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Introduction

The subject of this thesis are partial orders on orientataomd reorientations of directed
structures. The papers of Felsner [7] and Propp [12] promgt t

Felsner constructs a distributive lattice on those ort@ma of a planar graph, that have
fixed outdegree on every vertex-prientations). Thex-orientations of a graph generalize
f-factors, spanning trees, Eulerian orientations and Stdmyoods.

Propp presents a method to generate a distributive latticdkhase orientations of a
(not necessarily planar) graph, that have the number ofdfiaharcs in cycles as invariant
(c-orientations).

The motivation of the thesis is based upon the question,venet with which obstruc-
tions one can generalize Felsner's and Propp’s resultsiéated matroids. It turns out
that the generalization is possible, but yields a theoryctvig not as nice as in [7, 12].
Therefore we focus on special matroid classes and panticatiants.

By identifying the orientations of an undirected graph vitike reorientations of a di-
rected graph, we can bring together and generalize thestesanvestigated by Felsner
and Propp. We transfer the invariants of the considerederg@ation classes to the termi-
nology of oriented matroids and show that they are dual mgknse.

Furthermore we reformulate the generating methods (flip $eguences) for the dis-
tributive lattices in [7, 12] and show that they are essditihe same. Flip flop sequences
can be applied not only to directed graphs but to arbitragg snatrices. As oriented ma-
troids can be displayed as sign matrices, we are indeedrgetmvards the desired gen-
eralization. Sign matrices still can be organized in dedagraphs. In most cases these
graphs fail by large to be the graphs of distributive laticActually we show that every
connected, loop-free, directed graph arises from a signxnttis way.

For positive, we find sufficient conditions on sign matriciesgenerate digraphs that
are Hasse diagrams of distributive lattices. In additiorobin a natural embedding into
the higher dimensional lattice of integers. As a corollaky ebtain the distributivity of
the lattices in [7] and [12] together with an embedding irdnsZ?. This result is based
upon the existence of a 2-basis of the cycle space and theace srespectively.
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Then we put together what we have learned about flip flop segsenith a suitable
generalization ofv-reorientations to oriented matroids. This enables us mstroct sign
matrices that produce posets on thw@eorientations of general oriented matroids. We
prove that a stronger analogy to the graph case in terms t# bgases does only hold for
regular oriented matroids. So we specialize our analydisiscclass.

Seymour’s decomposition theorem for regular matroids [@&{ls to the investigation
of the three splitters:

e The matroidR.10 has a finite number of reorientations. We find generatingfeets
posets on the respectivereorientations by computer enumeration.

e We investigate the structure ef-reorientations ofgraphic oriented matroids.
From this we derive the main theorems of [7] and [12] as car@s. Moreover
we give a precise description of the partial order on the fianeorientations of the
square torus grid.

e The a-reorientations otographic oriented matroids coincide dually with the:-
orientations in [12]. Therefore they carry the structuradistributive lattice, as
well.

Our last result is that every distributive lattice comesrirthe flip flop sequences of
the a-reorientations of a cographic oriented matroid. We désctine relations between
cographic oriented matroids that generate the same disugdattice.



Chapter 1

Essentials

As already explained in the introduction, the aim of thissibas to generalize results
obtained for planar graphs by Felsner in [7] and dual re$ottgeneral graphs by Propp
in [12]. We will introduce the fundamental terms and inittesumptions, that underlie
the whole thesis. Then we briefly present the results of [}, Ti2ey will be phrased in a
language that is suitable for the generalization we arergjriur. We assume the reader to
be familiar with basic concepts of graphs, digraphs andalgrordered sets and refer to
[6] and [5] for good introductions, respectively. At the esfdhe chapter we will point out
the aspects we attempt to generalize and give a short previtgwe following chapters.

Given an undirected graph = (V, E') we call a directed graph = (V, A) anorien-
tation of GG if G is the underlying undirected gragh of D. For a directed graph denote
by 5 the function that maps every vertex to the number of outgaintg, i.ed(v) is the
outdegreeof v € V.

U3 U3
Uy
U1 G V2 U1 D V2

Figure 1.1: The digraplv is a(2, 1, 1, 1)-orientation of the undirected gragh

Leta € ZV. We define the set of orientations
a-or(G) :={D = (V,A) | D=Gandé" = a}

as the set ofv-orientations of GG.
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In order to generalize the ideas in [7, 12], it turns out thaisidering reorientations
instead of orientations is convenient.

So given a directed graph = (V, A) we can define the set of-reorientations of D
as
reor, (D) :={D' = (V,A") | D=D"andé* (D) =67 (D')}.

Note that in the definition ofeor, (D) the lettera does not stand for a vector anymore.
As the information about the outdegree is already represdmy D, the o stands for the
invariance of the outdegree among this set of reorientstion

The orientations of an undirected graph coincide with tlegiemtations of one of its
orientations. Thus one clearly has

reor, (D) = a-or(G) ifand only if D € a-or(G).

D D'

Figure 1.2: The digraph®, D’ and D" are a-reorientations ofD and (2,1,1,1)-
orientations of7. Dashed lines stand for the reoriented arc sets with respéet

In [7] the question whether for give anda the setn-or(G) is empty is translated to
the construction of a maximal flow in another graph. One cdainlana-orientation or a
certificate for the non-existence in polynomial time. In seguel we will always assume
to have anx-orientation at hand. This is we can investigader,, (D) instead ofx-or(G).

Before we begin to investigate it is useful to introduce sarecepts, that we will
frequently refer to.

We start with signed sets. We call a seta signed setif it comes with an ordered
2-partitionX* LU X~ = X. We call X thepositive elementof X andX ~ thenegative
elements A signed set is calledositively directed or negatively directedif the respec-
tive other part of it is empty. Denote byX the signed set given by-X)* := X~ and
(—X)~ = X*. We write X for the underlying unsigned set &f. These two operations
can be applied elementwise to set of signed sets and will beted the same. Moreover
let A* denote the set of positive signed sets of asef signed sets.

In the way one associateg§@ 1)-vector as incidence vector to a usual subset of some
ground set, one can display a signed set &$,a 1, 0)-vector - itssigned incidence



CHAPTER 1. ESSENTIALS 5

vector. We will often go back and forth between the concepts of @ijisets and (signed)
incidence vectors. Sets of (signed) sets will also be utalgtsas matrices, whose rows
correspond to the (signed) incidence vectors of the elesetst In the signed case we
refer to such a matrix asgn matrix.

One important sign matrix in the context of digraphs is thedence matrix of a
directed graph D = (V, A). We denote it bync(D). It has a row for every vertex and
a column for every arc oD, such that the column labelled by the arc= (u,v) € A
is e, — e,. Heree, stands for the vector that had an the entry that corresponds to the
vertexv and zeros elsewhere.

For a directed grapvy = (V, A) we call a signed arc séf C A aEulerian of D if £
is in the kernel ofnc(D). Denote byD[E] the subgraph ob induced by the arcs df. If
E is a Eulerian one has that the undirected induced gi2#i has even degree on all its
vertices. Conversely every arc set with this property casipeed to become a Eulerian
of D. We call a Euleriarirected if its signed incidence vector is non-negative Flis a
directed Eulerian, the®|E] is aEulerian orientation of D[E], i.e. every vertex irD[£]
has the same in- and outdegree. Conversely every unsigoesgtr, which induces a
Eulerian orientatiorD[E] can be signed to become a directed Euleriai of

Denote by€(D) the set of Eulerians ab and byC (D) the set of cycles - the minimal
elements o€ (D)\ {0} with respect to inclusion of the underlying set. Every Eialeris
the disjoint union of cycles.

We already switched the view from-orientations tax-reorientations. Now, instead of
looking atreor, (D) as a set of directed graphs, we look at a reorientalloof D as the
arc set ofD which has to be reoriented in order to obtdh Due to this identification,
we can make a first observation.

Proposition 1. reor, (D) = £1(D).

Proof. Let D’ € reor,(D) and E C A the set of arcs that is reoriented frabhto D'.
Changing the orientation ofi does not change the outdegree if and only if at every vertex
of D the numbers of incoming and outgoing arcdiroincide. This isD[E] is a Eulerian
orientation of D[E], i.e. E can be signed to become a directed EulerianA.e& £ (D).

O

With Proposition 1 one easily sees, that the digraphs inreigu2 are all then-
reorientations ofD). The dashed arc sets are exactly those that can be signedamée
directed Eulerians ob.

We will take advantage of Proposition 1 by working wéti(D) = £ (D) as a subset
of the digraphs cycle space insteadcefeorientations as a set of directed graph. The
cycle spaceof D is defined as the integral row spageinz(C(D)) or equivalently as the
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integral kernel of the incidence matrix &f. As one has
£(D) = ker_101y(Inc(D)) = spanz(C(D)) N {-1,0, 1}
we can consequently identify

EY(D) = kergy oy (Inc(D)) = spanz(C(D)) N {1,034,

Now, we can regardeor, (D) as the set of1, 0)-vectors in the cycle space. This has
some advantages.

First, it is a standard result, thgtanz(C(D)) is a direct product of the cycle spaces of
the 2-connected components 6f, so by Proposition 1 this holds for theorientations,
too. We can analyse them component by component and restniselves to the-
connected components (blocks)of

Second, Proposition 1 gives an interpretation of the falhgamportant notion. For
a directedD = (V, A) we call an arax € A rigid if it has the same orientation in all
the members ofeor, (D). To us the arcs of interest are those which are not rigid. We
can delete the rigid arcs and obtain soffe This new graph has a different outdegree at
some vertices. But, the sets(of 1)-vectors€* (D) and€™(D’) can be identified. So the
a-reorientations oD’ and then-reorientations of) coincide.

Now, the non-rigid arcs, are those contained in some subgrafuced by a directed
Eulerian. As Eulerians are disjoint sums of cycles, eveghsrc is contained in directed
cycle. As every arc of a directed graph is either contained directed cycle or in a
directed cut, the set of rigid arcs is the set of arcs that@néained directed cuts. So after
deleting the rigid arcs, we end up with a graph that has newidecuts. In other words:
we can restrict our attention to strongly connected compisnef D.

Hence, by Proposition 1, we can focus on the class@dnnected, strongly connected
directed graphs.

All we have done until now worked on general directed graplithout any additional
properties. To present Felsner’s results, we take a lookpirear digraphD given with
a crossing-free embedding in the plane (planar map). We tweafihd a partial order
onreor, (D). Therefore we will assign directions to thoseeorientations, that can be
performed at members ofor, (D), by reorienting facial cycles.

We orient all the faces of the embedding counter clockwigetw). This leads to
a choice of orientation for thé&cial cycles of D - the boundaries of the faces of the
embedding. The ccw-orientation uniquely partitions eviagyal cycle into forward arcs
and backward arcs, by walking around the correspondingifacew-direction. We call
the set of facial cycleg and the facial cycle, which is induced by the unbounded face,
the forbidden facial cycledenoted byX.
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Taking forward and backward arcs as positive and negatemehts, respectively,
terms as positively and negatively directed specializenfgeneral signed sets to facial
cycles.

To establish an order oreor, (D) we introduce speciak-reorientations ofD. Re-
versing the orientation on the arc set of a positively deddacial cycle is called 8ip.
Reversing the orientation on the arc set of a negativelyctéickEulerian is called #op.

As in both cases the reoriented arc set lie§ D) one cannot leaveesor, (D) by flip-

ping and flopping facial cycles. The flip and the flop will be erstood as going up and
going down, respectively, ireor, (D). Felsner's Theorem says that indeed every arc set
in £7(D) can be reoriented by a sequence of flips an flops of facial syde capture
the consecutive application of flips and flops and the resyftartial order, we define the
following.

Let D be planar ccw embedded digraph with facial cycteand forbidden facial cycle
X. Aflip flop sequence based aF\{X} is a sequenceF, . .., Fyu) of elements of
F\{X} such that for every < i < k after reorientingFy, ..., Fy;—1) the next cycle
F; can be flipped or flopped in the resulting digraph.

We can now establish a partial order 6¥s a-reorientations the following way. Let
D', D" € reor, (D). DefineD’ <g D" if there is a flip sequence of bounded facial cycles
of D’ that transformg)’ to D"

In [7] Felsner proves:

Theorem 1. Let D = (V, A) be a strongly connected directed graph, given with a cross-
ing free planar embedding. Denote Kythe facial cycle induced by the unbounded face.
Then

e Everya-reorientation ofD can be obtained fronb by a flip flop sequence based
at F\{X}.

e Moreover the resulting partial ordefreor,, (D), <g) is a distributive lattice.

Proof. The proof of the first part of Theorem 1 works by induction oa #rea that is
enclosed by the directed Euleridn corresponding to the desiredreorientation ofD.

If the area ofF is minimal it is a facial cycle, hence can be flipped or floppédhe
area enclosed by is not minimal, by strong connectivityy contains a directed path
which cuts the area df into two disjoint parts, enclosed by EuleriafSand E”. One of
both is directed and can be reoriented by the induction ngsi$. Afterwards the other
one is directed and can be reoriented by the same argumerty ®ductionE can be
reoriented by a flip flop sequence of bounded facial cycles.

We will not restate the proof of the second part of Theorem X aar-
ried out in [7]. It works with an order isomorphism to a set ob-p
tential functions. We will prove this statement differgntlin  Theorem
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3.6.7. Anyways potential functions will come up again in Qlea 4.
O

The distributive lattice on the-reorientations of our example from Figure 1.2 is a
3-path with minimumD and maximumD” as displayed in Figure 1.3.
D/l
B
,,,,,,, - D’
A

D

Figure 1.3: Distributive lattice on the-reorientations o). The generating facial cycles
A andB induce an arc labeling.

A bigger example of a strongly connected planar digraphttegevith the distributive
lattice on itsa-reorientations is depicted on the cover of this thesis.

We will now have a look at the results in [12]. The objects stigated there are dual
to the settings treated until now. This duality is in termeoénted matroids, see Chapter
3.5.

n
i
i

Figure 1.4: Primal and dual (dashed) planar digraphs.

In the case of oriented matroids that come from planar diggapatroid duality coin-
cides with usual duality of planar digraphs. Duality of @amligraphs is duality of the
underlying graphs together with duality on the arc orieatet. We map a forward arc of a
ccw facial cycle to an outgoing arc of the corresponding a@aekex, as depicted in Figure
1.4. There are possibly several ways to embed the planaroflaagiraph. We just pick
one of them. We regard the consecutive application of duastswitching between the
two underlying graphs, while changing the arc orientatiacsording to the above rules.
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Note that in contrast to duality of undirected graphs, tlealed version is no involution
anymore.

By duality of planar digraphs, the objects and propertieated until now translate as
follows:

strongly connecteé~ acyclic
directed Euleriarn~ directed cut
facial cycle«~ vertex cut
a-reorientation~ c-reorientation

There are two concepts in the above table that still shalidfieed:

We understand eut as an arc set (X, X ) induced by a 2-partitofiX, X) of the vertex
set. The cut consists of all the arcs that are incidedf tand X. We sometimes refer to
X andX as thesides of the cut A cut isdirected if either all its arcs point fromX to X
or from X to X. A cut is called avertex cutif X consists of a single vertex. The set of
cuts of a digraph, seen as sign vectors, is integrally sghbyé¢he vertex cuts. The set of
non-empty inclusion minimal cuts is denoteds

To definec-reorientations leD = (V, A) be a directed graph with some fixed baSis
of cycles of its cycle space. Lep, € Z€ count the number of forward arcs in the cycles
of C. We call

reor.(D) :={D' = (V,A) | D' = Dandcp = cp}
the set ofc-reorientations of D.

Flip flop sequences of vertex cuts are defined analogouslyptdidp sequences of
facial cycles.

So dualizing the statement of Theorem 1 according to theabales we obtain the
following:

Theorem 2. Let D = (V, A) be an acyclic directed graph given with a planar embedding.
Letv € V be an arbitrary fixed vertex. Then

e Everyc-reorientation ofD can be obtained fron® by a flip flop sequence of vertex
cuts different from the vertex cut induced:by

e Moreover(reor.(D), <g) is a distributive lattice.
Here the vertex cut of corresponds to the unbounded fa&ef an embedding of the
primal graph.

Actually the more general theorem proved in [12] says th#tédual setting planarity
is no longer needed.
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Theorem 3. Let D = (V, A) be an acyclic directed graph. Ande V' an arbitrary fixed
vertex. Then

e Everyc-reorientation ofD can be obtained fron® by a flip flop sequence of vertex
cuts without using the vertex cutaf

e And moreove(reor.(D), <g) is a distributive lattice.

Proof. Both parts of the theorem will be corollaries of Ilater resultvith

different proof ideas, even if some similarites come up irect®n 4.
O

One might think now that using duality one can show the statdgraf Theorem 1 for
non-planar graphs. This is not the case. The duality betweeooncepts at concern is
purely combinatorial in terms of oriented matroids (see [@&a3.5), which exactly in
the case of planar graphs coincides with topological duaib application of duality to
Theorem 3 gives an analogue of Theorem 1 on cographic oden&troids.

The main purpose of this work is to generalize the presentedeapts, methods and
results. We pursue this with respect to three concepts:

e The concept ofv-reorientations will be generalized to oriented matroidbdpter
3)

e The generating method given by flip flop sequences will be igdired to sign
matrices, which specialize to oriented matroids (Chapyer 2

e The proof method of Theorem 1, which relies on an inductiorir@narea of Eu-
lerians, will be applied t@-cell-embeddings of digraphs on arbitrary orientable
surfaces (Section 3.6).

These steps together enable us to prove Theorem 1 and Th8@gworollaries of the
more general Theorem 2.2.3 and Theorem 3.6.7.

The following preview is a bit more elaborate:

e In Chapter 2 the definition of flip flop sequences will be transfl from signed
incidence vectors of cycles or cuts to arbitrary sign vectdhe resulting structures
are connected loop-free digraphs instead of distributatecks. In fact we can
prove, that every connected loop-free digraph arises floarflip flops of a set of
signed sets.

As a main feature of the application of flip flops to arbitraigrnrsmatrices a neces-

sary condition to generate a distributive lattice will beyed. The distributivity of
the posets in Theorem 1 and Theorem 3 is covered by this (Eibllary 2.2.6).
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¢ In Chapter 3 the concept afreorientations will be generalized to the language of
oriented matroids.

1.

In Section 3.1 we introduce some basic facts, definitiork reotation from
oriented and ordinary matroid theory.

In Section 3.2 several problems of a possible transongif the concept ofi-
orientations to oriented matroids will be discussed. Wealdisth a generaliza-
tion of a-reorientations. Some first observations concernifrgorientations
will be provided.

In Section 3.3 we justify why further consideration wi# pestricted to the
class of regular oriented matroids. A necessary conditiorafset of circuits

to generate alb-reorientations of such matroids will be given. Seymour’s
decomposition theorem for regular matroids gives rise ttagelines of in-
vestigation, treated in the following sections of the thesi

In Section 3.4 we briefly mention the structurenefeorientations of the reg-
ular splitterR10. By computer enumeration we disprove sufficiency of the
necessary condition on a generating system fontheorientations, given in
Section 3.3.

. In Section 3.5 we will make explicit how the set®feorientations of a di-

graph and therefore Theorem 3 dualizes to a theorem aboedrientations
of cographic oriented matroids.

In Section 3.6 the-reorientations of graphic oriented matroids will be inves
tigated. This problem can be stated in terms of non-plaragitg. Application
of the proof method of the first part of Theorem 1 leads to arémdchaving
the first parts of Theorem 1 and Theorem 3 as corollaries. So@mmples,
negative results as well as positive results (Section 3ilVpe provided.

¢ In Chapter 4 we investigate more abeubrientations of cographic oriented ma-
troids. It will be shown that every distributive lattice cemfrom thex-orientations
of a cographic oriented matroid. As several of oriented aids$rcan produce the
same lattice, their structure will be explored.



Chapter 2

Order Structure from Flip Flops

In the present chapter we will generalize the idea of flip flegpuences. In Chapter 1 we
have looked at flip flop sequences of sets of cycles or cuts gfragh. Here we will look
at flip flop sequences on a wider set of oriented structurescsider arbitrary finite
multisets of signed sets, displayed as sign matrices.

In Section 2.1 we will define flip flop sequences and flip flop §sapThe latter spe-
cializes back to be the Hasse diagram of a distributiveckaitt Theorem 1 and Theorem
3. But the class of flip flop graphs is bigger. After some firstevations we obtain that
every connected loop-free digraph is a flip flop graph.

Section 2.2 will consider flip flop posets and the question lom& can force them
to have additional properties. We patrticularly investgambedding properties into the
lattice of integers and distributivity of the flip flop poseis a corollary we obtain the
distributivity of the lattices in Theorem 1 and Theorem 3.

2.1 Directed Graphs from Flip Flop Sequences

We recall some terms that have already been used in Chaptet B.be anm x n matrix
with entries from{1, —1,0}. ThenB is called asign matrix. Through the entire work
we consider sign matrices which have no zero rows. We calctovevhose entries are
from {1, —1,0} asign vectoror (1, —1, 0)-vector. A sign vector is said to bdirected if

it is either non-negativeppsitively directed or (0, 1)-vector) or non-positive ilegatively
directed or (0, —1)-vector). We will denote the all zeroes and the all ones vectofby
and1, respectively.

For any vectorn € R™ denote bysgn(v) its signed support vector and Byipp(v)
its unsigned support vector. Furthermoredétg(v) denote the: x n sign matrix with

12
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the support ofv on its diagonal. Denoting by the n» dimensional identity matrix, the
(column) reorientation of B with respect to v denotedB" is defined as the matrix
B(I — 2diag(v)). This means thaB" is obtained fromB by switching signs in all the
columns whose index corresponds to a non-zero entry. oActually we will refer to
column reorientations by saying just reorientations, whenconfusion is ahead. We
refer more specificly to row reorientations, when they a@uabo come up.

If r is a positively directed row of3, the operationB ~~ B" is called aflip. The
inverse operation (if is a negatively directed row aB) is called aflop. A consecutive
application of flips and flops can be understood.as((B"1)"s2)...)", where for each
1 <i < kthesithrowof (... ((B"1)™2)...)"1 is directed. Actually this notation can
be changed to a more convenient ongsds ¢ or just asB*® with s = (sy,...,s;) and
leads to the following definition.

For anm x n sign matrix B without zero rows, a sequence of lengtlf row indices
s : [k] — [m] is calledflip flop sequence based at Bf for eachl < i < k thes;th row
of Bs1--%i-1 is directed.

This definition clearly generalizes flip flop sequences ofalacycles as defined in
Chapter 1. The difference is that we broadened the set otisbyee are applying flip
flop sequences to. The next lemma and proposition togethieragi equivalent way of
describing flip flop sequences. It enables us to recognizéldlpsequences based At
without reorienting.

Lemma 2.1.1.Let B be a sign matrix and = (s, ..., sx) any sequence of row indices
of B. Furthermore letyinsum(s) := (supp(rs,) + ... + supp(rs,)) mod 2 denote the
binary sum of s. ThenB?® = Bb"svn(s) holds.

Proof. We can prove this componentwise. We use, that for a sign vagilication of
the support function is the same as applying the absoluteefahction componentwise.
For integersey, . . ., ; we have

(ler) + ...+ |xy]) mod 2= (|x; +...4+2|) mod 2.

So the vector binsum(s) carries exactly the information whether a col-

umn of B has been multiplied with —1 an odd or an even num-

ber of times to get the resultingB”. This totally describes B*.
O

Proposition 2.1.2.Let B be anm x n sign matrix and : [k] — [m] a sequence of length
k of row indices ofB. Thens is a flip flop sequence based atif and only if there exists
a functiono : [k] — {4+, —} such that for each < i < k the sum of rows oB given by
¥i_yo(j)rs; isa(0,1)-vector.

In this caser is uniquely determined byand B. MoreoverB® = BZi=100)rs;
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Proof. The functiono reflects whether a flip(+) or a flop(-) is performed. We procegd

induction onk.

For the casé& = 1 the equivalence is obvious by the definition of flip flop seqesinased

at B.

If £ > 1 we must be prove that, is a positively (negatively) directed row @f* -+

if and only if there is as(k) € {+1,—1} such that(SiZ{o(j)rs,) + o(k)rs,) is a

(0,1)-vector. Because of symmetry we will only prove the equimakeofr, being a

positively directed and-i—{ o (j)rs,) + rs, ) being a(0, 1)-vector.

Sory, is a positively directed row oB*1-*-1 if and only if all the columns where,,

has a negative sign have been reoriented an odd number of &intkthose where,,

has a positive sign have been reoriented an even number @$.timhis, by induction

hypothesis, is equivalent t@?;lla(j)rsj) having positive entries where,, has neg-

ative entries, an@-entries where;, has positive entries. This is the same as saying

(XEZio(j)rs;) + s, is@l(0, 1)-vector.

As (Ef;lla(j)rsj) and r,, both are (0,1)-vectors, the equation could equally

have been stated oveF,. With the induction hypothesis Lemma 2.1.1 gives

B(Eé?;lla(j)rsj)Jra(k)rsk _ Bbinsum(s) _ s

Obviously if one of the two choices foro(k) gives a (0,1)-vector,

as zero rows are forbidden, the other does not, 8o is unique.
O

Proposition 2.1.2 leads to the following observations agith@tions:

A possible view at flip flop sequences is to put)r,,, ... o(k)r,, in ordered this way
as rows into a new matrix. Theris a flip flop sequences with associated functiahand
only if the resulting matrix is a column-alternating signtma where in every column the
first non-zero entry is positive. We will make no explicit ugfehis view, but sometimes
it might be convenient to have it at hand.

Let s be a flip flop sequence based &t of length %, then thesign sum of sis
sgnsum(s) := (X45_,0(j)rs,), whereo : [k] — {+, —} is the unique function associ-
ated tos, according to Proposition 2.1.2.

For a sign matrixB denote byF'F(B) the set of all flip flop sequences based3atWe
can now definghe flip flop spanof B asff(B):= {sgnsum(s) | s € FF(B)} C {0,1}".
Every vector inff(B) stands for a reorientation &f.

Recall that Theorem states thaff(F\{X}) = reor,(D) for a planar strongly con-
nected digraph. Moreover we have that

reor, (D) = £(D)* = spany(C) N {0, 114! = spang (F\{X}) n {0, 1}14I.

Switching back to sign matrices this generalizes to thetipehow(f(B) does look like
with respect tospanz(B) N {0, 1}"?
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Define for a flip flop sequence of length k the integral support of s by z(s) :=
Yk (o(i)es,) . Obviouslysgnsum(s) = z(s)'B, soff(B) is a subset of the set of all
(0, 1)-vectors in theintegral) row space of B, i.e. ff(B) C spanz(B) N {0, 1}".

This inclusion can be strict. Consider for instance:

11 1
B:=|01 0 1.
11 1

The flip flop span ofB does not contain the eleme(itl0) € spanz(B) N{0,1}3. The
elements off(B) are depicted in Figure 2.1 as the vertex labels of the flip figply of
B.

— = O

With view at the second part of Theorem 1, we want to estalalisirected structure
on the flip flop span. Théip flop graph of B is defined a®x(B) = (V, A), where the
verticesV” correspond to the elementsf®fB). They can be regarded as labelledi{y).
Whenever it is clear that we talk about a flip flop graph we wilt always distinguish
between the vertices and the corresponding element§®f. So as a first example of
this abuse, we define the arc sEtDg(B)) of Dg(B) by

(v,w) € A(Dg(B)) :<= w —vis arow of B.

(0110) @ (1101) g (1111)

(0000) @ (0010) “e (1001)

Figure 2.1: Flip flop graph of the matriX. Vertices are labelled with the corresponding
elements of the flip flop span.

The definition of the arc set(Dg(B)) gives rise to a coloring : A(Dg(B)) — [m]
of the arcs by the row numbers @&f. Several arcs can have the same color. Look-
ing at Proposition 2.1.2 one can describe every flip flop secgpie based atB as a
walk in Dg(B). Its initial vertex is the zero vertex and its end vertex is thne la-
belled with sgnsum(s). Theith arc in the walk is colored with a row that equals
sgnsum(sy, ..., s;) — sgnsum(sy, ..., s;_1). The arc is forward with respect to the walk
if the associated-function hass (i) = + and backward otherwise.

We call a flip flop sequencedirected if ¢ is constant. It is constant and positive we
call s aflip sequence In the negative case, we call iflap sequence
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Lets now look back to the introduction and convince oursethat the we have reached
a generalization of the concepts presented there.

Take B as the sign matrix whose rows are the signed incidence \&eofathe ccw-
oriented bounded facial cycles of a strongly connectedguldigraph. Theorem 1 says
thatff(B) = reor, (D) and that the transitive closure 6f;(B) is a distributive lattice.

With B like that by Proposition 1 we haveanz(B) N {0,1}" = reor,(D). So in
order to generalize Theorem 1 we must investigate two things

e Under which conditions is the transitive closurelof(B) a distributive lattice?

e How can we guarantee thfitB) = spanz(B) N {0,1}"?

An analogous reformulation of Theorem 3 in terms of flip floarsjand flip flop graph
is also possible. Just take the signed incidence vectoiklmftaone vertex cut as the rows
of B.

Nevertheless, the flip flop structure defined in the presemioseis more general as the
following theorem illustrates. We switch the point of viemteask whether a given graph
is the flip flop graph of a sign matrix.

Theorem 2.1.3.For every loop-free connected directed graph= (V, A), there is a sign
matrix B such thatD = Dg(B).

Proof. Let D = (V, A) be a connected directed graph without loops. We pick anrariit
v € V(D) and construct a matri® such thatD =4 (B) andv corresponds to the zero
vector inff(B), i.e. the trivial reorientatio? of B. We will prove that one solution of this
problem s given byB := Inc(D)? (2diag(e,)—I) - the transpose db’s incidence matrix,
where all the columns corresponding to vertices differemtifv have been multiplied by
—1.

We prove this result twice. The first proof is more descrgtiVhe second one is more
formal and includes the stronger statement thd@) = spanz(B) N {0, 1}".

First proof:
Let B := Inc(D)" (2diag(e,) — I). Denote byb, the row of B that corresponds to an
arca € A(D). The matrixB is oriented in such a way that the positively directed rows
are exactly thosé, with a = (v,-). The negatively directed rows are exactly thdse
with @ = (-,v). The remaining row$, with « = (u,w) equale,, — e,, thus cannot be
flipflopped.
Now, flipping b, with a = (v, w) leads to the matrix3’. In B the vertexw has exactly
the particular role, that played inB.
We identify B with v and B with w. The arc ofDg(B) coming from the flip ofb, can
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be identified withe. Flopping a row leads to the analogue situation.

So standing now atv we can flop back ta or reach any other neighbor af by flip
flopping the corresponding row.

By connectivity ofD this way every vertex oD can be represented iDg(B).

To convince ourselves that none of the vertice®at represented multiply. We show
that cycles inD correspond to cycles ibg(B).
If X is the signed incidence vector of a cycle i we haveInc(D)X =
0. But as only rows ofinc(D) are reoriented to obtainB, the sign sum
of the rows of B that correspond to the elements of gives 0 as well
O

Second proof:
Again, letB := Inc(D)* (2diag(e,) — I). In order to prové/ (D) = ff(B) we must find
a labelingl of V(D) that is a bijection o/ (D) andff(B). So for anyw € V(D) define
[(w) := (e, + e,) mod2. This mapping is obviously injective. It remains to shovatth
its image is exactly the flip flop span &f.
We start with proving(V (D)) C ff(B) :
Takew € V(D) and letd(w) denote its distance from. We proceed by induction on
d(w).
If d(w) = 0thenw = v andl(v) = 0 € ff(B).
If d(w) = 1 the vectorl(w) is a directed row o3, sol(w) € ff(B).
If d(w) > 1 look at a vertexw’ which precedesv in a shortest path from to w. By
induction hypothesi§w’) = e, + e, € ff(B). We have to check the two (not necessarily
disjoint) casegw’, w) € A(D) and(w,w’) € A(D). Assume(w’,w) € A(D) then by
the definition ofB the vector,, — ¢, is a row of B. So we have

l(w) =€, + e, =L(w) + e, — ey € T(B).

The caséw, w') € A(D) is analogue.
Now, in order to prové(V (D)) D ff(B) we prove the stronger

L(V(D)) 2 spanz(B) N {0,1}".

So letX\;b; be any (integral) linear combination of rows 6f such that the sum is a
(0, 1)-vector. Write the numbers; like flows on the arcs; associated to the rows. For
everyw € V denote byr(w) := 3q,—( w)Ai — Za,=(w,) i the excess ofv. For a flow on
a directed graph one has,cyx(w) = 0. In our case, the fact thai\;b; is a(0, 1)-vector
translates to the following two conditions in:

e for every vertexu # v we haver(w) € {0, 1}.

e for v we haver(v) € {0, —1}.
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So by¥,cvz(w) = 0 we have thab\;b; is either zero or equals, + ¢, for somew € V.
ThisisX\b; € I(V(D)).

It remains to showA(D) = A(Dg(B)). We omit the proof as it is a forward application
of the given vertex labelingto the arc defining property

(v,w) € A(Dg(B)) :< w — v is arow of B.

O

We have seen that every connected loop-free digraph is adpflaph. But one such
graphD can be the flip flop graph of several matridésHow can we distinguish different
ways to flip flop generate the same graph?

Look at the arc coloring : A(Dg(B)) — [m] of the arcsDg(B) by the row numbers
of B. If two arcs have a vertex in common, they have different mlolrhe coloring
partitions the arc set aDg(B) into a set of matchings. One could say, that two sign
matrices are "essentially the same” if they induce the samatemng partition. It is an
open question, how the different matching partitions thigeafrom the flip flop structure
could be characterized.

The matching partition induced by the matrix in Theorem2i&.the trivial one, i.e.
every arc is a matching. Any matching partition consiststdkast maximum degree
many matchings. Together we obtain that the minimal numbeows of a sign matrix
B, that generates a given graph lies between its maximal degree and its number of
arcs.

2.2 Posets from Flip Flop Sequences

Now we turn back to our original aim, that is to find matricexonditions on matrices
that generate "nice” flip flop graphs. Particularly we wanirieestigate flip flop posets,
which can be defined as the transitive closure of acyclic fip §raphs..

A first step is the following.

Let B be anm xn sign matrix and: a sign vector of length. The(row) reorientation
of B with respect to cis the matrixB, := (I — 2diag(c))B, which differs fromB only
by multiplying the set of rows wherehas a non-zero entry with 1.

Proposition 2.2.1.For everym x n sign matrixB without O-rows, there is &), 1)-vector
c of lengthm, such thatDg(B..) is acyclic andf(B) = ff(B.).

Proof. We can use the much stronger fact, that every loop-free tedematroid has
an acyclic orientation, see [1]. AB has no 0-rows, applying this to the row space
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of B gives us, that there is a row reorientati®), such that there are no positive lin-

ear dependences among the rowsf This means in particular that we will not

have flip flop sequenceswith sgnsum(s) = 0, whose associated function is con-

stant. In other words, row reorienting, we obtain an acyclidDg(B.), which dif-

fers from Dg(B) only by orientation of arcs, thus has the same flip flop spaas
O

Proposition 2.2.1 particularly tells us thaBawith linearly independent rows generates
an acyclic flip flop graph.

If Dg(B) is acyclic we call the transitive closure &fg(B) the flip flop poset of B
denoted byP;(B).

Posets can be order embedded into s@hwith the dominance order. We now want
to investigate under which conditions the flip flop structie@ds to an order embedding
of Pz(B) into Z™. Denote byFF the set of flip flop sequences basedatMapping a flip
flop sequence to its integral support(s) with respect ta3, we obtain a mapping dfF
into Z™. We will now investigate if the integral supports Bf' somehow geometrically
represent’z(B).

One can ask whether the partial ordér(B) has anything to do with the dominance
order <4, on z(FF) C Z™. A positive awnser to this question would be that the map
sgnsum o 271 : z(FF) — sgnsum(S) is an order preserving bijection, i.e. that for any
s, s € FF the following two conditions are satisfied:

() sgnsum(s) = sgnsum(s) < z(s) = z(s')

(i) sgnsum(s) <g sgnsum(s’) < 2(s) <gom (')

In this case we say thdt;(B) is integral.

It is easy to see that every;(B) satisfies the " direction of (i) and that(:) implies
the "=" direction of (i:).
The rest is not generally satisfied as illustrated by thevalg examples:

In Figure 2.2(a) we see the Hasse diagram of

1 0 1
1 1 0
0 -1 0
0 0 -1

Py (

— = O O

which satisfiegii) but not(i) at the top element.
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10014 0110

0100 100

0000
(a)

Figure 2.2: Examples of non-integral flip flop posets. (Mué#) vertex labels stand for
integral supports of corresponding flip flop sequences. Figu¢ satisfies(ii) but not
Figure 2.2(b) is the Hasse diagram of

(7). Figure(b) satisfieq(i) but not(i7)
1
Pe(| 1 )-
(110)

It satisfies(:) but not(iz), which can be seen by the incomparability of the two vertices
labelled with(111) and(100), respectively.

)
— O O
O = O

Integrality of a flip flop posef:(B) means that the functiofsgnsum o z=1)~! exists
and is an order embedding 8% (B) into Z™. Thedimension of a posetP is the minmal
d such that” can be embedded in&’. So if a P is ismorphic to some integrdk (B) its
dimension is bounded from above by the row numbesf B.

A property of the embedding given ggnsum o z~1)~1, which suggests that its di-
mension is generally bigger than the dimension of the pas#te following:

Proposition 2.2.2.If Pz(B) is an integral flip flop poset the elements of the embedding
into Z™ via (sgnsum o z~*)~1 are convex independent, i.e. are the vertices of a polytope.

Proof. The proof works by elementary arguments of polytope theory.
As we do not make any use of the result, the proof will be omhitte
O

Next we want to characterize thosg(B) that are integral and distributive lattices. In
order to do so we prove a slightly more general theorem, thetl® one more term to be
introduced.

Given a directed graply = (V, A) with an arc coloring: : A — [k] we define the
colored incidence vectorof a signed arc seX as

o(X) = (| X* e @) [ = | X ne () i
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As usual, we will see forward arcs as positive elements ofaset and backward arcs as
negative elements.

Before stating the theorem note the following: Color thesata flip flop graph with
the row numbers of the rows they correspond to. The coloreidémce vector of a path
corresponds to the integral support vector of the flip flopusege, that is represented by
the path.

Theorem 2.2.3.Let P be a poset. There is an order isomorphigrfrom P to a distribu-
tive lattice L C Z* such thatp < ¢ < ¢(q) — ¢(p) = e; for somei € [k]

if and only if

P is the transitive closure of an acyclic directed graph= (V, A) that admits an arc
coloringc : A — [k], which satisfies the following conditions. For everg V:

Vi (u,0), (u,w) € A= clu,v) # c(u,w)
Vo (u,v), (u,w) € A= 3(v,z), (w,z) € A:c(u,v) = c(w,z) ande(u, w) = c(v, x)
A (v,u), (w,u) € A= c(v,u) # c(w,u)
Ao (v u), (w,u) € A= I(x,v), (z,w) € A:c(v,u) = c(z,w) andc(w, u) = c(x,v)

In this case the coloring and the embedding can be chosentsath
d(q) — o(p) = e; < c(p,q) = 1.

Proof. "="
Let P be a distributive lattice embedded intd*, <,,.,) via ¢ such that

p < q< ¢(q) — d(p) = e; for somei € [k].

Define D to be the Hasse diagram &f The arc(p, ¢) in D corresponds to the relation
p < ¢ in P. Define the arc coloring such thaip, ¢) & ¢(q) — ¢(p) = ec(p.q)-

SinceD has no parallel arcy, and/\, are clearly satisfied.

To see\/, take two arcgu, v), (u,w) € A. We have

$(v) = ¢(u) = e; # e; = p(w) — P(u).

Takez := v V w so in the dominance ordef(z) is the componentwise maximum
maz(p(v), p(w)). Thisis, ¢(x) — ¢(v) = e; andp(z) — p(w) = e;. So in terms of
cwe havec(u,v) = c(w, z) =i andc(u, w) = c(v,z) = j.

Property/\, follows analogously.
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<"

Let D = (V, A) be a connected acyclic digraph that admits an arc colaringd — [k,
which satisfies/,, \/,, /A, and/\,. And let P be the transitive closure db. The idea of
how to embed? into (Z*, <4, is to definep(v) := 0 for somev € V. Now, given any
otherw € V and a(v, w)-path@ in D we definep(w) := ¢(Q), as the colored incidence
vector of(Q).

A priori it is not even clear that is well-defined.

The proof consists of three parts:

1. We introduce the switch operation, that consists of taeied application of/,
and\/,. Givenu,v,w € V, a directed v, v)-path@ and a directedu, w)-path R
in D it constructs an element< V, a directed v, z)-path.S and a directedw, x)-
path7 in D.
Moreover we prove that(Q) + ¢(S) = ¢(R) + ¢(T') = ¢(Q) Vaom c(R).
So this construction is a generalization\@f in the sense that, assumingo give
an order embedding @?, = corresponds to the join efanduw.
An analogue construction can be done for the iterated aggjwic of A\, and A\,.

2. Using the switch operation we show, tlzais a well-defined injective function.

3. Usingl. and2. we show that is order-preserving.

These three together give thiis isomorphic viap to a subposet ofZ*, <4, ), which
is closed with respect da,,,,, andA,,,,. This implies thatP is distributive.

We start with provingl.
So takeu, v, w € V, adirectedu, v)-path) and a directedu, w)-pathR in D. Applying
\/, iteratively fromw on, until \/, cannot be applied anymore, one obtains a grid as
depicted in Figure 2.3. Parallel arcs have the same colour.

Whenever\/, has been applied to two differently colored arcs/bthe resulting two
arcs are also arcs @b.
But when we encounter a situation, wh&fe has been applied to two arcs with the same
colour, property\/, tells us that the equally colored arcs, must indeed be the s&mall
the arcs that are parallelly above these two equally colaresido not exist iD.
We repair all these situations in some order that respeetsdminance order of th
dimensional grid, seeing as the minimum. In Figure 2.4 the corresponding vertices are
drawn bigger.
So standing at a vertex which is left by two arcs with sameuwphle colour the arcs that
resulted from the wrongly applieyl, with 0. Moreover all the parallel arcs above these
arcs will be colored witt) as well. We obtain a picture exemplified by Figure 2.4.
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Figure 2.3: Formal completition of the patlisand R to a square grid. The arcs are
labeled with their colour.

We can now contract all the arcs which are colored Witnd delete resulting parallel
arcs. We call the obtained graph. We want to prove that the directéd, x)-path.S and
the directedw, x)-path7" of D’ are also inD.

So first we prove that the gragh’ can mapped homomorphically to a subgraptof
We show that every vertex db’ is either the top vertex of kgal squarein the sense of
V,,andA,,orisin@ or R.

Before any 0O-arc is contracted this condition is satisfiedlbyhe vertices but those
bad verticeswhich lie above one of the vertices, where we started a ghf@itoloring.
We call the square below a bad vertexildegal square See Figure 2.5.

We show that starting with the formal grid in Figure 2.3 we cantract 0-arc by 0-arc,
such that whenever we destroy a legal square below someyérte situation can be
repaired by contracting another 0-arc. At the end everyexdtie top vertex of a legal
square inQ or R.

Every 0-arc is contained in one or two squares. So if we con&r@-arc we harm at most
two legal squares. But if a legal square is harmed by cormtigaet O-arc it must contain
another parallel 0-arc because it was legal. We can corttrecother 0-arc in order to
repair the situation. We then obtain an equally colored toalc. Delete one of both.
If the remaining one is O-arc it is clearly again containechirmost two squares. The
remaining vertices of the former square, were top vertiddegal squares before. So
they still are or they can be repaired.

If we harm one of the legal squares, we just leave it like that.

So after contracting all the 0-arcs we have not obtained reawlertices. Moreover the
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Figure 2.4: Arcs with0-colour result from wrongly appliedy/, and can be contracted.
Resulting parallel arcs are deleted.

b a
a b
a#bora=b=0 a=b+#0

Figure 2.5: Legal and illegal squares in the proot of

contraction of the 0-arcs in an illegal square identifieskthé vertex on its top with the
ones on the sides, which are not bad.

So every vertex iD’ lies in@Q or R or in a legal square. This means that all the vertices
and arcs of)’ result from application of/, to differently colored arcs ab (starting with

() andR). Thus the vertices ob’ are vertices ofD and if two are connected by an arc,
so they are inD. So D’ can be mapped homomorphically to a subgrapp of

One vertex ofD can possibly occur several times i, i.e the homomorphism is
possibly not injective. But by acyclicity ab such different representatives of a vertex
of D in D’ cannot lie on a common directed path/in. So.S and7" are indeed directed
paths inD.

We still want to prove how the colored incidence vectors efriew paths’ and7" look
like.
Observe that the points where we repaired the grid by c@arns withO corresponds to
arcs of a maximum matching that identifies equally colored af() and R. The number
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of arcs in such a matching that correspond to a fixed calasitnin(c(Q)(i), c(R)(7)).

As T and.S differ from Q and R respectively only by contracting thecolored arcs, we
obtainc(T) = ¢(Q) — (c(Q) Naom c(R)) andc(S) = ¢(R) — (¢(Q) Adom c(R)). This
impliesc(Q) + ¢(S) = ¢(R) + ¢(T) = ¢(Q) Vaom ¢(R).

It should be clear that interchangilygs and/\s everywhere an analogue construction can
be performed ifu,v,w € V, a directed(v, u)-path@ and a directedw, u)-path R are
given.

During the rest of the proof we call the concatenated path-5) that results from our
construction applied t@ and R, theswitch of the path(Q), — R). By the above construc-
tion (T, —S) has less or equal arcs tha, —R) andc(7T, —5) = ¢(Q, —R).

Now we prove2.
We show, that is a well-defined function.
By the definition ofp, we must show that for, v € V' all the (u, v)-paths have the same
colored incidence vector. Or, equivalently, that everguar walkC of D hasc(C) = 0.
Suppose there is a cydléwith ¢(C') # 0. By successively replacing parts@fwith their
switches we can obtain a new cydl®, that is bipolarly oriented, has less or equal arcs
thanC and has the same colored incidence vectdar'as
It could indeed happen théat is only a circular walk, i.e. uses arcs several times, but the
it can be decomposed into smaller cycles some of them hawvilaged incidence vector
different from0.

Figure 2.6: The bipolarly oriented cyclésandC’ in the proof of2.

So among the smallest bipolarly oriented cycle®ithat are counterexamples to our
claim, takeC' to be one with maximal sink/ with respect taP. Applying a switch to the
(M, m, x)-path leads to a neww, M’, M)-path, depicted as a dashed path in Figure 2.6.
Both have the same colored incidence vector. So gluindth&/’, M )-path to the part
of C, which is not in the M, m, z)-path, leads to a new cycte, with ¢(C') = ¢(C") and
| C" |<| C'|. (By minimality C’ cannot take arcs several times as argued above).

As M <p M’ either M was not maximal of C' | not minimal. This is a contradiction.
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To see that is injective, again we proceed by contradiction. Applyingtshes we
can reduce every more general counterexample to the folipwase: There are two
directed paths), R with the same initial vertex, different end vertices a@) = c¢(R).
Applying a switch to this situation we obtain that the resgitpaths” and.S have length
0, so the end vertices were the same as well. This is a contiauic

Now we proves.

We show thatp is an order embedding. Clearly<p w = ¢(v) <gom ¢(w), as there
is a directed(v, w)-path in P. On the other hand as anyw € V are connected by
some shortest path, consecutive application of switcheatis of this path allows us to
construct a directef, v)-path@ and a directedu, w)-path R. Switching this gives the
elementr together with directedv, x)-path S and a(w, z)-path7". Moreoverl. gives
thato(z) = ¢(v) Vaom ¢(w), SO givenp(v) <um ¢(w) we have that the path is empty
andS is a directed v, w)-path. Sov <p w.

We have shown until now that? is order-isomorphic to a subposet ", <4, ).
By 1. the posetp(P) is closed with respect to taking joins and meets. ¢68) is a
sublattice of(Z*, <4,m). This implies thatp(P) = P is a distributive lattice as well.

0

In a flip flop graph the row numbers of the generating matrie giwatural arc coloring.
We can apply Theorem 2.2.3 to the so given arc colorings. As@llary we obtain the
desired characterization of integral distributive flip flopsets.

Corollary 2.2.4. Let B be a sign matrix, such thabg(B) is acyclic. ThenPg(B) is
integral and a distributive lattice if and only if whenevera different rows-;, r; of B can
be flipped at the same time, then after flipping one of themtther @an still be flipped.
The analogue must hold for flops.

Proof. "=

Let Py(B) be integral and a distributive lattice. Then+ e;,x + ¢; € z(FF) implies
(x4 €;) Vaom (x +€;) = x+¢; +¢; € z(FF). This means, that after flipping the other
row r; can be flipped. Obviously they can be flipped the other wayrad@s well.

The analogue holds for the flop case.

S

Let Dg(B) be an acyclic flip flop graph, such that whenever two differemts r;, r-; of

B can be flipped at the same time, then after flipping one of thenother one can still
be flipped. Every ara of Dg(B) is corresponds to a row; of B. Define the colour
c(a) := i to be the corresponding row number. Obviously no two arcsateoutgoing
arcs of the same vertex can be colored the same. So we havertyrghy of Theorem
2.2.3. Furthermore the fact that rows that are flippableeastime time comute, translates
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to \/, of Theorem 2.2.3. Propertigs, and A, follow analogously.

Mapping the O-vertex of Dg(B) via ¢ to 0 € Z™ we can ap-

ply Theorem 2.2.3 and obtain an embedding with respect to tuod

oring c. This is, every vertex is mapped to its integral support.
O

The condition of Corollary 2.2.4 does not sound very easyetw roff the matrixB.
The following corollary gives simple sufficient conditioos the generating matrix.

Corollary 2.2.5. Let B be a sign matrix, such thdds(B) is acyclic. If any two rowg, =
of B have either disjoint supports or at least one entryhere they are signed differently,
i.e.y(i)z(i) = —1, thenPg(B) is integral and a distributive lattice.

Proof. Let B be a sign matrix, such thdds(B) is acyclic,z € ff(B) andy, z rows of

B. As if the supports of) and z are not disjoint, there is ansuch thaty(i)z(i) = —1,

we have{x (i) + y(i),z(i) + z(i)} N {—1,2} # 0 in this case. Thisis{z + y,z + z}

cannot be a subset 6fB). So if y andz can be flipped their supports are disjoint. This

s,z +y,x + 2z € ff(B) impliesz + y + z € ff(B).

The same argument works for the "minus”-case.

We can use Corollary 2.2.4, to obtain that(B) is integral and a distributive lattice.
0

In order to derive Theorem 1 and Theorem 3, we introduce amwitapt class of sign
matrices that satisfy the conditions of Corollary 2.2.5. W& a sign matrixB a 2-
basis(of its row space) if every column contains at most erleentry and at most one
—1-entry and the rows oB are linearly independent. Obviously atybasis fulfills the
requirements of Corollary 2.2.5, thus has an integralritigtive flip flop poset.

Any independent set of coherently oriented facial cyclea dfgraph which i-cell
embedded into an orientable surface givéskasis. Furthermore every independent set
of directed vertex cuts of a digraph form&-dbasis.

Therefore Corollary 2.2.5 implies the second parts of Teeot and of Theorem 3:

Corollary 2.2.6. The flip flop poset of the bounded facial cycles of a planarapgrand
the flip flop poset of an independent set of vertex cuts of agnamh are integral and
distributive.

As itis conversely easy to extend awpasis by one row in order to obtain the incidence
matrix of a directed graph, one can easily prove that an tatematroid is cographic if
and only if its circuit space is spanned bg-dasis of signed circuits, see [15].



Chapter 3

Oriented Matroids

In the present chapter we will discuss the generalizatiorv-afrientations ando-
reorientations from (directed) graphs to (oriented) md#roAfter introducing the basic
terminology and fundamental lemmas, we explain some pnabldat come up when
transcribing the graphical concepts to matroids. Firstol&in thata-orientations are
not really suitable to be generalized and explain the probleNe manage to avoid these
problems by defining the-reorientations of an oriented matroid in a suitable way-Se
ond, we will justify the restriction to regular oriented mats. Thea-reorientations of
more general oriented matroids are not closed with respeftiptflops of circuits. As
the class of regular oriented matroids can be decompose@st&n operations into three
splitters, we then investigate these splitters. One ofphiteys is the matroi® 10, whose
a-reorientations can be enumerated. Another splitter iscthgs of cographic oriented
matroids, whosev-reorientations can be described by dualization from Té@o8. The
last splitter consists of the class of graphic oriented aids; which will be investigated
in the last part of this chapter.

3.1 Basics

For a real introduction to ordinary matroids [15] and [11¢ atandard references. Here
we make some use of [14], too. For an introduction to oriemedroids we refer to
[2]. In the present section we list up some basic terms vagfliar Not much more than
notational explanation is provided. We will use the notatior signed sets as given in
Chapter 1. Again we will neither distinguish between sigsets and sign vectors nor
between sets of signed sets and sign matrices.

28
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An oriented matroid is a pairM = (E,C) of a finite setF and a set of signed subsets
C of FE calledcircuits, that satisfy the following axioms:

1.0¢cC
2.C=-C
3. X, YeCandX CY = X =&Y

4. X, Y € Cande € Xt NY ™ then there is somg& e C such that
ZtCXtuYTt\{e}andZ- C X~ UY \{e}.

Leaving the signing of the sets away, the resulting concepotédM = (E, C) is called
a (ordinary) matroid. So to every oriented matrgdidl we can associate an ordinary ma-
troid M, theunderlying matroid of M.

There are several ways to obtain a new oriented matroid fkédm

A reorientation of M is an oriented matroidM = ME on the same ground set. Itis
obtained fromM by reversing the signs on a given subget. E in every circuit ofC.
The new set of circuits can be thought oftas: C(I —2diag(E)). Thus, as in the digraph
case we can identify a reorientation.®t with a subset of-.

The deletion of A C F is an oriented matroid\\ A that can be obtained from an
oriented matroid\ = (E,C). Its ground set ig2\ A and its circuits are those circuits of
M that are disjoint fromA.

The contraction of A C E is an oriented matroid\ /A that can be obtained from
an oriented matroid\t = (£,C). Its ground set igZ\ A and its circuits are the support
minimal signed setd3/in({X\A | X € C}\{0}).

Another oriented matroid that is induced b = (E,C) is M* = (E,C*). Its circuits
Y € C* are given by the inclusion minima of non-empty signed sdisfgang

XNY #0= (X" nY)Hu(XtnY ) #£pand(X NY")U(XTNY")#£0),

for every X € C. The oriented matroidU* is called thedual of M. The circuits of
M* are called theocircuits of M. The defining property of the cocircuits (besides the
minimality) is called(combinatorial) othogonality.

Obviously usual vectorial orthogonality of sign vectorgiras their combinatorial or-
thogonality but not vice versa. We call a sign veatectorial if it is vectorially orthogonal
toC orC*.

A basic fact about oriented matroid duality is that\ A)* = M*/A and conversely
(M/JA)* = M*\ A, (see [2],p123).
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The Farkas Lemma (see, [2],p122) says that every element is either contained in
a positive circuit or in a positive cocircuit g¥1.

An oriented matroidM is calledtotally cyclic if every element of7 is contained in a
positive circuit. We callM acyclicif M* is totally cyclic.

In [1] it is shown that everyM without one-element-circuits has an acyclic reorien-
tation. Moreover the minimal subsets éf that can be reoriented to give an acyclic
reorientation are exactly those sets, which are minimai vaspect to intersecting every
positive circuit.

ThecompositionY := X; o... o X} of signed sets\, ..., X} is defined ag’(e) :=
Xminficlk]| X, (e)0} (€) if possible and) else, for everye € E. This binary operation is
associative non-commutative and has the empty set as heldmaent. The seV of
vectors of M is the set of signed sets that result from compositions ctidts endowed
by the empty set. The s&t* of covectorsis defined analogously in terms of cocircuits.
A compositionXy, ..., X} is calledconformal if X;(e)X,(e) > 0forall ¢,j € [k] and
entriese € E. Every vectorX € V is even a conformal composition of circuits, see [2],
pl41l. If we haveX;(e)Xs(e) > 0 and X; < X, for two sign vectorsX;, X, and every
e € F, we say thatX; is conformingly contained itX,. This is theconformal inclusion
of signed sets.

Every oriented matroid is uniquely determined by any of thesystem«’, C*, V, or
V*. Each of them can be described by an axiomatization sinaltre one we gave fat.

An important class of oriented matroids arectorial matroids. Vectorial matroids
arise the following way. Given a vector subspacef R", the support minimal vectors
in sgn(V\{0}) form the set of circuits of an oriented matroid on the grouetg. A
standard way to represent these matroids is to représastthe real kernel of a x n
matrix B. Clearly Gauss row operations @ghdo not change\V, so B can assumed to
be of the form[/ | A]. The matrixA is then called aepresentation matrix for M. The
rank of B definesrank(M), the rank of M. Moreover the dual matroid of the matroid
induced byV comes from the orthogonal complementiof

Special cases of vectorial matroids graphic andcographic matroids given by the
linear dependencies of the incidence matrix of a directegly(the cycle space) and the
orthogonal vectorspace (the cut or cocycle space), rasplctWe denote the graphic
oriented matroid induced by the directed graptas M (D). The circuits ofM (D) are
exactly the signed incidence vectors of the cycle®ofThe cocircuits are the inclusion
minimal signed incidence vectors of the cuts/of A cographic oriented matroid is the
dual matroid of a graphic matroid, i.&1*(D). Total cyclicity and acyclicity generalize
strong connectivity and acyclicity of digraphs. Deletiamdacontraction of arcs corre-
spond to the analogue operations on the induced orientadichat

Ordinary vectorial matroids can come from (representatmatrices over any field.
If a matroid can be represented over every field it is cakepllar.
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Another important class of ordinary matroids are tinorm matroids denotedU,, ,,.
They consist of the ground st] and the set of circuit§, ") ).

3.2 Formal Transcription and First Observations

In the present section we will discuss the suitability of domcepts ofx-orientations
anda-reorientations for generalization from (directed) grapi (oriented) matroids. We
display a number of problems that come up when attemptinguaialdranscription. Later
we present a possible way to avoid these problems.

How can we generalize-orientations? Our guiding idea is that vertex cuts genszal
to cocircuits. As the vertex cuts of a graph span all the catspprescribing the outdegree
on the vertex cuts fixes the number of positive elements fdahalcuts of an orientation
of the graph. So the outdegree could be generalized to théeuoh positive entries of
cocircuits.

We look at the case af-orientations. So we have an ordinary matrdij which we
want to orient. This means that we search an orientend ndatwbiwith M = M and
more properties with respect to the outdegree. At this steplveady encounter the first
big difference between graphs and oriented matroids. Nertyesrdinary matroid i®ri-
entable i.e. is underlying matroid of an oriented matroid, e.g.Faeo matroid(7) (see
[3]). So there are ordinary matroids which havemorientations at all (independent of
the«). We will not really consider this problem and always thirflodentable matroids.

So letM be an orientable ordinary matroid on a groundBetith a set of cocircuits
C*. Inthe graph case thevector was counting positive elements of the vertex cuts;hvh
form a basis of the cut space of the directed graph. The fieki@m when attempting to
generalize this notion to oriented matroids is the follagvidivhen orienting an orientable
matroid every cocircuit inC* will be represented by two cocircuits, —X € C*. In
contrast to the graph case, there is no canonical choiceagaondistinguishX and—X.
We have no analogue to indegree and outdegree. So someak&iagdrientations cannot
really be defined.

A bigger set of orientations that is suitable to generalgz#)e set of those orientations
that fix the absolute value of the difference of in- and outdegHere in- and outdegree
are treated symmetrically. In digraphs this concept cdegwitha-orientations exactly
in the case of Eulerian orientations, ae= dQﬂ. So we could restrict the generalization
to Eulerian orientations of an oriented matroid, which are defined byX,1) = 0 for
every X e C*.

But there is another problem, which exactly in the case oéEah orientations cannot
be solved. Given a directed graphand the graph-D, obtained fromD by reversing
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the orientation of all the arcs, then the graphic orientedroids M (D) and M(—D)
induced byD and — D respectively are considered the same in oriented matreioryh
They have the same set of circuits. So the oriented matreidatadistinguish between
the two orientationd) and —D. But in the analysis ofv-orientations of graphs, both
orientations are considered to be different.

Identifying the orientation® and— D would be one idea. But regarding posets on the
a-orientations, this identification would only work as lorgyeor,, (D) Nreor,(—D) = §.
This condition is violated if and only if we have a poset on Ehderian orientations of
a graph. In this cas® and —D occur as comparable elements in the poset and after
identifying them, one obtains cycles.

The next difficulty is that itM; and M, are oriented matroids with the same underlying
matroid thenM, is not necessarily a reorientation #fl,, e.g. the matroidU; s has
orientations which cannot be obtained from each other byieettion, see [10]. So the
set of orientations of a matroid needs not to be connecteddryentations.

In [4] there are even examples of different Eulerian origotes of a rank3 matroid
that cannot be obtained one from another by reorientatidis i€ quite a big difference
to the graph case because there, our results were stronghecied to the fact that we
could investigate reorientations of a directed graph adstd orientations of an undirected
graph. Also the flip flop structure developed in Chapter 2rifeflects reorientation
classes of sign matrices.

So in order to escape from all these problems we restridiéuihvestigation to the set
of a-reorientations of an oriented matroid M defined as:

reor, (M) := {M | M is a reorientation of\ and we have*1 = C*1}.

What are the advantages of this definition? Here from thenpégy on we consider
an oriented matroid and do not have the problem of orientalaihymore. Moreover we
only consider reorientations and do not include orientetiof the underlying matroid,
that are no reorientations. We identify the reorientatiohwith a subset? C E. As
we want to have a correspondence of reorientations and tsuliise we break with the
conventionM = —M, i.e. we considesM and the reorientation of all its elements as
different reorientations. The equation of sign mari€é€s = C*1 says that corresponding
cocircuits of the reorientation have the same number ottigentries. This generalizes
the idea of the invariance of the outdegree. By consideitnymatrices instead of sets of
sighed cocircuits we can take asC* (I —2diag(E)). So the set€* andC* are given with
a fixed order, which guarantees that indeed the sign numibemm@sponding cocircuits
are compared.

Having in mind that for digrapheeor, (D) = £*(D) = keryg 13 Inc(D) = keryg 1y C*,
the definition ofreor,, (M) allows us to prove an analogue to the essential Proposition 1
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Proposition 3.2.1.For an oriented matroid\ we have reaf(M) = keryg 13 C*.

Proof. Let £ C E and denote byM ¥ the matroid obtained by reorienting the elements
of E, then
MPE € reor, (M)
& C*1 = (C*(I — 2diag(E))1)
SCE=0
E e ker{o,l} C*
O

So in analogy to the bounded facial cycl§{X} C kerp;, 1y Inc(D) = £(D) of a
planar graphD, which by Theorem 1 flip flop generate &l ) Inc(D) = reor, (D),
we would like to find a small subsét C kery_; 1) C* =: £(M) such that seein@ as
a sign matrixtf(B) = kerg 13 C* = reor,(M). The set€(M) of signed sets generalizes
the set of Eulerians of a digraph.

V

ET =reory,(M)

Min(E)*T

Figure 3.1: Inclusions of sets of signed sets occurring énahialysis ofv-reorientations.

The setgeor, (M) and&(M) as well as the flip flop operations reflect linear algebra
structures that are related to the oriented matyoid General oriented matroids do not
necessarily have such a direct link to linear algebra. Ireotd interpolate between the
oriented matroidM and the linear properties at our concern we can associaté tbe
vectorial oriented matroid1’. It is induced by the linear dependences of the columns of
C*. So all the sign vectors i@ are combinatorially orthogonal t©*. This means that
every circuit of M’ is in the set of vector® of M. We visualize the inclusion relations
of the set systems given byt, M’, and€(M) in Figure 3.1.
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The next proposition gives us a hint where to look for sBts- £(M) that satisfy
ff(B) = reor,(M).

Proposition 3.2.2. Denote byMin(E(M)) the minima o (M) with respect to confor-
mal inclusion. Theff(Min(E(M))) = reor,(M).

Proof. As £(M) is closed with respect to taking sign sums we have
ff(Min(E(M))) C E(M)T = reor,(M).

Suppose on the other hand there is a non-minmal elefdientsomeB C £(M). This
means there is 8 € £(M) that is conformingly contained iX. We define

B :=B\{X}U{Y,X —Y}

Obviously X — Y € £(M) and X — Y is conformingly contained inX. Moreover

wheneverX can be flipped, first” and thenX — Y can be flipped. The flopping situation

works analogously. Sfi(B) C ff(B’) and starting withB = £(M) we obtain the result.
O

Recall that, having & with ff(B) = reor,(M) by Proposition 2.2.1 we can row
reorientB, such thatDg(B,) is acyclic and the flip flop span is not changed. So we have
flip flop posetsPs(B.) on reor, (M) for every oriented matroidM. This result should
not be overestimated ds,. can still be fairly big, and nothing more specific can be said
about properties ofP;(B.). For instanceB = Min(E)" would be a possibility, which
specializing back to digraphs is not nearly as nic&as F\{X}.

Proceeding along the lines of the introduction, we call @ameante € E rigid with
respect to M if its orientation will not be changed among all reorierdgas that appear
in reor,(M). Again as in the graph case, we are not interested in rigithehés of an
oriented matroid and can throw them out. After that we cartisayollowing aboutM.

Proposition 3.2.3.1f M has no rigid elements it is totally cyclic.

Proof. If M has no rigid elements, by Proposition 3.2.1 for every eldmere FE
there is a vectorn € kerg;; C* such thaty, = 1. ButC*» = 0 andv =
sgn(v) imply v € V%, see Figure 3.1. So every elementc F is contained
in a positive vector ofM. But since every vector is a conformal composition of
circuits, positive vectors are compositions of positivecuits. Thus every element
e € FE is contained in a positive circuit, which is the definition witally cyclic.

O

The other direction of the proposition does not hold in gahfar oriented matroids,
e.g. any totally cyclic orientation df/; 4, consists only of rigid elements. But as in the
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graph case total cyclicity is maintained byreorientations. If after reorientation there
were a new directed cocircuit, the number of positive estweuld have been changed.

Analogously to the digraph case, we can restrict our atiart the totally cyclic com-
ponents ofM in the study ofreor,(M). As matroid connectivity generalizes graph
2-connectivity the restriction t@-connected graphs corresponds to the natural restriction
to connected matroids.

3.3 Regqular Oriented Matroids

In the present chapter we want to investigate a strongeogypélom digraphs to oriented
matroids. It turns out, that it holds for regular orientedoias only.

Theorem 1 states that every planar digrdpthas a set of cycles, such that its flip
flop span covers exactly the-reorientations ofD. In particular every set of cycles of
D flip flop spans a subset oéor, (D). So for the set of all cycle§ we haveff(C) =
reor, (D). In the present section we will investigate under which éorals the equation
ff(C) = reor, (M) holds for general oriented matroids. This analogy is db&rdecause
it would enable us to continue investigating cycle/cirqaces. That this requirement is
plausibly quite restrictive can already be read off Figute @hereC andreor, (M) are
far apart.

We start with a case whet&(C) = reor,(M) does not hold at all. Take a Eulerian
orientationM of U; g. The matrixB displays a "representative half” 6f. i.e. BU—B =

C*
-1 -1 1 1 0 0
-1 -1 1 0 1 0
1 -1 1 0 0 -1
1 -1 0 -1 1 0
1 1 0 -1 0 -1
1 1 0o 0 -1 -1
1 0 -1 -1 1 0
B = 1 0 1 -1 0 -1 ,
1 0 1 0 -1 -1
1 0 0 -1 1 -1
0 -1 1 1 -1 0
0 -1 1 -1 0 1
0 -1 1 0 -1 1
0o -1 0 -1 1 1
0 0 -1 -1 1 1

It is easy to see that
reor, (M) = {(0,0,0,0,0,0),(1,1,1,1,1,1)}

and
{(0,0,0,0,0,0)} C ff(C) C {x € {0,1}° | (x,1) € {0,4}}.



CHAPTER 3. ORIENTED MATROIDS 36

So for this particularM we have neitheff(C) C reor, (M) norff(C) D reor,(M).

How do positive examples look like? In the sequel we will grokat regular oriented
matroids are the only oriented matroids which satigfg) = reor, (M) for all their
totally cyclic reorientations.

An oriented matroidM is said to beegular if its underlying ordinary matroid\ is
regular. We will need different characterizations of reguriented matroids.

Theorem 3.3.1.Let M be an oriented matroid, then the following statements ateveq
alent:

(i) M is regular.
(i) M has a totally unimodular representation matrix.

(i) M is vectorial, such that every signed circuit.®f is - seen as a sign vector - an
element of the corresponding vector space. Moreover thesens are spanning.

(iv) M s al-, 2- or 3-sum of graphic and cographic oriented matroids artD.

Proof. For (i) < (iii), see [14], chap5.
For (i) < (ii1), see [15], p175.

For (i) < (iv), see [13].
U

The first result of the present section will be an extensionhaf characterization,
with respect to totally cyclic regular oriented matroids.e Will prove that for an ori-
ented matroidM regularity is equivalent téf(C) = reor, (M) for all its totally cyclic
reorientations. So we almost characterize the orientedomndat that generalize the
ff(C) = reor, (D) of graphs.

For this we need the following Lemma:

Lemma 3.3.2. An oriented matroidM is regular if and only ifC_LC* as sets of integral
vectors.

Proof. As regularity of M is equivalent to regularity oj\M* (see [14], chap5), both

come from orthogonal vector spaces that, by Theorem @:3)1 contain the signed

incidence vectors of their circuits. This is equivalent@do C* as sets of vectors.
O

Now we are ready to prove

Theorem 3.3.3.Let M = (E,C) be an oriented matroid without one-element-circuits.
We havet (C) = reor, (M) for all its totally cyclic reorientations= M is regular.
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Proof. "<

Let M be regular. This property is invariant under reorientati®o by Lemma 3.3.2 we
have for every reorientation o%1, thatC C kerC*. In particularC*t C kerC*, which
means that we cannot leave the setvakorientations by flips of circuits.

Equality is obtained by the following. Every element ker; oy C* C V* is a vectorial
vector of M. But as in a regular matroid every vectorial vector can bétamias a sum
of circuits conforming to it (see [14], chapl.2)must be the disjoint union of directed
circuits of M. Thus, flipping these directed circuits successively, draias the reorien-
tation given byv.

"=
Supposéf(C) = reor, (M) for all totally cyclic reorientations oM. As M has no one-
element-cocircuits, by [1] therd1 has totally cyclic reorientations. So &t be a totally
cyclic oriented matroid with the above property. We have thg M) C kery 13(C*)"
for every(0, 1)-vectorv that stands for a totally cyclic reorientation. Foflal)-vectorz
we can transform

x € kergo13(C*)" & C*(I — 2diag(v))x = 0 & 2" € kergy _10y C".

So patrticularly every circuit ofM, that appears positively directed in a totally cyclic
reorientation is irker; 9y C*.
We show, that every circuit appears positively directecbime totally cyclic reorientation
of M. SoletX € C(M) with 1 < [X~| < |X™|. First we reorientM on X, so X is
positively directed in the actual orientation, s&y But M _does not need to be totally
cyclic. If it is not, there are positively directed cocirtaiin M. We have that\{ has no
one-element-cocircuits. As shown in [1], in order to obtaitotally cyclic reorientation
of M it is enough to reorient a set that intersects each pogitfeected cocircuit of
M. As X is positively directed by Farkas Lemma the positively dieelccocircuits are
disjoint to X. So we obtain a totally cyclic reorientation #f that hasX as a positively
directed circuit.
Together we have shown, thatC ker C* so by Lemma 3.3.2 we have th&t is regular.
O

We conjecture the stronger statement
"for totally cyclic M regularity is equivalent tdt(C) = reor, (M),
which would really be the characterization of those oridntetroids that generalize the
digraph propertyf(C) = reor, (D).

An analogue proof to the one of Theorem 3.3.3 is still failifiche "«<"-direction is
no problem. The first part of the="-direction would give that every circuit that is ever
flipped amondt(C) is also inker C*. But it still cannot be shown that every circuit of
such oriented matroid is flippable, or a linear combinatibflijppable circuits.

Now that we have a reason to restrict further investigatmthé class of regular ori-
ented matroids we can think of, what else are nice advantaigdsaling with regular
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matroids only.

Theorem 3.3.{i) gives a connection to totally unimodular matrices. Evemgdir pro-
gram induced by such a matrix and integral cost vectors egmat, i.e has an optimal
solution that is integral, one obtains a polynomial methmdheck whether a fixed reg-
ular matroid can be reoriented in order to have some givealue on its circuits. This
is a weak analogue to a planar graph resul{7f Felsner proves that given a planar
undirected grapld and an integral vectar, one can obtain an-orientation ofGG or a
certificate for the non-existence in polynomial time.

In order to find suitable of circuits whose flip flop span cotssisf all the a-
reorientations of a regular matroid, the following givesex@ssary condition for such
sets.

Proposition 3.3.4.Let M be a regular, totally cyclic, oriented matroid argl C C, then
ff(B) = reor, (M) = spangz(B) = spanz(C).

Proof. As B C C the inclusionspangz(B) C spanyz(C) trivially holds.

To see D" observe the following:

As kergo1; C* = reor,(M) = ff(B) we havespanz(B) = spang(kerfo:3C*). On

the other hand Lemma 3.3.2 impliegan;(C) C spang(kerp; 10y C*). Therefore it

is enough to show thapany (kery 13 C*) 2 kery C*.

Takev € kery C* and letm, denote the number of negative entriesvofWe proceed by

induction onm,,.

Letm, =0

By regularity we have that is a sum of circuits conforming to (see [14], chapl.2).

These circuits are positively directed, i.e. they argdry, ;; C* andv is an integral com-

bination of them.

Take nowm, > 0. So there is some € F such thatv, < 0. By

total cyclicity of M, there is somec € C* with ¢¢ = 1. So we can

find a A € Z. such thatm, .. < m,. By induction hypothesis we

have (v + Ac) € spang(kergo;3C*) which implies v €  spang(kero 1y C*).
O

In the proof of Proposition 3.3.4 we have particularly shaat in a totally cyclic
regular oriented matroid there are baseB C C* for the circuit spacepan;(C). On
the other hand, if is not totally cyclic, there are obvioustycircuit bases consisting of
positively directed circuits. So a regular oriented matrsitotally cyclic if and only if
its circuit space is spanned by a set of positively direcieclits. This generalizes the
corresponding result for directed graphs [9].

As for a regular oriented matroit1 the integral dimension ofpanz(C) is known to be
|E|—rank(M), Proposition 3.3.4 gives an "easy to check” lower boundtierdardinality
of a flip flop generating set.
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Recalling the discussion in Section 3.2, the following isa@ivantage of regular ori-
ented matroids. The set of orientations of a regular matsacsdnnected by reorientations
(see, [10]), so considering-reorientations instead ef-orientations is no restricition.

Another feature of regular matroids is Seymour’s famou®dgiosition theorem (The-
orem 3.3.1iv)). It tells us that every regular matroj&i is graphic, cographic, R10 or a
1-,2- or 3-sum of such matroids.

Now on the one hand we can try to analyze the flip flop structéienyg of the three
splitters. On the other hand we can look, whether a "nice”ffop structure ofM; and
M, somehow will be preserved by takingum of M, and M., fori € {1, 2, 3}.

First we take a look at-sums. Thel-sum of two sign matricesB; and B is defined

as
By 0
Bl@lBQZ:(Ol Bg)

For regular oriented matroid$1, and M, with representation matrice8,; and B, the
1-sum M; & M, is the regular oriented matroid with representation mafixp; Bs.

Define the producD; x D, of two directed graph®), and D, as the directed graph
with vertex set/’(D;) x V(D) and((uq,us), (v1,v2)) € A(Dy X Dy) &

forone{i,j} = {1,2} we have(u;,v;) € A(D;) andu; = v;.

Then we haveDg (B, @1 Bs) = Dg(By) X Dg(Bs).

One easily obtainsf(B,) = reor,(M;) and ff(B;) = reor,(M,) if and only if
ff(B, ©; By) = reor,(M; &; Ms). Moreover thel-sum preserves order structures
induced by the transitive closures bf(B;) and Dg(B>).

The properties o2-sumsand3-sumsseem to be more tricky, so we turn to the analysis
of the splitters. This will be the subject of the followingcsiens.

The splitterR10 is a 10-element oriented matroid and all its reorientatiorise dif-
ferent totally cyclica-reorientation classes can be enumerated with a computene S
results will be described in Section 3.4.

Dualizing Theorem 3 we get a distributive lattice on therientations of any cographic
oriented matroid. This will be made explicit in Section 3.5.

For the class of graphic matroids we present positive andtivegesults in the last two
sections of this chapter.
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3.4 «-Reorientations of R10

We sayR10 to any oriented matroid given by the linear dependenciesngfcalumn
reorientation~’ C [10] of

™

I
OO OO
O OO = O
O O~ OO
O = O OO
_ o O O O
—_ 0 O =
—_ O = = O
— == OO
-0 O =
= = s e

Computer enumeration gives that there a@relifferenta-reorientation classes &t10
without rigid elements.

The circuit space of any such reorienfBd 0 has dimensiors. Nevertheless some of
thea-reorientation classes can only be flip flop generated®glament set of signed cir-
cuits. This shows that the necessary condition given byd&itipn 3.3.4 is not sufficient
for the regular oriented matroid®10.

3.5 «-Reorientations of Cographic Oriented Matroids
and c-Reorientations of Directed Graphs

An oriented matroid\ is calledgraphic, if there is a directed graph = (V, A) such that
the circuits ofM and the the inclusion minimal cuts &f coincide, i.eC*(D) = C*(M).
We denote such matroids byt*(D).

We have already mentioned a couple of times thattheorientations of an acyclic di-
graphD correspond dually to the-reorientations of the totally cyclic cographic oriented
matroid induced byD. This correspondence also conserves Theorem 3 and leadsiab a
statement in terms af-reorientations of totally cyclic cographic oriented naddis.

In the present section we will prove this formally.

First we recall the definition of-reorientations. Lei) be an acyclic digraph an@
be any basis of cycles of its cycle spagen;(C). Definecp € ZC to be the vector that
counts the positive entries of the element€£ofNow we define the-reorientations oD
asreor.(D) :={D' = (V,A") | D' = D andcp = cp}.

It is an essential observation that the gt (D) does not depend on the choice®f
Analogously to Proposition 1, identifying the reorientais of D with the arc sets that are
reoriented one obtairrgor, (D) = kergo ) C.
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Any set B of all but one vertex cut oD integrally spans the cut spasganz(C*) of
D. So reading Theorem 3 again with these terms filled in ancocamy D by the graphic
oriented matroid\ induced byD, it sounds as follows.

Theorem 3.5.1.Let M(D) be the acyclic graphic matroid induced by an acyclic directe
graph D. There is a spanning sét C C* such that

o ff(B) = reor. (D) = ker(o1; C

e MoreoverPg(B) is a distributive lattice.

This is a statement about the graphic oriented matfdichssociated td. Oriented
matroid duality consists of interchanging the roleCadindC* and therefore acyclicity
and total cyclicity are switched as well. So we can now tratesihe theorem to the dual
statement. We denote byt the cographic oriented matroit* (D) associated td.

Theorem 3.5.2.Let M be a totally cyclic cographic matroid. There is a spanning se
B C C such that

o ff(B) = kero1; C* which by definition is reQs(M)

e MoreoverPg(B) is a distributive lattice.

We have seen now that the set@eorientations of cographic oriented matroids is
already understood. This is a corollary of Theorem 3, whicphroven by Propp in [12].
Later on we will give a different proof for Theorem 3.5.2, whicomes as Corollary 3.6.8
in the analysis ofv-reorientations of graphic oriented matroids.

3.6 «a-Reorientations of Graphic Oriented Matroids

An oriented matroidM is calledgraphic, if there is a directed grapP = (V, A) such
that the circuits ofM and the the cycles @b coincide, i.e.C(D) = C(M). We denote
such matroids byM (D).

So in the present section we return our attention to graphbke doncept ofa-
reorientations of oriented matroids as defined in Sectidh specializes to thev-
reorientations of digraphs as described in Chapter 1. Ritpo 1 remains valid and
we havereor, (D) =2 £+(D). As the latter equalspan(C(D) N {0, 1}4) the present
section will mainly consist of an analysis of the cycle spat®. Again, we can restrict
ourselves to strongly connectelyertex-connected digraphs.
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In contrast to Chapter 1, we now have to deal with non-plargplgs. In order to apply
some of the proof techniques from [7], we consider thesehgapgether with 2-cell
embedding into an orientable surfageOur goal is to understand the (directed) Eulerians
of D. The topology of the embedding infogives us a way to split this investigation into
two steps. The cycle space Df- particularly€ (D) - consists of elements that are integral
combinations of facial cycles and those that are not. Earerdf the first type have a lot
in common with Eulerians of planar graphs. The correspandineorientations can be
ordered in a very nice way as well. Our main result is a necgssal sufficient condition
for a directed Eulerian to be reversable by flip flops of facialles. Eulerians that are not
integral combinations of facial cycles bring more diffigulito the analysis ofeor,, (D).
Homology theory turns out to be a good tool for understanthiem.

In the first part of this chapter, our strategy will be to stath flip flops of facial cycles.
We will investigate the resulting poset on a subseteoir, (D). As we cannot generate
all reor, (D) by facial flip flops, at the end of the chapter we investigat® tmextend the
set of facial cycles in order to flip flop generate the enter, (D).

So letD = (V, A) be a directed graph angl an orientable surface. The paib, .5)
is called a2-cell embedding ofD into S, if the topological graphD can be mapped
continously intoS, such that two arcs ob intersect exactly in their common vertices
and every connected compongitf the space’\ D is homeomorphic to an open disk. It
is a fact from topological graph theory, that every graphdascell embedding in some
orientable surface. The sét of components of5\ D is then called the set dacesof
the embedding. It is important to note that the closure ofca fais not required to be
homeomorphic to a closed disk.

This way (D, S) leads to a (non-regular) cell decompositionSofvherel’ (D) are the
0-dimensional cellsA(D) are thel-dimensional cells and the faces are 2h@imensional
cells. We will consider this cell decomposition togethethsan orientation of its cells. For
the 1-dimensional cells this orientation is given B} As in the planar case in Chapter
1, we define all the-cells to be oriented counterclockwisely (ccw). This candbae
coherently because of the orientability ©f

The set of the ccw oriented facéSleads to the seF of facial cycles of(D, S) analo-
gously to the planar case. Since we did orientXfeells of the embedding counterclock-
wisely, we can distinguish forward and backward arcs of #ual cycles. We take the
facial cycles of( D, S) to have the forward arcs as positive arcs and the backwasdarc
negative.

Becauses is orientable every arc dP appears once backward and once forward among
the elements ofF. If an arc appears forward and backward in the same facid cye
consider it not to appear in the signed incidence vector.

In analogy to the unbounded face of a planar embedding of ghgrae will fix an
arbitrary facial cycleX and call itthe forbidden facial cycle ThenF\{X} is a set of
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linearly independent sign vectors. We denotefByD, S) the set of Eulerians given by
spanz(F\{X}) N {1, -1,0}4 C £(D). Together with the ccw orientation we have that
F\{X} is a2-basis, as defined in Chapter 2.

We have seen in Corollary 2.2.5, that being-hasis implies thafz(F\{X}) is in-
tegral and a distributive lattice. For the sake of invedingaff (F\{X}) the following
lemma abou®-bases will be important:

Lemma 3.6.1.Let B be a2-basis andu € spanz(B) N {1, —1,0}" andv = supp(u).
Then we have:

1. Thereis av € spang_,(B) N{—1,0,+1}" with supp(w) = v.
2. Moreover ifv is support minimal, thew = +u.

3. Ifw,—w € spanz_,(B) N {1,—-1,0}" thenw = —w = 0.

Proof. Letu € spanz(B) N {1,—1,0}" andv = supp(u). As B is a2-basis every entry
u(7) of u comes from at most two rows andr, of B. As the entries ofi are in{1, —1,0}
the coefficients of\; and \, of r; andr,, respectively, must satisfy\; — | € {0, 1}.
So rows of B with differently signed coefficients in the combinationwftannot share
an entry. Regard "sharing an entry” as symmetric relatioorgrhe rows ofB. Then
the set of rows in the combination afdecomposes into connected components of the
same sign. Equivalently the coefficient vectorwgfsay A\, decomposes into a disjoint
sum of non-negative and non-positive vectpXs);<;<x. The vectorgu;);<;<x induced
by (\;)1<i<x are mutually disjoint and conformingly contained«n Denote by|\| the
componentwise absolute value vectonofSow defined ag)| B has the same support as
u itself. This proved ..

In particular for each of the subvectors @f and w; induced by some\; we have
u; = +w;. This proveg..

StatemenB3. follows from the linear independency of the rows Bfand the non-
negative coefficient vectors, thatand—w are required to have.
O

Taking B := F\{X} we can look what Lemma 3.6.1 tells us ab&ttD, S).

e ForeveryE € £°(D, S) there is ar°, which is a positive integral combination of
facial cycles andy = E°. We call suchr? a0-Eulerian.

e If F is support minimal among®(D, S) thanE = +E° for every 0-Eulerian with
the same support ds. Because o$. we have that2" is unique in this case. IF is
not support minimal, every decomposition into disjointjgogt minimal Eulerians
leads to a unique representation in terms of 0-Eulerians.
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These results are particularly at interest for directeceEahs as we want to investigate
(E%(D, S))™, because this set coincides with theeorientations at our concern.

Later, we will give a necessary and sufficient condition far sets in(€°(D, S)) ™" to
be reversable by facial flip flops. To prove this it will be udeb have a set of signed
Eulerians at hand whose supports cover all the set€iaD, S))*. By Lemma 3.6.1
we have that every elemeff®(D, S))* has the support of a 0-Eulerian, we call these
0-Euleriangdirected. Directed 0-Eulerians turn out to be more useful than théoredn
E%D, S))" to cover(£°(D, S)) T, because they have an easier representation with respect
to F\{X}.

The orientation of the facial cycles, automatically leaalthie notion of positively and
negatively directed O-Eulerians. We call elements@fnz-o(F\{X}) N {1,0}4l pos-
itively directed O-Eulerians and those epanzso(F\{X}) N {—1,0}4 negatively di-
rected O-Eulerians.

By Lemma 3.6.1 no element 6£°(D, S)) T is covered by a negatively and a positively
directed O-Eulerian at the same time. Moreover every die®-Eulerian is a disjoint
union of minimal negatively and positively directed O-Eides. If a positively directed
O-Eulerian can be reoriented by facial flip flops, it can irtlbe reversed by flips only.
The analogue holds for negatively directed 0-Eulerians.

Different O-Eulerians can be signings of the sgihd )-vector as exemplified in Figure
3.2.

Figure 3.2: The O-Euleriand = (1,1,—-1,—1) andA 4+ 2B = (1,1, 1, 1) have the same
arc sets but different signings and different interiors.

We have already seen that, when investigating wheftiér\ {X}) = (£°(D,S))*,
we can restrict our investigation to directed O-EuleriaBg.Lemma 3.6.1 every element
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of (£°%(D, S))" is a disjoint union of supports of positively and negativelyected O-
Eulerians. It is enough to characterize, when these candrenéed. On the next pages
we develop the necessary theory to pursue this investigatio

First of all the choice of the forbidden faég, leads to a notion of inside and outside
for all the O-Eulerians of our embedding.

Let £ be a O-Eulerian. Definthe interior of E as the set of facial cycles i\ {X}
that are necessary to combife Denote the interior oF asInt(£).

The interior can be understood as the support vector of thegral support(E) of E
with respect taF\{X} as defined in Chapter 2. The inclusion order on the interiérs o
the O-Eulerians brings a new aspect of comparability to é@&0-Eulerians besides the
inclusion as sigend sets of arcs. This order will give risartanduction in the &"-proof
of Theorem 3.6.7. As different O-Eulerians can have the sateeior, the next lemma
gives an important representative for the 0-Eulerians fisdd interior.

Lemma 3.6.2. For every O-Eulerian E, there is a unique 0-Eulerian denatéd which
is arc minimal with respect to conformal inclusion satisfyint(0E) = Int(E). It will be
calledthe boundary of F.

Proof. Let z(E) be the integral support df with respect toF\{X} andsupp(z(E)) its
support. Defind E := supp(z(F))(F\{X}) as the result of the corresponding combina-
tion of facial cycles.
First, it is clear thaty andOE have the same interior. In particuld® is a O-Eulerian.
To see uniqueness, first observe tli#y = OFE' if Int(£) = Int(£’'). So it
iIs enough to prove thabE is conformingly contained inE. Now, if a is an
arc of OF it lies between two facial cycleg’ and F,, with supp(z(E))(Fy) =
1 and supp(z(F))(F2) = 0. But as E is (1,—1,0)-vector, incident facial cy-
cles must have coefficients in(F) that differ by one. Soz(E)(F;) = 1 and
z(E)(Fy) = 0. This gives, that: is contained inE with the same sign as inE.
O

Lemma 3.6.2 in particular implies that the boundary of aaed O-Eulerian is a di-
rected O-Eulerian again. It is not true tha& is a cycle, it is not even arc inclusion
minimal among the 0-Eulerians. Take for instaitcé = A in Figure 3.2. The picture
also exemplifies that two O-Eulerians that differ only byitlsggning can have different
interior and boundary.

The interior of a 0-Euleriai leads to a subgraph(E) of D, which consists of all the
arcs that are incident to facial cycleslint(E).

Lemma 3.6.3.Let £ be a 0-Eulerian which is minimal with respect to inclusion(wr-
signed) arc sets among the O-Euleriang bt S). Let £’ a 0-Eulerian and a subgraph of
D(E). Then IntE’) C Int(E).

Equality holds if and only if the signed arc sét8 andOFE’ are the same.
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Proof. By Lemma 3.6.2E" is conformingly contained i’ and has the same interior,

we assumér’ = E'.

Now supposdnt(E’) ¢ Int(E). Denote the facial cycles imt(E")\Int(E) by {F] |

i € I} and those irnt(E) by {F; | j € J}. As E' is a subgraph oD(E), every arc

a that is incident to exactly oné; must be incident to exactly ong; as well. So the

sum of all theF is a non-empty 0-Euleria®”, which is contained iy and oppositely

signed on common elements. If the arc sets are equaHtieand £ are 0-Eulerians. By

Lemma 3.6.1 this is not possible. $4 is strictly contained inE, which contradicts arc

minimality of £.

By Lemma 3.6.2 we have thhtit(E’) = Int(E) is equivalent t@E = OE' as signed sets.
U

In Lemma 3.6.3 the arc minimality df is necessary. Otherwise the 0-Euleriahand
B of Figure 3.2 in the roles of and E’, respectively, give a counterexample.

Now, we introduce the concept of topological duality, whighl bring us closer to
oriented matroids again. It will establish us to reg&fdD, S) as the se€ (M* (D)) of
Eulerians of a cographic oriented matroid.

Let D = (V, A) be a digraph that i8-cell-embedded into an orientable surfatevith
facesF'. A topological dual of (D, S) is a digraphD+ = (V+, A1), which is 2-cell-
embedded int&. Denote byF+ the faces of D+, S)

The dualD+ is a directed incidence graph of the faceg Bf .S). Topological dualiza-
tion maps
V — Ft
A— At
F -Vt

We construct D+, S) by placing a vertex~ of IV inside of every facef € F. Now
every arca € A lies between two (not necessarily different) elemefitg € F. The
corresponding facial cycles contairoppositely signed. We introduce an arc

at = (f*,¢g%) 1= ais aforward arc in the facial cycle induced by
and

at = (¢*, f) & ais aforward arc in the facial cycle induced lgy

This way one obtainszxcell-embedding D+, S). We fix this particulaf D+, S). Then
we take((D+)*, S) := (=D, S). This way topological dualization is a map of degree
Fixing the topological dual, every signed arc 3ebf D is mapped to a signed arc set of
D+, which we denote byX*. As we do not display arcs that appear twice in a facial cycle
in its incidence vector, we introduce the dual conventiat ¢hloop at a vertex does not
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appear in the signed incidence vector of the vertex cut ofhen the signed incidence
vectors ofX and X are the same. This way every subgrdphof D can be mapped to
a subgrapD’" of DT as well, by mapping arcs dd to arcs of D T.

The nice way acyclicity and strong connectivity are trediganatroidal duality is not
respected by topological duality. For example in Figurev@etsee a strongly connected
graph on the torus, whose topological dual is strongly cotatkagain, thus not acyclic
at all. Nevertheless, the cographic oriented matroid dd&( D) and the graphic oriented
matroid of the topological dual1(D ") have some relation, we need to explore.

The following lemmas link®( D, S) via topological duality to matroid theory.

Lemma 3.6.4.Let (D, S) be a2-cell embedding and lef € £(D, S). ThenE* is a cut
of (D+,S)ifand only ifE € £°(D, S).

Proof. £ € £%(D, S)

< FE'is a sum of facial cycles ofD, 5)
& E*is a sum of vertex cuts dfD*, S)
& Etisacutof(D4,9)

This motivates a definition that includes the remaining sa¥¥e call a signed arc set
P C Aapseudocutof(D, S) if Pt e £(D4). LetP(D, S) denote the set of pseudocuts
of (D, S).

Lemma 3.6.5. The sets of support minimal signed setin(£°(D,S)\{0}) and
Min(P(D, S)\{0}) are the circuits and cocircuits of an oriented matroid.

Proof. The pair of signed set&Min(P(D, S)\{0})), Min(E°(D, S)\{0}) is just the

same agMin(P (D, S)\{0})*+, Min(E°(D, S)\{0})+), which by Lemma 3.6.4 and the

definition of pseudocuts is the same(@¢in(£(D+, S)\{0}), Min(C*(D*))), which is

nothing else thailC(D+),C*(D1)). As the sets of cycles and minimal cuts, this is the

pair of circuits and cocircuits respectively of the graphiiented matroid\t (D), given

by D+,

So the oriented matroid with circuitsMin(£°(D,S)\{#}) and cocircuits

Min(P(D,S)\{0}) is its dual, namelyM*(D+), i.e. a cographic oriented matroid.
U

We call the oriented matroid given by Lemma 3.6.5@matroid of (D, S) and denote
it by M°(D, S). Now, for a O-Euleriar? € £°(D, S) and the induced(E) we define

MO (D(E), S) = M*(D, S)\(A(D)\A(D(E))),

the matroid obtained from1°(D, S) by deleting the elements, that are not arc®¢f).
The set€’(D(FE), S) then consists of all the Eulerians in the spatnifF).
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Lemma 3.6.6.Let £ be an arc minimal 0-Eulerian i§°(D, S) and M (D(E)°, S) totally
cyclic. If E’ is a directed 0-Eulerian i€°(D(E), S) then M°(D(E"), S) is totally cyclic
as well.

Proof. First by Lemma 3.6.3 we know, that(D(E’)) C A(D(E’)). Total cyclic-
ity of MY(D(E),S) = M%D,S)\(A(D)\A(D(E))) is equivalent to the dual
M(D")/(A(DT)\A(D(E)")) being acyclic. The latter is just the graphic oriented ma-
troid which arises fromD" by contracting the arcs ifA(DT)\A(D(E)")). Now, E’
is represented by a directed cit” in D(E)". The arcsA((D(E))")\A(D(E")")
are those that have to be contracted to obtaitf(D(FE’),S) after dualizing. It
is easy to see that the graph induced ByD(E)")\A(D(E')") is the one in-
duced by one side of the directed cui’’. So by contracting these arcs
no directed cycle can be produced. This i°(D(E’),S) is totally cyclic.

U

Analogously toM°(D, S) we call the covectors aM°(D(FE), S) pseudocuts. The
problem about directed 0-Euleriads with a directed pseudocut iP(F) is, that their
orientation cannot be reversed by facial flip flops. Suchuasiin is illustrated in Figure
3.3.

Figure 3.3: A directed O-Euleriaff (vertical arcs) on the torus with directed pseudocut
(dashed arcs) iV (E).

Theorem 3.6.7.Let D be strongly connected articell embedded into an orientable
surfaceS, with forbidden facial cycl&X. LetFE € (£°(D, S))". ThenE € ff(F\{X}) if
and only if there is a O-Euleria®® with £ = E° and totally cyclicM®(D(E?), S).

Proof. "=":
If M°(D(E"),S) is not totally cyclic, D(E®) contains a directed pseudociit By
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Lemma 3.6.5 we have orthogonality, so no directed 0-EuleoiaD(E®) can ever in-
tersect the directeff. But by definition of the interior every facial cycle int( E°) forms

part of the integral support df°, thus has to be flipped or flopped at least once, in order
to reverse the orientation afi. The facial cycles irint(E°) that are incident ta” can
never be directed, thus can not be flipped or flopped, haannot be irff (F\{X}).

<"

Let M°(D(E"), S) be totally cyclic. We can assunté’ to be arc minimal ir€%(D, S),
because otherwise we can decompose it into disjoint pekitand negatively directed
0-Eulerians. Definghe area of E° as A(E?) - the height ofint(E°) with respect to the
inclusion order on the interiors of 0-Eulerians. We will peed by induction o ( E?).

If A(E°) = 1 then E° is a facial cycle different from the forbidden one. As
M(D(E"),S) is totally cyclic E° is a directed facial cycle, i.e. can be flipped or
flopped.

So letA(E®) > 1. Analogously to the proof of Theoreinwe decomposént(£°) into
Int(E’) andInt(E"), whereE’, E” are 0-Eulerians with smaller area, which we are able
to flip or flop one after the other.

Figure 3.4: Construction o’ = sgnsum(E, Es, F') andE”.

As Int(E) is not minimal take a facial cyclé’ € Int(E?) that is incident toE°.
If the signed arc sef’\ E° is not directed, take, € (F\E°)~. By total cyclicity we
have a minimal directed Eulerian € E, € £°(D(E?), S), which by Lemma 3.6.1 can
assumed to be a O-Eulerian. By # E°, arc minimality of £;, and Lemma 3.6.3 we
have A(E;) < A(E°). Thus by induction hypothesis and Lemma 3.6.6 the arc sé& of
can be reversed by facial flip flops.
If F, intersectsE® we take it ask’. Otherwise we reverse its orientation and take=
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(F\E°)~ in the resulting reorientation. Proceeding this way we iokadlip flop sequence
(Ey, ..., E) of directed Eulerians, such thegnsum(E, . .., Ey) intersectst° or turns
Finto a directed facial cycle. In the second case defihe= sgnsum(Ey, ..., Ex, F)
otherwise takdy' := sgnsum(Ey, ..., Ey).
By the usual argumentation we can assuiiéo be a directed 0-Eulerian. Moreover we
can assumé@FE’ = FE’ by the following two arguments: By=" we know that£’ has
totally cyclic 0-matroid because it can be flip flopped. By stonction we will never take
F and all its incident facial cycles ifi(E°, so we haved(E’) < A(E"). As A(OE') =
A(E") and both have the same 0-matraid;’ can be flipped as well. Moreover it intersect
E°, whereverE’ did.
So define the 0-Euleriah” as given byint(E°)\Int(E’). As E° is arc set minmakE’ =
OF', by Lemma 3.6.2, every facial cycle appears at most onceeiin iffitegral support.
Now, E” is directed oppositely t&’' on E’ N E” and signed as2° on E” N E° and
E'+ E" = E°. MoreoverA(E") < A(E"). So after reversing the orientation @i we
have that” is directed, and can thus be reversed, too.
As E' N E” has been reoriented twice, we have obtained exactly what avded: the
reorientation of’ by means of facial flip flops.

O

Analyzing the proof of the &"-direction one sees, that if the orientation Bfcan be
reversed, this can be done by facial flip flops of facial cyolass interior. Moreover one
observes, that i is positively or negatively directed it can be reversed byepflip or
pure flop sequences, respectively.

If one wants to know, whether all the directed O-Eulerianguofembedding can be
reversed this way, by Lemma 3.6.6, it is enough to check tlentad matroids given by
the directed 0-Eulerians with inlucion maximal interior.

Take a 0-Euleriang’ of (D, S). Theorem 3.6.7 implies the following. Iht(E) to-
gether with all the faces that induce the facial cyclesnit{£) is homeomorphic to a
collection of edge disjoint disks ther can always be reversed by facial flip flops. All the
pseudocuts irD(FE) must be cuts. So a directed pseudocut would be a directechdut a
contradict strong connectivity dP. SoM°(D(FE), S) must be totally cyclic and E can
be reversed by facial flip flops. The planar case as in [7] isaigpcase of this situation.
Together with Corollary 2.2.4 one obtains Theorem 1.

The nice thing is that Theorem 3.6.7 again together with Tam02.2.4 also leads to
the main theorem of [12], namely Theorem 3.

Corollary 3.6.8. Let D = (V, A) be an acyclic directed graph. Ande V' an arbitrary
fixed vertex. Then

e Everyc-reorientation ofD can be obtained fron® by a flip flop sequence of vertex
cuts different from’s vertex cut.
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e And moreove(reor.(D), <g) is a distributive lattice.

Proof. Embed D into an orientable surface&. Now by Theorem 3.5.2, the-
reorientations ofD correspond to the-reorientations of the cographic oriented matroid
induced byD. By Lemma 3.6.5 these are thereorientations of\°( D+, S). The vertex
cut of v corresponds to a facial cyck of (D+, S). We have

M°(D+,S) = M°(D*+(X), S).

As Dis acyclic, M°(D(X), S) is totally cyclic. As we havént(E) C Int(X), for every O-
EulerianE. Lemma 3.6.6 gives totally cyclist°(D(E), S), for every O-Euleriar. So
by Theorem 3.6.7 the orientation of every directed O-Ealegan be reversed, i.e. every
a-reorientation ofM°(D+, S) can be produced by facial flip flops. Dualizing back, this
shows the first part of the corollary.
The second part has already been shown in Chapter 2 as aacprailCorollary 2.2.4.

O

In particular the termint(£) for a O-EulerianE dualizes to cuts of acyclic directed
graphs.The interior of a cut X of such a digraph with forbidden vertexis the set of
vertex cuts induced by the vertices in the sidexgfthat does not contain By Corollary
3.6.8 we know that the orientation o can be reversed by flipflops bit(X).

After having seen what we can manage by flipping and floppicigffaycles of( D, S),
we look now for possible extensions &1\ {X}, to hopefully be able to generate all the
a-reorientations o).

If the orientable surfac® whereD is embedded is different from the sphere not every
Eulerian can be combined with\{X}. Take for instance Figure 3.6 and any straight
cycle X; in it. As the facial cycles do not suffice to generate the cggace ofD, by
Proposition 3.3.4{f(F\{X}) C £%D,S) < reor,(D). So we can try to extend\ {X}
in such a way, that the resulting set integrally spans thiesetyjicle space ob.

Here is where some homology comes in. In order to distingottveen topologically
different Eulerians of D, S), we use the concept of the first homology gradp(S) of
the surfaces, given by the cell decomposition induced @Y, S). The groupH;(.S) can
be seen as the quotient spdger; Inc(D))/(spanz(F)). Every EulerianE of (D, S)
lives in some of the equivalence clas§gg that formH,(.S).

Homology theory tells us that for an orientable surf&cef genusy(.S) the first ho-
mology group is isomorphic t&*'%), see for instance [8]. So every Eulerian arc set
E of D gives an elementE] € H,(S), which then corresponds to some element of
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(1, Y1, -+ Toy(): Y(s)) € 7>'5), For an EulerianZ we have[E] = (0,...,0) if and
only if £ € £%(D, S)

By Proposition 3.3.4, we know that an extensionfof{ X} must span the entire cy-
cle space ofD. This requirement can be characterized by the following. FA$S)
was defined as the quotient of all the cycle space modulo theesgpanned by the O-
Eulerians, an extension of spans all the cycle space if and only if the corresponding
equivalence classes spah(.S). In other words lety, . . ., £, be elements of (D). The
set{[Ei],...,[Ex]} integrally generatedi,(S) if and only if F\{X} U {E,..., Ex}
integrally spans the whole cycle spacel/af

So given (D, S) the conditionspany({[E\],...,[E:]}) = Z*'9 is necessary for
ff(F\{X} U{Ey,...,E}) =reor,(D). This condition is not sufficient.

By Theorem 3.6.7, we know thdt, ..., £} also has to be able to repair all those
directed O-Euleriang’ which have a directed pseudocut/it £). This could be rephrased
as: "in everya-reorientationD¥ that contains a directed pseudod?t which lies in
D(E") for some directed 0-Euleriaf’, we can flip flop a Euleria” disjoint from E’,
that intersects”.” By the orthogonality ofP(D, S) and 0£(D, S), we know thatE”
cannot be a 0-Eulerian. Such a Euleri&fiis exemplified in Figure 3.3 by the middle
dashed arc together with the non-dashed horizontal arcs.

For instance case enumeration shows, that already far thzhexagonal torus grid as
depicted in Figure 3.5, there is no extensio0f{ X }, that minimally spangi,(S) and
leads to a flip flop generating set for theorientations. As on the other hand thex 2
hexagonal torus grid is planar, the lower bound for a flip flgmeyating set given by
Proposition 3.3.4 stays tight. Just take the 5 boundedifeypides of a planar embedding
asin Figure 3.5. Theorem 1 implies that all theeorientations of the grid can be obtained
by flipflops of this set.

Figure 3.5: The strongly connectédk 2 hexagonal torus grid can be embedded into the
torus and into the plane.
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The following Section presents a positive non-planar exanfgr Proposition 3.3.4,
where a minimal extension of\{X} leads to a flip flop generating set, for all the
orientations.

3.7 Eulerian Orientations of the Torus Square Grid

Eulerian orientations are thogeorientations such that at every vertex the outdegree
equals the indegree, i@ = d% In this section we prove that the set of Eulerian ori-
entations of the square grid on the torus carries a posetisteu It will be generated by

a minimal extension afF\ {X} to a spanning set of the cycle spaced. The poset consists
of distributive lattices given by flipflops of facial cycleshich are related by flips of the

two EuleriansX; andY;.

Let 7,,,, be them x n square grid embedded in the torus. Choose as base point for
developing the flip flop poset the Eulerian orientatiorof 7,, ,, as depicted in Figure

3.6.

Y
Y

Figure 3.6: Reference orientatidn of the torus square grid

Label the vertices of, ,, with the setlm| x [n]. Start withv, ; in the upper left and
continue labeling in matrix fashion. The lettdX;),<;<,,, and(Y;)<;<, Stand for the
horizontal and verticastraight cycles(v; 1, ...,v;,) and (v, ;, ..., v1;), respectively.
They are considered as positively directed’in
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The shaded region in the corners of the torus drawing willdben as the forbidden
face with boundanX. As a generating set of directed cycles for theeorientations of
D, we claimB := F\{X} U {X;, Y1}, where the orientation of the facial cyclesin
again is obtained from running through their arcs in coual@ckwise direction.

The first homology group of the torus is isomorphiband{ X, Y; } is a generating
set of cycles, i.e{[X], [Y1]}={e1, €2}, which minimally span&?. ThusB is a minimal
spanning set of the cycle space Bf so B satisfies the necessary conditions given by
Proposition 3.3.4 to generate all the Eulerian orientatiofi},, ,,. As {e;, ez} is an in-
dependent set ovéf, the rows ofB are integrally independent and we already have that
Dg(B) is acyclic.

Call a Eulerian¥ of any reorientation oD straight if £ = |J,; X;UU,, Y; for some
I C [m]andJ C [n], i.e. E is a union of straight cycles. Therefore a straight Eulerian
can also be written by the tuple of index séfs.J), corresponding to the straight cycles
involved. Denote byS the set of straight Eulerian arc setsiof In order to explore the
whole set of Eulerian arc sets 6f, we will first analyse the structure ¢f as a subposet
of PH(B)

Proposition 3.7.1.Let £, E’ € S with index setg7,.J) and (I’,J’). In the inherited
order fromff(B) one hastl <g E' if and only if (at least) one of the following three cases
holds:

1. I # [m]andJ # [n] and I’ # () # J’ and there are injective maps

¢r: INI' — I'\I
and
¢y J\J — J\J

such thati < ¢,(i) andj < ¢;(j)
2.I=I'=0orl=1=[m]andJ'\J C {1}
3. J=J =0orJ=J =[n]JandI'\I C {1}

Proof. We start with casé.:

=

The idea here is, that\I’ is the set of straight cycles that points to the left and has
to be reversed and'\I is the set of straight cycles that points to the right and bas t
be reversed. Under some conditions, taking one elementobf eathese sets forms a
flippable Eulerian. We give an algorithm how these flips canrdganized such that, with
the help ofX; andY;, the desired set can be flipped. The main idea can be readjoiife-i
3.6.
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Figure 3.7:(A, B), (A, C), and(A, B, C, A) can be flipped

For everyi ¢ I\I' we have thatX; U X, ;) is a 0-Eulerian, because it is the sum of
the obvious 0-Euleriang and B. The ccw orientation oA and B also induces that it
is positively directed. As one df;, andY), points down and the other points up and by
i < ¢1(i), flipping first A and thens, the orientation onX; U X, ;) is reversed.

If $;(j1) = j2 and someX;, points left and anothek, points right, then the analogue
can be stated aboti, U Yy ;).

If - as in the picture - both situations come together, then &l U X, ;) UY; UY, ;) IS

a positively directed 0-Eulerian and can be flipped via tlirieace A, B, C, A).

This is already the essence of the proof. It leads to an dlgoyithat controls the consec-
utive application of such flips together with the flips of tipesial straight cycles(; and
Y1

Now we present the algorithm. It takés!’, ¢;, J, J', ¢, satisfying the conditions given
in 1. as input and constructs a pure flip sequercaith base pointD?, such that
(DP)s = D¥',

First we describe formally how to deal with the standardaditin as depicted in Figure
3.7. For a subsek” of I or J andk € K defineZ, to be X, or Y, respectively. In the
following pseudo code fragments the statemaistX stands for flippingX and adding it
to s. The flips in FLIP are either of the typel, B) or (A, C') exemplified by Figure 3.7
or they flip Z;.

As depicted in Figure 3.7, the flips performed in FLIP are godgsible if the set of
straight cycles i/, J}\{ K'} does not entirely point to one direction. In the MAIN part
of the algorithm we will care about this property.

In the firstfor-scope FLIP take& \ K’ and¢( K\ K') and reverses the orientation on these
sets, by using the situation of Figure 3.7 in every step. érstticondor-scope FLIP takes
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Input : Row or column index set&” and K that conform to condition. of the

theorem. The sek’ corresponds to a straight directed 0-Eulerdérin a
reorientationD”, such thatD(E) contains no directed pseudocut. The

index setk’ corresponds td o
Output: The flip sequence will be extended such thdd* = (D)’

for k € K\K’do

| s+=(Zk U Zowi)s

for k € K'\K\¢x(K\K")\{1} do
if Z, positively directedhen
| s+=Z4;

\; S+:<Zl U Zk;),

if 1 € K'\K then
L s+=Z3;

Algorithm 1: FLIP

the remaining elements df’ exceptZ; and by orientingZ; appropriately it produces
again the situation of Figure 3.7, such thdt U Z;) can be flipped. The lagt-statement
flips Z, again if necessary. This can always be done, becZusein B.

Thus after FLIP the orientation oii\ K" and K"\ K has been reversed.

In order to produce the situation that is expected by FLIP wednto care about the
orientation of the whole set of straight cycles, which wal ggained in MAIN.

The procedure MAIN controls that, if any séf of either vertical other horizontal
straight cycles is handed to FLIP, then the set of "orthofjostaaight cycles does not
point completely into the same direction. Therefore MAINgnhdistinguish some cases
and decide whethdris flipped before/ or viceversa. This can be done, because we have
that/’ and.J’ are non-empty andl and.J are not the entire set.

Together with the correctness of FLIP one has that MAIN reserthe orientation on
INI', I'\I,J\J', J'\J, by the flip sequence. So after applying the to D* we have
obtainedD®’. This is the definition o5 <; E'.

Now we show the Z-"-direction for the case wheré, I’ are neither both empty nor
both full and.J, J’ are neither both empty nor both full.
Soletl,I', J,J' be like that andt <z E’. It must be shown that this implies # [m)]
andJ # [n] andI’ # () # J', to see that we are in caseof the theorems statement.
Then we have to prove the existence of two injectiops I\I’ — I'\I and¢, : J\J' —
J'\J such that < ¢;(i) andj < ¢,(j).
By definition £ <g E’ means that there is a straight positively directed Eulefain
D, such thaf D)E = DF'. As E and E’ also E induces two index setsand.J. We
havelAI = I'. Definel~ := I N I - the straight cycles oF that are pointing down in
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Input : Sets and functions, I, ¢;, J, J', ¢; satisfying conditior. of the

theorem.
Output: A flip sequences that leads fromD¥ to DF’
s:=(;
if I’ =[m]andJ’ = [n] then
if J =0 then
L s+=Y3;

FLIP(I\{¢; " (m)}); FLIP(J\{¢7"(n)});
| st=(X3 U X, UY UY,);
else
if ' = [m]then

if I =0 then

L s+=X4;
| FLIP(J); FLIP(I);
else

if 7 =0 then

L s+=Xy;
| FLIP(J); FLIP(I);

Algorithm 2: MAIN

D¥ and must be reversed. And call the rest - those that are pgiop inD” and must
be reversedi* := I'N 1. _
Suppose that/~| > |I*|. This means that some of the straight cycles indexel by
cannot be flipped as part of a straight O-Eulerian togethér some cycles indexed by
elements of/*|. So the remaining cycles can only be reversed as a part of iastine
new wrongly oriented straight cycle is produced. To regdas & flop must be performed,
which contradicts” <g £'.

Therefore we have/ —| < |IT]|. This implies|I| < |I'|. Analogously we gett/| < |.J'].
Together we are in cade, i.e. I # [m]andJ # [n] andl’ # 0 # J'.

Supposing now that the injections aslindo not exist, means that;_ is not entirely
contained in any positively directed straight Eulerian’gf Thus any try to flip all the

straight cycles i/~ would reorient some straight cycles, that were not desifidtese
would have to be flopped back later on, to obtain the orieriatie are aiming for. So we
cannot come fronD” to D’ by a sequence of flips.

Now we show the equivalence & <4 E’ andJ’\J C {1} in case2.. Itis easily
seen that, because of the orientation onXhg, every positively directed 0-Euleriah
in DZ has a directed pseudocuti” (E), thus by Theorem 3.6.7 cannot be flip flopped
by means of facial cycles. So the only Eulerians that can ppdtl areY; and X; if
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I' = (). But flipping the latter, would have to be undone by some flaiiee by flopping
X; or by flipping some 0-Eulerian of the fordd; U X;, which then leave<; negatively
directed. This would destroy directedness of the sequerc&aiming for, sd&’ <g F’
if and only if J'\J C {1}.

The equivalence in case 3. works completely  analogously.
O

In order to understand the poset of straight Euler{@hs<g) we define an ordepP; :=
({0, 1}*, <) such that for different0, 1)-vectorsz < y :< one of the following holds

1. <z,1>=<y,1>andz = (y(1),...,y(7),0,1,y(i +3),...,y(k)) <z <1 v,
or

2. <z,1>=<y,1>—-1landz = (0,y(2),...,y(k)) 1z <y

111

001

000

Figure 3.8: The poset;.

The poset?, can be constructed frofon by two operations. In cadethe vectory is
obtained fromz by switching al0 to a01. In case2. the first entry ofr has been changed
from 0 to 1 in order to obtainy.

Identifying the setd, I’ andJ, J’ from Proposition 3.7.1 with the corresponding inci-
dence vectors, 2’ € {0,1}™ andy, vy’ € {0, 1}" respectively one gets:

(8, =a) = (PuxE)\{(z,y) <o (2", ¢) | {2, 2} € {{0},{1}} or {y, '} € {{0},{1}}},

where it is understood that only the relations, not the efgmare removed from the
product.

To complete the picture oP(F\{X} U {X1,Y1}) we will see how the rest of the
Eulerians ofD fit into the pattern given by the straight Eulerians.

Proposition 3.7.2. For every EulerianE of D there are straight Euleriang’;, £; such
that £; < E < E,. Moreover all the thred”;, F, E, are in the same homology class.
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Proof. The proof works by constructing a flip sequence frérto E; and a flop sequence
from £ to E,. Both consist of reorientations of O-Eulerians only.

E is a directed subgraph d with vertex degree$, 2 or 4. In D¥ the vertices with
degree in £/ have only two possibilities to look like with respectkoif £ does not walk
straight ahead. These vertices are callefl (down-left) andL D (left-down) vertices,
respectively. They are depicted in Figure 3.9

Figure 3.9:D L-vertex andL D-vertex

It is rather obvious that the number DfL-vertices and. D-vertices on a fixed; must
be equal. Therefore also on &llthese numbers, denoted from now onghgoincide.
Our proof will be an induction op:

If p = 0 our EulerianFE is straight, sa&;, = E = FE, proves the induction basis.

If p > 0, we construct’ <g E with p’ < p. Given aD L-vertexv; ; take the nexi.D-
vertex to the right onY;, sayv; j;, and the next in downwards direction ®hn sayv; ;.
Locally two different situations can occur, depicted inuig 3.10

In the picture, we draw only those lines that are at our conc&he dashed lines are
those arcs, that are still oriented as/in The other arcs are arcs i (left side) or in
E' (right side) respectively. It is possible that there areengertices and arcs inside the
shaded region. The important fact is, that there ar&ie and L D-vertices on the lines
betweerv; ; andv; ; and betweem; ; andvy ;, respectively. Hence, no arcs bflie on
these lines.

Case(1) reflects the situation where the heavily drawn directed pa#ising through; ;,
has a vertex. ; before it possibly intersects, with the corresponding paaissing through
vy ;. So casél) includes a similar picture, that is reflected on a diagoni. ax

Case(2) shows what we do, if both paths intersect before they cras$dmizontal re-
spectively vertical line induced by ;.

In both cases, the bounding cycle of the shaded regionfsay oriented in clockwise
direction. If F' is flopped the resulting Euleriali’ is smaller thar® in the flip flop poset,
and moreover it is in the same homology class, bec@usea 0-Eulerian. Because the
number of D L-vertices has been reduced by at least one by this flop onepgay the
induction hypothesis and thus gets some straight Euléfiar £/ < E, which also lies
in the same homology class wifi.

The only problem that remains is, whethéican be flopped by our means.
We do not know, if the shaded region really is the interiorhaf tlirected cycle which we
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i fl i
(1) 3 : [Uk.l R A 3

Figure 3.10: In both cases the flop of the shaded region reguce

want to flop, or if it contains the forbidden facial cycke

We will show that in every Eulerian with > 0 there is aD L-vertex such that the induced
negatively directed O-Euleriaf’ has the shaded region as its interior. As this region is
homeomorphic to a disk and by strong connectivity of the wlgshph,F' can be flopped,

by flops of the facial cycles in its interior.

So takev; ; to be aD L-vertex of E which minimizesmin(i, j) among all ofE’s D L-
vertices. The vertey; ; induces a cyclé’ as in Figure 3.10. If the region that is induced
by F' containsX, we cannot be in cas@) of Figure 3.10. Otherwisé’ has a "lower
right” corner calledv;,; # v; ; in the figure, which is itself & L-vertex. So ag”’s region
containsX the vertexv,; must lie betweeny, , andv; ;, i.e. 0 < k < ¢and0 <[ < j,
which contradicts the minimality of the choice of;.

So we concentrate on the case thataun (i, j;)-minimizing v;, ;, is of the second type
of DL vertices (cas€2) of Figure 3.10) and the region induced by the corresponding
containsX. This means we have a vertey ;, of degree four, which by supposing that
X is contained in the shaded region, lies betwegnandv;, ;,, i.e. 0 < k; < 4, and
0< ll < jl-

But asvy, ;, has degree four there must be anotbér-vertexvy, ; fromuy, ;, to the right,
and onev; ;, downwards. Choose one of both, such that we stay with thenmimi of &4
and/,.
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Call this D L-vertexv;, j,. It induces again a cycl®,. Again, if /5 induces a region that
containsX again it cannot be of typ@). If F; is of type(2) we obtain a new degree four
vertexuvy, 1,, With 0 < ky < ip and0 < Iy < jo.
So if we could go on like this forever, we could construct &#tr decreasing sequence
of is andjs, such thad < min(i,,1,j-+1) < min(i.,j,), for everyr. So because of
finiteness of the graph, this iteration must stop, i.e. leasbimeD L vertex that induces
a region, which does not contain the forbidden face.
Now we have constructed the desirdd <z FE, which we can apply the in-
duction hypothesis to and obtain the straight < F. The construction of
E, works analogously by switching the roles dbL-vertices and LD-vertices.
O

Proposition 3.7 and Proposition 3.7.1 together give thatF\ { X } U{ X}, Y1 }) consist
of distributive lattices on the homology classe<oD, S, ), which are related by flips of
X, andY;.



Chapter 4

Everybody is a Flip Flop

The question of how to get a distributive lattice on th@rientations of cographic ori-
ented matroids has already been solved in [12]. Moreoverave proved this result in
Corollary 3.6.8. In Chapter 2 we have proved that every Ifsep-digraph is the flip flop
graph of a sign matrix. In the present chapter we will proliat every distributive lattice
is a flip flop poset on thev-orientations of a cographic oriented matroid. Analoggpusl
to the questions raised after Theorem 2.1.3 in Chapter 2ham @nalyze the structure
of those cographic matroids, that generate the same disteblattice. As justified by
Section 3.5 we will treatv-orientations of totally cyclic cographic oriented matieias
c-reorientations of acyclic digraphs.

4.1 Every Distributive Lattice is the Flip Flop Poset of a
Digraph
We will now describe a method that constructs out of a givstrihutive latticel a set of

digraphs D], that realizeL as the flip flop poset on theifreorientations.

So let L be a distributive lattice. Denote b}( L) the sub poset of its join-irreducible
elements. View/(L) as a directed graph’ on the elements of (L), where

(u,v) € A(D') & u <y v.

Add a vertexT to D’ and introduce arcs from the sources/®f(minima of J(L)) to T.
Call this new graphD. Denote by[D]| the set of digraphs that can be obtained from
by adding transitive arcs. Ordering the element&gfby arc set inclusion,D] forms a
boolean lattice. The minimal element[d] is D.

The construction is exemplified by Figure 4.1.

62



CHAPTER4. EVERYBODY IS A FLIP FLOP 63

L J(L) D (D]

Figure 4.1: The construction D] out of L. The dashed arcs in the drawing|éf] stand
for arcs that can be added ia

The set of graphfD] induced byL has a nice property. Léb e [D] and B the matrix,
that is obtained froninc(D) by deleting the row that corresponds to thevertex.

Theorem 4.1.1.The flip flop poseP;(B) is isomorphic to the distributive latticé.

Proof. This result is a special case of the theory developed in @edtl. Anyways, here
is a proof:

As shown by Corollary 2.2.6P(B) is a distributive lattice. A3 has no negatively
directed rows B corresponds to the minimum &%:(B). So every element aP;(B) can
be reached by a flip sequence base®atBy the fundamental theorem of distributive
lattices, (see [5], ppl171), it is enough to show that theribistive latticeO(J(L)) = L

of ideals of.J(L) is isomorphic taPx(B).

First, the rows that come from the sources/bire positively directed iB. But as the
sources are connected to the forbidden vertexafter flipping them once, they cannot
have a positively directed vertex cut again.

Second, any row can be flipped only after the rows, that cpored to its predecessors
in D, have been flipped. So iteratively every row can be flippe@astl as often as the
sources.

This means that every row can be flipped at least once in a ftjpesee. And it tells
us that the set of vertices that have been flipped in any flipeseces corresponds to an
ideal of J(L).

To see now, that we get any ideal #{L) this way, take an antichaid in J(L). We
try to flip all the vertices4 of D that correspond tel and none of their successors. So
take all the vertices that lie on directed paths from souot€eS to elements ofA. This
vertex set induces a directed cutih Directed cuts correspond tereorientations of
D, which by Corollary 3.6.8 can be reversed by a flip sequensedatB. The rows
in this sequence corresponds to the vertices in one of thes sifithe cut - the interior
of the cut. One of the sides contairis thus cannot be flipped. The other side of the
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cut corresponds exactly to the vertices between the soofcBsand A. So A can be
flipped and the vertices flipped in this flip sequence cormedpo the ideal ofA in J(L).
O

The construction fofD] used by the theorem does not generally give the only graphs
which flip flop generatd.. We will see in the next section that the graph& are vertex
number maximal for doing the job.

4.2 Towards a Structure on Digraphs with the Same Flip
Flop Poset

We try to analyze the entire set of digraphs that generateemdlip flop poset. Therefore,
our aim is to look more precisely how a given digraphproduces a flip flop poset on its
c-reorientations. We have seen in Chapter 2 that flip flop ga®the ones coming from
the vertex cuts of a graph are integral, i.e. are naturallpesded intaZ!V (?)I=1. Every
orientations is mapped to an integral point, that countef@ry vertex how many times
it has been flipped. Heading towards a structure on the seigodjghs that generate a
given distributive lattice, it is useful to observe how thgrdph embeds the generated
distributive lattice into somg!" (P)I-1,

D a b c T
o——»————— >0 —— >0

Figure 4.2: A digraphD with associated embedded flip flop poset.

First observe that we can restrict us to acyclic digraph& witique sink at the for-
bidden vertex. LetD be an acyclic directed graph, with a forbidden vertex All the
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c-reorientations oD are elements aD’s flip flop poset. Starting the flip flopping at any
of these orientations generates the same distributiviedatThe difference between the
different embeddings is, that the respective startinghaigon is mapped to the € Z™.
So the embeddings coming from afy € reor.(D) are all translations of another.

Therefore let the orientation dD be the minimum orientation of the associated flip
flop poset. This means that has exactly one sink, which sits at the forbidden vertex
From now on we will consideD always like that and denote b (D) the distributive
lattice induced by flip flops of vertex cuts different from thiee of T. This way we get
an embedding oP;(D) whose minimal element & ¢ ZIV(P)I-1,

To understand now the embeddings of flip flop posets we musacteize when a
vertex can be flipped thith time in terms of the other vertex flips. By doing so, the
following lemmas will lead to a description of the embedding

For every vertexw € V(D)\{T} there is a directedv, T)-path inD. Denote by| v
the set of verticesv such that there is a directéd), v)-path and by} v the the vertices
such that a directef, w)-path exists.

Lemma4.2.1.Toflipv € V(D)\{T} exactlyk times every vertex if v has to be flipped
exactlyk times before.

Proof. Let w €| v. We proceed by induction oiist(w,v), the length of the shortest
directed(w, v)-path inD.
If dist(w,v) =1, we haven = (w,v) € A(D). Thus, each time wants to be flippedy
had to be flipped before, because otherwiseould point intov and the vertex cut of
could not be positively directed. On the other handannot have been flipped more than
once, without flipping in between.
If dist(w,v) > 1 choose w' as a vertex that is the last vertex on
a shortest (w,v)-path before arriving atwv. To flip v’s vertex cut k
times w' must be flipped £ times, and asdist(w,w’) <  dist(w,v),
by induction hypothesis, w hast to be flipped exactly as often as/’.

O

Lemma 4.2.2.To flipv € V(D)\{T} exactlyk times every vertex i €1 v has to be
flipped exactly — dist(v, w) times before.

Proof. Letw €7 v. Again, we proceed by induction afist(v, w).

If dist(v,w) = 1, we havea = (v,w) € A(D). Thus, each time wants to be flipped,
w had to be flipped once after the last timevas flipped, because otherwisevould still
point intov and the vertex cut of could not be positively directed. Obviouskycannot
have been flipped more than oncepasould have to be flipped in between to make this
possible. Thus before theh flip of v can be performed, the vertex cutofhas been
flipped exactlyk — 1 times.
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If dist(v,w) > 1 choosew’ as a vertex that is the first vertex on a short-
est (v,w)-path after leavingv. To flip v's vertex cut k£ times w’ must be
flipped £ — 1 times, and asdist(w',w) < dist(v,w), by induction hypothe-
sis, w hast to be flipped exactlyy — 1 — dist(w',w) = k — dist(v,w) times.

0]

Denote byN~(v) the set of vertices that point toand by N*(v) the set of vertices
Is pointing to. During the whole chapter these terms refén¢ostarting orientation ab.
MoreoverN (v) := N*(v) U N~ (v) is called the set ofieighborsof v.

Lemma 4.2.3.1If we can flip everyv € N~ (v) at leastk times and every € N*(v) at
leastk — 1 times, then we can flip at least% times.

Proof. For everyu € N*(v) andw € N~ (v) denote byu*~! andw* some orientations
whereu has been flipped — 1 times orw has been flipped times, respectively.
Take the orientation oD that is the join of all these orientations with respect to the
integral embedding. By Lemma&2.2 and Lemma4.2.1, in order to generate this ori-
entationsv has been flipped at leagt — 1 times. Suppose that has been flipped
exactly k — 1 times. By Lemmat.2.2 and Lemma4.2.1 the entire N*(v) has been
flipped exactlyk — 1 times and N~ (v) has been flipped exactly times. More-
over the vertex cuts of the elements df (v) have been flipped once since the last
flip of v. The same holds for the vertex cuts of the elementsVofv). But this
means that’s vertex cut is positively directed again and can be flipgeelith time.

O

The three above Lemmas give rise to a new definition. Intredacevery arqv, w)
in D the oppositely directed afev, v). Let the original arcs oD have lengthl and the
new auxiliary arcs length. Denote byr(v) the distance fromv to T in this new graph.
We call the functionr : V' — Z=, the potential function of D.

Lemma 4.2.4.For everyv € V the valuer(v) gives the maximal number ofoccurring
in a flip sequence.

Proof. First we show that can be flipped at most(v) times.

Assume that can be flipped: > 7(v) times. By the definition ofr, there is a shortest
path of auxiliary and original arcs with lengtt{v) from v to T. Applying Lemma 4.2.2
and Lemma 4.2.1 along this path one gets th&ias to be flipped, which is impossible.

Now we must prove that indeed can be flipped(v) times. We proceed by induction
on(v).
If 7(v) = 0 we havev = T and nothing to show.
If 7(v) > 0, firstassume to havewasuch thatV*(v) consists only of vertices with poten-
tial 7(v) — 1. After flipping all the vertices inV* (v) exactlyr(v) — 1 times, by Lemma
4.2.1all| vU {v} has been flipped at leastv) — 1 times.
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First observe that for every elementc (| v U {v}) we haver(w) > w(v). So every

element inV*(w) can be flipped at least(v) — 1 times.

Therefore, if any element €| v U {v} has been flipped more thaitv) — 1 we can flip

v at leastr(v) times by applying Lemma 4.2.3 along a directed v)-path.

So suppose all vu{v} has been flipped exacthy(v) — 1 times. The vertices ip vU{v}

with longest paths to (the sources oD in | vU {v}) have emptyV—. So with the above

observation they can be flipped again by Lemma 4.2.3.

This way one can reverse the orientatiorvdhe 7 (v)th time.

If not every vertex in N*(v) has potential 7(v) — 1, we can move to-

wards T without changing the potential until we arrive at a vertekX with

this property. By Lemma 4.2.1 we obtain, thatcan be flipped=(v) times.
O

Theorem 4.2.5.For D as above the embedded distributive lattigg D) is isomorphic
to the dominance order on the integral point set given by

{0<z<7|(v,w) € AD) =0 < 2(v) — z(w) <1} C ZVINT,

Proof. The isomorphism works by identification of the orientatiohg with the vectors

0 < z < 7 that count for every vertex how many times it has been flipped.

Injectivity is obvious, and as’;(D) is integral, we have an order-embedding into

7V (DN\T

By Lemma 4.2.4, Lemma 4.2.2, and Lemma 4.2.1 we havelfp@D) is indeed embed-

dedinto{0 < z <7 | (v,w) € A(D) = 0 < 2(v) — z(w) <1} C ZVPNT,

To prove surjectivity letz € {0 < 2z < 7 | (v,w) € AD) = 0 < z(v) —

z(w) < 1}. For every vertexv # T by Lemma 4.2.4 and distributivity there is

a minimal orientationz, with x,(v) = z(v) andz, < 2. We can take the join

Voevpy gy v Of all these orientations which is still smaller or equalrtha thus by

the choice of the orientations, it is the same ag. We have obtained surjectivity.
0

Now that we have a way to write down the embedded distribuditteee coming from a
digraph, we will try to investigate the set of graphs thatentine same distributive flip flop
lattice, by comparing the embeddings they lead to. Sometledide same embedding,
some do not.

For a distributive latticd. there is a correspondence of the embeddings ioto some
Z™ and the set of chain partitions df ). Given a chain partitioned pos@®, {C; }icim)
the corresponding distributive lattice of idedl P) will be embedded int@™ the fol-
lowing way. Map every ideal of P to the vector; € Z™, wherez;(i) := |I N C;|. The
inverse consists of putting a join irreducibte- y in L into the chainC; if x — y = e;.

In the following we will give a characterization of those @hpartitions that correspond
to the embedded flip flops acyclic digraphs.
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(Pv {Om Cba Cc})

D 3 2 1 T

Figure 4.3: On the one hand a good pisgartitioned pos¢, {C,, Cy, C.}), that comes
from the embedded distributive lattice of Figure 4.2, withprojectionD. On the other
hand an acyclic grapP with is potential poset carrying the canonical chain pauntit

For any posef, we call a chain partitioq C;},<;<x plisseefor everyi,j € [k] we
have that”; U C; contains a cover relation impli€s U C; is a alternating chain between
C; and(C;. In order to approach the properties of chain partitionese®coming from
embedded flip flop posets, the idea of this definition is to cgflbat adjacent vertices of
a digraph can only be flipped in an alternating fashion.

Having P together with a plisse partition{C;},<;<x, we definethe projection of
(P, {Ci}1<i<k) as the directed graph p (¢}, .,,) = (V; A), where

V= {Min(C)) |1 <i<k}U{T}

and
(v,w) € A :& eitherv <p w andC, U C,, alternates between both chains|6f| = 1
andw = T.

A plissee partition (P, {C;}) is called good if the potential functionw of the
A(pci}i<i<) COiNcides with the valuefD,| that are naturally assigned to the vertices
of the projection of P, {C;}).

Given an acyclic digrapl® with unique sinkT and potential functiomr, we define its
potential poset as the sellp := {v; | 1 <i < 7 (v),v € V(D)} together with the order
relation transitively induced by

v; <wj <=1 < jand((v,w) € A(D)orv =w).

The potential poset carries a canonical chain partition
{CylveVi={u|1<i<n(v)}|veV(D)}.
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We want to understand the maps between the classes of adyrelated graphs with
unique sink, good plige partitioned posets, and embedded flip flop posets. They are
depicted in Figure 4.4.

(P, {Ci}i<i<k) LCz?

(D, T)

Figure 4.4: The classes of objects involved and the mapsdaetthem.

Theorem 4.2.6.Let D be acyclic with unique sink. Let (J(Pg(D)),{Ci}icim)) be
the chain partitioned poset coming from the embedded flip floget P¢(D). Then
(J(Pg(D)),{Ci}icpm) is isomorphic toIl(D), {C, | v € V}) the potential poset oD
with its canonical chain partition.

Proof. We establish a correspondence between the elemer{ts(&%(D)), {C;}icpm))
and(II(D),{C, | v € V}). It must preserve the respective chain partitions. The iglea
to map the join-irreducible orientatiart of P;(D) to the element,, of II(D). Herev*
stands for the orientation, wherenas been flipped exactlytimes and is the only vertex
with negatively directed vertex cut.

So first observe that in any orientation, wherlas just been flipped exactkytimes
(1 < k < m(v)), one can flop other vertex cuts untils the only floppable. This way one
obtains a join-irreducible orientatiarf for everyk € [xr(v)].

Suppose there were two incomparable join-irreduciblentaionsy* and (v*)’ wherewv
has been flipped exactly times. Take their meet* A (v*)/, which corresponds to the
meet of the dominance orderZ (P11, Inv* A (v*)’ the vertex cut ofy has been flipped
k times, as well. So the last flip on flip sequences frdm\ (v*)" to v* and(v*)’ cannot
be the flip ofv’s vertex cut, sa* and(v*)’ are not join-irreducible.

We have already obtained an ismorphism between the elewienitsPs (D)), {C;}icim))
and(II(D), {C, | v € V'}), that preserves the chain partitions.

It remains to check if it is an order isomorphism, ig.< w; < V% < w'.
For both directions we clearly have# w.
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Wk41
o————>»0 Vk+1
v w W
Vk
D H(D)

Figure 4.5: Candidates for covering relationdlifD)

Moreover by looking at the construction bf D) (Figure 4.5), one observes that
(((v,w) € A(D)andl = k) or ((w,v) € A(D)andl =k + 1)) = vx < wy.
and
(((v,w) € A(D)andl = k) or ((w,v) € A(D)andl =k + 1)) < v < w;.

So we havey, < w; if and only if there is no longefvy,, w;)-path inII(D) consisting of
this kind of relations.

We start with '=":
Letv, < w; in II(D). Together with Lemma 4.2.1 and Lemma 4.2.2 having

((v,w) € A(D)andl = k) or ((w,v) € A(D)andl =k + 1))

clearly impliesv® < w!. In order to show* < w' we observe the following:

If we havev® < uw™ in (J(Pg(D)),{C;}icpm) then a pure flip sequenceleading from
v* to ™ must flip a vertex cut: which is incident to the vertex cut af, in order to
destroy the negativity of’s vertex cut. Taker to be the first such vertex innand look at
the orientation just after this flip. Now flop negatively dited vertex cuts different from
z, until z is the only negatively directed, i.e. we standvat The arcs ofv, which are
not incident tax have not been reoriented during this process, because thyimto v.
So floppingz gives an orientation, where is negatively directed and has been flipped
exactlyk times. As argumented above, this orientation is bigger than

Therefore one obtains a join-irreducible orientatigrwith v* < 2! < «™. Sov* < u™
implies thatu must be incident te and with Lemma 4.2.1 and Lemma 4.2.2 we get

((v,u) € A(D)andm = k) or ((u,v) € A(D) andm =k + 1)).

So suppose there weré < v < ... < u™ < w'. Then one has &, w;)-path in
I1(D) consisting of the kind of relations that was forbidden.
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For "« it is enough to show* < w! = v, < w;. But as just observed’ < w' implies
thatw must be incident te and

((v,w) € A(D)andl = k) or ((w,v) € A(D)andl = k + 1)).

This impliesv, < w;.

Theorem 4.2.7.The canonical chain partition of the potential poset, is admlisee
partition.

Proof. Let D be a graph with unique sink. It is easy to see thall(D),{C, | v €

V(D)}) is a plis€e partitioned poset. L&Y' = Apy (o, vev(p)}) b€ the projection of

the potential poset ab. ObviouslyV (D’) = V(D) andA(D’") O A(D).

To see that the plige partition is good, we must show that the potential fumcticof D’

equals the potential functionof D. As A(D’) O A(D) we haver’ < .

Suppose there is an atic= (u,v) in D’ but not in D, which comes from an alternating

(C, U Cy)-chain inIl(D) and letst’ be smaller thamr. There are two possibilities how

this can happen.

On the one hand the new arc can lowé.), i.e. 7(v) + 1 < w(u). So by reasons of

cardinalityC,, U C,, cannot have been an alternating chain.

On the other hand introducing could lowern(v), i.e. w(u) < w(v). But this again

contradicts the fact that’, U C, is an alternating chain with minmal element @,.
O

Theorem 4.2.8.A posetP with a chain partition{C; }, << is the chain partitioned poset
of join-irreducibles of an embedded distributive lattieg(D) if and only if{C;}1<;< iS
a good plisge partition.

Proof. We begin with” = ”:

Let P be the the chain partitioned poset of join-irreduciblesroeenbedded distributive
lattice Py(D). By Theorem 4.2.6 it is the potential poset with canonicalietpartition
coming fromD. By Theorem 4.2.7 this is a good plésspartition.

7 <:’7:

Let P be a poset with a chain partitioC;},<;<, that is a good plis=e
partition. It is the potential poset of its own projection, hish by The-
orem 4.26 comes from the corresponding embedded flip flop etpos

O

The plis€e partition of/(L) we have used to prove Theorem 4.1.1, is the only one that
generally exists for every poset. It consists of singletamly.

Recall that our goal is to understand the set of digraphsgbaerate the same dis-
tributive lattice. We indeed are closer now to what we wangsiwe can say that the
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Figure 4.6: Thin projection of a plige partitioned poset. The desired/alues are written
next to the vertices. Arcs that can be added in order to aehia® right potential are
drawn dashed. Only one outgoing dashed arc per vertex ieddedepair the potential
function.

"essentially different” graphs, that generate our disiiile lattice . correspond to the
good plis¢e partitions of/(L).

First we consider the set of "essentially equal” graphs séhimnat have the same par-
titioned potential poset. As in Section 4.1, given a good$p# partitioned poset, we
denote them afD] := T ((J(L), {Ci}1<i<k))- Are they ordered as nicely with respect
to arc set inclusion as in Section 4.17?

We have seen in the proof of Theorem 4.2.7 that the projectioha plis€e partitioned
poset gives the arc maximal digraph among the essentialiglemaphs ifA].

Now what can we say about an eleméhtc [A]? Obviously neither the vertex set of
two graphs that generate the same chain partitioned posttaippotential functions can
differ. We have seen in the proof of Theorem 4.2.7 that we clgham arc: = (u,v) to
such a graptD without leaving[A] if this does not change the potential poEéD). This
can be guaranteed if the corresponding alternating ahaion C, consists of transitive
arcs only. So adding arcs 10 without changing the corresponding chain partition can be
done in any order. The graphs|ia] that can be obtained by arc adding frdimform a
Boolean lattice under arc set inclusion, with minimum

Analogously, deleting an ar¢c = (u,v) is only allowed if the deletion ofi does not
changer. The problem is, that this cannot be assured by only requihia corresponding
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chainC, U C, to consist of transitive arcs only.

The additional condition for an arc to be allowed to be delelestroys the Boolean that
we had in Theorem 4.1.1. How do the minima &f look like? Still there is a fairly easy
way to construct the minima gf\], and we know that from these on we have a Boolean
lattice in upwards direction.

Given the chain partitioned potential posét(D),{C, | v € V(D)}), we define the
thin projection asA’((II(D),{C, | v € V(D)})), which is the graph obtained from the
projection, by deleting all the ares= (u, v) that come fronC,, U C,-chains consisting
of transitive arcs only. The potential function of the thirojection does not generally
coincide with the potential function of the projectian The arcs that can be added to
repair the potential function without changing the potalntioset are transitive arcs of the
form a = (u,v) with 7(u) = m(v) 4+ 1. So the minimal such arc sets take only vertices
which satisfyr (| u) > 7(u) and introduce some arc of the given form.

In general there is no unique inclusion minmum among theseets as exemplified by
the thin projection in Figure 4.6.

Now we turn to "essentially different” graphs. What can wg ahout them?

D/

Figure 4.7: Another good pliég partition of the posd® from Figure 4.7 with its projec-
tion D’. Transitive arcs that appear in alternating chains are mdotted.

For instance the graph®] constructed for Theorem 4.1.1 are the vertex number max-
imal graphs as every chain partition has less chains thasitiggeton partition. Some
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posets admit no other pliés partition than that. Take for instance height-two pos&ts
in this case, we know the uniqui®] that generates a given height-two poset.

Take on the other hand the poset in Figure 4.3. There it is mnaith a partition
different from the singleton partition. Figure 4.7 showstuer one.

Our general aim is to find some order structure carried by iffierent [D] or equiva-
lently among the set of plige partitions of a given poset. This could be a way to obtain
in some sense small representatives for a given distridldivice.

A related teasing question is how to characterize class#istoibutive lattices that arise
from special classes of directed graphs.

One first example into that direction is, that not every dstive lattice comes from
thec-reorientations of a planar graph, which equivalently nsghat not every distributive
lattice comes from the-orientations of a planar graph.

To see this, consider the height-three poset drawn in Fig@eWe call itP; 5 ;.

Figure 4.8: Every plisse partition of the pose?; ; 5 comes from a graph that h&s; ; as
a underlying subgraph.

Every chain in a plisse partiton of”; 5 ; can have at mogtelements. One from the top
level and one from the bottom level. The thin projection iglithe cases an orientation
of a subgraph of<; ; 5 that hask’; 5 as underlying subgraph. More precisely there are up
to isomorphismi different plisge partitions given by their thin projectiod, . . ., Ds.
Counting with: the number of two-element chains in the partitibn= K;33_;. So no
D that hasP; 5 5 as its potential poset can be planar.



Conclusions

In this thesis we have developed some theory that partigutgrened up a bouquet of
guestions. We summarize three of the most intriguing dwastto further investigation.

The first couple of questions are related to the universafifiip flop sequences:

In Chapter 4 we have shown that every distributive lattiomes from the flip flops of a
digraph. As every digraph leads to an embedded distriblaitiee, we have characterized
the embeddings, that come from digraphs. Our aim is to fincesanaler structure among
the directed graphs, which generate the same flip flop pasgbuld be very interesting
to find a set of directed operations transforming one digta@mnother, while leaving the
generated distributive lattice invariant. A first step abbk to analyze the subposet of
the partition lattice induced by the good péespartitions of a poset. In particular the
minima of the resulting partial order are teasing to be ustded. This would lead to
small representatives for embedded flip flop posets of diggap

Moreover it would be interesting to characterize classefistfibutive lattices, that are
generated by certain classes of graphs. Outerplanar gragpessal graphs and planar
graphs are teasing candidates.

A question concerning a bigger class of flip flop posets isaiewing. As commented
in Proposition 2.2.2, every integral flip flop poset is emketith someZ™, such that
its elements form the vertices of a polytope. Only very felwmsets ofZ™ have this
special property. The characterization of embedded flipdtogets coming from graphs in
Chapter 4 could maybe be extended in the sense that evehg(@bbve sense) polytopally
embedded poset is an integral flip flop poset.

A last question concerning universality is in terms of flippflgraphs. Theorem 2.1.3
proves that every connected loop-free digraph is the flip §igph generated by some
sign matrix. Moreover the arc set of every flip flop graph comik a natural matching
partition. The matching partition that arises from the ¢angion in Theorem 2.1.3 is the
trivial one, i.e. every matching consists of a single arcn @& matching partitions of a
digraph, that arise from flip flop sequences be charactetized

Another type of question arises, when attempting to find dlggeaerating sign matrix
for a fixed set of reorientations:

75
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Particularly fora-reorientations of graphic oriented matroids, i.e. nosmpk digraphs,
this is an interesting question. Take such a digraph as etelogdto an orientable surface.
We want to extend the set of facial cycles by Eulerians thatnat 0-homologous. A
"good” extension has to provide two properties:

By Proposition 3.3.4, we know that the extended set must#atigraphs cycle space.
This condition is easy to handle by requiring the homologgses of the new Eulerians to
span the first Homology group. But we have seen that this isufGtient. Theorem 3.6.7
characterizes all those 0-Euleriafswhich cannot be reversed by facial flip flops. The
extension has to be able to repair all these. It is an opertiqgoe®o identify or construct
sets of cycles, which satisfy both these properties.

Suppose we could find "good” generating systems fordfreorientations of graphic
oriented matroids. We have understood éheeorientations oR10 and cographic ori-
ented matroids. Moreover we have seen thstims of regular oriented matroids conserve
the flip flop structure. The last step to establish a theory-mdorientations of regular ma-
troids, would be to investigate whether a "good” flip flop sture on thex-reorientations
of two regular oriented matroids1; and.M, leads to a structure on thesum of M; and
Mo, fori € {2,3}.

A last open problem diverges a little more from the subjaetsted in the thesis:

We have seen that we cannot generalize the theory-afientations to the set of all
oriented matroids. As in general oriented matroids theneoixanonical choice for a
representative of two cocircuifs, — X, we have no analogue to in- and outdegree. So we
must broaden the set of orientations at our concern. Sudgabset of graph orientations
which is suitable to be generalized consists of those @immis that fix the absolute value
of the difference of in- and outdegree. In oriented matrdinils invariant coincides with
a cocircuit parameter calléchbalanceor log-discrepancyn [10]. It is a teasing question
whether - specializing back - these graph orientationsycamrorder structure similar to
those om-reorientations.



Zusammenfassung

Thema dieser Diplomarbeit sind partielle Ordnungen aufe@ierungen und Re-
orientierungen gerichteter Strukturen. Anlass dazu gé@ybeiten von Felsner [7] und
Propp [12].

Felsner konstruiert einen distributiven Verband auf deiei@ierungen eines planaren
Graphen, die knotenweise denselben Ausgrad habe®rientierungen). Diea-
Orientierungen eines Graphen verallgemeingiffaktoren, spannendeaBme, eulersche
Orientierungen und Schnyderaider.

Propp gibt eine Methode zur Erzeugung eines distributiverbahds auf den Orien-
tierungen eines (nicht notwendigerweise planaren) Graphe deren Invariante die An-
zahl der Vorvartskanten in Kreisen ist{Orientierungen).

Die dieser Diplomarbeit zugrundeliegende Motivation bbsin der Frage, wie weit
und mit welchen Einsclinkungen man Felsners und Propps Ergebnisse auf orientiert
MatroideUibertragen kann. Es stellt sich heraus, dass ein Veraligenuag ndglich ist,
jedoch zu einer Theoridifrt, die nicht mehr so sém ist wie in [7, 12]. Deshalb konzen-
trieren wir uns ab einem bestimmten Punkt auf spezielled€a®rientierter Matroide.

Indem wir die Orientierungen eines ungerichteten Graphigrdem Reorientierungen
eines gerichteten Graphen identifizieren, égiichen wir eine Zusammeiirung und
Verallgemeinerung der von Felsner und Propp betrachtetenki8ren. Aul3erdem
Ubertragen wir die Invarianten der untersuchten Reogaimtigsklassen in die Terminolo-
gie orientierter Matroide und zeigen, dass sie in diesemé&situal zueinander sind.

Desweiteren werden die Erzeugungsmethoden (Flip-FldgelRd der distributiven
Verbande in [7, 12] reformuliert, um zu zeigen, dass es sich imémishen um ein
und dieselbe handelt. Diese kann nicht nur auf gerichteég@i@n sondern auf beliebige
(1,—1,0)-Matrizen angewandt werden. Da orientierte Matroide(&ls-1,0)-Matrizen
darstellbar sind, verspricht diese Theorie in unseremesamwendbar zu sein. Flip-Flop-
Folgen auf(1, —1,0)-Matrizen generieren nicht mehr nur Hasse-Diagrammeilligiver
Verbande sondern fast beliebige gerichtete Graphen.adhalish B3t sich jeder zusam-
menltangende, schlingenfreie gerichtete Graph als Ergebnés swmichen Konstruktion
darstellen.
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Diesem Kontrollverlust entgehend finden wir hinreichend#dfien fur die erzeugen-
den Matrizen, sodass der resultierende Graph das HasgeaDim eines distributiven
Verbandes ist. Zugzlich ergibt sich eine natliche Einbettung in dasdherdimensionale
ganzzahlige Gitter. Als Korollar erhalten wir die Distrtiwitat der Verkande in [7] und
[12] nebst deren Einbettung. Diesem Korollar liegt in beid&llen eine 2-Basis des
Kreis- respektive Schnittraums zugrunde.

Im Folgenden vereinen wir die Erkenntnisse aus der AnlayseFtip-Flop-Folgen
mit geeigneten Verallgemeinung vam-Reorientierungen auf allgemeine orientierte
Matroide. Wir zeigen die Existenz eines Flip-Flop-Erzewgdgnsystemsitr die a-
Reorientierungen beliebiger orientierter Matroide. Imitdfen stellen wir fest, dass eine
strengere Analogie zum Graphenfall im Kontext von Kreiglmasur bei reguiren orien-
tierten Matroiden riaglich ist. Dies nehmen wir zum Anlass, unsere Untersucenragf
eben jene Matroidklasse zu spezialisieren.

Aus Seymours Dekompositionstheoreiim fegubre Matroide [13] ergibt sich die Ana-
lyse der drei orientierten SplitterR10, graphische und cographische orientierte Ma-
troide.

e Der MatroidR10 hat eine endliche Anzahl von Reorientierungen, die wir pane€
puter enumerieren.

e Aus der Theorie den-Reorientierungemgraphischer orientierter Matroide er-
halten wir als Korollar zusammen mit der bereits bewiesebismtibutivitat die
Hautptheoreme aus [7] und [12]. Ein weiteres positives Bmgeist eine Halbord-
nung auf den eulerschen Orientierungen des quadratisdresditters. Ein allge-
meines Konstruktionsverfahreiarfsctone Vertande auf diesen-Reorientierungen
zu finden, bleibt ein offenes Problem.

¢ Die a-Reorientierungeographischer orientierter Matroide entsprechen den in
[12] untersuchten Orientierungen. Deshalb tragen sie tligksir eines distribu-
tiven Verbandes.

Als letztes Ergebnis beweisen wir, dass jeder distributfeeband via Flip-Flop-
Folgen aus den-Reorientierungen eines cographischen orientiertendwigrentspringt.
Schliel3lich beschreiben wir die Menge aller cographisarentierter Matroide, die
einen gegebenen distributiven Verband erzeugen und whteren erste Schritte hin zu
einer Ordnungsstruktur auf dieser Menge.
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