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Abstract. We prove that any triangulation of a surface different from
the sphere and the projective plane admits an orientation without sinks
such that every vertex has outdegree divisible by three. This confirms a
conjecture of Barát and Thomassen and is a step towards a generalization
of Schnyder woods to higher genus surfaces.

1 Introduction

The notation and results we use for graphs and surfaces can be found in [10].
We start with some basic definitions:

A map (or 2-cell embedding) of a multigraph into a surface, is an embedding
such that deleting the graph from the surface leaves a collection of open disks,
called the faces of the map. A triangulation is a map of a simple graph (i.e.
without loops or multiple edges) where every face is triangular (i.e. incident
to three edges). A fundamental result in the topology of surfaces is that every
surface admits a map. The (orientable) genus of a map on an orientable surface
is 1

2 (2−n+m−f) and the (non-orientable) genus of a map on a non-orientable
surface is 2 − n + m − f , where n,m, f denote the number of vertices, edges,
and faces of the map, respectively. The Euler genus of a map is 2− n+m− f ,
i.e., the non-orientable genus or twice the orientable genus. All the maps on a
fixed surface have the same genus, which justifies to define the (Euler) genus of
a surface as the (Euler) genus of any of the maps it admits. In [1] Barát and
Thomassen conjectured the following:

Conjecture 1. Let T be a triangulation of a surface of Euler genus k ≥ 2. Then
T has an orientation such that each outdegree is at least 3, and divisible by 3.

One easily computes that the number of edges m of a triangulation T of a surface
of Euler genus k is 3n− 6 + 3k. So while triangulations of Euler genus less than
2 simply have too few edges to satisfy the conjecture, in [1] the conjecture is
proved for the case k = 2, i.e., the torus and the Klein bottle. Moreover, they
show that any triangulation T of a surface has an orientation such that each
outdegree is divisible by 3, i.e, in order to prove the full conjecture they miss
the property that there are no sinks.
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Barát and Thomassen’s conjecture was originally motivated in the context
of claw-decompositions of graphs, since given an orientation with the claimed
properties the outgoing edges of each vertex can be divided into claws, such that
every vertex is the center of at least one claw.

Another motivation for this conjecture is, that it can be seen as a step towards
the generalization of planar Schnyder woods to higher genus surfaces. A Schnyder
wood [11] of a planar triangulation is an orientation and a {0, 1, 2}-coloring of
the inner edges satisfying the following local rule on every inner vertex v: going
counterclockwise around v one successively crosses an outgoing 0-arc, possibly
some incoming 2-arcs, an outgoing 1-arc, possibly some incoming 0-arcs, an
outgoing 2-arc, and possibly some incoming 1-arcs until coming back to the
outgoing 0-arc.

Schnyder woods are one of the main tools in the area of planar graph repre-
sentations and Graph Drawing. They provide a machinery to construct space-
efficient straight-line drawings [12, 6], representations by touching T shapes [5],
they yield a characterization of planar graphs via the dimension of their vertex-
edge incidence poset [11, 6], and are used to encode triangulations efficiently [3].
In particular, the local rule implies that every Schnyder wood gives an orien-
tation of the inner edges such that every inner vertex has outdegree 3 and the
outer vertices are sinks with respect to inner edges. Indeed, this is a one-to-
one correspondance between Schnyder woods and orientations of this kind. As a
consequence, the set of Schnyder woods of a planar triangulation inherits a nat-
ural distributive lattice structure, which in particular provides any triangulation
with a unique minimal Schnyder wood [7]. These unique representatives are an
important tool in proofs and lie at the heart of many enumerative results, see
for instance [2].

When generalizing Schnyder woods to higher genus one has to choose which
of the properties of planar Schnyder woods are desired to be carried over to
the more general situation. Examples are: the efficient encoding of triangula-
tions on arbitrary surfaces [4] and the relation to orthogonal surfaces and small
grid drawings for toroidal triangulations [9], which lead to different definitions
of generalized Schnyder woods. In [9], the generalized Schnyder woods indeed
satisfy the local rule with respect to all edges and vertices of a toroidal trian-
gulation and henceforth lead to orientations having outdegree 3 at every vertex.
An interesting open problem is to generalize the local rule to triangulations with
higher Euler genus in such a way that for some vertices the sequence mentioned
in the local rule occurs several times around the vertex. Here, the mere exis-
tence of such objects is an open question. Clearly, such a generalized Schnyder
wood would yield an orientation as claimed by the conjecture. Thus, proving the
conjecture of Barát and Thomassen is a first step into that direction.

2 Preliminaries

A map M on a surface S is characterized by a triple (V (M), E(M), F (M)),
formed by the vertex, edge and face sets of M . In the following we will restrict



to triangulations T = (V (T ), E(T ), F (T )), i.e. the pair (V (T ), E(T )) is a simple
embedded graph such that every face is incident to exactly three edges.

A submap M ′ of T , is a triplet (V ′, E′, F ′) where V ′ ⊆ V (T ), E′ ⊆ E(T ),
F ′ ⊆ F (T ), and such that:

- uv ∈ E′ implies {u, v} ⊆ V ′, and
- f ∈ F ′ implies e′ ∈ E′ for any edge e incident to f .

The boundary ∂M ′ of a submap M ′ = (V ′, E′, F ′) is the set of edges in E′ that
are incident to at most one face in M ′.

For any vertex v of T its surrounding is the circular sequence of edges and
faces succesively met while going around v. This sequencce as no particular
direction as T can be non-orientable. In a submap M ′ of T a (boundary) angle
at vertex v is a sub-sequence (e0, f1, e1, . . . , ft, et) of its surrounding such that
the edges e0 and et are the only elements of this sequence belonging to M ′. Those
edges are the sides of this angle. This angle can be denoted by ê0vet or simply
by v̂. It can occur that e0 = et. Consider for example a submap consisting of a
single edge. Let us mention, that this definition could be modified in order to
include the angle around a vertex with respect to a submap without edges. Since
we will not consider this situation we prefer avoiding further technicalities.

Note that an edge is in ∂M ′ if and only if it is a side of (at least) one angle of
M ′. Actually, the notion of angles endows the boundary ∂M ′ of M ′ with some
further structure. As each angle has two sides (possibly two occurences of the
same edge) and as each occurrence of an edge of ∂M ′ is a side for two angles, one
can define the boundary sequence of M ′, that is a collection of circular sequences,
alternating between angles and edges, (â0, e0, â1, e1, . . . , ât, et) (sometimes sim-
ply denoted by (â0, â1, . . . , ât) or (e0, e1, . . . , et)), where ei is the common edge
of âi and âi+1. Note that an edge e may appear twice in the boundary sequence,
e.g. if e is a bridge of M ′. Thus, if necessary we will refer to a specific occurrence
of e in ∂M ′. For simplicity, we denote the boundary sequence of M ′ by ∂M ′.
This naturally leads to the notion of consecutive angles. Note that two angles
(e0, f1, e1, . . . , ft, et) and (e′0, f

′
1, e
′
1, . . . , f

′
t , e
′
t) are consecutive on the boundary

sequence if et = e′0 and ft = f ′1.
In the following, a disk is a submap M ′ of T if it is homeomorphic to a

(closed) topological disk. Furthermore, a disk is a k-disk if its boundary is a
cycle with k edges. A 3-disk is called trivial if it contains only one face. A disk is
called chordless if its outer vertices (i.e. on its boundary) induce a graph that is
a (chordless) cycle. A cycle is contractible if it is the boundary of a disk otherwise
it is called non-contractible.

Given a triangulation T and a set of vertices X ⊆ V (T ), the induced submap
T [X] is the maximal submap with vertex set X. In other words this submap
has edge set {uv ∈ E(T ) | u ∈ X and v ∈ X}, and face set {uvw ∈ F (T ) | u ∈
X, v ∈ X, and w ∈ X}.

Given an induced submap M ′ = T [X] of a triangulation T , and any oc-

currence of an edge ab in ∂M ′ (corresponding to angles â and b̂) there exists
a unique vertex c such that there is a face abc in F (T ) \ F (M ′) that belongs

to both angles â and b̂. For any such vertex c (and ab ∈ ∂M ′) we define the



operation of stacking c on M ′, as adding c to X, i.e., going from M ′ = T [X] to
M ′′ = T [X + c]. In such stacking the neighborhood of c in M ′ is the graph with
vertices x such that cx ∈ E(M ′′) and edges xy such that cxy ∈ F (M ′′). As T
is simple, note that this neighborhood is either a cycle or a union of paths, one
of which with at least one edge (the edge allowing the stacking), and let us call
them the neighboring cycle and the neighboring paths of c in M ′, respectively.
See Figure 1 for an illustration.
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Fig. 1. Different scenarios of stacking c on M ′. Left: one neighboring path P1 =
(u, a, b, v, w). Middle: three neighboring paths P1 = (u, a, b, v), P2 = (w, x), P3 = (y).
Right: A boundary cycle C = (u, v, w, b, a).

3 Proof of Conjecture 1

Let us consider for contradiction a minimal counterexample T . Note that T does
not contain any non-trivial 3-disk D. Otherwise we would remove the interior
of D and would replace it by a face. By minimality of T , this new triangula-
tion would admit an orientation such that every vertex has non-zero outdegree
divisible by 3. As D is a planar triangulation, there exists an orientation of its
interior edges so that inner and outer vertices have out-degree 3 and 0, respec-
tively. This is the case for orientations induced by a Schnyder wood on these
triangulations [11]. Then the union of these two orientations would give us an
orientation of T with non-zero outdegrees divisible by three. Let us now proceed
by providing an outline of the proof.

3.1 Outline

We first prove that one can partition the edges of the triangulation T into the
following graphs:

– The initial graph I, which is an induced submap containing a non-contractible
cycle. Furthermore, I contains an edge uv such that the map I \uv is a disk

D̃ whose underlying graph is a maximal outerplanar graph with only two
degree two vertices, u and v. See Figure 2 for an illustration.
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Fig. 2. Example of a submap I.

– The correction graph B (with blue edges in the figures), which is oriented
acyclically in such a way that each vertex of V (T ) \ V (I) has outdegree 2,
while the other vertices have outdegree 0,

– The last correction path G (with green edges in the figures), which is a
{u, v}-path.

– The non-zero graph R (with red edges in the figures), which is oriented in
such a way that all vertices in (V (T ) \ V (G)) ∪ {u, v} have out-degree at
least 1.

The existence of such graph I is proven in Section 3.2, then in Section 3.3 we
prove the existence of graphs B, G and R (with the mentioned orientations).
To do the latter we start from I and we incrementally conquer the whole tri-
angulation T by stacking the vertices one by one (this procedure is inspired
by [4]).

Finally, the edges of I, B and G are (re)oriented, to obtain the desired ori-
entation. The orientation of edges in R does not change, as they ensure that
many vertices (all vertices of T except the interior vertices of the path G) have
non-zero outdegree. The {u, v}-path G is either oriented from u to v or from v
to u, but this will be decided later. However in both cases its interior vertices
are ensured to have non-zero outdegree. Hence all vertices are ensured to have
non-zero outdegree and it remains to prove that they have outdegree divisible
by 3.

We start in Section 3.4 by reorienting the B-arcs in order to ensure that
vertices of V (T ) \ V (I) have outdegree divisible by 3 (this part is inspired by
the proof of Theorem 4.5 in [1]). In the last step, in Section 3.5, we choose the
orientation of the {u, v}-path G, and we orient I in order to achieve the desired
orientation.



3.2 Existence of I

To prove the existence of I, we first need the following lemma.

Lemma 1. Any triangulation T with Euler genus at least 2, has an induced
submap I obtained from a disk D by stacking a vertex v, such that for any two
neighbors a, b of v belonging to distinct neighboring paths (of v w.r.t. D), every
cycle C in I going through edges av and vb is non-contractible.

Proof. Any face of T is an induced disk. Consider a maximal induced disk D of
T . For any edge xy of ∂D, stack a vertex v on xy. Let us denote by I the map
obtained by stacking v on D. As T has Euler genus at least 2 the neighborhood
of v is not a cycle. Also, as D is maximal, v has at least two neighboring paths.
Assume for contradiction, that there is a contractible cycle C of I going through
av, vb (where a and b belong to distinct neighboring paths of v w.r.t. D) and
through some {a, b}-path P of ∂D. Denote by D′ the disk bounded by C and
note that (as I is induced) D′ contains vertices not in I. As ∂D′ intersects D
on a path it is clear that V (D) ∪ V (D′) induces disk with v on its boundary.
Furthermore, as only two neighbors of v in this disk are on the border, we
have that (V (D) ∪ V (D′)) \ {v} also induces a disk. This disk is larger than D,
contradicting its maximality. ut

Lemma 2. Any triangulation T ′ with Euler genus at least 2, has an induced
submap I containing a non-contractible cycle, and an edge uv such that I \ uv
is a disk D̃, and for each of the two {u, v}-paths of ∂D̃, all its interior vertices
have a neighbor in the interior of the other {u, v}-path.
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Fig. 3. The situation in Claim 1 (left) and Claim 2 (right) in the proof of Lemma 2.

Proof. Among the induced subgraphs of T ′ that satisfy Lemma 1 let I be a
minimal one. Let v and D be the vertex of I and the disk I \ {v} described in
Lemma 1, respectively. As v is stacked on D let us denote by (w1, . . . , ws), with
s ≥ 2, some neighboring path of v, and let us denote by u1, . . . , ut, with t ≥ 1,
the other neighbors of v in D. Finally, let us denote by D̃ the disk obtained from
D by adding vertex v, edges vwi for 1 ≤ i ≤ s, and faces vwiwi+1 for 1 ≤ i < s.
The minimality of I implies all the needed properties:



Claim 1 ∂D induces no chord xy inside D such that some {x, y}-path of ∂D
contains both an edge wiwi+1, for some 1 ≤ i < s, and a vertex uj, for some
1 ≤ j ≤ t.

Proof. If such chord xy exists, let D′ ( D be the disk with boundary in ∂D+xy
which contains both wiwi+1 and uj . Then the graph induced by V (D′) ∪ {v}
contradicts the minimality of I. See the left of Figure 3. ut

This implies that ∂D̃ has no chord at uj , for all 1 ≤ j ≤ t.

Claim 2 For all 1 ≤ j ≤ t, every interior vertex x of a {v, uj}-path of ∂D̃ is
adjacent to an interior vertex of the other {v, uj}-path.

Proof. Let P1 and P2 be the {v, uj}-path of ∂D̃ containing w1 and ws, respec-
tively. Assume for contradiction, there exists an inner vertex x in P1 having no
neighbor in the interior of P2. By Claim 1 this implies that D (the disk induced
by V (I) \ {v}) has no chord at x. Thus the map induced by V (D) \ {x} is a
disk containing P2 on its border, hence containing the vertex uj and the edge
ws−1ws. Hence the map induced by V (I) \ {x} contradicts the minimality of I.
See the right of Figure 3. ut

As ∂D̃ has no chord at uj , for all 1 ≤ j ≤ t, this implies that t = 1. This
concludes the proof of the lemma. ut

Consider now our counterexample T , and let I, uv and D̃ (= I \ uv) be an
induced submap, an edge and a disk, verifying Lemma 2. In the beginning of the
section we have seen that by minimality, T does not contain non-trivial 3-disks.
Hence by the properties of I, if D̃ would contain an inner vertex, this vertex
would be in a chordless 4-disk of D̃. By the following lemma this is not possible,
hence D̃ is a maximal outerplanar graph. Finally the adjacency property between
vertices of ∂D̃ \ {u, v} imply that u and v are the only degree two vertices of D̃.

Lemma 3. The submap D̃ does not contain chordless 4-disks.

Proof. If D̃ would contain such a disk D4, with boundary (v1, v2, v3, v4), we
would remove the interior of D4 and we would add one of the two possible diag-
onals, say v2v4 (if v2v4 are not uv’s ends), and the corresponding two triangular
faces, v1v2v4 and v2v3v4. The obtained map T ′ is defined on the same surface
as T and is smaller. Furthermore as I is an induced submap without non-trivial
3-disk and as v2v4 6= uv, there is no edge v2v4 in T . Hence T ′ is simple and it
is a triangulation. Now by minimality of T , this new triangulation T ′ has an
orientation such that every vertex has non-zero outdegree divisible by 3. Let
us suppose without loss of generality that in this orientation the edge v2v4 is
oriented from v2 to v4.

Using the fact that for any planar triangulation, there exists an orientation
of the interior edges such that inner and outer vertices have out-degree 3 and
0 [11] respectively, one can orient the inner edges of D4 in such a way that
inner vertices, vertex v2, and vertices v1, v3 and v4 have out-degree 3, 1 and 0,



respectively. For this consider the orientation given by a Schnyder wood of the
triangulation D4 + v1v3 (with outer face v1v3v4) and notice that the edges v2v1
and v2v3 are necessarily oriented from v2 to v1 and v3 respectively (as v1, v3 and
v4 have outdegree 0).

Then the union of these orientations, of T ′ \ v2v4 and of D4’s inner edges,
would give us an orientation of T with non-zero outdegrees divisible by three. ut

3.3 Existence of B, G, and R

As mentioned in the outline, we will start from I and we incrementally explore
the whole triangulation T by stacking the vertices one by one. At each step,
we will assign the newly explored edges to B, G or R, and we will orient those
assigned to B or R. At each step the explored region is a submap of T induced
by some vertex set X. Such explored region is denoted by T [X] and its boundary
∂T [X]. The connected pieces of the surface obtained after removing T [X] are
called the unexplored regions, and if one of them is homeomorphic to an open disk
it is called an unexplored disk. Given an unexplored disk D (by abuse of notation)
we denote by ∂D the cycle of ∂T [X] bordering D. During the exploration we
maintain the following invariants:

(I) The graphs I, B, G, and R partition the edges of T [X].
(II) All interior vertices of T [X] (i.e. in X \V (∂T [X])) have at least one outgoing

R-arc, or two incident G-edges. Furthermore G either is an {u, v}-path, or
is the union of two vertex disjoint paths Gu and Gv, going from u to u∗, and
from v to v∗, respectively, for some vertices u∗ and v∗ on ∂T [X].

Here the vertices u∗ and v∗ may coincide with vertices u and v, respectively, if
Gu or Gv is a trivial path with only one vertex.

(III) The graph B is acyclically oriented in such a way that the vertices of I have
outdegree 0, while the other vertices of T [X] have outdegree 2.

Furthermore, to help us in properly finishing the construction of the graphs B,
G and R in the further steps, we introduce the notion of requests on the angles
of ∂T [X]. There are two types of requests, G-requests and R-request. An angle
is allowed to have at most one request, and an angle having no request is called
free. Informally, a G-request (resp. an R-request) for an angle â means that in a
further step an edge inside this angle will be added in G (resp. in R and oriented
from a to the other end). In the figures, a G-request (resp. an R-request) is
depicted by a green (resp. red) arrow.

(IV) Every vertex of (∂T [X] \ {u∗, v∗}) ∪ {u, v} having (still) no outgoing R-arc,
has an incident angle with an R-request.

(V) If G is not a {u, v}-path (yet), the vertices u∗ and v∗ (at the end of Gu

and Gv, respectively), have one incident angle each, say û∗ and v̂∗, that are
consecutive on ∂T [X], and that have a G-request. Furthermore, there are no
other G-requests.



(VI) If there is an unexplored disk D′, then there are at least three free angles
(of ∂T [X]) around D′.

Before starting this exploration, let us observe that if these invariants are
maintained until the end of the exploration, we obtain the desired partition of
the edges. Note that at the end of the exploration T [X] has no border, hence
no requests, and by (V) G is thus an {u, v}-path. As u and v have degree 1 in
G, by (II) every vertex in (V (T ) \ V (G)) ∪ {u, v} has out-degree at least 1 in
R. Finally, by (III) B is oriented acyclically in such a way that each vertex of
V (T ) \ V (I) has outdegree 2, while the other vertices have outdegree 0. We can
now proceed to the exploration itself.

This exploration starts with T [X] = I. In this case as all the edges of T [X]
are in I and as there are no interior vertices yet, (I), (II) and (III) are trivially
satisfied. Since I contains a non-contractible cycle and since the Euler genus of T
is at least 2 there is no unexplored disk, hence (VI) is satisfied. Since uv appears
twice in ∂T [X], the vertices u, v appear twice consecutively in ∂T [X]. To achieve
(V), choose the angles of one consecutive appearance of u, v as G-requests. To
achieve (IV), all the other angles are assigned R-requests. See Figure 4 for an
illustration.
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v

Fig. 4. Assigning requests to I in order to satisfy the invariants.

For the rest of the construction in each step we enlarge the explored submap
T [X] by stacking a vertex x on T [X]. The vertex x is chosen according to the
following rules:

(i) If there is only one edge in the neighborhood of x in T [X], this edge is not
{u∗, v∗}.



(ii) If x belongs to an unexplored disk D, either x is adjacent to all the vertices
of ∂D or x has exactly one neighboring path P on ∂D such that P does not
contain all the free angles of ∂D.

(iii) In the case x does not belong to an unexplored disk, if possible we choose x
such that no unexplored disk is created. Furthermore, if unexplored disks are
created we choose x in order to minimize the total surface of these unexplored
disks (measured by the number of faces in these regions).

Let us explain why choosing such a vertex x is always possible. If there is an
unexplored disk D, let us choose x inside D. If there is a vertex adjacent to all
the vertices of ∂D we are fine ((i) follows). Otherwise, one can show that there
are at least two vertices inside D, say x1 and x2, having exactly one neighboring
path P 6= (u∗, v∗) on ∂D, say P1 and P2 respectively. These two paths intersect
on at most two vertices, so one of them, say P1, avoids one of the (at least) three
free angles around D. In that case choosing x1 as the next vertex to stack fulfills
(i) and (ii). Now if there is no unexplored disk, as there are at least three edges
on ∂T [X] there are candidates fulfilling (i). As (iii) is not constraining we are
done.

In the following we show how to extend B,G,R on the newly introduced
edges and how to deal with the newly created angles to maintain all invariants
valid. We will describe the construction and we will check the validity of invari-
ants only for the non-trivial ones. We distinguish cases according to the topology
of the unexplored region containing x.

1) The vertex x is contained in an unexplored disk D and has a neigh-
boring cycle. By (VI) the unexplored disk containing x has at least 3 free
angles. We orient the corresponding edges from x to its neighbors, put two into
B and the rest into R. All non-free angles satisfy their request with the edge
incident to x. See Figure 5 for an illustration.

x x

u∗ v∗
u∗ v∗

u∗ v∗

Fig. 5. Case where x is in an unexplored disk D and has a neighboring cycle.

We have assigned all the newly explored edges, hence (I) remains valid. As
(IV) and (V) were valid in T [X], all the neighbors of x (i.e. the vertices around



D) have now (in T [X + x]) an outgoing R-arc or two incident G-edges. The
vertex x also does, hence (II) is valid. In the acyclic graph B, adding the vertex
x with only outgoing B-arcs cannot create any circuit, hence (III) remains valid.
As in this case, as ∂T [X + x] is included in ∂T [X], (IV) remains valid. If u∗
and v∗ were around D in T [X], the two parts of G are now connected by the
adjunction of xu∗ and xv∗ in G. Otherwise, G was already an {u, v}-path, or
u∗ and v∗ were elsewhere in ∂T [X] fulfilling (V). Hence in any case (V) holds.
Finally, as no unexplored disk has been created and as the requests around
existing unexplored disks have not changed, (VI) remains valid.

For the remaining cases we introduce some further notation. Given a neigh-
boring path P = (p1, . . . , ps) of x, with corresponding angles p̂1, . . . , p̂s, the inner
angles are the angles p̂i with 1 < i < s. The other ones are the outer angles. An
inner angle with an R- or G-requests, has to satisfy its constraint (this cannot
be further delayed). Hence for any inner angle p̂i with a G-request (resp. an
R-request) we add the edge xpi to G (resp. to R oriented towards x). This is a
preprocessing step valid for both the remaining two cases.

2) The unexplored region containing x is not a disk. For simplicity as-
sume, that there are no free angles. Otherwise we assign an R-request to all
these angles. Here after the preprocessing step described above, there is an in-
termediate step 2.1) and a final step 2.2). See Figure 6 for an illustration of how
this case is handled.

x xxu∗

u∗
v∗

u∗

v∗

Fig. 6. Case where x is not in an unexplored disk. (left) One G-request is on a neigh-
boring path of x. (center) One G-request is on an outer angle and one is on an inner
angle. (right) Both of the G-requests are on outer angles.

2.1) The intermediate step. This step depends on the position of the G-
requests, if any.

If there is no G-request on the neighboring paths of x, then we assign
an R-request to some angle x̂ incident to x.

If only one G-request, say on û∗, is on a neighboring path of x, then by
(V) v̂∗ is next to it, hence û∗ is an end of this neighboring path. Here the new
angle at u∗ (inside the former angle û∗) that is created by stacking x inherits



û∗’s G-request. If two angles are created inside the former angle û∗, that is if u∗
is alone in its neighboring path, we choose the angle next to v∗ in order to fulfill
(V). Then we assign an R-request to some angle x̂ incident to x.
If one G-request, say û∗, is on an outer angle and the other one, v̂∗, is
on an inner one, we have added the edge v∗x to G in the preprocessing. Here
the new angle at u∗ inherits û∗ ’s G-request and the next angle on ∂T [X + x],
that is incident to x gets a G-request too.
If both G-requests are on inner angles, the edges v∗x and u∗x have been
added to G in the preprocessing. Hence x has already two incident G-edges and
does not need any request around. We thus leave all angles incident to x free.
If both of the G-requests are on outer angles, then by (i) x has one neigh-
boring path of length one, (u∗, v∗), and at least one other neighboring path of
length at least one. In that case, we add edges v∗x and u∗x to G and we leave
the new angles at u∗ and v∗, as well as all angles incident to x, free.

2.2) The final step. We now assign two outgoing B-arcs to x, depending on
the G-requests. If there is an outer angle û∗ (in T [X + x]) with a G-request add
the arc xu∗ directed towards u∗ to B. The remaining one or two needed B-arcs
are chosen arbitrarily among the edges from x to outer vertices. All other edges,
between x and outer vertices will be put into R and directed towards x, and the
corresponding angles will be left free. Note that among the newly created outer
angles and the angles associated to x there are at most 3 requests: two at the
angles receiving a B-arc from x and one at an angle incident to x.

If adding x creates an unexplored disk D′, we still have to argue, that (VI)
is satisfied with respect to D′. We make use of the following:

Claim 3 For any unexplored disk D′ created by stacking a vertex x on T [X],
the vertex x appears several times on the boundary of D′.

Proof. Suppose we create an unexplored disk D′ such that x appears only once
on its boundary. Assume x is chosen such that the number of faces in D′ is
minimized. Since there are no non-trivial 3-disks, the boundary of D′ is of length
at least 4. Therefore D′ contains an unexplored vertex x′ which could have been
stacked on a subpath of ∂D′ \ x. Furthermore, x′ can be chosen such that the
path does not only contain the G-requests. Hence, stacking x′ would either not
create any unexplored disk, or would create some included in D′, hence smaller.
Both cases contradict the choice of x with respect to (iii). ut

This claim and the fact that T is simple imply that there are at least 6 angles
on the boundary of D′ incident to outer vertices of the neighborings paths of x
(4 of them) or incident to x (2 of them). As argued above at most 3 of these
angles have a request. Thus, there are at least 3 free angles on the boundary of
D′ and (VI) is satisfied.

3) The unexplored region containing x is a disk, but x’s neighborhood
is not a cycle. By (ii) the vertex x has only one neighboring path. Let us denote



this path by P = (p1, . . . , ps) for some s ≥ 2 and p̂1, . . . , p̂s the corresponding
angles. Denote by t the number of free angles on P .

We start with the preprocessing described above, that deals with non-free
interior angles (by fulfilling the requests). To fulfill (VI) we have to maintain the
number of free angles in this unexplored disk above three. Since by (ii) there is
at least one free angle not on P , to achieve this we need to have at least min{t, 2}
free angles among the new angles p̂1, x̂, and p̂s.

To achieve that we need to exploit free angles as follows. For any free angle p̂i
(inner or not), the edge xpi is added either to B or to R, in both cases oriented
towards pi. Among these t angles, min{t, 2} lead to a B-arc, and max{0, t− 2}
lead to an R-arc. It remains to deal with the (at least 2−t) angles that are neither
inner nor free. We proceed by distinguishing cases according to the position of
G-requests.

If there is no G-request on P , we proceed as follows. Let us first deal with
the new angle x̂. If t ≤ 2, the vertex x has no outgoing R-arc and we hence
assign an R-request to the angle x̂. Otherwise (i.e. if t ≥ 3) the vertex x has an
outgoing R-arc, we hence leave x̂ free. Then we use max{0, 2− t} of the non-free
outer angles to add B-arcs leaving x. We satisfy the possibly remaining non-free
outer angles (that are min{2, t}), by adding R-arcs towards x, and leave their
new incident angle free. If t ≤ 2 (resp. t ≥ 3), there are hence min{2, t} = t
(resp. 1 + min{2, t} = 3) free angles among the new angles p̂1, x̂, and p̂s. We
hence have the expected (at least) min{t, 2} free angles.

If only one G-request (say on û∗) is on P , then û∗ is an end of P , say
p1 = u∗ (see Figure 7). Here the new angle at u∗ inherits û∗’s G-request, and we
add the edge xp1 in B if t ≤ 1, or in R otherwise (if t ≥ 2). In both cases xp1
is oriented towards p1. Hence, if t ≤ 1 we assign an R-request to angle x̂ and
otherwise we leave x̂ free. If t = 0 then p̂s is not free, then as it cannot have a
G-request, p̂s has an R-request. In that case we add xps in B oriented from x to
ps and the new angle p̂s inherits the R-request. If t ≥ 1, we satisfy the R-request
of p̂s (if it has one) with edge xps. In any case, p̂s having a request or not in
T [X], the new angle p̂s is left free. Hence if t ≥ 2 the angle x̂ is free , and if t ≥ 1
the angle p̂s is free. We hence have the expected (at least) min{t, 2} free angles.

x xxu∗ u∗u∗

ps ps ps

Fig. 7. Case where there is only one G-request (on û∗) and where p̂s has an R-request.
The 3 subcases from left to right correspond to t = 0, t = 1, and t = 2.



If one G-request say û∗ is on an outer angle and the other one v̂∗ on
an inner one, say u∗ = p1 and v∗ = p2 with s > 2, we have added the edge
p2x to G (see Figure 8). Around p1, if t ≤ 1 we assign the new angles p̂1 and
x̂ a G-request, and we add the edge xp1 in B oriented from x to p1. Otherwise
(i.e. t ≥ 2) we add the edge p1x to G, and we leave both new angles p̂1 and x̂ as
free. Around ps, if t = 0 (hence p̂s has an R-request) we add xps in B oriented
from x to ps, and the new angle p̂s keeps its R-request. Otherwise (i.e. t ≥ 1),
if p̂s has an R-request we add xps in R and orient it from ps to x, and in any
case (p̂s having an R-request or not) we leave the new angle p̂s as free. Hence if
t ≥ 1 the angle p̂s is free, and if t ≥ 2 both p̂1 and x̂ are free. We hence have the
expected (at least) min{t, 2} free angles.

x xxu∗ u∗u∗

ps ps ps

v∗ v∗ v∗

Fig. 8. Case where there is one G-request on an outer angle, and one in an inner angle,
and where p̂s has an R-request. The 3 subcases from left to right correspond to t = 0,
t = 1, and t = 2.

If both G-requests are on inner angles, edges v∗x and u∗x have been added
to G. Now x is an inner vertex of G, and we thus leave x̂ free. Then we use
max{0, 2 − t} of the outer angles for B-arcs from x, and the remaining non-
free outer angles have their R-requests satisfied, and are left free. In any case,
min{2, t} of the outer angles are free (as is the angle x̂).

Finally by definition of stacking P , x’s unique neighboring path is distinct
from (u∗, v∗) and hence all cases have been addressed.

3.4 Reorienting B

Given a partial orientation O of T we define the demand of a vertex v as
demO(v) := −δ+|O(v) mod 3, where δ+|O(v) denotes the outdegree of v with re-

spect to O. We want to find an orientation of T with all demands 0.

Recall we will not modify the orientation on R, which guarantees that all
vertices in (V (T ) \ V (G))∪ {u, v} have non-zero outdegrees. Furthermore, as G
will be oriented either entirely forward or backwards (this will be chosen later),
all its interior vertices will have non-zero outdegrees. Hence every vertex of T [X]
has non-zero outdegree. Suppose that G is entirely oriented forward.

Now we linearly order vertices in V (T )\V (I) = (v1, . . . , v`) such that with re-
spect to B every vertex has its two outgoing B-neighbors among its predecessors



and I. Denote by Bi the subgraph of B induced by the arcs leaving vi, . . . , v` (be-
fore the reorienting). We process V (T ) \ V (I) from the last to the first element.
At a given vertex vi we look at demG∪R∪Bi

(vi) and reorient the two originally
outgoing B-arcs of vi in such a way that afterwards demG∪R∪Bi

(vi) = 0 (i.e.
δ+|G∪R∪Bi

(vi) ≡ 0 mod 3). As these B-arcs were heading at I or at a predeces-

sor, the demand on the vertices vj , with j > i, is not modified and hence remains
0.

3.5 Orienting G and I

Denote by O the partial orientation of T obtained after 3.4. Pick an orientation
of G (either all forward or all backward) and of uv such that for the resulting
partial orientation O′ we have demO′(v) ≡ 1 mod 3.

Now, take the triangle ∆ of I containing v. Since D̃ = I \ uv is a maximal

outerplanar graph with only two degree two vertices, D̃ can be peeled by remov-
ing degree two vertices until reaching ∆. When a vertex x is removed orient its
two incident edges so that demO′(x) = 0 (as for B-arcs). We obtain a partial ori-
entation O′′, such that all vertices except the ones of ∆ have non-zero outdegree
divisible by 3.

Since the number of edges of T , and the number of edges of ∆ are divisible by
3, the number of edges of T \∆ is divisible by 3. As this number equals the sum
of the outdegrees in O′′, and as every vertex out of ∆ has outdegree divisible
by 3, then the outdegree of ∆’s vertices sum up to a multiple of 3. Hence their
demands sum up to 0, 3 or 6. As demO′′(v) = demO′(v) = 1, the demands of
the other two vertices of ∆ are either both 1, or 0 and 2. It is easy to see that
in either case ∆ can be oriented to satisfy all three demands.

4 Towards Schnyder woods

We see our proof of Conjecture 1 as a step towards generalizing Schnyder woods
to triangulations of arbitrary orientable surfaces (the notion does not have much
sense for non-orientable ones). By results of [8] another step towards generalizing
Schnyder woods to maps of arbitrary orientable surfaces can be formulated after
introducing a couple of definitions:

A map G is said essentially k-connected, if its universal cover is k-connected.
Given a map G, its primal-dual-completion Ĝ is the map obtained from simul-
taneously embedding G and its dual, G∗, such that vertices of G∗ are embedded
inside faces of G and vice-versa. Moreover, each edge crosses its dual edge in
exactly one point in the interior, which also becomes a vertex of Ĝ. Hence, Ĝ
is a bipartite graph with one bipartition consisting of primal-vertices and dual-
vertices and the other partition consisting of edge-vertices (of degree 4).

Conjecture 2. Given an essentially 3-connected map G, the map Ĝ has an ori-
entation where primal- and dual-vertices have non-zero outdegrees divisible by
three, and where edge-vertices have indegrees divisible by three, that is indegree
0 or 3 (i.e. outdegree 4 or 1).
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