
constitute the canonical transforms of (£, £) satisfying (RN1) and (N1), respectively. One
equivalence class of the parallel relation || restricted to £\ (EgUE>) is E\ E4, i.e., it comprises
the (non-zero) constant positions. Exactly this class gets removed when one restricts || further
to £\ (E1 U E2). Selecting a transversal for the classes of || on £\ (E1 U Es), which arbitrarily
picks exactly one element from each class and deletes all others, results in a simple system.
Restoring the entire class F'\ F1 then yields a semisimple system. We refer to these canonical
transforms as to the simplification and semisimplification of (E, L), respectively. Then from
Lemma [I] we obtain:
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Lemma 3. The semisimplification of a system (E, L) of sign vectors is a semisimple minor
and the simplification is a simple minor, unique up to sign reversal on subsets of E+. Fither
system is a COM whenever (E, L) is.

For a system (E, L), a fiber relative to some X € £ and A C FE is a set of sign vectors

defined by
R={YeLl:Y\A=X)\A}

We say that such a fiber is topal if (X \ A)? = @, that is, X \ 4 is a tope of the minor
(E\ A, L\ A). Ris a face if X can be chosen so that X" = A, whence faces are topal fibers.
Note that the entire system (F, £) can be regarded both as a topal fiber and as the result of
an empty deletion or contraction. If (E, £) satisfies (C), then the fiber relative to 4 := X0,
alias X-face, associated with a sign vector X can be expressed in the form

FX):={XoY:YeLl}=LN T{X}.

If S(V,W) is non-empty for V,W € L, then the corresponding faces F'(V) and F (W) are
disjoint. Else, if V and W are sign-consistent, then F(V)NF(W) = F(V oW). In particular
F(V) C F(W) is equivalent to V' € F(W), that is, W < V. The ordering of faces by inclusion
thus reverses the sign ordering. The following observations are straightforward and recorded
here for later use:

Lemma 4. If (E, L) is a strong elimination system or a COM, respectively, then so are all
fibers of (E,L). If (E,L) is semisimple, then so is every topal fiber. If (E,L) is a COM,
then for any X € L the minor (E'\ X, F(X)\ X) corresponding to the face F(X) is an OM,
which is simple whenever (E, L) is semisimple.

4. TOPE GRAPHS

One may wonder whether and how the topes of a semisimple COM (E, £) determine and
generate £. We cannot avoid using face symmetry because one can turn every COM which is
not an OM into a strong elimination system by adding the zero vector to the system, without
affecting the topes. The following result for simple oriented matroids was first observed by
Mandel (unpublished), see [10, Theorem 4.2.13].

Proposition 1. Every semisimple COM (E, L) is uniquely determined by its set of topes.

Proof. We proceed by induction on #FE. For a single position the assertion is trivial. So
assume #FE > 2. Let £ and £’ be two COMs on FE sharing the same set of topes. Then
deletion of any g € E results in two COMs with equal tope sets, whence £\ g = L\ g by the
induction hypothesis. Suppose that there exists some W € L'\ £ chosen with W9 as small as
possible. Then #W9 > 0. Take any e € W°. Then as £’ \ e = £ \ e by semisimplicity there
exists a sign vector V in £ such that V \e = W \ e and V. # 0. Since V° ¢ W°, we infer
that V' € £’ by the minimality choice of W. Then, by (FS) applied to W and V in L', we
get W o —V € L. This sign vector also belongs to £ because #(W o —V)0 = #V0 < #W0,
Finally, apply (SE) to the pair V,W o —V in L relative to e and obtain Z = W € L, in
conflict with the initial assumption. O
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The tope graph of a semisimple COM on E is the graph with all topes as its vertices where
two topes are adjacent exactly when they differ in exactly one coordinate. In other words, the
tope graph is the subgraph of the # E-dimensional hypercube with vertex set { :tl}E induced
by the tope set. Isometry means that the internal distance in the subgraph is the same as
in the hypercube. Isometric subgraphs of the hypercube are often referred to as a partial
cubes |25]. For tope graphs of oriented matroids the next result was first proved in [28]

Proposition 2. The tope graph of a semisimple strong elimination system (E, L) is a partial
cube in which the edges correspond to the sign vectors of L with singleton zero sets.

Proof. If X and Y are two adjacent topes, say, differing at position e € E, then the vector
Z € L provided by (SE) for this pair relative to e has 0 at e and coincides with X and Y
at all other positions. By way of contradiction assume that now X and Y are two topes
which cannot be connected by a path in the tope graph of length #S(X,Y) = k > 1 such
that k is as small as possible. Then the interval [X,Y] consisting of all topes on shortest
paths between X and Y in the tope graph comprises only X and Y. For e € S(X,Y") we find
some Z € L such that Z. = 0 and Z, = X, for all g € £\ S(X,Y) by (SE). If there exists
feS(X,Y)\ {e} with Zf # 0, then Zo X or ZoY is a tope different from X and Y, but
contained in [X, Y], a contradiction.

If Zy =0 for all f € S(X,Y)\ {e}, then by (RN2) there is W € £ with 0 # W.W; #
XXy # 0. We conclude that Z oW oY is a tope different from X and Y but contained in
[X,Y], a contradiction. This concludes the proof. O

Isometric embeddings of partial cubes into hypercubes are unique up to automorphisms
of the hosting hypercube [16, Proposition 19.1.2] (and addition of superfluous dimensions).
Hence, Propositions [I] and [2] together imply the following result, which generalizes a similar
result of [9] for tope graphs of OMs:

Proposition 3. A simple COM is determined by its tope graph up to reorientation.

5. MINIMAL GENERATORS OF STRONG ELIMINATION SYSTEMS

We have seen in the preceding section that a COM is determined by its tope set. There is
a more straightforward way to generate any strong elimination system from bottom to top
by taking suprema. This generation process involves only some weaker forms of the axioms
(C) and (SE).

Let (E, L) be a system of sign vectors. Given X,Y € L consider the following set of sign
vectors which partially “conform” to X relative to subsets A C S(X,Y):

WAX,Y)={ZeL£: 2" CXTUY*+ Z  CX UY", and S(X,Z) C E\ A}
={ZeLl:7,€{0,X,Y,}forall gec E, and Z), € {0, X} for all h € A}.
For A = @ we use the short-hand W(X,Y), i.e.,
WX, Y)={ZeL:ZtCXTUuY",Z-CX uY}
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and for the maximum choice A D S(X,Y) we write W (X,Y), i.e.,
WX, Y)={Z e W(X,Y):5(X,Z) = o}.

Trivially, X, X oY € W4(X,Y) and Wp(X,Y) C Wa(X,Y) for A C B C E. Note that
S(X,Z) C S(X,Y) for all Z € W(X,Y). Each set W4(X,Y) is closed under composition
(and trivially is a downset with respect to the sign ordering). For, if V,W € W4 (X,Y), then
(VoW)t CVTUWT and (VoW)~ C V-UW ™ holds trivially, and further, ife € S(X,VoW),
say,e€ Xt andee (VoW)  CV-UW, theneec S(X,V) or e e S(X,W), that is,

S(X,VoW)CS(X,V)US(X,W)CE\ A.

Since each of the sets W4 (X,Y) is closed under composition, we may take the composition
of all sign vectors in W4 (X,Y'). The result may depend on the order of the constituents.
Some features of strong elimination are captured by weak elimination:

(WE) for each pair X,Y € £ and e € S(X,Y) there exists Z € W(X,Y) with Z, = 0.

Condition (WE) is in general weaker than (SE): consider, e.g., the four sign vectors
++,+—, ——,00; the zero vector Z would serve all pairs X,Y for (WE) but for X = ++
and Y = +— (SE) would require the existence of -0 rather than 00. In the presence of (IC),
the strong and the weak versions of elimination are equivalent, that is, lopsided systems are
characterized by (IC) and (WE) [4]. With systems satisfying (WE) one can generate lopsided
systems by taking the upper sets:

Proposition 4 ( [4]). If (E,K) is a system of sign vectors which satisfies (WE), then (E, 1K)
1$ a lopsided system.

Proof. We have to show that (WE) holds for (E, 1K). For X, Y € 1K and some element e
in S(X,Y),pick VVIW e LwithV < X and W <Y. Ife € S(V,W), then by (WE) in K one
obtains some U € 1K such that U, =0 and Uy < Vy oWy < XyoYy forall f € E\ S(X,Y).
Then the sign vector Z defined by Z, := Uy for all g € S(X,Y) and Z; := Xy oY} for all
feE\SX,Y) satisfies U < Z and hence belongs to 1K. If e ¢ S(V, W), then V., = 0, say.
Define a sign vector Z similarly as above: Z, :=V, for g € S(X,Y) and Zy := X0 Yy > V;
for f € E\ S(X,Y). Then Z € 1K is as required. O

This proposition applied to a COM (F, £) yields an associated lopsided systems (E, 1 L)
having the same minimal sign vectors as (F, £). This system is referred to as the lopsided
envelope of (E, L£). In contrast to (SE) and (SET), the following variant of strong elimination
allows us to treat the positions f € E'\ S(X,Y) one at a time:

(SE1) foreach pair X,Y € Lande € S(X,Y)and f € E\S(X,Y) there exists Z € W(X,Y)
such that Z, =0, and Zy = (X oY)y.

Nevertheless, under composition axiom (C), all these variants of (SE) are equivalent:

Lemma 5. Let (E, L) be a system of sign vectors which satisfies (C). Then all three variants
(SE), (SET), and (SE1) are equivalent.
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Proof. The equivalence of (SE) and (SET) in the presence of (C) was argued at the end
of Section [2 Trivially, (SE) implies (SE1). Conversely, if (SE1) holds, then for every e €
S(X,Y) we obtain a set {Z{ehS) . f € E\ S(X,Y)} of solutions, one for each f. Then the
composition in any order of these solutions yields a solution Z for (SE), because Z {ehh) < 7
for all f € E\ S(X,Y) and Z. = 0, whence Zy = (X oY)s for all f € E\ S(X,Y) and
Ze = 0. g

Since strong elimination captures some features of composition, one may wonder whether
(C) can be somewhat weakened in the presence of (SE) or (SE1). Here suprema alias confor-
mal compositions come into play:

(CC) XoY € L forall X,Y € £ with S(X,Y) = @.

Recall that X and Y are sign-consistent, that is, S(X,Y) = & exactly when X and Y
commute: X oY =Y o X. We say that a composition X() o ... 0 X™ of sign vectors is
conformal if it constitutes the supremum of X, ..., X with respect to the sign ordering.
Thus, XM, ..., X" commute exactly when they are bounded from above by some sign
vector, which is the case when the set of all Xe(i) (1 < i < n) includes at most one non-zero
sign (where e is any fixed element of F). If we wish to highlight this property we denote the
supremum of XM ... XM by OF_, X@ or XMW ... ® X™ (instead of XD o...0 XM)),
Clearly the conformal property is Helly-type in the sense that a set of sign vectors has a
supremum if each pair in that set does.

Given any system /C of sign vectors on F define () K as the set of all (non-empty) suprema
of members from K. We say that a system (FE, ) of sign vectors generates a system (E, L)
if OK = L. We call a sign vector X € L (supremum-)irreducible if it does not equal the
(non-empty!) conformal composition of any sign vectors from £ different from X. Clearly,
the irreducible sign vectors of £ are unavoidable when generating £. We denote the set of
irreducibles of £ by J = J(L).

Theorem 1. Let (E,L) be a system of sign vectors. Then the following conditions are
equivalent:
(i) (B, L) is a strong elimination system;
(ii) L satisfies (CC) and (SE1);
(iii) L satisfies (CC) and some set K with J C K C L satisfies (SE1).
(iv) L satisfies (CC) and its set J of irreducibles satisfies (SE1).

Proof. The implication (i) = (ii) is trivial. Now, to see (ii) = (iv) let (E, £) satisfy (CC)
and (SE1). For X|Y € J,e € S(X,Y), and f € E\ S(X,Y) we first obtain Z € £ with
Ze =0and Zy = (X oY)y. Since Z is the supremum of some ZW ... ZM from 7, there
must be an index 7 for which Zj(f) = Z; and trivially Ze(i) = 0 holds. Therefore J satisfies
(SE1). This proves (iv). Furthermore, (iv) = (iii) is trivial.

As for (ili) = (i) assume that (SE1) holds in K. The first task is to show that the
composite X oY for X, Y € K can be obtained as a conformal composite (supremum) of X
with members Y/) of K, one for each f € E\ S(X,Y). Given such a position f, start an
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iteration with Z(?f) := Y, and as long as A # S(X,Y), apply (SE1) to X, Z(4/) e K, which
then returns a sign vector

ZAARD) e W (X, ZAD)Y N K C Wa(X,Y) N K with
ZéAU{e},f) — 0 and Z}AU{E}’” =(Xo Z(Af))f =(XoY)y.
In particular, Z(AY{ehf) ¢ Waugey (X, Y) N K. Eventually, the iteration stops with
Yy =z e W (X,Y) NK satisfying

Yf(f) =(XoY)sand (Xo Y(f))e = X, for all e separating X and Y.

Now take the supremum of X and all Y () : then
Xov=Xx0o () vV
FEE\S(X)Y)
constitutes the desired representation.

n)

Next consider a composition X o XM o ... 0 X of n + 1 > 3 sign vectors from K. By

induction on n we may assume that
XWo.oxW=yWg.  oym

where Y € K for all i = 1,...,m. Since any supremum in {£1,0}” needs at most #FE
constituents, we may well choose m = #F. Similarly, as the case n = 1 has been dealt with,
each X oY) admits a commutative representation

XoY® = x @zmi=D+) g zm=D+2) o o z0M) (i =1,...,m).
We claim that Z@) and Z*) commute for all j, k € {1,...,m?}. Indeed,
ZW < XoY®™ and Z® < X o Y for some h,i€{1,...,m}.
Then
ZD 70 < (X oYM oy = (X o YD) oy (W)

because Y and Y commute, whence Z@) and Z*) commute as well. Therefore

XoXWo. oX®W=XoYWo.  o¥Y™=(XoYyW)o... o(XoY)

=XozWo..0z20m

gives the required representation. We conclude that (E, £) satisfies (C).

To establish (SE1) for £, let X = XD o ...0 XM and Y = YD o ... 0 Y™ with
X® yU) e K for all i,j. Take e, f € E such that e separates X and Y and f does not.
We may assume that Xc@ = X, for 1 <i < h, Ye(j) =Y, for 1 < j <k, and equal to zero
otherwise (where h,k > 1). Since K satisfies (SE1) there exists Z() ¢ W(X® Y@))n K
such that Zéi’j) = (0 and Zj(f’j) = (X(i) o Y(j))f for i < h and j < k. Then the composition of
all ZG:D for i < h, X for i > h and all Z(9) for j < k, YU) for j > k yields the required
sign vector Z € W(X,Y) with Z, =0 and Zy = (X oY');. We conclude that (F, £) is indeed
a strong elimination system by Lemma O
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From the preceding proof of (iv) = (i) we infer that the (supremum-)irreducibles of a
strong elimination system (FE, £) are a fortiori irreducible with respect to arbitrary composi-
tion.

6. CocIrcuUITS OF COMs

In an OM, a cocircuit is a support-minimal non-zero covector, and the cocircuits form the
unique minimal generating system for the entire set of covectors provided that composition
over an empty index set is allowed. Thus, in our context the zero vector would have to be
added to the generating set, i.e., we would regard it as a cocircuit as well. The cocircuits of
COMs that we will consider next should on the one hand generate the entire system and on
the other hand their restriction to any maximal face should be the set of cocircuits of the
oriented matroid corresponding to that face via Lemma

For any K with J = J(£) C K C L denote by Min(K) the set of all minimal sign vectors
of K. Clearly, Min(() £) = Min(K) = Min(J). We say that Y covers X in £L = O J (in
symbols: X <Y) if X <Y holds and there is no sign vector Z € £ with X < Z < Y. The
following set C is intermediate between J and L:

C=CL)=JL)U{X e L:W < X for some W € Min(L)}.
Since Min(£) = Min(J) and every cover X ¢ J of some W € Min(J) is above some other
V € Min(J), we obtain:
C=C(J)=JU{WoV:V,IWeMin(J)and W <W oV}
We will make use of the following variant of face symmetry restricted to comparable cov-
ectors:
(FSS) Xo-Y e Lforall X <Y in L.

Note that (FS) and (FS<) are equivalent in any system L satisfying (C), as one can let XoY
substitute Y in (F'S). We can further weaken face symmetry by restricting it to particular
covering pairs X < Y:

(FS™) Wo-Y € L forall W € Min(£) and Y € £ with W <Y in £, or equivalently,
Wo-Y eCforall W e Min(C) and Y € C with W < Y.

Indeed, since sign reversal constitutes an order automorphism of {+1,0}¥ we readily infer
that in (FS™) W o =Y covers W, for if there was X € £ with W < X < W o —Y, then
W<Wo-X<Wo—-(Wo-Y)=WoY =Y, a contradiction.

To show that (FS¥) implies (FS<) takes a little argument, as we will see next.

Proposition 5. Let (E,J) be a system of sign vectors. Then (E,() J) is a COM such that
J s its set of irreducibles if and only if C = C(J) satisfies (FS™) and J satisfies (SE1) and

(IRR) if X = O X; for X, X1,..., X, € T(n>2), then X = X; for some 1 <i<n.

Proof. First, assume that (E,£ = () J) is a COM with J = J(£). From Theorem [1| we
know that J satisfies (SE1), while (IRR) just expresses irreducibility. Since L is the set of
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covectors of a COM, from the discussion preceding the theorem it follows that L satisfies
(FS™). Consequently, C = C(J) satisfies (FS™).

Conversely, in the light of Theorem |1} it remains to prove that (FS<) for C implies (FS<)
for (E,L). Note that for W < X <Y in £ we have X o =Y = X o W o Y, whence for
W <Y € L we only need to show W o —Y € £ when W is a minimal sign vector of £ (and
thus belonging to J C C). Now suppose that W o =Y ¢ L for some covector Y such that
#Y? is as large as possible. Thus as Y ¢ C there exists X € £ with W < X <Y. By (FS~),
W o —X € L holds. Pick any element e € S(W o —-XoY,Y) = W%N X and choose some
Z e LwithZ. =0and Zy = (Wo—-XoY)forall fe E\S(Wo—-XoY,Y) by virtue
of (SE). In particular, Y = X o Z. Then necessarily W < Z and Y° U {e¢} C ZY, so that
W o —Z € L by the maximality hypothesis. Therefore with Theorem [1| we get

Wo-Y=Wo—-(XoZ)=(Wo—-X)o(Wo—-2Z)eL,

which is a contradiction. This establishes (FS<) for £ and thus completes the proof of
Proposition 5] O

Proposition[f]yields the following alternative axiomatization of COMs in terms of covectors,
that is of independent interest:

Corollary 1. A system (E, L) of sign vectors is a COM if and only if (E, L) satisfies (CC),
(SE1) and (FS™).

Let us now advance towards the axiomatization of COMs in terms of cocircuits. Given
a COM (E, L), we call the minimal sign vectors of £ the improper cocircuits of (E,L). A
proper cocircuit is any sign vector Y € £ which covers some improper cocircuit X. Cocircuit
then refers to either kind, improper or proper. Hence, C(L) is the set of all cocircuits of
L. Note that in oriented matroids the zero vector is the only improper cocircuit and the
usual OM cocircuits are the proper cocircuits in our terminology. In lopsided systems (E, £),
the improper cocircuits are the barycenters of maximal hypercubes [4]. In a COM improper
circuits are irreducible, but not all proper circuits need to be irreducible. Here is the main
result of this section.

Theorem 2. Let (E,C) be a system of sign vectors and let L := () C. Then (E, L) is a COM
such that C is its set of cocircuits if and only if C satisfies (SE1),(FS™), and

(COC) C=Min(C)U{Y e ©OC: W <Y for some W € Min(C)}.

Proof. Let (E, £) be a COM and C be its set of cocircuits. By Proposition[f] C satisfies (FS~).
From the proof of Theorem 1| part (ii)=-(iv), we know that a sign vector Z demanded in
(SE1) could always be chosen from the irreducibles, which are particular cocircuits. Therefore
C = C(L) satisfies (SE1). Finally, (COC) just expresses that C exactly comprises the cocircuits
of the set L it generates.

Conversely, L satisfies (CC) by definition. Since J(£) C C and C satisfies (SE1), applying
Theorem [1f we conclude that J satisfies (SE1). Consequently, as C satisfies (FS™) and J
satisfies (SE1), £ is a COM by virtue of Proposition O
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To give a simple class of planar examples, consider the hexagonal grid, realized as the
1-skeleton of the regular tiling of the plane with (unit) hexagons. A benzenoid graph is the
2-connected graph formed by the vertices and edges from hexagons lying entirely within
the region bounded by some cycle in the hexagonal grid; the given cycle thus constitutes
the boundary of the resulting benzenoid graph [25]. A cut segment is any minimal (closed)
segment of a line perpendicular to some edge and passing through its midpoint such that the
removal of all edges cut by the segment results in exactly two connected components, one
signed 4+ and the other —. The ground set E comprises all these cut segments. The set £
then consists of all sign vectors corresponding to the vertices and the barycenters (midpoints)
of edges and 6-cycles (hexagons) of this benzenoid graph. For verifying that (F, L) actually
constitutes a COM, it is instructive to apply Proposition 5} the set J of irreducible members
of £ encompasses the barycenter vectors of the boundary edges and of all hexagons of the
benzenoid. The barycenter vectors of two hexagons/edges/vertices are sign consistent exactly
when they are incident. Therefore J generates all covectors of £ via (CC). Condition (FS¥) is
realized through inversion of an edge at the center of a hexagon it is incident with. Condition
(SE1) is easily checked by considering two cases each (depending on whether Z is eventually
obtained as a barycenter vector of a hexagon or of an edge) for pairs X,Y of hexagon/edge
barycenters.

7. HYPERPLANES, CARRIERS, AND HALFSPACES
For a system (E, L) of sign vectors, a hyperplane of L is the set
L£Y:={X eL:X,=0} for some e € E.

The carrier N(LY) of the hyperplane £ is the union of all faces F(X') of £ with X’ € LY,
that is,

N(LY) :={X € £L:W < X for some W € LY}.
The positive and negative (“open”) halfspaces supported by the hyperplane £° are
LT ={XeL: X =+1},
L, ={Xel:X =-1}.
The carrier N(£2) minus £0 splits into its positive and negative parts:
NF(L) = LI N N(LY),
N=(L£Y) := £ N N(LD).
The closure of the disjoint halfspaces £} and £ just adds the corresponding carrier:
L= uNELY) = ucluN—(L£Y),
Lo =L UNCLY) =L uLduNT(L0).

The former is called the closed positive halfspace supported by £Y, and the latter is the
corresponding closed negative halfspace. Both overlap exactly in the carrier.
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FIGURE 3. A hyperplane (dashed), its associated open halfspaces (square and
round vertices, respectively) and the associated carrier (dotted) in a COM.

Proposition 6. Let (E, L) be a system of sign vectors. Then all its hyperplanes, its carriers
and their positive and negative parts, its halfspaces and their closures are strong elimination
systems or COMs, respectively, whenever (E, L) is such. If (E,L) is an OM, then so are all
its hyperplanes and carriers.

Proof. We already know that fibers preserve (C),(FS), and (SE). Moreover, intersections
preserve the two properties (C) and (FS). Since X/ < X and Y’ < Y imply both X’ <
XoV, X' <Xo(-Y)andY' <Y oX,Y'<Yo(—X), we infer that (C) and (FS) carry over
from £ to N(LD).

In what follows let (E, L) be a strong elimination system. We need to show that N(L£2)
satisfies (SE). Let X', Y’ € £% and X,Y € £ such that X’ < X and Y’ < Y. Then
S(X'Y") CS(X,Y). Apply (SE) to the pair X,Y in £ relative to some element e’ separating
X and Y. This yields some Z € W(X,Y) with Zo =0 and Zy = (X oY)y forall f € E\
S(X,Y).If ¢’ € S(X',Y") as well, then apply (SE) to X', Y" in £? giving Z' € W(X',Y")N LY
with Z/, = 0 and Z = (X' o Y"); for all f € E\ S(X,Y) C E\ S(X',Y'). If ' € X'\ Y,
then put Z’ :=Y’. Else, if ¢ € E\ X/, put Z’ := X’. Observe that all cases are covered as
S(X'Y")=S(X,Y)NnX'NnY'. We claim that in any case Z’ o Z is the required sign vector
fulfilling (SE) for X,Y relative to €/. Indeed, Z’' o Z belongs to N(£?) since Z’' € £ and
Z e L. Then Z'oZ e W(X,Y) because W(X',Y'") CW(X,Y) and W(X,Y) is closed under
composition. Let f € F\ S(X,Y). Then X}, Xy, Yjﬁ, Y} all commute.

In particular,

(Z'0oZ)y=ZyoZy=XpoYjoXsoYy=X;oXsoYioYy=(XoY)y

whenever both Y/, = Yo and X[, = X, hold. If however Y{ = 0, then (Y'0Z); = YjoX oY} =
XpoYioYy=(XoY);. Else, if X; =0, then (X' 0 Z); = X}0XroYy = (XoY)s This
finally shows that the carrier of £ satisfies (SE).
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To prove that £ satisfies (SE) for a pair X,Y € L relative to some ¢’ € S(X,Y), assume
that X € LI and Y € N(£2)\ L since (SE) has already been established for both £ and
N (52) and the required sign vector would equally serve the pair Y, X. Now pick any Y’ € ﬁg
with Y’ < Y. Then two cases can occur for ¢/ € S(X,Y).

Case 1. Y/, = 0.

Then (Yo X)y = X, S(Y'0 X, V) C S(X,Y),and Y/ < Y’ 0 X, whence Yo X € N(LD).
Applying (SE) to Yo X, Y in N(L?) relative to €’ yields 2’ € W(Y'o X,Y) C W(X,Y) with
Z!, =0 and

Zy=Y}joX;oY;=Xso0YjoY;=(XoY)sforal fe E\S(X,Y).

Case 2. Y, =Y.

As above we can select Z € W(X,Y) with Zo = 0 and Zy = (X oY)y for all f €
E\ S(X,Y). Analogously choose Z' € W(X,Y") with Z], = 0 and Z} = (X oY) for all
f € E\S(X,Y’). We claim that in this case Z’ o Z is a sign vector from £} as required for
X,Y relative to €. Indeed, Z, = (X oY')e = +1 = (X oY), because X, = +1,Y, = 0 and
consequently e ¢ S(X,Y’). For f € E\ S(X,Y) we have

(ZIOZ)f:Xon;OXfOYf:XfOXfOY;OYf:(XOY)f

by commutativity, similarly as above. This proves that £g satisfies (SE).

To show that N*(L£0) = £ N N(L£Y) satisfies (SE), we can apply (SE) to some pair
X, Y € NT(LY) relative to some ¢’ € S(X,Y) first within N(£?) and then within £ to
obtain two sign vectors Z' € N(LY)NW(X,Y) and Z € LINW(X,Y) such that Z/, =0 = Z
and Z} = (X oY)y =Zs forall f € E\S(X,Y). Then Z' < Z'0Z € N(£Y%) and (Z'0 Z). =
(XoY)e=+1lase¢ S(X,Y). Moreover, (Z' 0o Z)y = (X oY)s forall fe E\S(X,Y). This
establishes (SE) for N*(L£Y). The proofs for £; and N~ (L£2) are completely analogous. The
last statement of the proposition is then trivially true because the zero vector, once present
in £, is also contained in all hyperplanes (and hence the carriers). O

A particular class of COMs obtained by the above proposition are halfspaces of OMs.
These are usually called affine oriented matroids, see [27] and |10, p. 154]. Karlander [27]
has shown how an OM can be reconstructed from any of its halfspaces. The proof of his
intriguing axiomatization of affine oriented matroids, however, has a gap, which has been
filled only recently [5]. Only few results exist about the complex given by an affine oriented
matroid [18L[19].

We continue with the following recursive characterization of COMs:

Theorem 3. Let (E,L) be a semisimple system of sign vectors. Then (E,L) is a strong
elimination system if and only if the following four requirements are met:

(1) the composition rule (C) holds in (E, L),

(2) all hyperplanes of (E, L) are strong elimination systems,

(3) the tope graph of (E, L) is a partial cube,
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(4) for each pair X,Y of adjacent topes (i.e., with #S(X,Y) = 1) the barycenter of the
corresponding edge, i.e. the sign vector %(X +Y), belongs to L.

Moreover, (E, L) is a COM if and only if it satisfies (1),(3),(4), and
(2") all hyperplanes of (E, L) are COMs,
In particular, (E, L) is an OM if and only if it satisfies (1),(4), and

(2") all hyperplanes of (E, L) are OMs,
(3) the tope set of (E,L) is a simple acycloid, see [26], i.e., induces a partial cube and
satisfies (Sym).

Proof. The “if” directions of all three assertions directly follow from Propositions [6] and
Conversely, using (1) and Lemma 5], we only need to verify (SE=) to prove the first assertion.

To establish (SET), let X and Y be any different sign vectors from £. Assume that X =Y
and e € S(X,Y). If the supports are not all of E, then we can apply (SE™) to the hyperplane
associated with a zero coordinate of X and Y according to condition (2) and obtain a sign
vector Z as required. Otherwise, both X and Y are topes. Then a shortest path joining X
and Y in the tope graph is indexed by the elements of S(X,Y) and thus includes an edge
associated with e. Then the corresponding barycenter map Z (that belongs to £ by condition
(4)) of this edge does the job. Thus (F, £) is a semisimple strong elimination system.

In order to complete the proof of the second assertion it remains to establish (FS<). So
let X and Y be any different sign vectors from £ with X oY =Y. In particular, X is not
a tope and Y belongs to the face F'(X). If the support Y does not equal E, then again we
find a common zero coordinate of X and Y, so that we can apply (FS<) in the corresponding
hyperplane to yield the sign vector opposite to Y relative to X. So we may assume that Y is a
tope. Since (E, £) is a semisimple strong elimination system, from Proposition We infer that
the tope graph of F'(X) is a partial cube containing at least two topes. Thus there exists a
tope U € F(X) adjacent to Y in the tope graph, say S(U,Y) = {e}. Let W be the barycenter
map of this edge. Applying (FS=) for the pair X, W in the hyperplane L? relative to e we
obtain X o (—W) € LY. By (1) we have X o (~W)oU € L. Since X o (-W)oU = X o (-Y)
this concludes the proof.

As for the third assertion, note that symmetric COMs are OMs and symmetry for non-
topes is implied by symmetry for hyperplanes. O

8. DECOMPOSITION AND AMALGAMATION

Proposition [6] provides the necessary ingredients for a decomposition of a COM, which is
not an OM, into smaller COM constituents. Assume that (E, L) is a semisimple COM that
is not an OM. Put £ := £, and £” := LF. Then £ = L'UL" and £'NL" = N~ (L£Y). Since
X determines a maximal face not included in LY, we infer that £’ \ £” # @ and trivially
L'\ L' # @. By Proposition [6] all three systems (E, £'), (E, L"), and (E,£'NL") are COMs,
which are easily seen to be semisimple.
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Moreover, £ o £” C L' holds trivially. If W € £ and X € £, then W o X € F(W) C
N(LY), whence L£” o £' C L£". This motivates the following amalgamation process which in a
way reverses this decomposition procedure.
We say that a system (E, L) of sign vectors is a COM amalgam of two semisimple COMs
(E, L") and (E, L") if the following conditions are satisfied:
(1) £= U[,” with L'\ L, "\ L', L' N L" # &;
(2) (B, L' NnL")is a semisimple COM;
(3) Lo E” CL and L"o L' C L,
(4) for X € £/\ £" and Y € £"\ £ with X? = Y there exists a shortest path in the
graphical hypercube on {:i:l}E\X for which all its vertices and barycenters of its
edges belong to £\ X°.

Proposition 7. The COM amalgam of semisimple COMs (E, L") and (E,L") constitutes a
semisimple COM (E, L) for which every mazimal face is a maximal face of at least one of
the two constituents.

Proof. £ = L' U L" satisfies (C) because £ and £” do and for X € £ and Y € L” one
obtains X oY € L' C Land Yo X € £” C L by (3). Then L also satisfies (FS<) since
for X <Y = X oY in L the only nontrivial case is that X € £’ and Y € L”, say. Then
Y =XoY e /L by (3), whence X o —Y € L' C L.

Every minimal sign vector X € £, say X € L', yields the face F(X) ={X oY :Y € L} C
L' oL C L. Tt is evident that (E, L) is semisimple.

By Lemma [5] it remains to show (SE™) for two sign vectors X and Y of £ with X0 = YO,
where X € L'\ L" and Y € £\ L. Then let e € S(X,Y) and f € E\ S(X,Y). Then
the barycenter of an e-edge on a shortest path P from X \ X to Y\ X° between £\ X°
and £\ X (guaranteed by condition (4)) yields the desired sign vector Z € £ with Z, = 0,
XY C Z% and Z € W(X,Y). Since X" = Y?, we have X; = Y} by the choice of f. Since P
is shortest, we get Zy = (X oY)y, O

Summarizing the previous discussion and results, we obtain

Corollary 2. Semisimple COMs are obtained via successive COM amalgamations from their
mazximal faces (that can be contracted to OMs).

9. EULER-POINCARE FORMULAE

In this section, we generalize the Euler-Poincaré formula known for OMs to COMSs, which
involves the rank function. This is an easy consequence of decomposition and amalgamation.
In the case of lopsided systems and their hypercube cells the rank of a cell is simply expressed
as the cardinality of the zero set of its associated covector.

Given an OM of rank r, for 0 < ¢ < r—1 one defines f; as the number of cells of dimension
fi of the corresponding decomposition of the (r —1)-sphere, see Section [11|for more about this
representation. It is well-known (cf. [10, Corollary 4.6.11]) that Z;.:Ol(—l)ifi =1+ (=1L
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Adding the summand (—1)~'f_; = —1 here artificially yields /' (~=1)if; = (=1)""L
Multiplying this equation by (—1)"~! and substituting i by r — 1 — j yields

r r—1
Z(_l)jfr—l—j = Z(-l)Tﬁlfifi =1.
J=0 i=1

As fr._1_; gives the number of OM faces of rank j we can restate this formula in covector
notation as 3y (—1)"%) = 1, where r(X) is the rank of the OM F(X)\ X. We define the
rank of the covector of a COM in the same way.

Since COMs arise from OMs by successive COM amalgamations, which do not create new
faces, and at a step from £’ and L£” to the amalgamated L each face in the intersection is
counted exactly twice, we obtain

P D B D DY D DN G A

Xel Xel! XeL” XeLnL”

Proposition 8. Every COM (E, L) satisfies the Euler-Poincaré formula ZXGL(—l)T’(X) =1.

We now characterize lopsided systems in terms of an Euler-Poincaré formula. A system
(E, L) is said to satisfy the Fuler-Poincaré formula for zero sets if

ST (-p# =1

XeLl

Proposition 9. The following assertions are equivalent for a system (E,L):

(i) (B, L) is lopsided, that is, (E, L) is a COM satisfying (IC);

(i) [38] every topal fiber of (E,L) satisfies the Euler formula for zero sets, and L is
determined by the topes in the following way: for each sign vector X € {#+1,0},
XeL=XoYeLforalY c{£1}F;

(iii) every contraction of a topal fiber of (E, L) satisfies the Euler formula for zero sets in
its own right.

Proof. Deletions, contractions, and fibers of lopsided sets are COMs satisfying (IC) as well,
that is, are again lopsided. In case of a lopsided system (E, L) for every X € L we have
r(X) = #X° Therefore by Proposition [8| (E, L) satisfies the Euler formula for zero sets.
This proves the implication (i)=-(iii).

As for (iii)=(ii), we proceed by induction on #X° for X € £. Assume that X° is not
empty. Pick e € XY and delete the coordinate subset X° \ e from X. Consider the topal
fiber R = {X' € £L: X'\ X = X \ X} relative to X and X, and contract R to R/(X?\ e).
Let U(©) denote the (unit) sign vector on E with U = +1 and U = 0 for f # e. Since
R/(XO\ e) satisfies the Euler-Poincaré formula for zero sets, both X o U(®) and X o —U(®)
must belong to £. By the induction hypothesis

(XoU)oZ (Xo-UoZeLforall Ze {+1}7,
whence indeed X oY € £ for all Y € {+1}F.
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To prove the final implication (ii)=-(i), we employ the recursive characterization of The-
orem [3| Since (IC) holds by the implication for X € £ in (ii), property (1) of this theorem
is trivially fulfilled. Observe that {£1} C {X. : X € L} because the topal fiber relative to
X € £ and X # FE contains all possible —1,+1 entries. If X,Y are two topes of £ with
S(X,Y) = {e}, then the topal fiber relative to X and E\ e must contain (X +Y) by virtue
of the Euler-Poincaré formula for zero sets. This establishes property (4) and (RN1).

Suppose that the topes of £ do not form a partial cube in {il}E. Then choose topes
X and Y with #S(X,Y) > 2 as small as possible such that the topal fiber R relative to
X and E \ S(X,Y) include no other topes than X or Y. The formula for zero sets implies
that this topal fiber R must contain at least some Z € £ with Z° of odd cardinality. Then
for e # f in S(X,Y) one can select signs for some tope Z' conforming to Z such that
Z.Z%y # XXy = Y.Yy. Hence R contains the tope Z' that is different from X and Y,
contrary to the hypothesis. This contradiction establishes that £ fulfills property (3) and is
semisimple.

Consider the hyperplane £ and the corresponding halfspaces £} and £ ( which are two
disjoint topal fibers of £). Then the formula

P CE VD DN CS Ve WS Vs

XeL vecrd zZeLs
amounts to
> (=1,
WeLd\e

showing that the hyperplane after semisimplification satisfies the Euler-Poincaré formula.
The analogous conclusion holds for any topal fiber £\ A of any X € £ with A C X because
taking topal fibers and contractions commute. By induction we conclude that (E, L) is a
COM satisfying (IC), that is, a lopsided system. O

Note that the equivalence of (i) and (ii) in Proposition |§| rephrases a result by Wiede-
mann [38] on lopsided sets. Observe that in condition (iii) one cannot dispense with contrac-
tions as the example £ = {400} shows. Neither can one weaken condition (ii) by dismissing
topal fibers: consider a path in the 1-skeleton of [—1, +1]® connecting five vertices of the solid
cube, which would yield an induced but non-isometric path of the corresponding graphical
3-cube. Let £ comprise the five vertices and the barycenters of the four edges, being repre-
sented by their sign vectors. Then all topal fibers except one satisfy the first statement in
(ii), the second one being trivially satisfied.

10. RANKING COMS

Particular COMs naturally arise in order theory. For the entire section, let (P, <) denote
an ordered set (alias poset), that is, a finite set P endowed with an order (relation) <. A
ranking (alias weak order) is an order for which incomparability is transitive. Equivalently,
an order < on P is a ranking exactly when P can be partitioned into antichains (where an
antichain is a set of mutually incomparable elements) A, ..., A, such that z € A; is below
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y € Aj whenever ¢ < j. An order < on P is linear if any two elements of P are comparable,
that is, all antichains are trivial (i.e., of size < 2). An order <’ extends an order < on P if
x < y implies # <" y for all z,y € P. Of particular interest are the linear extensions and,
more generally, the ranking extensions of a given order < on P.

Let us now see how to associate a set of sign vectors to an order < on P = {1,2,...,n}.
For this purpose take E to be the set of all 2-subsets of P and encode < by its characteristic
sign vector X< € {0,£1}¥, which to each 2-subset e = {i,5} assigns X= = 0 if i and j are
incomparable, X5 = +1 if the order agrees with the natural order on the 2-subset e, and
else X= = —1. In the sign vector representation the different components are ordered with
respect to the lexicographic natural order of the 2-subsets of P.

The composition of sign vectors from different orders < and <’ does not necessarily return
an order again. Take for instance, X= = + + + coming from the natural order on P and
X< =0-0 coming from the order with the single (nontrivial) comparability 3 <’ 1. The
composition X <o xS equals +— 4+, which signifies a directed 3-cycle and thus no order. The
obstacle here is that X=' encodes an order for which one element is incomparable with a pair
of comparable elements. Transitivity of the incomparability relation is therefore a necessary
condition for obtaining a COM.

We denote by R(P, <) the simplification of the set of sign vectors associated to all ranking
extensions of (P, <). Note that the simplification amounts to omitting the pairs of the ground
set corresponding to pairs of comparable pairs of P.

Theorem 4. Let (P, <) be an ordered set. Then R(P,<) is a realizable COM, called the
ranking COM of (P, <).

Proof. The composition X oY of two sign vectors X and Y which encode rankings has an
immediate order-theoretic interpretation: each (maximal) antichain of the order <x encoded
by X gets ordered according to the order <y corresponding to Y. Similarly, in order to
realize X o —Y one only needs to reverse the order <y before imposing it on the antichains
of <x. This establishes conditions (C) and (FS). To verify strong elimination (SET), assume
that X and Y are given with X = Y, so that the corresponding rankings have the same
antichains. These antichains may therefore be contracted (and at the end of the process get
restored again). Now, for convenience we may assume that X is the constant +1 vector,
thus representing the natural linear order on P. Given e = {i,j} with ¢ <x j, let Y, =
—1, that is, j <y 4. To construct a sign vector Z with Z. = 0 and Zy = X whenever
Y; = Xy, take the sign vector of the ranking corresponding to X but place the subchain
{h 1 i <x h <x jand h <y j} directly below the newly created antichain {i,j}, and
{h:i<x h<x jand j <y h} directly above it, while leaving everything else in the natural
order. This establishes that R(P, <) is a COM. Realizability of R(P, <) will be confirmed in
the third paragraph below. O

To provide an example for a ranking COM and also illustrate the preceding construction,
consider the ordered set (“fence”) shown in Figure In Figure the sign vector X
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encodes the natural order < and Y the ordering 3 <y 2 <y j =5 <y i =1 <y 4, while Z
encodes the intermediate ranking with 2 <z 3 <z 1 and 5 <z 4.

Y
1
12

45

13 7
’4 ’5
23
4 5 5 1 4 3 4 5
1<2<3<4<5b \ -
34 N TN :
1 2 3 2 3 1 2 1 2 3

(a) (b) (c)

FIGURE 4. From [(a)] an ordered set (P, <) to[(b)| the ranking COM R(P, <)
comprising three maximal faces determined by the minimal rankings in
R(P, <).

The ranking COM R(P, <) is the natural host of all linear extensions of (P, <) (as its
topes), where the interconnecting rankings signify the cell structure. The linear extension
graph of an ordered set (P, <) is defined on the linear extensions of (P, <), where two linear
extensions are joined by an edge iff they differ on the order of exactly one pair of elements.
Thus, the linear extension graph of (P,<) is the tope graph of R(P,<). A number of
geometric and graph-theoretical features of linear extensions have been studied by various
authors [33}35:36], which can be expressed most naturally in the language of COMs.

One such result translates to the fact that ranking COMs are realizable. To see this,
first consider the braid arrangement of type B, i.e., the central hyperplane arrangement
{Hi; : 1 <i<j<n}inR" where Hj; = {x € R" : 2; = z;} and the position of any
point in the corresponding halfspace {z € R™ : z; < z;} is encoded by + with respect to
H;j. The resulting OM is known as the permutahedron [10]. Given an order < on P =
{1,...,n} consider the arrangement £ = {H;; : i,j incomparable} restricted to the open
polyhedron (), ;{z € R" : z; < x;}. The closure of the latter intersected with the unit cube
[0,1]™ coincides with the order polytope [37] of (P, <). It is well-known that the maximal
cells of the braid arrangement restricted to the order polytope of (P, <) correspond to the
linear extensions of (P, ). Thus, the COM realized by the order polytope and the braid
arrangement has the same set of topes as the ranking COM. By the results of Section [4] this
implies that both COMs coincide. In particular, ranking COMs are realizable.

We will now show how other notions for general COMs translate to ranking COMs. A face
F of R(P, <), as defined in Section [3| can be viewed as the set of all rankings that extend
some ranking extension <’ of <. Hence F = R(P, <'), i.e., all faces of a ranking COM are also
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ranking COMs. The minimal elements of R(P, <) with respect to sign ordering (being the
improper cocircuits of R(P, <)) are the minimal ranking extensions of (P, <), see Figure

A hyperplane R? of R := R(P, <) relative to e = {i,j} € F corresponds to those ranking
extensions of (P, <) leaving i,j incomparable. Thus, R can be seen as the ranking COM
of the ordered set obtained from (P, <) by identifying ¢ and j. The open halfspace RT
corresponds to those ranking extensions fixing the natural order on ¢,j and is therefore the
ranking COM of the ordered set (P, <) extended with the natural order on 7, j. The analogous
statement holds for R_ . Similarly, the carrier of R relative to e can be seen as the ranking
COM of the ordered set arising as the intersection of all minimal rankings of (P, <) not fixing
an order on 4, j. So, in all three cases the resulting COMs are again ranking COMs.

One may wonder which are the ordered sets whose ranking COM is an OM or a lopsided
system. The maximal cells in Figure are symmetric and therefore correspond to OMs.

Proposition 10. The ranking COM of (P,<) is an OM if and only if < is a ranking. In
this case, R(P, <) and its proper faces are products of permutohedra.

Proof. Since any OM has a unique improper cocircuit, < needs to be a ranking in order to
have that R(P, <) is an OM. On the other hand, it is easy to see that if < is a ranking on
P, then R(P, <) is a product of permutohedra and, in particular, is symmetric, yielding the
claim. O

Proposition 11. The ranking COM of (P, <) is a lopsided system if and only if (P, <) has
width at most 2. In this case, the tope graph of R(P, <) is the covering graph (i.e., undirected
Hasse diagram) of a distributive lattice.

Proof. If (P, <) contains an antichain of size 3, then the corresponding face of R(P, <) does
not satisfy ideal composition, so that R(P, <) is not lopsided. Conversely, if all antichains
have size at most 2, then the zero entries of a sign vector X encoding a ranking of (P, <
) correspond to maximal antichains of size 2. Thus, choosing any sign on a zero entry
just corresponds to fixing a linear order on the two elements of the antichain. Since these
antichains are maximal and X encodes a ranking, the resulting sign vector encodes a ranking,
too. This proves ideal composition.

Let us now prove the second part of the claim. By Dilworth’s Theorem [17], (P, <) can
be covered by two disjoint chains, C' and D. A linear extension of (P, <) corresponds to an
order-preserving mapping of C' to positions between consecutive elements of D or above or
below its maximal or minimal element, respectively. A linear extension < of (P, <) can thus
be codified by an order-preserving mapping f from C to the chain D =DuUl,ie., D with a
new top element 1 added: f(c) = d € D signifies that the subchain f~'(d) of C' immediately
precedes d in the linear extension <. If there are no comparabilities between C' and D in
(P, <), then the tope graph of R(P, <) is the covering graph of the entire distributive lattice
L of order-preserving mappings from C to D since covering pairs in L correspond to pairs
of linear extensions which are distinguished by a single neighbors swap. Additional covering
relations between C' and D yield lower and upper bounds for the order-preserving mappings,
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whence the resulting (distributive) linear-extension lattice of (P, <) constitutes some order-
interval of L. O

1<3<2<5<4<6

56 45
23
5 6
34
36
3 4
12
1 2 2<1<4<6<3<5

(a) (b)

FIGURE 5. From @ the Hasse diagram of (P, <) having width 2 to @ the
tope graph of the lopsided system R (P, <) oriented as a distributive lattice.

In Figure an ordered set (P, <) of width 2 is displayed, which has the natural order
on {1,...,6} among its linear extensions. Figure shows the tope graph of the lopsided
system R(P, <) and highlights the pair of diametrical vertices that determine the distributive
lattice orientation (and its opposite); the natural order is associated with the (median) vertex
(indicated by a small open circle). If we added the compatibility 3 < 6 to the Hasse diagram,
then the tope graph shrinks by collapsing the (two) edges corresponding to {3,6}. The
resulting graph with F7 = 13 vertices is known as the “Fibonacci cube of order 5”.

More generally, the Fibonacci cube of order n — 1 > 1 is canonically obtained as the tope
graph of R({1,...n}, <), where ({1,...n},<) is the ordered set determined by the (cover)
comparabilities 1 <3 <5< ... <2|%|+land2<4 <6 <...<2[%] and k < k+3 for all
k=1,...,n—3. The incomparable pairs thus form the set £ = {{i,i+1}:i=1,...,n—1}}.
The intersection graph of E is a path of length n— 1, which yields a “fence” when orienting its
edges in a zig-zag fashion. This fence and its opposite yield the mutually opposite ordered sets

of supremum-irreducibles for the (distributive) “Fibonacci” lattice and its opposite. Recall
that the opposite (R, <)’ = (R, <°) of an ordered set (R, <) is defined by switching < to
>, that is: x < y if and only if y < =x.

Similarly, to the fact that hyperplanes, carriers, and open halfspaces of a ranking COM are
also ranking COMs, the class of ranking COMs is also closed with respect to contractions.
On the other hand deleting an element in a ranking COM may give a COM which is not a
ranking COM.

To give a small example, consider the minor R(P, <)\ {5, 6} of the lopsided system R (P, <)
of Figure [5 Suppose by way of contradiction, that R(P, <) \ {5,6} could be represented by
some R(Q,<). The ordered set (@, <) must be of width 2 since the tope graph of R(Q, <)
is obtained from the graph in Figure by contracting the five edges labeled 56 and thus
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includes no 3-cube. We can keep the current labeling without loss of generality to the point
that @ must include four antichains {1,2}, {2,3}, {3,4}, {3,6} of size 2 with exactly this
intersection pattern. But then the fifth antichain must be disjoint from {1,2} and {2,3}
but intersecting both {3,4} and {3,6}, whence it must be {4,6}, which however yields a
contradiction as {3,4,6} cannot be an antichain in (@, <). Furthermore, R(P, <)\ {5,6} is
easily seen to be the COM amalgam of ranking COMs, i.e., the class is also not closed under
COM amalgamations.

It would be interesting to determine the smallest minor-closed class of COMs containing
the ranking COMs.

11. COMS AS COMPLEXES OF ORIENTED MATROIDS

In this section we consider a topological approach to COMs. In the subsequent definitions,
notations, and results we closely follow Section 4 of |10] (some missing definitions can be
also found there). Let B = {x € R? : ||z|| < 1} be the standard d-ball and its boundary
S4=1 = 9B? = {x € R? : ||z|| = 1} be the standard (d — 1)-sphere. When saying that a
topological space T is a “ball” or a “sphere”, it is meant that 7' is homeomorphic to B? or
S4=1 for some d, respectively.

11.1. Regular cell complexes. A (reqular) cell complex A constitutes of a covering of a
Hausdorff space ||Al| = J,eca 0 with finitely many subspaces ¢ homeomorphic with (open)
balls such that (i) the interiors of o € A partition ||A|| (i.e., every x € ||A]| lies in the interior
of a single o € A), (ii) the boundary do of each ball & € A is a union of some members of
A |10l Definition 4.7.4]. Additionally, we will assume that A obeys the intersection property
(iii) whenever o,7 € A have non-empty intersection then o N7 € A. The balls o € A are
called cells of A and the space ||A|| is called the underlying space of A. If T' is homeomorphic
to ||Al| (notation T' 2 ||A]|), then A is said to provide a regular cell decomposition of the
space T. We will say that a regular cell complex A is contractible if the topological space
[|A]| is contractible. If 0,7 € A and 7 C o, then 7 is said to be a face of 0. A’ C A'is a
subcomplex of A if 7 € A’ implies that every face of 7 also belongs to A’. The 0-cells and
1-cells of A are called vertices and edges. The I-skeleton of A is encoded by the graph G(A)
consisting of the vertices of A and graph edges corresponding to the edges of A. The set of
cells of A ordered by containment is denoted by F(A) (in [13], F(A) is also called an abstract
cell complex). Two cell complexes A and A’ are combinatorially equivalent if their ordered
sets F(A) and F(A’) are isomorphic. We continue by recalling several results relating regular
cell complexes.

The order complex of a finite ordered set P is an abstract simplicial complex A,.q(P)
whose vertices are the elements of P and whose simplices are the chains o < z1 < -+ < x
of P. The geometric realization ||A|| of a complex A basically consists of simultaneously
replacing all abstract simplices by geometric simplices, see [12]| for a formal definition. In
particular, |[Ayq(P)|| is the geometric realization of A,.q(P). For an element x of P let
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Py ={ye P:y <z} and P<, = P, U{x}. The following fact expresses that a regular
cell complex is homeomorphic to the order complex of its ordered set of faces.

Proposition 12. [10, Proposition 4.7.8] Let A be a reqular cell complex. Then ||A|| =
[|Apra(F(A)||. Moreover, this homeomorphism can be chosen to be cellular, i.e., it restricts
to a homeomorphism between o and ||Ayra(F<s)l||, for all o € A.

The ordered sets of faces of regular cell complexes can be characterized in the following
way:

Proposition 13. [10, Proposition 4.7.23] Let P be an ordered set. Then P = F(A) for
some regular cell complex A if and only if ||Aorqg(P<z)|| is homeomorphic to a sphere for all
x € P. Furthermore, A is uniquely determined by P up to a cellular homeomorphism.

11.2. Cell complexes of OMs. Now, let £ C {£1,0}¥ be the set of covectors of an oriented
matroid. Then (£, <) is a semilattice with least element 0 (where < is the product ordering
on {£1,0}¥ defined above). The semilattice (LU{1}, <), i.e., the semilattice £ with a largest
element 1 adjoined, is a lattice, called the big face lattice of £ and denoted by Frig(L). Let
Frig(L)P denote the opposite of Fig(L).

Proposition 14. [10, Corollary 4.3.4 € Lemma 4.4.1] Let (E, L) be an oriented matroid of
rank r. Then Fuig(L)P is isomorphic to the face lattice of a PL (Piecewise Linear) reqular

cell decomposition of the (r — 1)-sphere, denoted by A(L). The tope graph of L encodes the
1-skeleton of A(L).

11.3. Cell complexes of COMs. We collected all ingredients necessary to associate to
each COM a regular cell complex. Let £ C {£1,0}¥ be the set of covectors of a COM.
Analogously to oriented matroids, let Fy;y (L) := (LU{1}, <) denote the ordered set £ with a
top element 1 adjoined and call ;4 (L) the big face semilattice of L. Let Fyig(L£)° denote the
opposite of Fyig(L). Frig(L) is isomorphic to the semilattice comprising the empty set and
the faces of £ ordered by inclusion. Recall that for any X € L, the deletion (E'\ X, F(X)\X)
corresponding to the face F'(X) is an oriented matroid, which we will denote by £(X). Since
F(Y)C F(X) if and only if Y € F(X), the order ideal Fp;y(L)%y coincides with the interval
[1, X] of Fpig(L£)? and is isomorphic to the opposite big face lattice Fiy(L(X))P of L(X).
By Proposition if 7 is the rank of £(X), then Fp;;(L(X))? is isomorphic to the face
lattice of a PL cell decomposition A(L(X)) of the (r — 1)-sphere. Additionally, the tope
graph of £(X) encodes the 1-skeleton of A(L(X)). Denote by o(L(X)) the open PL ball
whose boundary is the (r — 1)-sphere occurring in the definition of A(L(X)). We will call
the cells of A(L(X)) faces of o(L(X)). The faces of A(L(X)) correspond to the elements of
L(X)U {i} Notice in particular that the adjoined element 1 corresponds to the empty face
in A(L(X)) and 0 € F(X) \ X corresponds to the unique maximal face o(L(X)).

By Proposition for any X € L we have |[A(L(X))|] = ||Aora(Frig(L(X))P)]|.
Furthermore, since Fpig(L£(X))% is isomorphic to Fpig(L) Py, |[Aora(Frig(L(X))P)|] =
[|Aora(Frig(L)Py)]|.  Thus for each X € L, HAord(fbig(_ﬁ)ipx)H is homeomorphic to
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[JA(L(X))\o(L(X))||, which is a sphere by Proposition[l4 Now, by Proposition[L3] Fy;q (L)
is the face semilattice of a regular cell complex A(L). Moreover, from the proof of Propo-
sition [13| it follows that A(L) can be chosen so that its cells are the balls o(£(X)), X € L,
whose boundary spheres are decomposed by A(L(X)). Since F(X)NF(Y) = F(X oY) for
any two covectors X,Y € £ such that F/(X) and F(Y) intersect, Fpig(L£(X oY) is isomor-
phic to a sublattice of Fp;q(L(X))? and to a sublattice of Fp;q(L(Y"))P. Therefore the cells
A(L(X)) and A(L(Y)) are glued in A(L) along A(L(X oY')), whence A(L) also satisfies the
intersection property (iii). Notice also that since the 1-skeleton of each A(L(X)) yields the
tope graph of £(X) and A(L) satisfies (iii), the 1-skeleton of A(L) encodes the tope graph
of £. We summarize this in the following proposition, in which we also establish that A(L)
is contractible.

Proposition 15. If (E, L) is a COM, then A(L) is a contractible reqular cell complex and
the tope graph of L is realized by the 1-skeleton of A(L).

Proof. We prove the contractibility of A(L) by induction on the number of maximal cells of
A(L) by using the so-called gluing lemma |7, Lemma 10.3] and our decomposition procedure
(Proposition [7)) for COMs. By the gluing lemma, if A is a cell complex which is the union
of two contractible cell complexes A’ and A” such that their intersection Ag = A’ N A" is
contractible, then A is contractible.

If A(L) consists of a single maximal cell o(£(X)), then (E, L) is an OM and therefore
is contractible. Otherwise, as shown above there exists an element e € E such that if we
set £ := L7 and L” := LI, then (E, L) is the COM amalgam of the COMs (E, L) and
(E, L") along the COM £' N £" = N=(£Y). By induction hypothesis, the cell complexes
AL, A(L"), and A(L" N L") are contractible. Each maximal cell of A(L) corresponds to
a maximal face of £, thus by Proposition [7] it is a maximal cell of A(L"), of A(L"), or of
both (in which case it belongs to A(L N L")). Since each cell of A(L) belongs to a maximal
cell, this implies that A(L) C A(L") U A(L"). Since £ U L" C L, we also have the converse
inclusion A(L") UA(L") € A(L). Finally, since £ N L" = N~ (£Y), the definition of carriers
implies that A(L' N L") = ALY N A(L"). O

11.4. Zonotopal COMs. As in the introduction, let E be a central arrangement of n hy-
perplanes of R? and £ be the oriented matroid corresponding to the regions of R¢ defined by
this arrangement. Let X = {x1,...,x,} be a set of unit vectors each normal to a different
hyperplane of E. The zonotope Z := Z(X) of X is the convex polytope of R? which can be
expressed as the Minkowski sum of n line segments

Z = [—x1,x1] + [—X2,X2] + ... + [—Xp, Xp].
Equivalently, Z is the projection of the n-cube C, := {31 | Mie; : =1 < X; < +1} C R” under

X (where ey, ..., e, denotes the standard basis of R™), which sends e; to x;, i = 1,...,n:

n
Z={) Aixi:—1< X\ <+1} CRY
=1
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The hyperplane arrangement F is geometrically polar to Z: the regions of the arrangement

are the cones of outer normals at the faces of Z. The face lattice of Z is opposite (anti-

isomorphic) to the big face lattice of the oriented matroid £ of X, that is, F(Z) ~ Fy;y(L)P;

for this and other results, see [10, Subsection 2.2]. Therefore the zonotopes together with

their faces can be viewed as the cell complexes associated to realizable oriented matroids.
The following properties and examples of zonotopes are well-known:

e any face of a zonotope is a zonotope;

e a polytope P is a zonotope if and only if every 2-dimensional face of P is a zonotope
and if and only if every 2-dimensional face of P is centrally symmetric;

e two zonotopes are combinatorially equivalent if and only if their 1-skeletons yield
isomorphic graphs;

e the d-cube is the zonotope corresponding to the arrangement of coordinate hyper-
planes (called also Boolean arrangements [13]) in R%;

e the permutohedron is the zonotope corresponding to the braid arrangement in R%.

A regular cell complex A is a (combinatorial) zonotopal complex if each cell of A is combi-
natorially equivalent to a zonotope [13|. Analogously, A is a cube complez if each of its cells
is a combinatorial cube. A geometric zonotopal or cube complez is a zonotopal (respectively,
cube) complex A with a metric such that each face is isometric to a zonotope (respectively,
a cube) of the Euclidean space. Moreover, faces are glued together by isometry along their
maximal common subfaces. The cell complex A(L) associated to a lopsided set (E, L) is
a geometric cube complex: A(L) is the union of all subcubes of the cube [~1,+1]¥ whose
barycenters are sign vectors from £ [4].

A COM (E, L) is called locally realizable (or zonotopal) if £(X) is a realizable oriented
matroid for any X € £. Then A(L) is a zonotopal complex because each cell A(L(X)), X € L,
is combinatorially equivalent to a zonotope. A zonotopal COM (FE, L) is called zonotopally
realizable if A(L) is a geometric zonotopal complex. Clearly, zonotopally realizable COMs
are locally realizable. The converse is the content of the following question:

Question 1. Is any locally realizable COM zonotopally realizable?

Proposition 16. If £ is a realizable COM, then L is zonotopally realizable (and thus locally
realizable). In particular, each ranking COM is zonotopally realizable.

Proof. Since L is realizable there is a set of oriented affine hyperplanes of R% and an open
convex set C, such that £ = L(E,C). Without loss of generality we can assume that C'is the
interior of a full-dimensional polyhedron P. Let F' be the set of supporting hyperplanes of P.
Consider the central hyperplane arrangement A resulting from lifting the affine arrangement
EUF toR*!. The associated OM £’ is realizable and therefore zonotopally realizable. Since
A(L) is a subcomplex of A(L'), also L is zonotopally realizable. O

11.5. CAT(0) Coxeter COMs. We conclude this section by presenting another class of
zonotopally realizable COMs. Namely, we prove that the CAT(0) Coxeter (zonotopal) com-
plexes introduced in [24] arise from COMs. They represent a common generalization of
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benzenoid systems (used for illustration in Section @, 2-dimensional cell complexes obtained
from bipartite cellular graphs [1], and CAT(0) cube complexes (cube complexes arising from
median structures) [2]. One can say that CAT(0) zonotopal complexes generalize CAT(0)
cube complexes in the same way as COMs generalize lopsided sets.

A zonotope Z is called a Cozeter zonotope (an even polyhedron [24] or a Cozeter cell [14])
if Z is symmetric with respect to the mid-hyperplane H; of each edge f of Z, i.e., to the
hyperplane perpendicular to f and passing via the middle of f. A cell complex A is called
a Coxeter complex if A is a geometric zonotopal complex in which each cell is isometric to a
Coxeter zonotope. Throughout this subsection, by A we denote a Coxeter complex and by
[|A[| the underlying metric space of A.

If Z is a Coxeter zonotope and f, f are two parallel edges of Z, then one can easily see that
the mid-hyperplanes H; and Hy coincide. If Z = [—x1,x1] 4 [—X2,X2] + ... + [=Xp, Xy ], de-
note by H; the mid-hyperplane to all edges of Z parallel to the segment [—x;,x;],i=1,...,n.
Then Z is the zonotope of the regions defined by the arrangement {Hy,..., H,}. It is well-
known |14} Definition 7.3.1] (and is also noticed in [24, p.184]) that Coxeter zonotopes are ex-
actly the zonotopes associated to reflection arrangements (called also Cozeter arrangements)
of hyperplanes, i.e., to arrangements of hyperplanes of a finite reflection group [10, Subsection
2.3]. For each i = 1,...,n, denote by Z; the intersection of Z with the hyperplane H; and
call it a mid-section of Z. The mid-sections Z; of a Coxeter zonotope Z of dimension d are
Coxeter zonotopes of dimension d — 1.

We continue with the definition of CAT(0) metric spaces and CAT(0) Coxeter complexes.
The underlying space (polyhedron) ||A|| of a geometric zonotopal complex (and, more gen-
erally, of a cell complex with Euclidean convex polytopes as cells) A can be endowed with
an intrinsic ly-metric in the following way. Assume that inside every maximal face of ||A||
the distance is measured by the ly-metric. The intrinsic lo-metric da of ||Al| is defined by
letting the distance between two points x,y € ||A|| be equal to the greatest lower bound
on the length of the paths joining them; here a path in ||A|| from z to y is a sequence
T = g, T1,...,Tym = y of points in ||Al|| such that for each ¢ = 0,...,m — 1 there exists a
face o; containing x; and x;11, and the length of the path equals Z?Z)l d(x;, i+1), where
d(x;, x;y1) is computed inside o; according to the respective lo-metric. The resulting metric
space is geodesic, i.e., every pair of points in ||Al|| can be joined by a geodesic; see [12].

A geodesic triangle T := T(x1,x2,23) in a geodesic metric space (X, d) consists of three
points in X (the vertices of T') and a geodesic between each pair of vertices (the edges of
T). A comparison triangle for T'(x1,z2,z3) is a triangle T'(2, x5, 25) in the Euclidean plane
R? such that dp: (], 2}) = d(z,z5) for i,j € {1,2,3}. A geodesic metric space (X,d) is a
CAT(0) space [23] if all geodesic triangles T'(x1, z2,x3) of X satisfy the comparison axiom
of Cartan—Alexandrov—Toponogov: If y is a point on the side of T'(x1,x2,x3) with vertices
x1 and xo and y' is the unique point on the line segment [z, x}] of the comparison triangle
T(x), xh, %) such that dge(z},y") = d(z;,y) fori=1,2, then d(z3,y) < dg2(z5,v').

CAT(0) spaces can be characterized in several different natural ways and have numerous
properties (for a full account of this theory consult the book [12]). For instance, a cell complex
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endowed with a piecewise Euclidean metric is CAT(0) if and only if any two points can be
joined by a unique geodesic. Moreover, CAT(0) spaces are contractible.

A CAT(0) Coxeter complexr is a Coxeter complex A for which ||A|| endowed with the
intrinsic lo-metric da is a CAT(0) space. In this case, the parallelism relation on edges of cells
of A induces a parallelism relation on all edges of A: two edges f, f' of A are parallel if there
exists a sequence of edges fo = f, f1,..., fx—1, fx = f' such that any two consecutive edges
fi—1, fi are parallel edges of a common cell of A. Parallelism is an equivalence relation on the
edges of A. Denote by F the equivalence classes of this parallelism relation. For e € E, we
denote by A, the union of all mid-sections of the form Z, for cells Z € A which contain edges
from the equivalence class e (let ||A.|| be the underlying space of A.). We call each ||A¢|| (or
A.), e € E, a mid-hyperplane (or a wall as in [24]) of ||A]|. Since each mid-section included
in A, is a Coxeter zonotope, each mid-hyperplane of a Coxeter complex is a Coxeter complex
as well. CAT(0) Coxeter complexes have additional nice and strong properties, which have
been established in [24].

Lemma 6. /24, Lemme 4.4] Let A be a CAT(0) Cozeter complex and A, be a mid-hyperplane
of A. Then ||Ac]| is a convex subset of ||A||l and ||Ac|| partitions ||Al| in two connected
components ||A || and ||AF|| (called halfspaces of ||Al]).

If z € [|AZ|] and y € ||AF|], then z and y are said to be separated by the mid-hyperplane
(wall) [|A¢||. A path P in ||A|| traverses a mid-hyperplane ||A.|| if P contains an edge zy
such that x and y are separated by [|A.||. Two distinct mid-hyperplanes ||A.|| and ||A¢|| are
called parallel if ||Ac|| N||Af|| = @ and crossing if [|Ac|| N ||Ay|] # @.

Lemma 7. [24, Corollaire 4.10] Two vertices u,v of A are adjacent in G(A) if and only if
u and v are separated by a single mid-hyperplane of ||All.

Lemma 8. [24, Proposition 4.11] A path P of G(A) between two vertices u,v is a shortest
(u,v)-path in G(A) if and only if P traverses each mid-hyperplane of ||Al| at most once.

These three results imply that the arrangement of mid-hyperplanes of a CAT(0) Coxeter
complex A defines a wall system sensu [24], which in turn provides us with a system L£(A)
of sign vectors. Define the mapping ¢ : A — {£1,0}¥ in the following way. First, for e € F
and x € A, set

1 itz e |lAg,
Ye(z) =120 if x € ||A¢ll,
+1 ifz € ||A]]].
Let p(z) = (e(x) : e € E). Denote by L(A) the set of all sign vectors of the form ¢(x),z €
[|Al|l. Notice that if a point z of ||A|| does not belong to any mid-hyperplane of ||A||, then

o(z) € {£1}¥; in particular, this is the case for the vertices of G(A). Moreover, Lemma
implies that ¢ defines an isometric embedding of G(A) into the hypercube {4+1}¥.
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Theorem 5. Let A be a CAT(0) Cozeter complex, E be the classes of parallel edges of A,
and L(A) := U{p(z) : x € ||A]|} C {£1,0}¥. Then (E,L(A)) is a simple COM and G(A)
1s its tope graph.

Proof. We proceed by induction on the size of E. It suffices to show that (E, £(A)) is simple
and satisfies the conditions (1),(3),(4), and (2') of Theorem That L£(A) satisfies (N1)
is evident. To verify the condition (N2), let e, f € E. If the mid-hyperplanes [|A.|| and
||Af[| cross, then the four intersections [|AZ[| N [[AL|[, [[AZ || N [JAZ[ [JAL]I N [[AF]], and
[|AF]| N HA;{H are nonempty, and as X and Y with {X.Xy,Y.Y;} = {1} one can pick the
sign vectors ¢(z) and ¢(y) of any two points x € [|AF|| N |A7 ]| and y € [|[AZ[| N [|AF]].
Otherwise, if ||A.|| and ||[Af|| are parallel, then one of the four pairwise intersections of
halfspaces is empty, say |[AZ|| N HA}FH = @, and as X and Y one can take the sign vectors
() and ¢(y) of any points = € [[AF||N|[AT|| and y € [|AF||N[|AF||. This establishes that
(E, L(A)) is simple.

Notice that the tope graph of (E, £(A)) coincides with G(A). Indeed, let X be a tope of
L(A). Then X = p(z) for some = € ||A]|. Let x € Z for a cell Z of ||A||. The sign maps of
L(A) restricted to Z define an oriented matroid whose topes are the vertices of Z. Therefore
Z contains a vertex v such that ¢(v) = ¢(x) = X, whence each tope of £(A) is a vertex of
G(A). Conversely, since each vertex v of G(A) does not belong to any mid-hyperplane of
[|A]], ¢(v) is a vertex of {£1}¥, and thus a tope of £(A). This shows that the tope graph
of £L(A) and the 1-skeleton of A have the same sets of vertices. Lemma [7| implies that two
vertices u and v are adjacent in G(A) if and only if they are adjacent in the tope graph of
L(A). Then Lemma [§] establishes the condition (3). The condition (4) immediately follows
from the definition of L£(A).

Now we establish condition (2') that all hyperplanes £2(A) of (E, £(A)) are COMs. Notice
that X € £2(A) if and only if X = ¢(z) for some x € ||A¢||. Therefore the hyperplane £2(A)
of L(A) coincides with the restriction of £(A) to the points of the mid-hyperplane ||A|].
Hence £I(A) can be viewed as £(A.), where £(A,) is the set of all sign vectors of {£1,0}¥ of
the form ¢(z),z € ||Ac||. By Lemmal6] ||Ac|| is a convex subset of ||A[|, thus A, is a CAT(0)
Coxeter complex. Let E’ denote the classes of parallel edges of A.; namely, E’ consists of
all f € E\ {e} such that the mid-hyperplanes ||A.|| and ||Af|| are crossing. Notice that the
fth mid-hyperplane ||(Ac)¢|| of ||A¢|| is just the intersection ||Ac||N|[Af||. Analogously, the
halfspaces [[(A¢) || and H(AE)}FH coincide with the intersections |[A%[| N [[Ac[| and HA;W N

[|Ac||, respectively. Define ¢ : [|Ac|| = {£1,0}F" as follows. For x € ||A.|| and f € E’, set

—1 ifz e||(A)f]l;
Pr(@) =70 ifzel|(A)yll,
+1 ifze H(Ae);{H
Let ¢'(z) = (¢}(x) : f € E'). Denote by L'(A.) the set of all sign vectors of the form

||Ac]|. By the induction hypothesis, (E',L'(A¢)) is a COM. For any point x €
x) coincides with ¢'(x) on E’. Since ¢.(z) = 0, g (x) = —1 if ||Ax|| is parallel to

:‘6
=
.6&
Am
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[|Ac]| and [|Ac]| C |JAZ]], and @ (z) = +1 if ||Ay]| is parallel to [|A¢|] and [|[Ac|| C [|[AL]],
L(A¢) can be obtained from £'(A.) by adding to all sign vectors of £'(A.) in each coordinate
of E'\ E' a respective constant 0, —1, or +1. Hence (F, L(A.)) is a COM, thus establishing
@).

Finally, we show that £(A) satisfies the condition (1), i.e., the composition rule (C). Let
X and Y be two sign vectors of £(A) and z and y be two points of ||A|| such that p(z) = X
and ¢(y) =Y. As in the case of realizable COMs presented in the introduction, connect the
two points  and y by the unique geodesic vy(z,y) of ||A|| and choose € > 0 small enough
so that the open ball of radius € around x intersects only those mid-hyperplanes of ||A|| on
which z lies. Pick any point w from the intersection of this e-ball with v(z,y) \ {z} and let
W = p(w). We assert that W = X oY. Pick any e € E. First suppose that X, # 0. From
the choice of w it immediately follows that W, = y.(w) = () = X.. Now suppose that
X, =0. If Y, =0, then 2,y € ||Ac]|. Since by Lemmal] ||A|| is a convex subset of ||A[|, we
have w € v(x,y) C ||A¢||, whence W, = 0 = X, o Y. Finally, if Y. # 0, say Y. = +1, then
since the set ||AF|| U [|A.|| is convex, either w € ||AF|] or w € ||A¢||. In the first case, we
have W, = +1 = X, o Y, and we are done. On the other hand, we will show below that the
case w € ||A.|| is impossible.

FIGURE 6. To the proof of composition rule in Theorem [5}

Indeed, suppose by way of contradiction that w € [|A¢||. Since x € ||A¢||,y € [|AT]|, and
[|Ac|| is convex, there exists a point z € y(z,y) such that vy(z,2) C ||A¢|| and y(z,y) \ {z} C
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[|Af||. Pick points 2’ € v(z,z) and 2” € 7(z,y) close enough to z such that each of the
couples 2/, z and z, 2" belongs to a common cell of ||A||. The choice of z implies that 2/, z, 2"
cannot all belong to a common cell of ||A||. Denote by Z’ a maximal cell containing 2/, z and
by Z” a maximal cell containing z, z”. Then z belongs to a common face Zy of Z’ and Z”. Let
IT" and IT” denote the supporting Euclidean spaces of Z’ and Z”| respectively. Let £ be the
line in IT” passing via the point z and parallel to the edges of Z” from the equivalence class
e and let ¢ be the ray with origin z and containing the points of £ N [JA}|| (this intersection
is a non-empty half-open interval). Let £y be the line in II” passing via z and 2” and let /7
be the ray of ¢y with origin z and containing [z, z”]. Since ¢ is orthogonal to the supporting
plane of the mid-section Z{ = 2’ N A, the angle between /] and [z, z’ ] is 5. Now suppose
that 2" is selected so close to z that the orthogonal projection z{ of z” on the line ¢ belongs
to the intersection Zo N ¢+.

As a result, we obtain two right-angled triangles T'(z, 2/, z() and T(z,2",z(), the first
belonging to II' and the second belonging to II” (see Figure [6| for an illustration). Therefore,
their union is isometric to a convex quadrilateral Q@ = Q(q,¢,qj,¢") in R? having the sides
qq¢',q'q5, 404", and ¢"q of lengths da(z,2"),d2(2, (), da(2(, 2"), and da(2",z), respectively.
Let p be the intersection of the diagonals ¢'¢” and gqj of @ and let p* be the point (of A) on
the segment [z, z(] such that da(z, p*) = dr2(q, p) and da(z(,p*) = dr2(qy,p). Then

da(2', 2) + da(z,2") = dp2(q', ) + dr2(q, ¢") > dr2(q', q")
= dp2(q',p) + dg2(p,q") = da(2',p") + da(p*, 2"),

contrary to the assumption that z € ~v(2/,2”) C 7(x,y). This establishes our claim and
concludes the proof that £(A) satisfies the composition rule (C). O

We conclude this section by showing that in fact all COMs having square-free tope graphs
arise from 2-dimensional zonotopal COMs:

Proposition 17. A square-free partial cube G is the tope graph of a COM L(Q) if and only if
G does not contain an 8-cycle with two subdivided diagonal chords (graph X in Fig.1 in [30])
as an isometric subgraph. The resulting L(G) is a zonotopal COM.

Proof. Notice that a square-free tope graph G of a COM does not contain X as an isometric
subgraph. Indeed, since G is square-free, the four 6-cycles of X are convex and, moreover,
X must be a convex subgraph of G. Since X isometrically embeds into a 4-cube, it can be
directly checked that X is not the tope graph as a COM, consequently, X cannot occur in
the tope graph of a COM.

Conversely, let G be a square-free partial cube not containing X as an isometric subgraph.
By Proposition 2.6. of [30], any pair of isometric cycles intersect in at most one edge. By
replacing each isometric cycle of G with a regular polygon with the same number of edges,
we get a 2-dimensional Coxeter zonotopal complex ||A(G)||. Since isometric cycles of a graph
generate the cycle space, this complex is simply connected. Since the sum of angles around any
vertex of [|A(G)]| is at least 27, by Gromov’s result for 2-dimensional complexes [12, p.215],
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[|A(G)|| is CAT(0). Thus, A(G) is a 2-dimensional CAT(0) Coxeter zonotopal complex and
by Theorem [5], G' can be realized as the tope graph of a COM. g

12. CONCLUDING REMARKS

In this paper, we show how COMs naturally arise as a generalization of oriented matroids
and lopsided sets by relaxing the covector axioms. Furthermore, we give several descriptions
of COMs, in particular, in terms of cocircuit axioms. Nevertheless, such important features
of the theory of OMs like duality and topological representation still lack generalization. We
believe that the following problem, which is well-known for OMs and lopsided sets, is an
important next step.

Problem 1. Establish duality theory for COMs.

By Proposition [} the halfspaces of a COM are COMs. Particular examples are the affine
oriented matroids, which are halfspaces of OMs. Even stronger, Lemma [4] shows that the
intersections of halfspaces, i.e., the fibers, of a COM are COMs. While the following is true
by definition for realizable COMs (see for instance the proof of Proposition , we believe
that every COM arises this way from an OM:

Conjecture 1. Every COM is a fiber of some OM.

This generalizes the corresponding conjecture of Lawrence [29] that lopsided sets are fibers
of uniform OMs. Not only would Conjecture [I] be a natural generalization of the realizable
situation, but using the Topological Representation Theorem of Oriented Matroids [21] it will
also give a natural topological representation for COMs. In fact, Conjecture [1] is equivalent
to the following conjecture: For every COM L there is a number d such that £ can be
represented by a set of (d — 2)-dimensional pseudospheres restricted to the intersection of a
set of open (d — 1)-dimensional pseudoballs inside a (d — 1)-sphere.

For locally realizable COMs, the following version of Conjecture [I] would imply a positive
answer to Question [T}

Conjecture 2. Every locally realizable COM is a fiber of a realizable OM.

Conjecture [2| can be rephrased as: The tope graph of a locally realizable COM is a convex
subgraph of the 1-skeleton of a zonotope. Analogously, Conjecture [I] can be rephrased as:
The tope graph of a COM is a convex subgraph of the tope graph of an OM.
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