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Introduction

The subject of this thesis are partial orders on orientations and reorientations of directed
structures. The papers of Felsner [7] and Propp [12] prompt this.

Felsner constructs a distributive lattice on those orientations of a planar graph, that have
fixed outdegree on every vertex (α-orientations). Theα-orientations of a graph generalize
f -factors, spanning trees, Eulerian orientations and Schnyder woods.

Propp presents a method to generate a distributive lattice on those orientations of a
(not necessarily planar) graph, that have the number of forward arcs in cycles as invariant
(c-orientations).

The motivation of the thesis is based upon the question, whether or with which obstruc-
tions one can generalize Felsner’s and Propp’s results to oriented matroids. It turns out
that the generalization is possible, but yields a theory which is not as nice as in [7, 12].
Therefore we focus on special matroid classes and particular variants.

By identifying the orientations of an undirected graph withthe reorientations of a di-
rected graph, we can bring together and generalize the structures investigated by Felsner
and Propp. We transfer the invariants of the considered reorientation classes to the termi-
nology of oriented matroids and show that they are dual in this sense.

Furthermore we reformulate the generating methods (flip flopsequences) for the dis-
tributive lattices in [7, 12] and show that they are essentially the same. Flip flop sequences
can be applied not only to directed graphs but to arbitrary sign matrices. As oriented ma-
troids can be displayed as sign matrices, we are indeed heading towards the desired gen-
eralization. Sign matrices still can be organized in directed graphs. In most cases these
graphs fail by large to be the graphs of distributive lattices. Actually we show that every
connected, loop-free, directed graph arises from a sign matrix, this way.

For positive, we find sufficient conditions on sign matrices,to generate digraphs that
are Hasse diagrams of distributive lattices. In addition weobtain a natural embedding into
the higher dimensional lattice of integers. As a corollary we obtain the distributivity of
the lattices in [7] and [12] together with an embedding into someZd. This result is based
upon the existence of a 2-basis of the cycle space and the cut space, respectively.
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INTRODUCTION 2

Then we put together what we have learned about flip flop sequences with a suitable
generalization ofα-reorientations to oriented matroids. This enables us to construct sign
matrices that produce posets on theα-reorientations of general oriented matroids. We
prove that a stronger analogy to the graph case in terms of cycle bases does only hold for
regular oriented matroids. So we specialize our analysis tothis class.

Seymour’s decomposition theorem for regular matroids [13]leads to the investigation
of the three splitters:

• The matroidR10 has a finite number of reorientations. We find generating setsfor
posets on the respectiveα-reorientations by computer enumeration.

• We investigate the structure ofα-reorientations ofgraphic oriented matroids.
From this we derive the main theorems of [7] and [12] as corollaries. Moreover
we give a precise description of the partial order on the Eulerian orientations of the
square torus grid.

• Theα-reorientations ofcographic oriented matroidscoincide dually with thec-
orientations in [12]. Therefore they carry the structure ofa distributive lattice, as
well.

Our last result is that every distributive lattice comes from the flip flop sequences of
theα-reorientations of a cographic oriented matroid. We describe the relations between
cographic oriented matroids that generate the same distributive lattice.



Chapter 1

Essentials

As already explained in the introduction, the aim of this thesis is to generalize results
obtained for planar graphs by Felsner in [7] and dual resultsfor general graphs by Propp
in [12]. We will introduce the fundamental terms and initialassumptions, that underlie
the whole thesis. Then we briefly present the results of [7, 12]. They will be phrased in a
language that is suitable for the generalization we are aiming for. We assume the reader to
be familiar with basic concepts of graphs, digraphs and partially ordered sets and refer to
[6] and [5] for good introductions, respectively. At the endof the chapter we will point out
the aspects we attempt to generalize and give a short previewof the following chapters.

Given an undirected graphG = (V,E) we call a directed graphD = (V,A) anorien-
tation of G if G is the underlying undirected graphD of D. For a directed graph denote
by δ+ the function that maps every vertex to the number of outgoingarcs, i.eδ(v) is the
outdegreeof v ∈ V .

v1 v1v2 v2

v3 v3

v4 v4

DG

Figure 1.1: The digraphD is a(2, 1, 1, 1)-orientation of the undirected graphG.

Let α ∈ ZV . We define the set of orientations

α-or(G) := {D = (V,A) | D = G andδ+ ≡ α}

as the set ofα-orientations of G.

3



CHAPTER 1. ESSENTIALS 4

In order to generalize the ideas in [7, 12], it turns out that considering reorientations
instead of orientations is convenient.

So given a directed graphD = (V,A) we can define the set ofα-reorientations of D
as

reorα(D) := {D′ = (V,A′) | D = D′ andδ+(D) ≡ δ+(D′)}.

Note that in the definition ofreorα(D) the letterα does not stand for a vector anymore.
As the information about the outdegree is already represented byD, theα stands for the
invariance of the outdegree among this set of reorientations.

The orientations of an undirected graph coincide with the reorientations of one of its
orientations. Thus one clearly has

reorα(D) = α-or(G) if and only ifD ∈ α-or(G).

D′′D D′

Figure 1.2: The digraphsD,D′ and D′′ are α-reorientations ofD and (2, 1, 1, 1)-
orientations ofG. Dashed lines stand for the reoriented arc sets with respectto D.

In [7] the question whether for givenG andα the setα-or(G) is empty is translated to
the construction of a maximal flow in another graph. One can obtain anα-orientation or a
certificate for the non-existence in polynomial time. In thesequel we will always assume
to have anα-orientation at hand. This is we can investigatereorα(D) instead ofα-or(G).

Before we begin to investigate it is useful to introduce someconcepts, that we will
frequently refer to.

We start with signed sets. We call a setX a signed setif it comes with an ordered
2-partitionX+ ⊔X− = X. We callX+ thepositive elementsof X andX− thenegative
elements. A signed set is calledpositively directed or negatively directedif the respec-
tive other part of it is empty. Denote by−X the signed set given by(−X)+ := X− and
(−X)− = X+. We writeX for the underlying unsigned set ofX. These two operations
can be applied elementwise to set of signed sets and will be denoted the same. Moreover
let A+ denote the set of positive signed sets of a setA of signed sets.

In the way one associates a(0, 1)-vector as incidence vector to a usual subset of some
ground set, one can display a signed set as a(1,−1, 0)-vector - itssigned incidence
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vector. We will often go back and forth between the concepts of (signed) sets and (signed)
incidence vectors. Sets of (signed) sets will also be understood as matrices, whose rows
correspond to the (signed) incidence vectors of the elementsets. In the signed case we
refer to such a matrix assign matrix.

One important sign matrix in the context of digraphs is theincidence matrix of a
directed graph D = (V,A). We denote it byInc(D). It has a row for every vertex and
a column for every arc ofD, such that the column labelled by the arca = (u, v) ∈ A
is eu − ev. Hereev stands for the vector that has a1 in the entry that corresponds to the
vertexv and zeros elsewhere.

For a directed graphD = (V,A) we call a signed arc setE ⊆ A a Eulerian of D if E
is in the kernel ofInc(D). Denote byD[E] the subgraph ofD induced by the arcs ofE. If
E is a Eulerian one has that the undirected induced graphD[E] has even degree on all its
vertices. Conversely every arc set with this property can besigned to become a Eulerian
of D. We call a Euleriandirected if its signed incidence vector is non-negative. IfE is a
directed Eulerian, thenD[E] is aEulerian orientation of D[E], i.e. every vertex inD[E]
has the same in- and outdegree. Conversely every unsigned arc setE, which induces a
Eulerian orientationD[E] can be signed to become a directed Eulerian ofD.

Denote byE(D) the set of Eulerians ofD and byC(D) the set of cycles - the minimal
elements ofE(D)\{∅} with respect to inclusion of the underlying set. Every Eulerian is
the disjoint union of cycles.

We already switched the view fromα-orientations toα-reorientations. Now, instead of
looking atreorα(D) as a set of directed graphs, we look at a reorientationD′ of D as the
arc set ofD which has to be reoriented in order to obtainD′. Due to this identification,
we can make a first observation.

Proposition 1. reorα(D) ∼= E+(D).

Proof. Let D′ ∈ reorα(D) andE ⊆ A the set of arcs that is reoriented fromD to D′.
Changing the orientation onE does not change the outdegree if and only if at every vertex
of D the numbers of incoming and outgoing arcs inE coincide. This isD[E] is a Eulerian
orientation ofD[E], i.e. E can be signed to become a directed Eulerian, i.e.E ∈ E+(D).

�

With Proposition 1 one easily sees, that the digraphs in Figure 1.2 are all theα-
reorientations ofD. The dashed arc sets are exactly those that can be signed to become
directed Eulerians ofD.

We will take advantage of Proposition 1 by working withE+(D) ∼= E+(D) as a subset
of the digraphs cycle space instead ofα-reorientations as a set of directed graph. The
cycle spaceof D is defined as the integral row spacespanZ(C(D)) or equivalently as the
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integral kernel of the incidence matrix ofD. As one has

E(D) = ker{−1,0,1}(Inc(D)) = spanZ(C(D)) ∩ {−1, 0, 1}|A|

we can consequently identify

E+(D) = ker{1,0}(Inc(D)) = spanZ(C(D)) ∩ {1, 0}|A|.

Now, we can regardreorα(D) as the set of(1, 0)-vectors in the cycle space. This has
some advantages.

First, it is a standard result, thatspanZ(C(D)) is a direct product of the cycle spaces of
the2-connected components ofD, so by Proposition 1 this holds for theα-orientations,
too. We can analyse them component by component and restrictourselves to the2-
connected components (blocks) ofD.

Second, Proposition 1 gives an interpretation of the following important notion. For
a directedD = (V,A) we call an arca ∈ A rigid if it has the same orientation in all
the members ofreorα(D). To us the arcs of interest are those which are not rigid. We
can delete the rigid arcs and obtain someD′. This new graph has a different outdegree at
some vertices. But, the sets of(0, 1)-vectorsE+(D) andE+(D′) can be identified. So the
α-reorientations ofD′ and theα-reorientations ofD coincide.

Now, the non-rigid arcs, are those contained in some subgraph induced by a directed
Eulerian. As Eulerians are disjoint sums of cycles, every such arc is contained in directed
cycle. As every arc of a directed graph is either contained ina directed cycle or in a
directed cut, the set of rigid arcs is the set of arcs that are contained directed cuts. So after
deleting the rigid arcs, we end up with a graph that has no directed cuts. In other words:
we can restrict our attention to strongly connected components ofD.

Hence, by Proposition 1, we can focus on the class of2-connected, strongly connected
directed graphs.

All we have done until now worked on general directed graphs,without any additional
properties. To present Felsner’s results, we take a look at aplanar digraphD given with
a crossing-free embedding in the plane (planar map). We wantto find a partial order
on reorα(D). Therefore we will assign directions to thoseα-reorientations, that can be
performed at members ofreorα(D), by reorienting facial cycles.

We orient all the faces of the embedding counter clockwisely(ccw). This leads to
a choice of orientation for thefacial cycles ofD - the boundaries of the faces of the
embedding. The ccw-orientation uniquely partitions everyfacial cycle into forward arcs
and backward arcs, by walking around the corresponding facein ccw-direction. We call
the set of facial cyclesF and the facial cycle, which is induced by the unbounded face,
the forbidden facial cycledenoted byX.
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Taking forward and backward arcs as positive and negative elements, respectively,
terms as positively and negatively directed specialize from general signed sets to facial
cycles.

To establish an order onreorα(D) we introduce specialα-reorientations ofD. Re-
versing the orientation on the arc set of a positively directed facial cycle is called aflip .
Reversing the orientation on the arc set of a negatively directed Eulerian is called aflop.
As in both cases the reoriented arc set lies inE+(D) one cannot leavereorα(D) by flip-
ping and flopping facial cycles. The flip and the flop will be understood as going up and
going down, respectively, inreorα(D). Felsner’s Theorem says that indeed every arc set
in E+(D) can be reoriented by a sequence of flips an flops of facial cycles. To capture
the consecutive application of flips and flops and the resulting partial order, we define the
following.

Let D be planar ccw embedded digraph with facial cyclesF and forbidden facial cycle
X. A flip flop sequence based atF\{X} is a sequence(Fs(1), . . . , Fs(k)) of elements of
F\{X} such that for every1 ≤ i ≤ k after reorientingFs(1), . . . , Fs(i−1) the next cycle
Fs(i) can be flipped or flopped in the resulting digraph.

We can now establish a partial order onD’s α-reorientations the following way. Let
D′, D′′ ∈ reorα(D). DefineD′ ≤ff D′′ if there is a flip sequence of bounded facial cycles
of D′ that transformsD′ to D′′.

In [7] Felsner proves:

Theorem 1. LetD = (V,A) be a strongly connected directed graph, given with a cross-
ing free planar embedding. Denote byX the facial cycle induced by the unbounded face.
Then

• Everyα-reorientation ofD can be obtained fromD by a flip flop sequence based
atF\{X}.

• Moreover the resulting partial order(reorα(D),≤ff) is a distributive lattice.

Proof. The proof of the first part of Theorem 1 works by induction on the area that is
enclosed by the directed EulerianE, corresponding to the desiredα-reorientation ofD.
If the area ofE is minimal it is a facial cycle, hence can be flipped or flopped.If the
area enclosed byE is not minimal, by strong connectivity,E contains a directed path
which cuts the area ofE into two disjoint parts, enclosed by EuleriansE ′ andE ′′. One of
both is directed and can be reoriented by the induction hypothesis. Afterwards the other
one is directed and can be reoriented by the same argument. Soby inductionE can be
reoriented by a flip flop sequence of bounded facial cycles.
We will not restate the proof of the second part of Theorem 1, as car-
ried out in [7]. It works with an order isomorphism to a set of po-
tential functions. We will prove this statement differently in Theorem
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3.6.7. Anyways potential functions will come up again in Chapter 4.
�

The distributive lattice on theα-reorientations of our example from Figure 1.2 is a
3-path with minimumD and maximumD′′ as displayed in Figure 1.3.

D

D′

D′′

A
AB

B

Figure 1.3: Distributive lattice on theα-reorientations ofD. The generating facial cycles
A andB induce an arc labeling.

A bigger example of a strongly connected planar digraph together with the distributive
lattice on itsα-reorientations is depicted on the cover of this thesis.

We will now have a look at the results in [12]. The objects investigated there are dual
to the settings treated until now. This duality is in terms oforiented matroids, see Chapter
3.5.

Figure 1.4: Primal and dual (dashed) planar digraphs.

In the case of oriented matroids that come from planar digraphs matroid duality coin-
cides with usual duality of planar digraphs. Duality of planar digraphs is duality of the
underlying graphs together with duality on the arc orientations. We map a forward arc of a
ccw facial cycle to an outgoing arc of the corresponding dualvertex, as depicted in Figure
1.4. There are possibly several ways to embed the planar dualof a graph. We just pick
one of them. We regard the consecutive application of duality as switching between the
two underlying graphs, while changing the arc orientationsaccording to the above rules.
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Note that in contrast to duality of undirected graphs, the directed version is no involution
anymore.

By duality of planar digraphs, the objects and properties treated until now translate as
follows:

strongly connected! acyclic
directed Eulerian! directed cut

facial cycle! vertex cut
α-reorientation! c-reorientation

There are two concepts in the above table that still shall be defined:

We understand acut as an arc setA(X,X) induced by a 2-partiton(X,X) of the vertex
set. The cut consists of all the arcs that are incident toX andX. We sometimes refer to
X andX as thesides of the cut. A cut isdirected if either all its arcs point fromX to X
or from X to X. A cut is called avertex cut if X consists of a single vertex. The set of
cuts of a digraph, seen as sign vectors, is integrally spanned by the vertex cuts. The set of
non-empty inclusion minimal cuts is denoted asC∗.

To definec-reorientations letD = (V,A) be a directed graph with some fixed basisC

of cycles of its cycle space. LetcD ∈ ZC count the number of forward arcs in the cycles
of C. We call

reorc(D) := {D′ = (V,A′) | D′ = D andcD′ ≡ cD}

the set ofc-reorientations ofD.

Flip flop sequences of vertex cuts are defined analogously to flip flop sequences of
facial cycles.

So dualizing the statement of Theorem 1 according to the above rules we obtain the
following:

Theorem 2. LetD = (V,A) be an acyclic directed graph given with a planar embedding.
Letv ∈ V be an arbitrary fixed vertex. Then

• Everyc-reorientation ofD can be obtained fromD by a flip flop sequence of vertex
cuts different from the vertex cut induced byv.

• Moreover(reorc(D),≤ff) is a distributive lattice.

Here the vertex cut ofv corresponds to the unbounded faceX of an embedding of the
primal graph.

Actually the more general theorem proved in [12] says that inthe dual setting planarity
is no longer needed.
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Theorem 3. LetD = (V,A) be an acyclic directed graph. Andv ∈ V an arbitrary fixed
vertex. Then

• Everyc-reorientation ofD can be obtained fromD by a flip flop sequence of vertex
cuts without using the vertex cut ofv.

• And moreover(reorc(D),≤ff) is a distributive lattice.

Proof. Both parts of the theorem will be corollaries of later results with
different proof ideas, even if some similarities come up in Section 4.

�

One might think now that using duality one can show the statement of Theorem 1 for
non-planar graphs. This is not the case. The duality betweenthe concepts at concern is
purely combinatorial in terms of oriented matroids (see Chapter 3.5), which exactly in
the case of planar graphs coincides with topological duality. So application of duality to
Theorem 3 gives an analogue of Theorem 1 on cographic oriented matroids.

The main purpose of this work is to generalize the presented concepts, methods and
results. We pursue this with respect to three concepts:

• The concept ofα-reorientations will be generalized to oriented matroids (Chapter
3)

• The generating method given by flip flop sequences will be generalized to sign
matrices, which specialize to oriented matroids (Chapter 2).

• The proof method of Theorem 1, which relies on an induction onthe area of Eu-
lerians, will be applied to2-cell-embeddings of digraphs on arbitrary orientable
surfaces (Section 3.6).

These steps together enable us to prove Theorem 1 and Theorem3 as corollaries of the
more general Theorem 2.2.3 and Theorem 3.6.7.

The following preview is a bit more elaborate:

• In Chapter 2 the definition of flip flop sequences will be transfered from signed
incidence vectors of cycles or cuts to arbitrary sign vectors. The resulting structures
are connected loop-free digraphs instead of distributive lattices. In fact we can
prove, that every connected loop-free digraph arises from the flip flops of a set of
signed sets.

As a main feature of the application of flip flops to arbitrary sign matrices a neces-
sary condition to generate a distributive lattice will be proved. The distributivity of
the posets in Theorem 1 and Theorem 3 is covered by this result(Corollary 2.2.6).
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• In Chapter 3 the concept ofα-reorientations will be generalized to the language of
oriented matroids.

1. In Section 3.1 we introduce some basic facts, definitions and notation from
oriented and ordinary matroid theory.

2. In Section 3.2 several problems of a possible transcription of the concept ofα-
orientations to oriented matroids will be discussed. We establish a generaliza-
tion of α-reorientations. Some first observations concerningα-reorientations
will be provided.

3. In Section 3.3 we justify why further consideration will be restricted to the
class of regular oriented matroids. A necessary condition for a set of circuits
to generate allα-reorientations of such matroids will be given. Seymour’s
decomposition theorem for regular matroids gives rise to certain lines of in-
vestigation, treated in the following sections of the thesis.

4. In Section 3.4 we briefly mention the structure ofα-reorientations of the reg-
ular splitterR10. By computer enumeration we disprove sufficiency of the
necessary condition on a generating system for theα-reorientations, given in
Section 3.3.

5. In Section 3.5 we will make explicit how the set ofc-reorientations of a di-
graph and therefore Theorem 3 dualizes to a theorem aboutα-reorientations
of cographic oriented matroids.

6. In Section 3.6 theα-reorientations of graphic oriented matroids will be inves-
tigated. This problem can be stated in terms of non-planar graphs. Application
of the proof method of the first part of Theorem 1 leads to a theorem having
the first parts of Theorem 1 and Theorem 3 as corollaries. Someexamples,
negative results as well as positive results (Section 3.7) will be provided.

• In Chapter 4 we investigate more aboutα-orientations of cographic oriented ma-
troids. It will be shown that every distributive lattice comes from theα-orientations
of a cographic oriented matroid. As several of oriented matroids can produce the
same lattice, their structure will be explored.



Chapter 2

Order Structure from Flip Flops

In the present chapter we will generalize the idea of flip flop sequences. In Chapter 1 we
have looked at flip flop sequences of sets of cycles or cuts of a digraph. Here we will look
at flip flop sequences on a wider set of oriented structures. Weconsider arbitrary finite
multisets of signed sets, displayed as sign matrices.

In Section 2.1 we will define flip flop sequences and flip flop graphs. The latter spe-
cializes back to be the Hasse diagram of a distributive lattice in Theorem 1 and Theorem
3. But the class of flip flop graphs is bigger. After some first observations we obtain that
every connected loop-free digraph is a flip flop graph.

Section 2.2 will consider flip flop posets and the question howone can force them
to have additional properties. We particularly investigate embedding properties into the
lattice of integers and distributivity of the flip flop poset.As a corollary we obtain the
distributivity of the lattices in Theorem 1 and Theorem 3.

2.1 Directed Graphs from Flip Flop Sequences

We recall some terms that have already been used in Chapter 1.Let B be anm×n matrix
with entries from{1,−1, 0}. ThenB is called asign matrix. Through the entire work
we consider sign matrices which have no zero rows. We call a vector whose entries are
from {1,−1, 0} asign vectoror (1,−1, 0)-vector. A sign vector is said to bedirected if
it is either non-negative (positively directedor (0, 1)-vector) or non-positive (negatively
directed or (0,−1)-vector). We will denote the all zeroes and the all ones vector by0

and1, respectively.

For any vectorv ∈ Rn denote bysgn(v) its signed support vector and bysupp(v)
its unsigned support vector. Furthermore letdiag(v) denote then × n sign matrix with

12
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the support ofv on its diagonal. Denoting byI the n dimensional identity matrix, the
(column) reorientation of B with respect to v denotedBv is defined as the matrix
B(I − 2diag(v)). This means thatBv is obtained fromB by switching signs in all the
columns whose index corresponds to a non-zero entry ofv. Actually we will refer to
column reorientations by saying just reorientations, whenno confusion is ahead. We
refer more specificly to row reorientations, when they are about to come up.

If r is a positively directed row ofB, the operationB  Br is called aflip . The
inverse operation (ifr is a negatively directed row ofB) is called aflop. A consecutive
application of flips and flops can be understood as(. . . ((Brs1 )rs2 ) . . .)rsk , where for each
1 ≤ i ≤ k thesith row of (. . . ((Brs1 )rs2 ) . . .)rsi−1 is directed. Actually this notation can
be changed to a more convenient one asBs1,...,sk or just asBs with s = (s1, . . . , sk) and
leads to the following definition.

For anm × n sign matrixB without zero rows, a sequence of lengthk of row indices
s : [k] 7→ [m] is calledflip flop sequence based at Bif for each1 ≤ i ≤ k thesith row
of Bs1,...,si−1 is directed.

This definition clearly generalizes flip flop sequences of facial cycles as defined in
Chapter 1. The difference is that we broadened the set of objects we are applying flip
flop sequences to. The next lemma and proposition together give an equivalent way of
describing flip flop sequences. It enables us to recognize flipflop sequences based atB
without reorientingB.

Lemma 2.1.1.Let B be a sign matrix ands = (s1, . . . , sk) any sequence of row indices
of B. Furthermore letbinsum(s) := (supp(rs1

) + . . . + supp(rsk
)) mod 2 denote the

binary sum of s. ThenBs = Bbinsum(s) holds.

Proof. We can prove this componentwise. We use, that for a sign vector application of
the support function is the same as applying the absolute value function componentwise.
For integersx1, . . . , xl we have

(|x1| + . . . + |xl|) mod 2 = (|x1 + . . . + xl|) mod 2.

So the vector binsum(s) carries exactly the information whether a col-
umn of B has been multiplied with −1 an odd or an even num-
ber of times to get the resultingBs. This totally describes Bs.

�

Proposition 2.1.2.LetB be anm×n sign matrix ands : [k] 7→ [m] a sequence of length
k of row indices ofB. Thens is a flip flop sequence based atB if and only if there exists
a functionσ : [k] 7→ {+,−} such that for each1 ≤ i ≤ k the sum of rows ofB given by
Σi

j=1σ(j)rsj
is a (0, 1)-vector.

In this caseσ is uniquely determined bys andB. MoreoverBs = BΣk
j=1

σ(j)rsj .
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Proof. The functionσ reflects whether a flip(+) or a flop(-) is performed. We proceedby
induction onk.
For the casek = 1 the equivalence is obvious by the definition of flip flop sequence based
atB.
If k > 1 we must be prove thatr′sk

is a positively (negatively) directed row ofBs1,...,sk−1

if and only if there is aσ(k) ∈ {+1,−1} such that(Σk−1
j=1σ(j)rsj

) + σ(k)rsk
) is a

(0, 1)-vector. Because of symmetry we will only prove the equivalence ofr′sk
being a

positively directed and(Σk−1
j=1σ(j)rsj

) + rsk
) being a(0, 1)-vector.

Sor′sk
is a positively directed row ofBs1,...,sk−1 if and only if all the columns wherersk

has a negative sign have been reoriented an odd number of times and those wherersk

has a positive sign have been reoriented an even number of times. This, by induction
hypothesis, is equivalent to(Σk−1

j=1σ(j)rsj
) having positive entries wherersk

has neg-
ative entries, and0-entries wherersk

has positive entries. This is the same as saying
(Σk−1

j=1σ(j)rsj
) + rsk

is a(0, 1)-vector.
As (Σk−1

j=1σ(j)rsj
) and rsk

both are (0, 1)-vectors, the equation could equally
have been stated overF2. With the induction hypothesis Lemma 2.1.1 gives
B(Σk−1

j=1
σ(j)rsj

)+σ(k)rsk = Bbinsum(s) = Bs.
Obviously if one of the two choices forσ(k) gives a (0, 1)-vector,
as zero rows are forbidden, the other does not, soσ is unique.

�

Proposition 2.1.2 leads to the following observations and definitions:

A possible view at flip flop sequences is to putσ(1)rsj
, . . . σ(k)rsk

in ordered this way
as rows into a new matrix. Thens is a flip flop sequences with associated functionσ if and
only if the resulting matrix is a column-alternating sign matrix, where in every column the
first non-zero entry is positive. We will make no explicit useof this view, but sometimes
it might be convenient to have it at hand.

Let s be a flip flop sequence based atB of length k, then thesign sum of s is
sgnsum(s) := (Σk

j=1σ(j)rsj
), whereσ : [k] 7→ {+,−} is the unique function associ-

ated tos, according to Proposition 2.1.2.

For a sign matrixB denote byFF(B) the set of all flip flop sequences based atB. We
can now definethe flip flop spanof B asff(B):= {sgnsum(s) | s ∈ FF(B)} ⊆ {0, 1}n.
Every vector inff(B) stands for a reorientation ofB.

Recall that Theorem1 states thatff(F\{X}) = reorα(D) for a planar strongly con-
nected digraph. Moreover we have that

reorα(D) ∼= E(D)+ ∼= spanZ(C) ∩ {0, 1}|A| = spanZ(F\{X}) ∩ {0, 1}|A|.

Switching back to sign matrices this generalizes to the question, howff(B) does look like
with respect tospanZ(B) ∩ {0, 1}n?
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Define for a flip flop sequences of lengthk the integral support of s by z(s) :=
Σk

i=1(σ(i)esi
) . Obviouslysgnsum(s) = z(s)TB, soff(B) is a subset of the set of all

(0, 1)-vectors in the(integral) row space ofB, i.e. ff(B) ⊆ spanZ(B) ∩ {0, 1}n.

This inclusion can be strict. Consider for instance:

B :=




1 1 0 1
0 1 1 0
1 1 1 1


 .

The flip flop span ofB does not contain the element(010) ∈ spanZ(B) ∩ {0, 1}3. The
elements offf(B) are depicted in Figure 2.1 as the vertex labels of the flip flop graph of
B.

With view at the second part of Theorem 1, we want to establisha directed structure
on the flip flop span. Theflip flop graph of B is defined asDff(B) = (V,A), where the
verticesV correspond to the elements offf(B). They can be regarded as labelled byff(B).
Whenever it is clear that we talk about a flip flop graph we will not always distinguish
between the vertices and the corresponding elements offf(B). So as a first example of
this abuse, we define the arc setA(Dff(B)) of Dff(B) by

(v, w) ∈ A(Dff(B)) :⇔ w − v is a row ofB.

(0000)

(1111)(1101)

(1001)

(0110)

(0010)

Figure 2.1: Flip flop graph of the matrixB. Vertices are labelled with the corresponding
elements of the flip flop span.

The definition of the arc setA(Dff(B)) gives rise to a coloringc : A(Dff(B)) → [m]
of the arcs by the row numbers ofB. Several arcs can have the same color. Look-
ing at Proposition 2.1.2 one can describe every flip flop sequence s based atB as a
walk in Dff(B). Its initial vertex is the zero vertex and its end vertex is the one la-
belled with sgnsum(s). The ith arc in the walk is colored with a row that equals
sgnsum(s1, . . . , si)− sgnsum(s1, . . . , si−1). The arc is forward with respect to the walk
if the associatedσ-function hasσ(i) = + and backward otherwise.

We call a flip flop sequences directed if σ is constant. Ifσ is constant and positive we
call s aflip sequence. In the negative case, we call it aflop sequence.
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Lets now look back to the introduction and convince ourselves that the we have reached
a generalization of the concepts presented there.

TakeB as the sign matrix whose rows are the signed incidence vectors of the ccw-
oriented bounded facial cycles of a strongly connected planar digraph. Theorem 1 says
thatff(B) = reorα(D) and that the transitive closure ofDff(B) is a distributive lattice.

With B like that by Proposition 1 we havespanZ(B) ∩ {0, 1}n = reorα(D). So in
order to generalize Theorem 1 we must investigate two things:

• Under which conditions is the transitive closure ofDff(B) a distributive lattice?

• How can we guarantee thatff(B) = spanZ(B) ∩ {0, 1}n?

An analogous reformulation of Theorem 3 in terms of flip flop span and flip flop graph
is also possible. Just take the signed incidence vectors of all but one vertex cut as the rows
of B.

Nevertheless, the flip flop structure defined in the present section is more general as the
following theorem illustrates. We switch the point of view and ask whether a given graph
is the flip flop graph of a sign matrix.

Theorem 2.1.3.For every loop-free connected directed graphD = (V,A), there is a sign
matrixB such thatD = Dff(B).

Proof. Let D = (V,A) be a connected directed graph without loops. We pick an arbitrary
v ∈ V (D) and construct a matrixB such thatD =ff (B) andv corresponds to the zero
vector inff(B), i.e. the trivial reorientationB of B. We will prove that one solution of this
problem is given byB := Inc(D)T (2diag(ev)−I) - the transpose ofD’s incidence matrix,
where all the columns corresponding to vertices different fromv have been multiplied by
−1.

We prove this result twice. The first proof is more descriptive. The second one is more
formal and includes the stronger statement thatff(B) = spanZ(B) ∩ {0, 1}n.

First proof:
Let B := Inc(D)T (2diag(ev) − I). Denote byba the row ofB that corresponds to an
arca ∈ A(D). The matrixB is oriented in such a way that the positively directed rows
are exactly thoseba with a = (v, ·). The negatively directed rows are exactly thoseba

with a = (·, v). The remaining rowsba with a = (u,w) equalew − eu, thus cannot be
flipflopped.
Now, flippingba with a = (v, w) leads to the matrixBba . In Bba the vertexw has exactly
the particular role, thatv played inB.
We identifyB with v andBba with w. The arc ofDff(B) coming from the flip ofba can
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be identified witha. Flopping a row leads to the analogue situation.
So standing now atw we can flop back tov or reach any other neighbor ofw by flip
flopping the corresponding row.
By connectivity ofD this way every vertex ofD can be represented inDff(B).

To convince ourselves that none of the vertices ofD is represented multiply. We show
that cycles inD correspond to cycles inDff(B).
If X is the signed incidence vector of a cycle inD we have Inc(D)X =
0. But as only rows of Inc(D) are reoriented to obtainB, the sign sum
of the rows of B that correspond to the elements ofX gives 0 as well.

�

Second proof:
Again, letB := Inc(D)T (2diag(ev) − I). In order to proveV (D) = ff(B) we must find
a labelingl of V (D) that is a bijection ofV (D) andff(B). So for anyw ∈ V (D) define
l(w) := (ev + ew) mod2. This mapping is obviously injective. It remains to show, that
its image is exactly the flip flop span ofB.
We start with provingl(V (D)) ⊆ ff(B) :
Takew ∈ V (D) and letd(w) denote its distance fromv. We proceed by induction on
d(w).
If d(w) = 0 thenw = v andl(v) = 0 ∈ ff(B).
If d(w) = 1 the vectorl(w) is a directed row ofB, sol(w) ∈ ff(B).
If d(w) > 1 look at a vertexw′ which precedesw in a shortest path fromv to w. By
induction hypothesisl(w′) = ev + ew′ ∈ ff(B). We have to check the two (not necessarily
disjoint) cases(w′, w) ∈ A(D) and(w,w′) ∈ A(D). Assume(w′, w) ∈ A(D) then by
the definition ofB the vectorew − ew′ is a row ofB. So we have

l(w) = ev + ew = l(w′) + ew − ew′ ∈ ff(B).

The case(w,w′) ∈ A(D) is analogue.
Now, in order to provel(V (D)) ⊇ ff(B) we prove the stronger

l(V (D)) ⊇ spanZ(B) ∩ {0, 1}n.

So letΣλibi be any (integral) linear combination of rows ofB such that the sum is a
(0, 1)-vector. Write the numbersλi like flows on the arcsai associated to the rowsbi. For
everyw ∈ V denote byx(w) := Σai=(.,w)λi − Σai=(w,.)λi the excess ofw. For a flow on
a directed graph one hasΣw∈V x(w) = 0. In our case, the fact thatΣλibi is a(0, 1)-vector
translates to the following two conditions inD:

• for every vertexw 6= v we havex(w) ∈ {0, 1}.

• for v we havex(v) ∈ {0,−1}.



CHAPTER 2. FLIP FLOPS 18

So byΣw∈V x(w) = 0 we have thatΣλibi is either zero or equalsev +ew for somew ∈ V .
This isΣλibi ∈ l(V (D)).
It remains to showA(D) = A(Dff(B)). We omit the proof as it is a forward application
of the given vertex labelingl to the arc defining property

(v, w) ∈ A(Dff(B)) :⇔ w − v is a row ofB.

�

We have seen that every connected loop-free digraph is a flip flop graph. But one such
graphD can be the flip flop graph of several matricesB. How can we distinguish different
ways to flip flop generate the same graph?

Look at the arc coloringc : A(Dff(B)) → [m] of the arcsDff(B) by the row numbers
of B. If two arcs have a vertex in common, they have different colors. The coloring
partitions the arc set ofDff(B) into a set of matchings. One could say, that two sign
matrices are ”essentially the same” if they induce the same matching partition. It is an
open question, how the different matching partitions that arise from the flip flop structure
could be characterized.

The matching partition induced by the matrix in Theorem 2.1.3 is the trivial one, i.e.
every arc is a matching. Any matching partition consists of at least maximum degree
many matchings. Together we obtain that the minimal number of rows of a sign matrix
B, that generates a given graphD, lies between its maximal degree and its number of
arcs.

2.2 Posets from Flip Flop Sequences

Now we turn back to our original aim, that is to find matrices orconditions on matrices
that generate ”nice” flip flop graphs. Particularly we want toinvestigate flip flop posets,
which can be defined as the transitive closure of acyclic flip flop graphs..

A first step is the following.

LetB be anm×n sign matrix andc a sign vector of lengthm. The(row) reorientation
of B with respect to c is the matrixBc := (I − 2diag(c))B, which differs fromB only
by multiplying the set of rows wherec has a non-zero entry with−1.

Proposition 2.2.1.For everym×n sign matrixB without 0-rows, there is a(0, 1)-vector
c of lengthm, such thatDff(Bc) is acyclic andff(B) = ff(Bc).

Proof. We can use the much stronger fact, that every loop-free oriented matroid has
an acyclic orientation, see [1]. AsB has no 0-rows, applying this to the row space
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of B gives us, that there is a row reorientationBc, such that there are no positive lin-
ear dependences among the rows ofBc. This means in particular that we will not
have flip flop sequencess with sgnsum(s) = 0, whose associatedσ function is con-
stant. In other words, row reorientingB, we obtain an acyclicDff(Bc), which dif-
fers from Dff(B) only by orientation of arcs, thus has the same flip flop span asB.

�

Proposition 2.2.1 particularly tells us that aB with linearly independent rows generates
an acyclic flip flop graph.

If Dff(B) is acyclic we call the transitive closure ofDff(B) the flip flop poset of B
denoted byPff(B).

Posets can be order embedded into someZd with the dominance order. We now want
to investigate under which conditions the flip flop structureleads to an order embedding
of Pff(B) into Zm. Denote byFF the set of flip flop sequences based atB. Mapping a flip
flop sequences to its integral supportz(s) with respect toB, we obtain a mapping ofFF
into Zm. We will now investigate if the integral supports ofFF somehow geometrically
representPff(B).

One can ask whether the partial orderPff(B) has anything to do with the dominance
order≤dom on z(FF) ⊆ Zm. A positive awnser to this question would be that the map
sgnsum ◦ z−1 : z(FF) → sgnsum(S) is an order preserving bijection, i.e. that for any
s, s′ ∈ FF the following two conditions are satisfied:

(i) sgnsum(s) = sgnsum(s) ⇔ z(s) = z(s′)

(ii) sgnsum(s) <ff sgnsum(s′) ⇔ z(s) <dom z(s′)

In this case we say thatPff(B) is integral.

It is easy to see that everyPff(B) satisfies the ”⇐” direction of (i) and that(i) implies
the ”⇒” direction of (ii).

The rest is not generally satisfied as illustrated by the following examples:

In Figure 2.2(a) we see the Hasse diagram of

Pff(




1 0 1 0
1 1 0 0
0 −1 0 1
0 0 −1 1


),

which satisfies(ii) but not(i) at the top element.



CHAPTER 2. FLIP FLOPS 20

(a) (b)
0000

1000 0100

1001 0110

000

100
010

111

011

-110

Figure 2.2: Examples of non-integral flip flop posets. (Multiple) vertex labels stand for
integral supportsz of corresponding flip flop sequences. Figure(a) satisfies(ii) but not
(i). Figure(b) satisfies(i) but not(ii)

Figure 2.2(b) is the Hasse diagram of

Pff(




1 0 0 0
1 1 0 1

−1 −1 1 0


).

It satisfies(i) but not(ii), which can be seen by the incomparability of the two vertices
labelled with(111) and(100), respectively.

Integrality of a flip flop posetPff(B) means that the function(sgnsum ◦ z−1)−1 exists
and is an order embedding ofPff(B) into Zm. Thedimension of a posetP is the minmal
d such thatP can be embedded intoZd. So if aP is ismorphic to some integralPff(B) its
dimension is bounded from above by the row numberm of B.

A property of the embedding given by(sgnsum ◦ z−1)−1, which suggests that its di-
mension is generally bigger than the dimension of the poset,is the following:

Proposition 2.2.2. If Pff(B) is an integral flip flop poset the elements of the embedding
into Zm via (sgnsum ◦ z−1)−1 are convex independent, i.e. are the vertices of a polytope.

Proof. The proof works by elementary arguments of polytope theory.
As we do not make any use of the result, the proof will be omitted.

�

Next we want to characterize thosePff(B) that are integral and distributive lattices. In
order to do so we prove a slightly more general theorem, that needs one more term to be
introduced.

Given a directed graphD = (V,A) with an arc coloringc : A → [k] we define the
colored incidence vectorof a signed arc setX as

c(X) = (| X+ ∩ c−1(i) | − | X− ∩ c−1(i) |)1≤i≤k.
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As usual, we will see forward arcs as positive elements of an arc set and backward arcs as
negative elements.

Before stating the theorem note the following: Color the arcs of a flip flop graph with
the row numbers of the rows they correspond to. The colored incidence vector of a path
corresponds to the integral support vector of the flip flop sequence, that is represented by
the path.

Theorem 2.2.3.LetP be a poset. There is an order isomorphismφ fromP to a distribu-
tive latticeL ⊆ Zk such thatp ≺ q ⇔ φ(q) − φ(p) = ei for somei ∈ [k]

if and only if

P is the transitive closure of an acyclic directed graphD = (V,A) that admits an arc
coloring c : A → [k], which satisfies the following conditions. For everyu ∈ V :

∨
1: (u, v), (u,w) ∈ A ⇒ c(u, v) 6= c(u,w)

∨
2: (u, v), (u,w) ∈ A ⇒ ∃(v, x), (w, x) ∈ A : c(u, v) = c(w, x) andc(u,w) = c(v, x)

∧
1: (v, u), (w, u) ∈ A ⇒ c(v, u) 6= c(w, u)

∧
2: (v, u), (w, u) ∈ A ⇒ ∃(x, v), (x,w) ∈ A : c(v, u) = c(x,w) andc(w, u) = c(x, v)

In this case the coloring and the embedding can be chosen suchthat

φ(q) − φ(p) = ei ⇔ c(p, q) = i.

Proof. ”⇒”:
Let P be a distributive lattice embedded into(Zk,≤dom) via φ such that

p ≺ q ⇔ φ(q) − φ(p) = ei for somei ∈ [k].

DefineD to be the Hasse diagram ofP . The arc(p, q) in D corresponds to the relation
p ≺ q in P . Define the arc coloringc such that(p, q) ⇔ φ(q) − φ(p) = ec(p,q).
SinceD has no parallel arcs

∨
1 and

∧
1 are clearly satisfied.

To see
∨

2 take two arcs(u, v), (u,w) ∈ A. We have

φ(v) − φ(u) = ei 6= ej = φ(w) − φ(u).

Take x := v ∨ w so in the dominance orderφ(x) is the componentwise maximum
max(φ(v), φ(w)). This is,φ(x) − φ(v) = ej andφ(x) − φ(w) = ei. So in terms of
c we havec(u, v) = c(w, x) = i andc(u,w) = c(v, x) = j.
Property

∧
2 follows analogously.
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”⇐”:
Let D = (V,A) be a connected acyclic digraph that admits an arc coloringc : A → [k],
which satisfies

∨
1,

∨
2,

∧
1, and

∧
2. And letP be the transitive closure ofD. The idea of

how to embedP into (Zk,≤dom) is to defineφ(v) := 0 for somev ∈ V . Now, given any
otherw ∈ V and a(v, w)-pathQ in D we defineφ(w) := c(Q), as the colored incidence
vector ofQ.
A priori it is not even clear thatφ is well-defined.

The proof consists of three parts:

1. We introduce the switch operation, that consists of the iterated application of
∨

1

and
∨

2. Givenu, v, w ∈ V , a directed(u, v)-pathQ and a directed(u,w)-pathR
in D it constructs an elementx ∈ V , a directed(v, x)-pathS and a directed(w, x)-
pathT in D.
Moreover we prove thatc(Q) + c(S) = c(R) + c(T ) = c(Q) ∨dom c(R).
So this construction is a generalization of

∨
2 in the sense that, assumingφ to give

an order embedding ofP , x corresponds to the join ofv andu.
An analogue construction can be done for the iterated application of

∧
1 and

∧
2.

2. Using the switch operation we show, thatφ is a well-defined injective function.

3. Using1. and2. we show thatφ is order-preserving.

These three together give thatP is isomorphic viaφ to a subposet of(Zk,≤dom), which
is closed with respect do∨dom and∧dom. This implies thatP is distributive.

We start with proving1.
So takeu, v, w ∈ V , a directed(u, v)-pathQ and a directed(u,w)-pathR in D. Applying∨

2 iteratively from u on, until
∨

2 cannot be applied anymore, one obtains a grid as
depicted in Figure 2.3. Parallel arcs have the same colour.

Whenever
∨

2 has been applied to two differently colored arcs ofD the resulting two
arcs are also arcs ofD.
But when we encounter a situation, where

∨
2 has been applied to two arcs with the same

colour, property
∨

1 tells us that the equally colored arcs, must indeed be the same. So all
the arcs that are parallelly above these two equally coloredarcs do not exist inD.
We repair all these situations in some order that respects the dominance order of the2-
dimensional grid, seeingu as the minimum. In Figure 2.4 the corresponding vertices are
drawn bigger.
So standing at a vertex which is left by two arcs with same colour, we colour the arcs that
resulted from the wrongly applied

∨
2 with 0. Moreover all the parallel arcs above these

arcs will be colored with0 as well. We obtain a picture exemplified by Figure 2.4.
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Figure 2.3: Formal completition of the pathsQ andR to a square grid. The arcs are
labeled with their colour.

We can now contract all the arcs which are colored with0 and delete resulting parallel
arcs. We call the obtained graphD′. We want to prove that the directed(v, x)-pathS and
the directed(w, x)-pathT of D′ are also inD.

So first we prove that the graphD′ can mapped homomorphically to a subgraph ofD.
We show that every vertex ofD′ is either the top vertex of alegal squarein the sense of∨

1,2 and
∧

1,2 or is inQ or R.

Before any 0-arc is contracted this condition is satisfied byall the vertices but those
bad verticeswhich lie above one of the vertices, where we started a parallel 0-coloring.
We call the square below a bad vertex anillegal square. See Figure 2.5.

We show that starting with the formal grid in Figure 2.3 we cancontract 0-arc by 0-arc,
such that whenever we destroy a legal square below some vertex, this situation can be
repaired by contracting another 0-arc. At the end every vertex the top vertex of a legal
square inQ or R.
Every 0-arc is contained in one or two squares. So if we contract a 0-arc we harm at most
two legal squares. But if a legal square is harmed by contracting a 0-arc it must contain
another parallel 0-arc because it was legal. We can contractthis other 0-arc in order to
repair the situation. We then obtain an equally colored double arc. Delete one of both.
If the remaining one is 0-arc it is clearly again contained inat most two squares. The
remaining vertices of the former square, were top vertices of legal squares before. So
they still are or they can be repaired.
If we harm one of the legal squares, we just leave it like that.
So after contracting all the 0-arcs we have not obtained new bad vertices. Moreover the
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Figure 2.4: Arcs with0-colour result from wrongly applied
∨

2 and can be contracted.
Resulting parallel arcs are deleted.

a

a aa

b

b

00

a 6= b or a = b = 0 a = b 6= 0

Figure 2.5: Legal and illegal squares in the proof of1.

contraction of the 0-arcs in an illegal square identifies thebad vertex on its top with the
ones on the sides, which are not bad.
So every vertex inD′ lies in Q or R or in a legal square. This means that all the vertices
and arcs ofD′ result from application of

∨
2 to differently colored arcs ofD (starting with

Q andR). Thus the vertices ofD′ are vertices ofD and if two are connected by an arc,
so they are inD. SoD′ can be mapped homomorphically to a subgraph ofD.

One vertex ofD can possibly occur several times inD′, i.e the homomorphism is
possibly not injective. But by acyclicity ofD such different representatives of a vertex
of D in D′ cannot lie on a common directed path inD′. SoS andT are indeed directed
paths inD.

We still want to prove how the colored incidence vectors of the new pathsS andT look
like.
Observe that the points where we repaired the grid by coloring arcs with0 corresponds to
arcs of a maximum matching that identifies equally colored arcs ofQ andR. The number
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of arcs in such a matching that correspond to a fixed colouri is min(c(Q)(i), c(R)(i)).
As T andS differ from Q andR respectively only by contracting the0-colored arcs, we
obtainc(T ) = c(Q) − (c(Q) ∧dom c(R)) andc(S) = c(R) − (c(Q) ∧dom c(R)). This
impliesc(Q) + c(S) = c(R) + c(T ) = c(Q) ∨dom c(R).
It should be clear that interchanging

∨
s and

∧
s everywhere an analogue construction can

be performed ifu, v, w ∈ V , a directed(v, u)-pathQ and a directed(w, u)-pathR are
given.
During the rest of the proof we call the concatenated path(T,−S) that results from our
construction applied toQ andR, theswitch of the path(Q,−R). By the above construc-
tion (T,−S) has less or equal arcs than(Q,−R) andc(T,−S) = c(Q,−R).

Now we prove2.
We show, thatφ is a well-defined function.
By the definition ofφ, we must show that foru, v ∈ V all the(u, v)-paths have the same
colored incidence vector. Or, equivalently, that every circular walkC of D hasc(C) = 0.
Suppose there is a cycleC with c(C) 6= 0. By successively replacing parts ofC with their
switches we can obtain a new cycleC ′, that is bipolarly oriented, has less or equal arcs
thanC and has the same colored incidence vector asC.
It could indeed happen thatC ′ is only a circular walk, i.e. uses arcs several times, but then
it can be decomposed into smaller cycles some of them having colored incidence vector
different from0.

m

x

M

M ′

Figure 2.6: The bipolarly oriented cyclesC andC ′ in the proof of2.

So among the smallest bipolarly oriented cycles inD that are counterexamples to our
claim, takeC to be one with maximal sinkM with respect toP . Applying a switch to the
(M,m, x)-path leads to a new(x,M ′,M)-path, depicted as a dashed path in Figure 2.6.
Both have the same colored incidence vector. So gluing the(x,M ′,M)-path to the part
of C, which is not in the(M,m, x)-path, leads to a new cycleC ′, with c(C) = c(C ′) and
| C ′ |≤| C |. (By minimality C ′ cannot take arcs several times as argued above).
As M ≤P M ′ eitherM was not maximal or| C | not minimal. This is a contradiction.
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To see thatφ is injective, again we proceed by contradiction. Applying switches we
can reduce every more general counterexample to the following case: There are two
directed pathsQ,R with the same initial vertex, different end vertices andc(Q) = c(R).
Applying a switch to this situation we obtain that the resulting pathsT andS have length
0, so the end vertices were the same as well. This is a contradiction.

Now we prove3.
We show thatφ is an order embedding. Clearlyv <P w ⇒ φ(v) <dom φ(w), as there
is a directed(v, w)-path inP . On the other hand as anyv, w ∈ V are connected by
some shortest path, consecutive application of switches toparts of this path allows us to
construct a directed(u, v)-pathQ and a directed(u,w)-pathR. Switching this gives the
elementx together with directed(v, x)-pathS and a(w, x)-pathT . Moreover1. gives
thatφ(x) = φ(v) ∨dom φ(w), so givenφ(v) ≤dom φ(w) we have that the pathT is empty
andS is a directed(v, w)-path. Sov ≤P w.

We have shown until now that,P is order-isomorphic to a subposet of(Zk,≤dom).
By 1. the posetφ(P ) is closed with respect to taking joins and meets. Soφ(P ) is a
sublattice of(Zk,≤dom). This implies thatφ(P ) ∼= P is a distributive lattice as well.

�

In a flip flop graph the row numbers of the generating matrix give a natural arc coloring.
We can apply Theorem 2.2.3 to the so given arc colorings. As a corollary we obtain the
desired characterization of integral distributive flip flopposets.

Corollary 2.2.4. Let B be a sign matrix, such thatDff(B) is acyclic. ThenPff(B) is
integral and a distributive lattice if and only if whenever two different rowsri, rj of B can
be flipped at the same time, then after flipping one of them the other can still be flipped.
The analogue must hold for flops.

Proof. ”⇒”:
Let Pff(B) be integral and a distributive lattice. Thenx + ei, x + ej ∈ z(FF) implies
(x + ei)∨dom (x + ej) = x + ei + ej ∈ z(FF). This means, that after flippingrj the other
row rj can be flipped. Obviously they can be flipped the other way around as well.

The analogue holds for the flop case.

”⇐”:
Let Dff(B) be an acyclic flip flop graph, such that whenever two differentrowsri, rj of
B can be flipped at the same time, then after flipping one of them the other one can still
be flipped. Every arca of Dff(B) is corresponds to a rowri of B. Define the colour
c(a) := i to be the corresponding row number. Obviously no two arcs that are outgoing
arcs of the same vertex can be colored the same. So we have property

∨
1 of Theorem

2.2.3. Furthermore the fact that rows that are flippable at the same time comute, translates
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to
∨

2 of Theorem 2.2.3. Properties
∧

1 and
∧

2 follow analogously.
Mapping the 0-vertex of Dff(B) via φ to 0 ∈ Zm we can ap-
ply Theorem 2.2.3 and obtain an embedding with respect to thecol-
oring c. This is, every vertex is mapped to its integral support.

�

The condition of Corollary 2.2.4 does not sound very easy to read off the matrixB.
The following corollary gives simple sufficient conditionson the generating matrix.

Corollary 2.2.5. LetB be a sign matrix, such thatDff(B) is acyclic. If any two rowsy, z
of B have either disjoint supports or at least one entryi, where they are signed differently,
i.e. y(i)z(i) = −1, thenPff(B) is integral and a distributive lattice.

Proof. Let B be a sign matrix, such thatDff(B) is acyclic,x ∈ ff(B) andy, z rows of
B. As if the supports ofy andz are not disjoint, there is ani such thaty(i)z(i) = −1,
we have{x(i) + y(i), x(i) + z(i)} ∩ {−1, 2} 6= ∅ in this case. This is,{x + y, x + z}
cannot be a subset offf(B). So if y andz can be flipped their supports are disjoint. This
is, x + y, x + z ∈ ff(B) impliesx + y + z ∈ ff(B).
The same argument works for the ”minus”-case.
We can use Corollary 2.2.4, to obtain thatPff(B) is integral and a distributive lattice.

�

In order to derive Theorem 1 and Theorem 3, we introduce an important class of sign
matrices that satisfy the conditions of Corollary 2.2.5. Wecall a sign matrixB a 2-
basis(of its row space) if every column contains at most one+1-entry and at most one
−1-entry and the rows ofB are linearly independent. Obviously any2-basis fulfills the
requirements of Corollary 2.2.5, thus has an integral, distributive flip flop poset.

Any independent set of coherently oriented facial cycles ofa digraph which is2-cell
embedded into an orientable surface gives a2-basis. Furthermore every independent set
of directed vertex cuts of a digraph forms a2-basis.

Therefore Corollary 2.2.5 implies the second parts of Theorem 1 and of Theorem 3:

Corollary 2.2.6. The flip flop poset of the bounded facial cycles of a planar digraph and
the flip flop poset of an independent set of vertex cuts of any digraph are integral and
distributive.

As it is conversely easy to extend any2-basis by one row in order to obtain the incidence
matrix of a directed graph, one can easily prove that an oriented matroid is cographic if
and only if its circuit space is spanned by a2-basis of signed circuits, see [15].



Chapter 3

Oriented Matroids

In the present chapter we will discuss the generalization ofα-orientations andα-
reorientations from (directed) graphs to (oriented) matroids. After introducing the basic
terminology and fundamental lemmas, we explain some problems that come up when
transcribing the graphical concepts to matroids. First, weobtain thatα-orientations are
not really suitable to be generalized and explain the problems. We manage to avoid these
problems by defining theα-reorientations of an oriented matroid in a suitable way. Sec-
ond, we will justify the restriction to regular oriented matroids. Theα-reorientations of
more general oriented matroids are not closed with respect to flip flops of circuits. As
the class of regular oriented matroids can be decomposed viacertain operations into three
splitters, we then investigate these splitters. One of the splitters is the matroidR10, whose
α-reorientations can be enumerated. Another splitter is theclass of cographic oriented
matroids, whoseα-reorientations can be described by dualization from Theorem 3. The
last splitter consists of the class of graphic oriented matroids, which will be investigated
in the last part of this chapter.

3.1 Basics

For a real introduction to ordinary matroids [15] and [11] are standard references. Here
we make some use of [14], too. For an introduction to orientedmatroids we refer to
[2]. In the present section we list up some basic terms very briefly. Not much more than
notational explanation is provided. We will use the notation for signed sets as given in
Chapter 1. Again we will neither distinguish between signedsets and sign vectors nor
between sets of signed sets and sign matrices.

28
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An oriented matroid is a pairM = (E, C) of a finite setE and a set of signed subsets
C of E calledcircuits, that satisfy the following axioms:

1. ∅ /∈ C

2. C = −C

3. X,Y ∈ C andX ⊆ Y ⇒ X = ±Y

4. X,Y ∈ C ande ∈ X+ ∩ Y − then there is someZ ∈ C such that
Z+ ⊆ X+ ∪ Y +\{e} andZ− ⊆ X− ∪ Y −\{e}.

Leaving the signing of the sets away, the resulting concept denotedM = (E,C) is called
a (ordinary) matroid. So to every oriented matroidM we can associate an ordinary ma-
troid M, theunderlying matroid of M.

There are several ways to obtain a new oriented matroid fromM.

A reorientation of M is an oriented matroid̃M = M
eE on the same ground set. It is

obtained fromM by reversing the signs on a given subsetẼ ⊆ E in every circuit ofC.
The new set of circuits can be thought of asC̃ = C(I−2diag(Ẽ)). Thus, as in the digraph
case we can identify a reorientation ofM with a subset ofE.

The deletion of A ⊆ E is an oriented matroidM\A that can be obtained from an
oriented matroidM = (E, C). Its ground set isE\A and its circuits are those circuits of
M that are disjoint fromA.

The contraction of A ⊆ E is an oriented matroidM/A that can be obtained from
an oriented matroidM = (E, C). Its ground set isE\A and its circuits are the support
minimal signed setsMin({X\A | X ∈ C}\{∅}).

Another oriented matroid that is induced byM = (E, C) isM∗ = (E, C∗). Its circuits
Y ∈ C∗ are given by the inclusion minima of non-empty signed sets satisfying

X ∩ Y 6= ∅ ⇒ ((X− ∩ Y −) ∪ (X+ ∩ Y +) 6= ∅ and(X− ∩ Y +) ∪ (X+ ∩ Y −) 6= ∅),

for everyX ∈ C. The oriented matroidM∗ is called thedual of M. The circuits of
M∗ are called thecocircuits of M. The defining property of the cocircuits (besides the
minimality) is called(combinatorial) othogonality.

Obviously usual vectorial orthogonality of sign vectors implies their combinatorial or-
thogonality but not vice versa. We call a sign vectorvectorial if it is vectorially orthogonal
to C or C∗.

A basic fact about oriented matroid duality is that(M\A)∗ = M∗/A and conversely
(M/A)∗ = M∗\A, (see [2],p123).
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The Farkas Lemma (see, [2],p122) says that every elemente ∈ E is either contained in
a positive circuit or in a positive cocircuit ofM.

An oriented matroidM is calledtotally cyclic if every element ofE is contained in a
positive circuit. We callM acyclic if M∗ is totally cyclic.

In [1] it is shown that everyM without one-element-circuits has an acyclic reorien-
tation. Moreover the minimal subsets ofE that can be reoriented to give an acyclic
reorientation are exactly those sets, which are minimal with respect to intersecting every
positive circuit.

ThecompositionY := X1 ◦ . . . ◦ Xk of signed setsX1, . . . , Xk is defined asY (e) :=
Xmin{i∈[k]|Xi(e) 6=0}(e) if possible and0 else, for everye ∈ E. This binary operation is
associative non-commutative and has the empty set as neutral element. The setV of
vectorsof M is the set of signed sets that result from compositions of circuits endowed
by the empty set. The setV∗ of covectorsis defined analogously in terms of cocircuits.
A compositionX1, . . . , Xk is calledconformal if Xi(e)Xj(e) ≥ 0 for all i, j ∈ [k] and
entriese ∈ E. Every vectorX ∈ V is even a conformal composition of circuits, see [2],
p141. If we haveX1(e)X2(e) ≥ 0 andX1 ≤ X2 for two sign vectorsX1, X2 and every
e ∈ E, we say thatX1 is conformingly contained inX2. This is theconformal inclusion
of signed sets.

Every oriented matroid is uniquely determined by any of the set systemsC, C∗, V, or
V∗. Each of them can be described by an axiomatization similar to the one we gave forC.

An important class of oriented matroids arevectorial matroids. Vectorial matroids
arise the following way. Given a vector subspaceV of Rn, the support minimal vectors
in sgn(V \{0}) form the set of circuits of an oriented matroid on the ground set [n]. A
standard way to represent these matroids is to representV as the real kernel of am × n
matrix B. Clearly Gauss row operations onB do not changeM, soB can assumed to
be of the form[I | A]. The matrixA is then called arepresentation matrix for M. The
rank ofB definesrank(M), the rank of M. Moreover the dual matroid of the matroid
induced byV comes from the orthogonal complement ofV .

Special cases of vectorial matroids aregraphic andcographic matroids given by the
linear dependencies of the incidence matrix of a directed graph (the cycle space) and the
orthogonal vectorspace (the cut or cocycle space), respectively. We denote the graphic
oriented matroid induced by the directed graphD asM(D). The circuits ofM(D) are
exactly the signed incidence vectors of the cycles ofD. The cocircuits are the inclusion
minimal signed incidence vectors of the cuts ofD. A cographic oriented matroid is the
dual matroid of a graphic matroid, i.e.M∗(D). Total cyclicity and acyclicity generalize
strong connectivity and acyclicity of digraphs. Deletion and contraction of arcs corre-
spond to the analogue operations on the induced oriented matroid.

Ordinary vectorial matroids can come from (representation) matrices over any fieldF.
If a matroid can be represented over every field it is calledregular.
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Another important class of ordinary matroids are theuniform matroids denotedUm,n.
They consist of the ground set[n] and the set of circuits

(
[n]

m+1

)
.

3.2 Formal Transcription and First Observations

In the present section we will discuss the suitability of theconcepts ofα-orientations
andα-reorientations for generalization from (directed) graphs to (oriented) matroids. We
display a number of problems that come up when attempting a natural transcription. Later
we present a possible way to avoid these problems.

How can we generalizeα-orientations? Our guiding idea is that vertex cuts generalize
to cocircuits. As the vertex cuts of a graph span all the cut space, prescribing the outdegree
on the vertex cuts fixes the number of positive elements for all the cuts of an orientation
of the graph. So the outdegree could be generalized to the number of positive entries of
cocircuits.

We look at the case ofα-orientations. So we have an ordinary matroidM, which we
want to orient. This means that we search an orientend matroid M with M = M and
more properties with respect to the outdegree. At this step we already encounter the first
big difference between graphs and oriented matroids. Not every ordinary matroid isori-
entable, i.e. is underlying matroid of an oriented matroid, e.g. theFano matroidF(7) (see
[3]). So there are ordinary matroids which have noα-orientations at all (independent of
theα). We will not really consider this problem and always think of orientable matroids.

So letM be an orientable ordinary matroid on a ground setE with a set of cocircuits
C

∗. In the graph case theα vector was counting positive elements of the vertex cuts, which
form a basis of the cut space of the directed graph. The first problem when attempting to
generalize this notion to oriented matroids is the following. When orienting an orientable
matroid every cocircuit inC∗ will be represented by two cocircuitsX,−X ∈ C∗. In
contrast to the graph case, there is no canonical choice, no way to distinguishX and−X.
We have no analogue to indegree and outdegree. So something like α-orientations cannot
really be defined.

A bigger set of orientations that is suitable to generalize,is the set of those orientations
that fix the absolute value of the difference of in- and outdegree. Here in- and outdegree
are treated symmetrically. In digraphs this concept coincides withα-orientations exactly
in the case of Eulerian orientations, i.eα ≡ deg

2
. So we could restrict the generalization

to Eulerian orientations of an oriented matroid, which are defined by〈X,1〉 = 0 for
everyX ∈ C∗.

But there is another problem, which exactly in the case of Eulerian orientations cannot
be solved. Given a directed graphD and the graph−D, obtained fromD by reversing
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the orientation of all the arcs, then the graphic oriented matroidsM(D) andM(−D)
induced byD and−D respectively are considered the same in oriented matroid theory.
They have the same set of circuits. So the oriented matroid cannot distinguish between
the two orientationsD and−D. But in the analysis ofα-orientations of graphs, both
orientations are considered to be different.

Identifying the orientationsD and−D would be one idea. But regarding posets on the
α-orientations, this identification would only work as long as reorα(D)∩reorα(−D) = ∅.
This condition is violated if and only if we have a poset on theEulerian orientations of
a graph. In this caseD and−D occur as comparable elements in the poset and after
identifying them, one obtains cycles.

The next difficulty is that ifM1 andM2 are oriented matroids with the same underlying
matroid thenM1 is not necessarily a reorientation ofM2, e.g. the matroidU3,6 has
orientations which cannot be obtained from each other by reorientation, see [10]. So the
set of orientations of a matroid needs not to be connected by reorientations.

In [4] there are even examples of different Eulerian orientations of a rank3 matroid
that cannot be obtained one from another by reorientation. This is quite a big difference
to the graph case because there, our results were strongly connected to the fact that we
could investigate reorientations of a directed graph instead of orientations of an undirected
graph. Also the flip flop structure developed in Chapter 2 clearly reflects reorientation
classes of sign matrices.

So in order to escape from all these problems we restrict further investigation to the set
of α-reorientations of an oriented matroidM defined as:

reorα(M) := {M̃ | M̃ is a reorientation ofM and we haveC∗
1 = C̃∗

1}.

What are the advantages of this definition? Here from the beginning on we consider
an oriented matroid and do not have the problem of orientability anymore. Moreover we
only consider reorientations and do not include orientations of the underlying matroid,
that are no reorientations. We identify the reorientatioñM with a subsetẼ ⊆ E. As
we want to have a correspondence of reorientations and subsets of E we break with the
conventionM = −M, i.e. we considerM and the reorientation of all its elements as
different reorientations. The equation of sign maricesC∗

1 = C̃∗
1 says that corresponding

cocircuits of the reorientation have the same number of positive entries. This generalizes
the idea of the invariance of the outdegree. By considering sign matrices instead of sets of
signed cocircuits we can takẽC∗ asC∗(I−2diag(Ẽ)). So the setsC∗ andC̃∗ are given with
a fixed order, which guarantees that indeed the sign numbers of corresponding cocircuits
are compared.

Having in mind that for digraphsreorα(D) ∼= E+(D) = ker{0,1} Inc(D) = ker{0,1} C
∗,

the definition ofreorα(M) allows us to prove an analogue to the essential Proposition 1:
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Proposition 3.2.1.For an oriented matroidM we have reorα(M) ∼= ker{0,1} C
∗.

Proof. Let Ẽ ⊆ E and denote byM eE the matroid obtained by reorienting the elements
of Ẽ, then
M

eE ∈ reorα(M)

⇔ C∗
1 = (C∗(I − 2diag(Ẽ))1)

⇔ C∗Ẽ = 0
Ẽ ∈ ker{0,1} C

∗

�

So in analogy to the bounded facial cyclesF\{X} ⊂ ker{1,−1,0} Inc(D) = E(D) of a
planar graphD, which by Theorem 1 flip flop generate allker{1,0} Inc(D) = reorα(D),
we would like to find a small subsetB ⊂ ker{−1,0,1} C

∗ =: E(M) such that seeingB as
a sign matrixff(B) = ker{0,1} C

∗ = reorα(M). The setE(M) of signed sets generalizes
the set of Eulerians of a digraph.
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Figure 3.1: Inclusions of sets of signed sets occurring in the analysis ofα-reorientations.

The setsreorα(M) andE(M) as well as the flip flop operations reflect linear algebra
structures that are related to the oriented matroidM. General oriented matroids do not
necessarily have such a direct link to linear algebra. In order to interpolate between the
oriented matroidM and the linear properties at our concern we can associate toM the
vectorial oriented matroidM′. It is induced by the linear dependences of the columns of
C∗. So all the sign vectors inC ′ are combinatorially orthogonal toC∗. This means that
every circuit ofM′ is in the set of vectorsV of M. We visualize the inclusion relations
of the set systems given byM, M′, andE(M) in Figure 3.1.
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The next proposition gives us a hint where to look for setsB ⊂ E(M) that satisfy
ff(B) = reorα(M).

Proposition 3.2.2.Denote byMin(E(M)) the minima ofE(M) with respect to confor-
mal inclusion. Thenff(Min(E(M))) = reorα(M).

Proof. As E(M) is closed with respect to taking sign sums we have

ff(Min(E(M))) ⊆ E(M)+ = reorα(M).

Suppose on the other hand there is a non-minmal elementX in someB ⊆ E(M). This
means there is aY ∈ E(M) that is conformingly contained inX. We define

B′ := B\{X} ∪ {Y,X − Y }.

ObviouslyX − Y ∈ E(M) and X − Y is conformingly contained inX. Moreover
wheneverX can be flipped, firstY and thenX −Y can be flipped. The flopping situation
works analogously. Soff(B) ⊆ ff(B′) and starting withB = E(M) we obtain the result.

�

Recall that, having aB with ff(B) = reorα(M) by Proposition 2.2.1 we can row
reorientB, such thatDff(Bc) is acyclic and the flip flop span is not changed. So we have
flip flop posetsPff(Bc) on reorα(M) for every oriented matroidM. This result should
not be overestimated asBc can still be fairly big, and nothing more specific can be said
about properties ofPff(Bc). For instanceB = Min(E)+ would be a possibility, which
specializing back to digraphs is not nearly as nice asB = F\{X}.

Proceeding along the lines of the introduction, we call an elemente ∈ E rigid with
respect toM if its orientation will not be changed among all reorientations that appear
in reorα(M). Again as in the graph case, we are not interested in rigid elements of an
oriented matroid and can throw them out. After that we can saythe following aboutM.

Proposition 3.2.3. If M has no rigid elements it is totally cyclic.

Proof. If M has no rigid elements, by Proposition 3.2.1 for every element e ∈ E
there is a vectorv ∈ ker{0,1} C

∗ such thatve = 1. But C∗v = 0 and v =
sgn(v) imply v ∈ V+, see Figure 3.1. So every elemente ∈ E is contained
in a positive vector ofM. But since every vector is a conformal composition of
circuits, positive vectors are compositions of positive circuits. Thus every element
e ∈ E is contained in a positive circuit, which is the definition oftotally cyclic.

�

The other direction of the proposition does not hold in general for oriented matroids,
e.g. any totally cyclic orientation ofU2,4 consists only of rigid elements. But as in the
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graph case total cyclicity is maintained byα-reorientations. If after reorientation there
were a new directed cocircuit, the number of positive entries would have been changed.

Analogously to the digraph case, we can restrict our attention to the totally cyclic com-
ponents ofM in the study ofreorα(M). As matroid connectivity generalizes graph
2-connectivity the restriction to2-connected graphs corresponds to the natural restriction
to connected matroids.

3.3 Regular Oriented Matroids

In the present chapter we want to investigate a stronger analogy from digraphs to oriented
matroids. It turns out, that it holds for regular oriented matroids only.

Theorem 1 states that every planar digraphD has a set of cycles, such that its flip
flop span covers exactly theα-reorientations ofD. In particular every set of cycles of
D flip flop spans a subset ofreorα(D). So for the set of all cyclesC we haveff(C) =
reorα(D). In the present section we will investigate under which conditions the equation
ff(C) = reorα(M) holds for general oriented matroids. This analogy is desirable, because
it would enable us to continue investigating cycle/circuitspaces. That this requirement is
plausibly quite restrictive can already be read off Figure 3.1, whereC andreorα(M) are
far apart.

We start with a case whereff(C) = reorα(M) does not hold at all. Take a Eulerian
orientationM of U3,6. The matrixB displays a ”representative half” ofC∗. i.e. B∪−B =
C∗.

B =




−1 −1 1 1 0 0
−1 −1 1 0 1 0

1 −1 1 0 0 −1
1 −1 0 −1 1 0
1 1 0 −1 0 −1
1 1 0 0 −1 −1
1 0 −1 −1 1 0
1 0 1 −1 0 −1
1 0 1 0 −1 −1
1 0 0 −1 1 −1
0 −1 1 1 −1 0
0 −1 1 −1 0 1
0 −1 1 0 −1 1
0 −1 0 −1 1 1
0 0 −1 −1 1 1




,

It is easy to see that

reorα(M) = {(0, 0, 0, 0, 0, 0), (1, 1, 1, 1, 1, 1)}

and
{(0, 0, 0, 0, 0, 0)} ( ff(C) ⊆ {x ∈ {0, 1}6 | 〈x,1〉 ∈ {0, 4}}.
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So for this particularM we have neitherff(C) ⊆ reorα(M) norff(C) ⊇ reorα(M).

How do positive examples look like? In the sequel we will prove that regular oriented
matroids are the only oriented matroids which satisfyff(C) = reorα(M) for all their
totally cyclic reorientations.

An oriented matroidM is said to beregular if its underlying ordinary matroidM is
regular. We will need different characterizations of regular oriented matroids.

Theorem 3.3.1.LetM be an oriented matroid, then the following statements are equiv-
alent:

(i) M is regular.

(ii) M has a totally unimodular representation matrix.

(iii) M is vectorial, such that every signed circuit ofM is - seen as a sign vector - an
element of the corresponding vector space. Moreover these vectors are spanning.

(iv) M is a1-, 2- or 3-sum of graphic and cographic oriented matroids andR10.

Proof. For (ii) ⇔ (iii), see [14], chap5.

For (i) ⇔ (iii), see [15], p175.

For (i) ⇔ (iv), see [13].
�

The first result of the present section will be an extension ofthis characterization,
with respect to totally cyclic regular oriented matroids. We will prove that for an ori-
ented matroidM regularity is equivalent toff(C) = reorα(M) for all its totally cyclic
reorientations. So we almost characterize the oriented matroids, that generalize the
ff(C) = reorα(D) of graphs.

For this we need the following Lemma:

Lemma 3.3.2.An oriented matroidM is regular if and only ifC⊥C∗ as sets of integral
vectors.

Proof. As regularity ofM is equivalent to regularity ofM∗ (see [14], chap5), both
come from orthogonal vector spaces that, by Theorem 3.3.1(iii), contain the signed
incidence vectors of their circuits. This is equivalent toC⊥C∗ as sets of vectors.

�

Now we are ready to prove

Theorem 3.3.3.Let M = (E, C) be an oriented matroid without one-element-circuits.
We haveff(C) = reorα(M) for all its totally cyclic reorientations⇔ M is regular.
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Proof. ”⇐”
Let M be regular. This property is invariant under reorientation. So by Lemma 3.3.2 we
have for every reorientation ofM, thatC ⊆ ker C∗. In particularC+ ⊆ ker C∗, which
means that we cannot leave the set ofα-reorientations by flips of circuits.
Equality is obtained by the following. Every elementv ∈ ker{1,0} C

∗ ⊆ V+ is a vectorial
vector ofM. But as in a regular matroid every vectorial vector can be written as a sum
of circuits conforming to it (see [14], chap1.2),v must be the disjoint union of directed
circuits ofM. Thus, flipping these directed circuits successively, one obtains the reorien-
tation given byv.
”⇒”
Supposeff(C) = reorα(M) for all totally cyclic reorientations ofM. AsM has no one-
element-cocircuits, by [1] thereM has totally cyclic reorientations. So letM be a totally
cyclic oriented matroid with the above property. We have that C+(Mv) ⊆ ker{0,1}(C

∗)v

for every(0, 1)-vectorv that stands for a totally cyclic reorientation. For a(0, 1)-vectorx
we can transform

x ∈ ker{0,1}(C
∗)v ⇔ C∗(I − 2diag(v))x = 0 ⇔ xv ∈ ker{1,−1,0} C

∗.

So particularly every circuit ofM, that appears positively directed in a totally cyclic
reorientation is inker{1,−1,0} C

∗.
We show, that every circuit appears positively directed in some totally cyclic reorientation
of M. So letX ∈ C(M) with 1 ≤ |X−| ≤ |X+|. First we reorientM on X−, soX is
positively directed in the actual orientation, saỹM. But M̃ does not need to be totally
cyclic. If it is not, there are positively directed cocircuits inM̃. We have that̃M has no
one-element-cocircuits. As shown in [1], in order to obtaina totally cyclic reorientation
of M̃ it is enough to reorient a set that intersects each positively directed cocircuit of
M̃. As X is positively directed by Farkas Lemma the positively directed cocircuits are
disjoint toX. So we obtain a totally cyclic reorientation ofM that hasX as a positively
directed circuit.
Together we have shown, thatC ⊆ ker C∗ so by Lemma 3.3.2 we have thatM is regular.

�

We conjecture the stronger statement
” for totally cyclicM regularity is equivalent toff(C) = reorα(M)”,

which would really be the characterization of those oriented matroids that generalize the
digraph propertyff(C) = reorα(D).

An analogue proof to the one of Theorem 3.3.3 is still failing. The ”⇐”-direction is
no problem. The first part of the ”⇒”-direction would give that every circuit that is ever
flipped amongff(C) is also inker C∗. But it still cannot be shown that every circuit of
such oriented matroid is flippable, or a linear combination of flippable circuits.

Now that we have a reason to restrict further investigation to the class of regular ori-
ented matroids we can think of, what else are nice advantagesof dealing with regular
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matroids only.

Theorem 3.3.1(ii) gives a connection to totally unimodular matrices. Every linear pro-
gram induced by such a matrix and integral cost vectors is integral, i.e has an optimal
solution that is integral, one obtains a polynomial method to check whether a fixed reg-
ular matroid can be reoriented in order to have some givenα-value on its circuits. This
is a weak analogue to a planar graph result of[7]. Felsner proves that given a planar
undirected graphG and an integral vectorα, one can obtain anα-orientation ofG or a
certificate for the non-existence in polynomial time.

In order to find suitable of circuits whose flip flop span consists of all the α-
reorientations of a regular matroid, the following gives a necessary condition for such
sets.

Proposition 3.3.4.LetM be a regular, totally cyclic, oriented matroid andB ⊆ C, then
ff(B) = reorα(M) ⇒ spanZ(B) = spanZ(C).

Proof. As B ⊆ C the inclusionspanZ(B) ⊆ spanZ(C) trivially holds.

To see ”⊇” observe the following:
As ker{0,1} C

∗ = reorα(M) = ff(B) we havespanZ(B) = spanZ(ker{0,1} C
∗). On

the other hand Lemma 3.3.2 impliesspanZ(C) ⊆ spanZ(ker{1,−1,0} C
∗). Therefore it

is enough to show thatspanZ(ker{0,1} C
∗) ⊇ kerZ C

∗.
Takev ∈ kerZ C

∗ and letmv denote the number of negative entries ofv. We proceed by
induction onmv.
Let mv = 0
By regularity we have thatv is a sum of circuits conforming tov (see [14], chap1.2).
These circuits are positively directed, i.e. they are inker{0,1} C

∗ andv is an integral com-
bination of them.
Take now mv > 0. So there is somee ∈ E such that ve < 0. By
total cyclicity of M, there is somec ∈ C+ with ce = 1. So we can
find a λ ∈ Z>0 such that mv+λc < mv. By induction hypothesis we
have (v + λc) ∈ spanZ(ker{0,1} C

∗) which implies v ∈ spanZ(ker{0,1} C
∗).
�

In the proof of Proposition 3.3.4 we have particularly shownthat in a totally cyclic
regular oriented matroidM there are basesB ⊆ C+ for the circuit spacespanZ(C). On
the other hand, if is not totally cyclic, there are obviouslyno circuit bases consisting of
positively directed circuits. So a regular oriented matroid is totally cyclic if and only if
its circuit space is spanned by a set of positively directed circuits. This generalizes the
corresponding result for directed graphs [9].

As for a regular oriented matroidM the integral dimension ofspanZ(C) is known to be
|E|−rank(M), Proposition 3.3.4 gives an ”easy to check” lower bound for the cardinality
of a flip flop generating set.
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Recalling the discussion in Section 3.2, the following is anadvantage of regular ori-
ented matroids. The set of orientations of a regular matroidis connected by reorientations
(see, [10]), so consideringα-reorientations instead ofα-orientations is no restricition.

Another feature of regular matroids is Seymour’s famous decomposition theorem (The-
orem 3.3.1(iv)). It tells us that every regular matroidM is graphic, cographic, R10 or a
1-,2- or 3-sum of such matroids.

Now on the one hand we can try to analyze the flip flop structure of any of the three
splitters. On the other hand we can look, whether a ”nice” flipflop structure ofM1 and
M2, somehow will be preserved by takingi-sum ofM1 andM2, for i ∈ {1, 2, 3}.

First we take a look at1-sums. The1-sum of two sign matricesB1 andB2 is defined
as

B1 ⊕1 B2 :=

(
B1 0
0 B2

)
.

For regular oriented matroidsM1 andM2 with representation matricesB1 andB2 the
1-sumM1 ⊕M2 is the regular oriented matroid with representation matrixB1 ⊕1 B2.

Define the productD1 × D2 of two directed graphsD1 andD2 as the directed graph
with vertex setV (D1) × V (D2) and((u1, u2), (v1, v2)) ∈ A(D1 × D2) :⇔

for one{i, j} = {1, 2} we have(ui, vi) ∈ A(Di) anduj = vj.

Then we haveDff(B1 ⊕1 B2) = Dff(B1) × Dff(B2).

One easily obtainsff(B1) = reorα(M1) and ff(B2) = reorα(M2) if and only if
ff(B1 ⊕1 B2) = reorα(M1 ⊕1 M2). Moreover the1-sum preserves order structures
induced by the transitive closures ofDff(B1) andDff(B2).

The properties of2-sumsand3-sumsseem to be more tricky, so we turn to the analysis
of the splitters. This will be the subject of the following sections.

The splitterR10 is a 10-element oriented matroid and all its reorientations. The dif-
ferent totally cyclicα-reorientation classes can be enumerated with a computer. Some
results will be described in Section 3.4.

Dualizing Theorem 3 we get a distributive lattice on theα-orientations of any cographic
oriented matroid. This will be made explicit in Section 3.5.

For the class of graphic matroids we present positive and negative results in the last two
sections of this chapter.
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3.4 α-Reorientations of R10

We sayR10 to any oriented matroid given by the linear dependencies of any column
reorientationE ′ ⊆ [10] of

B =




1 0 0 0 0 1 0 0 1 1
0 1 0 0 0 1 1 0 0 1
0 0 1 0 0 0 1 1 0 1
0 0 0 1 0 0 0 1 1 1
0 0 0 0 1 1 1 1 1 1




,

Computer enumeration gives that there are51 differentα-reorientation classes ofR10

without rigid elements.

The circuit space of any such reorientedR10 has dimension5. Nevertheless some of
theα-reorientation classes can only be flip flop generated by a6 element set of signed cir-
cuits. This shows that the necessary condition given by Proposition 3.3.4 is not sufficient
for the regular oriented matroidsR10.

3.5 α-Reorientations of Cographic Oriented Matroids
and c-Reorientations of Directed Graphs

An oriented matroidM is calledgraphic, if there is a directed graphD = (V,A) such that
the circuits ofM and the the inclusion minimal cuts ofD coincide, i.e.C∗(D) = C∗(M).
We denote such matroids byM∗(D).

We have already mentioned a couple of times that thec-reorientations of an acyclic di-
graphD correspond dually to theα-reorientations of the totally cyclic cographic oriented
matroid induced byD. This correspondence also conserves Theorem 3 and leads to adual
statement in terms ofα-reorientations of totally cyclic cographic oriented matroids.

In the present section we will prove this formally.

First we recall the definition ofc-reorientations. LetD be an acyclic digraph andC
be any basis of cycles of its cycle spacespanZ(C). DefinecD ∈ ZC to be the vector that
counts the positive entries of the elements ofC. Now we define thec-reorientations ofD
asreorc(D) := {D′ = (V,A′) | D′ = D andcD′ ≡ cD}.

It is an essential observation that the setreorc(D) does not depend on the choice ofC.
Analogously to Proposition 1, identifying the reorientations ofD with the arc sets that are
reoriented one obtainsreorc(D) = ker{0,1} C.
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Any setB of all but one vertex cut ofD integrally spans the cut spacespanZ(C∗) of
D. So reading Theorem 3 again with these terms filled in and replacingD by the graphic
oriented matroidM induced byD, it sounds as follows.

Theorem 3.5.1.LetM(D) be the acyclic graphic matroid induced by an acyclic directed
graphD. There is a spanning setB ⊆ C∗ such that

• ff(B) = reorc(D) = ker{0,1} C

• MoreoverPff(B) is a distributive lattice.

This is a statement about the graphic oriented matroidM associated toD. Oriented
matroid duality consists of interchanging the roles ofC andC∗ and therefore acyclicity
and total cyclicity are switched as well. So we can now translate the theorem to the dual
statement. We denote byM the cographic oriented matroidM∗(D) associated toD.

Theorem 3.5.2.Let M be a totally cyclic cographic matroid. There is a spanning set
B ⊆ C such that

• ff(B) = ker{0,1} C
∗ which by definition is reorα(M)

• MoreoverPff(B) is a distributive lattice.

We have seen now that the set ofα-reorientations of cographic oriented matroids is
already understood. This is a corollary of Theorem 3, which is proven by Propp in [12].
Later on we will give a different proof for Theorem 3.5.2, which comes as Corollary 3.6.8
in the analysis ofα-reorientations of graphic oriented matroids.

3.6 α-Reorientations of Graphic Oriented Matroids

An oriented matroidM is calledgraphic, if there is a directed graphD = (V,A) such
that the circuits ofM and the the cycles ofD coincide, i.e.C(D) = C(M). We denote
such matroids byM(D).

So in the present section we return our attention to graphs. The concept ofα-
reorientations of oriented matroids as defined in Section 3.2 specializes to theα-
reorientations of digraphs as described in Chapter 1. Proposition 1 remains valid and
we havereorα(D) ∼= E+(D). As the latter equalsspanZ(C(D) ∩ {0, 1}|A|) the present
section will mainly consist of an analysis of the cycle spaceof D. Again, we can restrict
ourselves to strongly connected,2-vertex-connected digraphs.
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In contrast to Chapter 1, we now have to deal with non-planar graphs. In order to apply
some of the proof techniques from [7], we consider these graphs together with a2-cell
embedding into an orientable surfaceS. Our goal is to understand the (directed) Eulerians
of D. The topology of the embedding intoS gives us a way to split this investigation into
two steps. The cycle space ofD - particularlyE(D) - consists of elements that are integral
combinations of facial cycles and those that are not. Eulerians of the first type have a lot
in common with Eulerians of planar graphs. The corresponding α-reorientations can be
ordered in a very nice way as well. Our main result is a necessary and sufficient condition
for a directed Eulerian to be reversable by flip flops of facialcycles. Eulerians that are not
integral combinations of facial cycles bring more difficulty into the analysis ofreorα(D).
Homology theory turns out to be a good tool for understandingthem.

In the first part of this chapter, our strategy will be to startwith flip flops of facial cycles.
We will investigate the resulting poset on a subset ofreorα(D). As we cannot generate
all reorα(D) by facial flip flops, at the end of the chapter we investigate how to extend the
set of facial cycles in order to flip flop generate the entirereorα(D).

So letD = (V,A) be a directed graph andS an orientable surface. The pair(D,S)
is called a2-cell embedding ofD into S, if the topological graphD can be mapped
continously intoS, such that two arcs ofD intersect exactly in their common vertices
and every connected componentf of the spaceS\D is homeomorphic to an open disk. It
is a fact from topological graph theory, that every graph hasa 2-cell embedding in some
orientable surface. The setF of components ofS\D is then called the set offacesof
the embedding. It is important to note that the closure of a face f is not required to be
homeomorphic to a closed disk.

This way(D,S) leads to a (non-regular) cell decomposition ofS whereV (D) are the
0-dimensional cells,A(D) are the1-dimensional cells and the faces are the2-dimensional
cells. We will consider this cell decomposition together with an orientation of its cells. For
the1-dimensional cells this orientation is given byD. As in the planar case in Chapter
1, we define all the2-cells to be oriented counterclockwisely (ccw). This can bedone
coherently because of the orientability ofS.

The set of the ccw oriented facesF leads to the setF of facial cycles of(D,S) analo-
gously to the planar case. Since we did orient the2-cells of the embedding counterclock-
wisely, we can distinguish forward and backward arcs of the facial cycles. We take the
facial cycles of(D,S) to have the forward arcs as positive arcs and the backward arcs as
negative.

BecauseS is orientable every arc ofD appears once backward and once forward among
the elements ofF . If an arc appears forward and backward in the same facial cycle, we
consider it not to appear in the signed incidence vector.

In analogy to the unbounded face of a planar embedding of a graph, we will fix an
arbitrary facial cycleX and call itthe forbidden facial cycle. ThenF\{X} is a set of
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linearly independent sign vectors. We denote byE0(D,S) the set of Eulerians given by
spanZ(F\{X}) ∩ {1,−1, 0}|A| ⊆ E(D). Together with the ccw orientation we have that
F\{X} is a2-basis, as defined in Chapter 2.

We have seen in Corollary 2.2.5, that being a2-basis implies thatPff(F\{X}) is in-
tegral and a distributive lattice. For the sake of investigating ff(F\{X}) the following
lemma about2-bases will be important:

Lemma 3.6.1.Let B be a2-basis andu ∈ spanZ(B) ∩ {1,−1, 0}n andv = supp(u).
Then we have:

1. There is aw ∈ spanZ≥0
(B) ∩ {−1, 0,+1}n with supp(w) = v.

2. Moreover ifv is support minimal, thenw = ±u.

3. If w,−w ∈ spanZ≥0
(B) ∩ {1,−1, 0}n thenw = −w = 0.

Proof. Let u ∈ spanZ(B) ∩ {1,−1, 0}n andv = supp(u). As B is a2-basis every entry
u(i) of u comes from at most two rowsr1 andr2 of B. As the entries ofu are in{1,−1, 0}
the coefficients ofλ1 andλ2 of r1 andr2, respectively, must satisfy|λ1 − λ2| ∈ {0, 1}.
So rows ofB with differently signed coefficients in the combination ofu cannot share
an entry. Regard ”sharing an entry” as symmetric relation among the rows ofB. Then
the set of rows in the combination ofu decomposes into connected components of the
same sign. Equivalently the coefficient vector ofu, sayλ, decomposes into a disjoint
sum of non-negative and non-positive vectors(λi)1≤i≤k. The vectors(ui)1≤i≤k induced
by (λi)1≤i≤k are mutually disjoint and conformingly contained inu. Denote by|λ| the
componentwise absolute value vector ofλ. Sow defined as|λ|B has the same support as
u itself. This proves1..

In particular for each of the subvectors ofui and wi induced by someλi we have
ui = ±wi. This proves2..

Statement3. follows from the linear independency of the rows ofB and the non-
negative coefficient vectors, thatw and−w are required to have.

�

TakingB := F\{X} we can look what Lemma 3.6.1 tells us aboutE0(D,S).

• For everyE ∈ E0(D,S) there is aE0, which is a positive integral combination of
facial cycles andE = E0. We call suchE0 a0-Eulerian.

• If E is support minimal amongE0(D,S) thanE = ±E0 for every 0-Eulerian with
the same support asE. Because of3. we have thatE0 is unique in this case. IfE is
not support minimal, every decomposition into disjoint support minimal Eulerians
leads to a unique representation in terms of 0-Eulerians.
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These results are particularly at interest for directed Eulerians as we want to investigate
(E0(D,S))+, because this set coincides with theα-reorientations at our concern.

Later, we will give a necessary and sufficient condition for arc sets in(E0(D,S))+ to
be reversable by facial flip flops. To prove this it will be useful to have a set of signed
Eulerians at hand whose supports cover all the sets in(E0(D,S))+. By Lemma 3.6.1
we have that every element(E0(D,S))+ has the support of a 0-Eulerian, we call these
0-Euleriansdirected. Directed 0-Eulerians turn out to be more useful than the vectors in
E0(D,S))+ to cover(E0(D,S))+, because they have an easier representation with respect
to F\{X}.

The orientation of the facial cycles, automatically leads to the notion of positively and
negatively directed 0-Eulerians. We call elements ofspanZ≥0(F\{X}) ∩ {1, 0}|A| pos-
itively directed 0-Eulerians and those ofspanZ≥0(F\{X}) ∩ {−1, 0}|A| negatively di-
rected 0-Eulerians.

By Lemma 3.6.1 no element of(E0(D,S))+ is covered by a negatively and a positively
directed 0-Eulerian at the same time. Moreover every directed 0-Eulerian is a disjoint
union of minimal negatively and positively directed 0-Eulerians. If a positively directed
0-Eulerian can be reoriented by facial flip flops, it can indeed be reversed by flips only.
The analogue holds for negatively directed 0-Eulerians.

Different 0-Eulerians can be signings of the same(0, 1)-vector as exemplified in Figure
3.2.

A B

Figure 3.2: The 0-EuleriansA = (1, 1,−1,−1) andA + 2B = (1, 1, 1, 1) have the same
arc sets but different signings and different interiors.

We have already seen that, when investigating whetherff(F\{X}) = (E0(D, S))+,
we can restrict our investigation to directed 0-Eulerians.By Lemma 3.6.1 every element
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of (E0(D,S))+ is a disjoint union of supports of positively and negativelydirected 0-
Eulerians. It is enough to characterize, when these can be reoriented. On the next pages
we develop the necessary theory to pursue this investigation.

First of all the choice of the forbidden faceX, leads to a notion of inside and outside
for all the 0-Eulerians of our embedding.

Let E be a 0-Eulerian. Definethe interior of E as the set of facial cycles inF\{X}
that are necessary to combineE. Denote the interior ofE asInt(E).

The interior can be understood as the support vector of the integral supportz(E) of E
with respect toF\{X} as defined in Chapter 2. The inclusion order on the interiors of
the 0-Eulerians brings a new aspect of comparability to the set of 0-Eulerians besides the
inclusion as sigend sets of arcs. This order will give rise toan induction in the ”⇐”-proof
of Theorem 3.6.7. As different 0-Eulerians can have the sameinterior, the next lemma
gives an important representative for the 0-Eulerians withfixed interior.

Lemma 3.6.2.For every 0-Eulerian E, there is a unique 0-Eulerian denoted∂E, which
is arc minimal with respect to conformal inclusion satisfying Int(∂E) = Int(E). It will be
called the boundary of E.

Proof. Let z(E) be the integral support ofE with respect toF\{X} andsupp(z(E)) its
support. Define∂E := supp(z(E))(F\{X}) as the result of the corresponding combina-
tion of facial cycles.
First, it is clear thatE and∂E have the same interior. In particular∂E is a 0-Eulerian.
To see uniqueness, first observe that∂E = ∂E ′ if Int(E) = Int(E ′). So it
is enough to prove that∂E is conformingly contained inE. Now, if a is an
arc of ∂E it lies between two facial cyclesF1 and F2, with supp(z(E))(F1) =
1 and supp(z(E))(F2) = 0. But as E is (1,−1, 0)-vector, incident facial cy-
cles must have coefficients inz(E) that differ by one. Soz(E)(F1) = 1 and
z(E)(F2) = 0. This gives, thata is contained inE with the same sign as in∂E.

�

Lemma 3.6.2 in particular implies that the boundary of a directed 0-Eulerian is a di-
rected 0-Eulerian again. It is not true that∂E is a cycle, it is not even arc inclusion
minimal among the 0-Eulerians. Take for instance∂A = A in Figure 3.2. The picture
also exemplifies that two 0-Eulerians that differ only by their signing can have different
interior and boundary.

The interior of a 0-EulerianE leads to a subgraphD(E) of D, which consists of all the
arcs that are incident to facial cycles inInt(E).

Lemma 3.6.3.Let E be a 0-Eulerian which is minimal with respect to inclusion of(un-
signed) arc sets among the 0-Eulerians of(D,S). LetE ′ a 0-Eulerian and a subgraph of
D(E). Then Int(E ′) ⊆ Int(E).
Equality holds if and only if the signed arc sets∂E and∂E ′ are the same.
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Proof. By Lemma 3.6.2∂E ′ is conformingly contained inE ′ and has the same interior,
we assume∂E ′ = E ′.
Now supposeInt(E ′) 6⊆ Int(E). Denote the facial cycles inInt(E ′)\Int(E) by {F ′

i |
i ∈ I} and those inInt(E) by {Fj | j ∈ J}. As E ′ is a subgraph ofD(E), every arc
a that is incident to exactly oneF ′

i must be incident to exactly oneFj as well. So the
sum of all theF ′

i is a non-empty 0-EulerianE ′′, which is contained inE and oppositely
signed on common elements. If the arc sets are equal then−E andE are 0-Eulerians. By
Lemma 3.6.1 this is not possible. SoE ′′ is strictly contained inE, which contradicts arc
minimality of E.
By Lemma 3.6.2 we have thatInt(E ′) = Int(E) is equivalent to∂E = ∂E ′ as signed sets.

�

In Lemma 3.6.3 the arc minimality ofE is necessary. Otherwise the 0-EuleriansA and
B of Figure 3.2 in the roles ofE andE ′, respectively, give a counterexample.

Now, we introduce the concept of topological duality, whichwill bring us closer to
oriented matroids again. It will establish us to regardE0(D,S) as the setE(M∗(D⊥)) of
Eulerians of a cographic oriented matroid.

Let D = (V,A) be a digraph that is2-cell-embedded into an orientable surfaceS with
facesF . A topological dual of (D,S) is a digraphD⊥ = (V ⊥, A⊥), which is2-cell-
embedded intoS. Denote byF⊥ the faces of(D⊥, S)

The dualD⊥ is a directed incidence graph of the faces of(D,S). Topological dualiza-
tion maps

V → F⊥

A → A⊥

F → V ⊥

We construct(D⊥, S) by placing a vertexf⊥ of V ⊥ inside of every facef ∈ F . Now
every arca ∈ A lies between two (not necessarily different) elementsf, g ∈ F . The
corresponding facial cycles containa oppositely signed. We introduce an arc

a⊥ := (f⊥, g⊥) :⇔ a is a forward arc in the facial cycle induced byf

and

a⊥ := (g⊥, f⊥) :⇔ a is a forward arc in the facial cycle induced byg.

This way one obtains a2-cell-embedding(D⊥, S). We fix this particular(D⊥, S). Then
we take((D⊥)⊥, S) := (−D,S). This way topological dualization is a map of degree4.
Fixing the topological dual, every signed arc setX of D is mapped to a signed arc set of
D⊥, which we denote byX⊥. As we do not display arcs that appear twice in a facial cycle
in its incidence vector, we introduce the dual convention that a loop at a vertexv does not
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appear in the signed incidence vector of the vertex cut ofv. Then the signed incidence
vectors ofX andX⊥ are the same. This way every subgraphD′ of D can be mapped to
a subgraphD′⊤ of D⊤ as well, by mapping arcs ofD to arcs ofD⊤.

The nice way acyclicity and strong connectivity are treatedby matroidal duality is not
respected by topological duality. For example in Figure 3.6we see a strongly connected
graph on the torus, whose topological dual is strongly connected again, thus not acyclic
at all. Nevertheless, the cographic oriented matroid dualM∗(D) and the graphic oriented
matroid of the topological dualM(D⊤) have some relation, we need to explore.

The following lemmas linkE0(D,S) via topological duality to matroid theory.

Lemma 3.6.4.Let (D,S) be a2-cell embedding and letE ∈ E(D,S). ThenE⊥ is a cut
of (D⊥, S) if and only ifE ∈ E0(D,S).

Proof. E ∈ E0(D,S)
⇔ E is a sum of facial cycles of(D,S)
⇔ E⊥ is a sum of vertex cuts of(D⊥, S)
⇔E⊥ is a cut of(D⊥, S)

This motivates a definition that includes the remaining cases. We call a signed arc set
P ⊆ A apseudocut of(D,S) if P⊥ ∈ E(D⊥). LetP(D,S) denote the set of pseudocuts
of (D,S).

Lemma 3.6.5. The sets of support minimal signed setsMin(E0(D,S)\{∅}) and
Min(P(D,S)\{∅}) are the circuits and cocircuits of an oriented matroid.

Proof. The pair of signed sets(Min(P(D,S)\{∅})), Min(E0(D,S)\{∅}) is just the
same as(Min(P(D,S)\{∅})⊥, Min(E0(D,S)\{∅})⊥), which by Lemma 3.6.4 and the
definition of pseudocuts is the same as(Min(E(D⊥, S)\{∅}), Min(C∗(D⊥))), which is
nothing else than(C(D⊥), C∗(D⊥)). As the sets of cycles and minimal cuts, this is the
pair of circuits and cocircuits respectively of the graphicoriented matroidM(D⊥), given
by D⊥.
So the oriented matroid with circuitsMin(E0(D,S)\{∅}) and cocircuits
Min(P(D,S)\{∅}) is its dual, namelyM∗(D⊥), i.e. a cographic oriented matroid.

�

We call the oriented matroid given by Lemma 3.6.5 the0-matroid of (D,S) and denote
it by M0(D,S). Now, for a 0-EulerianE ∈ E0(D,S) and the inducedD(E) we define

M0(D(E), S) := M0(D,S)\(A(D)\A(D(E))),

the matroid obtained fromM0(D,S) by deleting the elements, that are not arcs ofD(E).
The setE0(D(E), S) then consists of all the Eulerians in the span ofInt(E).
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Lemma 3.6.6.LetE be an arc minimal 0-Eulerian inE0(D,S) andM(D(E)0, S) totally
cyclic. If E ′ is a directed 0-Eulerian inE0(D(E), S) thenM0(D(E ′), S) is totally cyclic
as well.

Proof. First by Lemma 3.6.3 we know, thatA(D(E ′)) ⊆ A(D(E ′)). Total cyclic-
ity of M0(D(E), S) = M0(D,S)\(A(D)\A(D(E))) is equivalent to the dual
M(D⊤)/(A(D⊤)\A(D(E)⊤)) being acyclic. The latter is just the graphic oriented ma-
troid which arises fromD⊤ by contracting the arcs in(A(D⊤)\A(D(E)⊤)). Now, E ′

is represented by a directed cutE ′⊤ in D(E)⊤. The arcsA((D(E))⊤)\A(D(E ′)⊤)
are those that have to be contracted to obtainM0(D(E ′), S) after dualizing. It
is easy to see that the graph induced byA(D(E)⊤)\A(D(E ′)⊤) is the one in-
duced by one side of the directed cutE ′⊤. So by contracting these arcs
no directed cycle can be produced. This is,M0(D(E ′), S) is totally cyclic.

�

Analogously toM0(D,S) we call the covectors ofM0(D(E), S) pseudocuts. The
problem about directed 0-EuleriansE with a directed pseudocut inD(E) is, that their
orientation cannot be reversed by facial flip flops. Such a situation is illustrated in Figure
3.3.

X

Figure 3.3: A directed 0-EulerianE (vertical arcs) on the torus with directed pseudocut
(dashed arcs) inD(E).

Theorem 3.6.7.Let D be strongly connected and2-cell embedded into an orientable
surfaceS, with forbidden facial cycleX. LetE ∈ (E0(D,S))+. ThenE ∈ ff(F\{X}) if
and only if there is a 0-EulerianE0 with E = E0 and totally cyclicM0(D(E0), S).

Proof. ”⇒”:
If M0(D(E0), S) is not totally cyclic, D(E0) contains a directed pseudocutP . By
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Lemma 3.6.5 we have orthogonality, so no directed 0-Eulerian of D(E0) can ever in-
tersect the directedP . But by definition of the interior every facial cycle inInt(E0) forms
part of the integral support ofE0, thus has to be flipped or flopped at least once, in order
to reverse the orientation onE. The facial cycles inInt(E0) that are incident toP can
never be directed, thus can not be flipped or flopped, thusE cannot be inff(F\{X}).

”⇐”:
Let M0(D(E0), S) be totally cyclic. We can assumeE0 to be arc minimal inE0(D,S),
because otherwise we can decompose it into disjoint positively and negatively directed
0-Eulerians. Definethe area ofE0 asA(E0) - the height ofInt(E0) with respect to the
inclusion order on the interiors of 0-Eulerians. We will proceed by induction onA(E0).
If A(E0) = 1 then E0 is a facial cycle different from the forbidden one. As
M0(D(E0), S) is totally cyclic E0 is a directed facial cycle, i.e. can be flipped or
flopped.
So letA(E0) > 1. Analogously to the proof of Theorem1 we decomposeInt(E0) into
Int(E ′) andInt(E ′′), whereE ′, E ′′ are 0-Eulerians with smaller area, which we are able
to flip or flop one after the other.

X

E ′′

E ′′

E1

E2

F

Figure 3.4: Construction ofE ′ = sgnsum(E1, E2, F ) andE ′′.

As Int(E0) is not minimal take a facial cycleF ∈ Int(E0) that is incident toE0.
If the signed arc setF\E0 is not directed, takea1 ∈ (F\E0)−. By total cyclicity we
have a minimal directed Euleriana1 ∈ E1 ∈ E0(D(E0), S), which by Lemma 3.6.1 can
assumed to be a 0-Eulerian. ByE1 6= E0, arc minimality ofE1, and Lemma 3.6.3 we
haveA(E1) < A(E0). Thus by induction hypothesis and Lemma 3.6.6 the arc set ofE1

can be reversed by facial flip flops.
If E1 intersectsE0 we take it asE ′. Otherwise we reverse its orientation and takea2 ∈
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(F\E0)− in the resulting reorientation. Proceeding this way we obtain a flip flop sequence
(E1, . . . , Ek) of directed Eulerians, such thatsgnsum(E1, . . . , Ek) intersectsE0 or turns
F into a directed facial cycle. In the second case defineE ′ := sgnsum(E1, . . . , Ek, F )
otherwise takeE ′ := sgnsum(E1, . . . , Ek).
By the usual argumentation we can assumeE ′ to be a directed 0-Eulerian. Moreover we
can assume∂E ′ = E ′ by the following two arguments: By ”⇒” we know thatE ′ has
totally cyclic 0-matroid because it can be flip flopped. By construction we will never take
F and all its incident facial cycles in

∫
(E0, so we haveA(E ′) < A(E0). As A(∂E ′) =

A(E ′) and both have the same 0-matroid,∂E ′ can be flipped as well. Moreover it intersect
E0, whereverE ′ did.
So define the 0-EulerianE ′′ as given byInt(E0)\Int(E ′). As E0 is arc set minmalE ′ =
∂E ′, by Lemma 3.6.2, every facial cycle appears at most once in their integral support.
Now, E ′′ is directed oppositely toE ′ on E ′ ∩ E ′′ and signed asE0 on E ′′ ∩ E0 and
E ′ + E ′′ = E0. MoreoverA(E ′′) < A(E0). So after reversing the orientation onE ′ we
have thatE ′′ is directed, and can thus be reversed, too.
As E ′ ∩ E ′′ has been reoriented twice, we have obtained exactly what we wanted: the
reorientation ofE by means of facial flip flops.

�

Analyzing the proof of the ”⇐”-direction one sees, that if the orientation ofE can be
reversed, this can be done by facial flip flops of facial cyclesin its interior. Moreover one
observes, that ifE is positively or negatively directed it can be reversed by pure flip or
pure flop sequences, respectively.

If one wants to know, whether all the directed 0-Eulerians ofan embedding can be
reversed this way, by Lemma 3.6.6, it is enough to check the oriented matroids given by
the directed 0-Eulerians with inlucion maximal interior.

Take a 0-EuleriansE of (D,S). Theorem 3.6.7 implies the following. IfInt(E) to-
gether with all the faces that induce the facial cycles inInt(E) is homeomorphic to a
collection of edge disjoint disks thenE can always be reversed by facial flip flops. All the
pseudocuts inD(E) must be cuts. So a directed pseudocut would be a directed cut and
contradict strong connectivity ofD. SoM0(D(E), S) must be totally cyclic and E can
be reversed by facial flip flops. The planar case as in [7] is a special case of this situation.
Together with Corollary 2.2.4 one obtains Theorem 1.

The nice thing is that Theorem 3.6.7 again together with Corollary 2.2.4 also leads to
the main theorem of [12], namely Theorem 3.

Corollary 3.6.8. Let D = (V,A) be an acyclic directed graph. Andv ∈ V an arbitrary
fixed vertex. Then

• Everyc-reorientation ofD can be obtained fromD by a flip flop sequence of vertex
cuts different fromv’s vertex cut.
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• And moreover(reorc(D),≤ff) is a distributive lattice.

Proof. Embed D into an orientable surfaceS. Now by Theorem 3.5.2, thec-
reorientations ofD correspond to theα-reorientations of the cographic oriented matroid
induced byD. By Lemma 3.6.5 these are theα-reorientations ofM0(D⊥, S). The vertex
cut ofv corresponds to a facial cycleX of (D⊥, S). We have

M0(D⊥, S) = M0(D⊥(X), S).

AsD is acyclic,M0(D(X), S) is totally cyclic. As we haveInt(E) ⊆ Int(X), for every 0-
EulerianE. Lemma 3.6.6 gives totally cyclicM0(D(E), S), for every 0-EulerianE. So
by Theorem 3.6.7 the orientation of every directed 0-Eulerian can be reversed, i.e. every
α-reorientation ofM0(D⊥, S) can be produced by facial flip flops. Dualizing back, this
shows the first part of the corollary.
The second part has already been shown in Chapter 2 as a corollary of Corollary 2.2.4.

�

In particular the termInt(E) for a 0-EulerianE dualizes to cuts of acyclic directed
graphs.The interior of a cut X of such a digraph with forbidden vertexv is the set of
vertex cuts induced by the vertices in the side ofX, that does not containv. By Corollary
3.6.8 we know that the orientation onX can be reversed by flipflops ofInt(X).

After having seen what we can manage by flipping and flopping facial cycles of(D,S),
we look now for possible extensions ofF\{X}, to hopefully be able to generate all the
α-reorientations ofD.

If the orientable surfaceS whereD is embedded is different from the sphere not every
Eulerian can be combined withF\{X}. Take for instance Figure 3.6 and any straight
cycle Xi in it. As the facial cycles do not suffice to generate the cyclespace ofD, by
Proposition 3.3.4,ff(F\{X}) ⊆ E0(D, S) ( reorα(D). So we can try to extendF\{X}
in such a way, that the resulting set integrally spans the entire cycle space ofD.

Here is where some homology comes in. In order to distinguishbetween topologically
different Eulerians of(D,S), we use the concept of the first homology groupH1(S) of
the surfaceS, given by the cell decomposition induced by(D,S). The groupH1(S) can
be seen as the quotient space(kerZ Inc(D))/(spanZ(F)). Every EulerianE of (D,S)
lives in some of the equivalence classes[E], that formH1(S).

Homology theory tells us that for an orientable surfaceS of genusγ(S) the first ho-
mology group is isomorphic toZ2γ(S), see for instance [8]. So every Eulerian arc set
E of D gives an element[E] ∈ H1(S), which then corresponds to some element of
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(x1, y1, . . . , xγ(S), yγ(S)) ∈ Z2γ(S). For an EulerianE we have[E] = (0, . . . , 0) if and
only if E ∈ E0(D,S)

By Proposition 3.3.4, we know that an extension ofF\{X} must span the entire cy-
cle space ofD. This requirement can be characterized by the following. AsH1(S)
was defined as the quotient of all the cycle space modulo the space spanned by the 0-
Eulerians, an extension ofF spans all the cycle space if and only if the corresponding
equivalence classes spanH1(S). In other words letE1, . . . , Ek be elements ofE(D). The
set{[E1], . . . , [Ek]} integrally generatesH1(S) if and only if F\{X} ∪ {E1, . . . , Ek}
integrally spans the whole cycle space ofD.

So given(D,S) the conditionspanZ({[E1], . . . , [Ek]}) = Z2γ(S) is necessary for
ff(F\{X} ∪ {E1, . . . ,Ek}) = reorα(D). This condition is not sufficient.

By Theorem 3.6.7, we know that{E1, . . . , Ek} also has to be able to repair all those
directed 0-EuleriansE which have a directed pseudocut inD(E). This could be rephrased
as: ”in everyα-reorientationDE that contains a directed pseudocutP , which lies in
D(E ′) for some directed 0-EulerianE ′, we can flip flop a EulerianE ′′ disjoint fromE ′,
that intersectsP .” By the orthogonality ofP(D,S) and 0-E(D,S), we know thatE ′′

cannot be a 0-Eulerian. Such a EulerianE ′′ is exemplified in Figure 3.3 by the middle
dashed arc together with the non-dashed horizontal arcs.

For instance case enumeration shows, that already for the4× 2 hexagonal torus grid as
depicted in Figure 3.5, there is no extension ofF\{X}, that minimally spansH1(S) and
leads to a flip flop generating set for theα-orientations. As on the other hand the4 × 2
hexagonal torus grid is planar, the lower bound for a flip flop generating set given by
Proposition 3.3.4 stays tight. Just take the 5 bounded facial cycles of a planar embedding
as in Figure 3.5. Theorem 1 implies that all theα-reorientations of the grid can be obtained
by flipflops of this set.

1

1 1

11

2

2

2

3

33

4
4

5

Figure 3.5: The strongly connected4 × 2 hexagonal torus grid can be embedded into the
torus and into the plane.
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The following Section presents a positive non-planar example for Proposition 3.3.4,
where a minimal extension ofF\{X} leads to a flip flop generating set, for all theα-
orientations.

3.7 Eulerian Orientations of the Torus Square Grid

Eulerian orientations are thoseα-orientations such that at every vertex the outdegree
equals the indegree, i.eα ≡ deg

2
. In this section we prove that the set of Eulerian ori-

entations of the square grid on the torus carries a poset structure. It will be generated by
a minimal extension ofF\{X} to a spanning set of the cycle spaced. The poset consists
of distributive lattices given by flipflops of facial cycles,which are related by flips of the
two EuleriansX1 andY1.

Let Tm,n be them × n square grid embedded in the torus. Choose as base point for
developing the flip flop poset the Eulerian orientationD of Tm,n as depicted in Figure

3.6.

X1

X2

Xm

Y1 Y2 Yn

v1,1

vm,1

v1,n-1

vm,n-1

Figure 3.6: Reference orientationD of the torus square grid

Label the vertices ofTm,n with the set[m] × [n]. Start withv1,1 in the upper left and
continue labeling in matrix fashion. The letters(Xi)1≤i≤m and(Yj)1≤j≤n stand for the
horizontal and verticalstraight cycles(vi,1, . . . , vi,n) and (vm,j, . . . , v1,j), respectively.
They are considered as positively directed inD.
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The shaded region in the corners of the torus drawing will be taken as the forbidden
face with boundaryX. As a generating set of directed cycles for theα-reorientations of
D, we claimB := F\{X} ∪ {X1, Y1}, where the orientation of the facial cycles inF
again is obtained from running through their arcs in counterclockwise direction.

The first homology group of the torus is isomorphic toZ2 and{X1, Y1} is a generating
set of cycles, i.e.{[X1], [Y1]}={e1, e2}, which minimally spansZ2. ThusB is a minimal
spanning set of the cycle space ofD, so B satisfies the necessary conditions given by
Proposition 3.3.4 to generate all the Eulerian orientations of Tm,n. As {e1, e2} is an in-
dependent set overZ, the rows ofB are integrally independent and we already have that
Dff(B) is acyclic.

Call a EulerianE of any reorientation ofD straight if E =
⋃

i∈I Xi∪
⋃

j∈J Yj for some
I ⊆ [m] andJ ⊆ [n], i.e. E is a union of straight cycles. Therefore a straight Eulerian
can also be written by the tuple of index sets(I, J), corresponding to the straight cycles
involved. Denote byS the set of straight Eulerian arc sets ofD. In order to explore the
whole set of Eulerian arc sets ofD, we will first analyse the structure ofS as a subposet
of Pff(B).

Proposition 3.7.1. Let E,E ′ ∈ S with index sets(I, J) and (I ′, J ′). In the inherited
order fromff(B) one hasE ≤ff E ′ if and only if (at least) one of the following three cases
holds:

1. I 6= [m] andJ 6= [n] andI ′ 6= ∅ 6= J ′ and there are injective maps

φI : I\I ′ →֒ I ′\I
and

φJ : J\J ′ →֒ J ′\J

such thati ≤ φI(i) andj ≤ φJ(j)

2. I = I ′ = ∅ or I = I ′ = [m] andJ ′\J ⊆ {1}

3. J = J ′ = ∅ or J = J ′ = [n] andI ′\I ⊆ {1}

Proof. We start with case1.:
”⇐”:
The idea here is, thatI\I ′ is the set of straight cycles that points to the left and has
to be reversed andI ′\I is the set of straight cycles that points to the right and has to
be reversed. Under some conditions, taking one element of each of these sets forms a
flippable Eulerian. We give an algorithm how these flips can beorganized such that, with
the help ofX1 andY1, the desired set can be flipped. The main idea can be read off Figure
3.6.
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Xi

XφI(i)

AB B

C

C

Yj1 Yj2

Figure 3.7:(A,B), (A,C), and(A,B,C,A) can be flipped

For everyi ∈ I\I ′ we have thatXi ∪ XφI(i) is a 0-Eulerian, because it is the sum of
the obvious 0-EuleriansA andB. The ccw orientation ofA andB also induces that it
is positively directed. As one ofYj1 andYj2 points down and the other points up and by
i ≤ φI(i), flipping firstA and thenB, the orientation onXi ∪ XφI(i) is reversed.
If φJ(j1) = j2 and someXi1 points left and anotherXi2 points right, then the analogue
can be stated aboutYj1 ∪ YφJ (j2).
If - as in the picture - both situations come together, then alsoXi ∪XφI(i) ∪ Yj ∪ YφJ (j) is
a positively directed 0-Eulerian and can be flipped via the sequence(A,B,C,A).
This is already the essence of the proof. It leads to an algorithm, that controls the consec-
utive application of such flips together with the flips of the special straight cyclesX1 and
Y1.
Now we present the algorithm. It takesI, I ′, φI , J, J ′, φJ satisfying the conditions given
in 1. as input and constructs a pure flip sequences with base pointDE, such that
(DE)s = DE′

.
First we describe formally how to deal with the standard situation as depicted in Figure
3.7. For a subsetK of I or J andk ∈ K defineZk to beXk or Yk respectively. In the
following pseudo code fragments the statements+=X stands for flippingX and adding it
to s. The flips in FLIP are either of the type(A,B) or (A,C) exemplified by Figure 3.7
or they flipZ1.

As depicted in Figure 3.7, the flips performed in FLIP are onlypossible if the set of
straight cycles in{I, J}\{K} does not entirely point to one direction. In the MAIN part
of the algorithm we will care about this property.
In the firstfor -scope FLIP takesK\K ′ andφ(K\K ′) and reverses the orientation on these
sets, by using the situation of Figure 3.7 in every step. In the secondfor -scope FLIP takes
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Input : Row or column index setsK ′ andK that conform to condition1. of the
theorem. The setK ′ corresponds to a straight directed 0-EulerianẼ ′ in a
reorientationD eE, such thatD(Ẽ) contains no directed pseudocut. The
index setK ′ corresponds tõE

Output : The flip sequences will be extended such thatDs = (D
eE)

eE′

for k ∈ K\K ′ do
s+=(Zk ∪ ZφK(k));

for k ∈ K ′\K\φK(K\K ′)\{1} do
if Z1 positively directedthen

s+=Z1;
s+=(Z1 ∪ Zk);

if 1 ∈ K ′\K then
s+=Z1;

Algorithm 1 : FLIP

the remaining elements ofK ′ exceptZ1 and by orientingZ1 appropriately it produces
again the situation of Figure 3.7, such that(Z1 ∪Zk) can be flipped. The lastif -statement
flips Z1 again if necessary. This can always be done, becauseZ1 is in B.
Thus after FLIP the orientation onK\K ′ andK ′\K has been reversed.
In order to produce the situation that is expected by FLIP we need to care about the
orientation of the whole set of straight cycles, which will be gained in MAIN.

The procedure MAIN controls that, if any setK of either vertical other horizontal
straight cycles is handed to FLIP, then the set of ”orthogonal” straight cycles does not
point completely into the same direction. Therefore MAIN must distinguish some cases
and decide whetherI is flipped beforeJ or viceversa. This can be done, because we have
thatI ′ andJ ′ are non-empty andI andJ are not the entire set.
Together with the correctness of FLIP one has that MAIN reverses the orientation on
I\I ′, I ′\I, J\J ′, J ′\J , by the flip sequences. So after applying thes to DE we have
obtainedDE′

. This is the definition ofE ≤ff E ′.

Now we show the ”⇒”-direction for the case whereI, I ′ are neither both empty nor
both full andJ, J ′ are neither both empty nor both full.
So letI, I ′, J, J ′ be like that andE ≤ff E ′. It must be shown that this impliesI 6= [m]
andJ 6= [n] andI ′ 6= ∅ 6= J ′, to see that we are in case1. of the theorems statement.
Then we have to prove the existence of two injectionsφI : I\I ′ →֒ I ′\I andφJ : J\J ′ →֒
J ′\J such thati ≤ φI(i) andj ≤ φJ(j).
By definition E ≤ff E ′ means that there is a straight positively directed EulerianẼ in
DE, such that(DE)

eE = DE′

. As E andE ′ alsoẼ induces two index sets̃I andJ̃ . We
haveI∆Ĩ = I ′. DefineĨ− := I ∩ Ĩ - the straight cycles of̃E that are pointing down in
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Input : Sets and functionsI, I ′, φI , J, J ′, φJ satisfying condition1. of the
theorem.

Output : A flip sequences that leads fromDE to DE′

s:=∅;
if I ′ = [m] andJ ′ = [n] then

if J = ∅ then
s+=Y1;

FLIP(I\{φ−1
I (m)}); FLIP(J\{φ−1

J (n)});
s+=(X1 ∪ Xm ∪ Y1 ∪ Yn);

else
if I ′ = [m] then

if I = ∅ then
s+=X1;

FLIP(J); FLIP(I);

else
if I = ∅ then

s+=X1;
FLIP(J); FLIP(I);

Algorithm 2 : MAIN

DE and must be reversed. And call the rest - those that are pointing up inDE and must
be reversed:̃I+ := I ′ ∩ Ĩ.
Suppose that|Ĩ−| > |Ĩ+|. This means that some of the straight cycles indexed by|Ĩ−|
cannot be flipped as part of a straight 0-Eulerian together with some cycles indexed by
elements of|Ĩ+|. So the remaining cycles can only be reversed as a part of a flipif some
new wrongly oriented straight cycle is produced. To repair this a flop must be performed,
which contradictsE ≤ff E ′.
Therefore we have|Ĩ−| ≤ |Ĩ+|. This implies|I| ≤ |I ′|. Analogously we get|J | ≤ |J ′|.
Together we are in case1., i.e. I 6= [m] andJ 6= [n] andI ′ 6= ∅ 6= J ′.
Supposing now that the injections as in1. do not exist, means thatXeI− is not entirely
contained in any positively directed straight Eulerian ofXeI . Thus any try to flip all the
straight cycles iñI− would reorient some straight cycles, that were not desired.These
would have to be flopped back later on, to obtain the orientation we are aiming for. So we
cannot come fromDE to DE′

by a sequence of flips.

Now we show the equivalence ofE ≤ff E ′ andJ ′\J ⊆ {1} in case2.. It is easily
seen that, because of the orientation on theX[m], every positively directed 0-EuleriañE
in DE has a directed pseudocut inDE(Ẽ), thus by Theorem 3.6.7 cannot be flip flopped
by means of facial cycles. So the only Eulerians that can be flipped areY1 andX1 if
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I ′ = ∅. But flipping the latter, would have to be undone by some flop: either by flopping
X1 or by flipping some 0-Eulerian of the formX1 ∪ Xi, which then leavesXi negatively
directed. This would destroy directedness of the sequence we are aiming for, soE ≤ff E ′

if and only if J ′\J ⊆ {1}.

The equivalence in case 3. works completely analogously.
�

In order to understand the poset of straight Eulerians(S,≤ff) we define an orderPk :=
({0, 1}k,≺) such that for different(0, 1)-vectorsx ≺ y :⇔ one of the following holds

1. < x,1 >=< y,1 > andx = (y(1), . . . , y(i), 0, 1, y(i + 3), . . . , y(k)) ⇔: x ≺1 y,
or

2. < x,1 >=< y,1 > −1 andx = (0, y(2), . . . , y(k)) ⇔: x ≺2 y

000

100
010

110

101

011

001

111

Figure 3.8: The posetP3.

The posetPk can be constructed from0 on by two operations. In case1. the vectory is
obtained fromx by switching a10 to a01. In case2. the first entry ofx has been changed
from 0 to 1 in order to obtainy.

Identifying the setsI, I ′ andJ, J ′ from Proposition 3.7.1 with the corresponding inci-
dence vectorsx, x′ ∈ {0, 1}m andy, y′ ∈ {0, 1}n respectively one gets:

(S,≺ff) = (Pm×Pn)\{(x, y) ≺0 (x′, y′) | {x, x′} ∈ {{0}, {1}} or {y, y′} ∈ {{0}, {1}}},

where it is understood that only the relations, not the elements are removed from the
product.

To complete the picture ofPff(F\{X} ∪ {X1, Y1}) we will see how the rest of the
Eulerians ofD fit into the pattern given by the straight Eulerians.

Proposition 3.7.2.For every EulerianE of D there are straight EuleriansE1, E2 such
thatE1 ≤ E ≤ E2. Moreover all the threeE1, E,E2 are in the same homology class.
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Proof. The proof works by constructing a flip sequence fromE to E2 and a flop sequence
from E to E1. Both consist of reorientations of 0-Eulerians only.
E is a directed subgraph ofD with vertex degrees0, 2 or 4. In DE the vertices with
degree2 in E have only two possibilities to look like with respect toE if E does not walk
straight ahead. These vertices are calledDL (down-left) andLD (left-down) vertices,
respectively. They are depicted in Figure 3.9

Figure 3.9:DL-vertex andLD-vertex

It is rather obvious that the number ofDL-vertices andLD-vertices on a fixedXi must
be equal. Therefore also on allE these numbers, denoted from now on byp, coincide.
Our proof will be an induction onp:
If p = 0 our EulerianE is straight, soE1 = E = E2 proves the induction basis.
If p > 0, we constructE ′ <ff E with p′ < p. Given aDL-vertexvi,j take the nextLD-
vertex to the right onXi, sayvi,j′, and the next in downwards direction onYj, sayvi′,j .
Locally two different situations can occur, depicted in Figure 3.10

In the picture, we draw only those lines that are at our concern. The dashed lines are
those arcs, that are still oriented as inD. The other arcs are arcs inE (left side) or in
E ′ (right side) respectively. It is possible that there are more vertices and arcs inside the
shaded region. The important fact is, that there are noDL- andLD-vertices on the lines
betweenvi,j andvi,j′ and betweenvi,j andvi′,j, respectively. Hence, no arcs ofE lie on
these lines.
Case(1) reflects the situation where the heavily drawn directed pathpassing throughvi,j′,
has a vertexv·,j before it possibly intersects, with the corresponding path, passing through
vi′,j . So case(1) includes a similar picture, that is reflected on a diagonal axis.
Case(2) shows what we do, if both paths intersect before they cross the horizontal re-
spectively vertical line induced byvi,j .
In both cases, the bounding cycle of the shaded region, sayF , is oriented in clockwise
direction. IfF is flopped the resulting EulerianE ′ is smaller thanE in the flip flop poset,
and moreover it is in the same homology class, becauseF is a 0-Eulerian. Because the
number ofDL-vertices has been reduced by at least one by this flop one can apply the
induction hypothesis and thus gets some straight EulerianE ′′ ≤ E ′ ≤ E, which also lies
in the same homology class withE.

The only problem that remains is, whetherF can be flopped by our means.
We do not know, if the shaded region really is the interior of the directed cycle which we
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flop

flop(1)

(2)

E E ′

vi,j

vi,j

vk,l

vk,l

vi′,j

vi′,j

vi,j′

vi,j′

Figure 3.10: In both cases the flop of the shaded region reducesp

want to flop, or if it contains the forbidden facial cycleX.
We will show that in every Eulerian withp > 0 there is aDL-vertex such that the induced
negatively directed 0-EulerianF has the shaded region as its interior. As this region is
homeomorphic to a disk and by strong connectivity of the whole graph,F can be flopped,
by flops of the facial cycles in its interior.

So takevi,j to be aDL-vertex ofE which minimizesmin(i, j) among all ofE’s DL-
vertices. The vertexvi,j induces a cycleF as in Figure 3.10. If the region that is induced
by F containsX, we cannot be in case(1) of Figure 3.10. OtherwiseF has a ”lower
right” corner calledvk,l 6= vi,j in the figure, which is itself aDL-vertex. So asF ’s region
containsX the vertexvk,l must lie betweenv0,0 andvi,j , i.e. 0 ≤ k < i and0 ≤ l < j,
which contradicts the minimality of the choice ofvi,j.
So we concentrate on the case that ourmin(i1, j1)-minimizingvi1,j1 is of the second type
of DL vertices (case(2) of Figure 3.10) and the region induced by the correspondingF1

containsX. This means we have a vertexvk1,l1 of degree four, which by supposing that
X is contained in the shaded region, lies betweenv0,0 andvi1,j1 , i.e. 0 ≤ k1 < i1 and
0 ≤ l1 < j1.
But asvk1,l1 has degree four there must be anotherDL-vertexvk1,j′ from vk1,l1 to the right,
and onevi′,l1 downwards. Choose one of both, such that we stay with the minimum ofk1

andℓ1.



CHAPTER 3. ORIENTED MATROIDS 61

Call thisDL-vertexvi2,j2. It induces again a cycleF2. Again, if F2 induces a region that
containsX again it cannot be of type(1). If F2 is of type(2) we obtain a new degree four
vertexvk2,l2 , with 0 ≤ k2 < i2 and0 ≤ l2 < j2.
So if we could go on like this forever, we could construct a strictly decreasing sequence
of is andjs, such that0 ≤ min(ir+1, jr+1) < min(ir, jr), for everyr. So because of
finiteness of the graph, this iteration must stop, i.e. lead to someDL vertex that induces
a region, which does not contain the forbidden face.
Now we have constructed the desiredE ′ ≤ff E, which we can apply the in-
duction hypothesis to and obtain the straightE1 ≤ E. The construction of
E2 works analogously by switching the roles ofDL-vertices andLD-vertices.

�

Proposition 3.7 and Proposition 3.7.1 together give thatPff(F\{X}∪{X1, Y1}) consist
of distributive lattices on the homology classes ofE(D,S1), which are related by flips of
X1 andY1.



Chapter 4

Everybody is a Flip Flop

The question of how to get a distributive lattice on theα-orientations of cographic ori-
ented matroids has already been solved in [12]. Moreover we have proved this result in
Corollary 3.6.8. In Chapter 2 we have proved that every loop-free digraph is the flip flop
graph of a sign matrix. In the present chapter we will prove, that every distributive lattice
is a flip flop poset on theα-orientations of a cographic oriented matroid. Analogously
to the questions raised after Theorem 2.1.3 in Chapter 2, we then analyze the structure
of those cographic matroids, that generate the same distributive lattice. As justified by
Section 3.5 we will treatα-orientations of totally cyclic cographic oriented matroids as
c-reorientations of acyclic digraphs.

4.1 Every Distributive Lattice is the Flip Flop Poset of a
Digraph

We will now describe a method that constructs out of a given distributive latticeL a set of
digraphs[D], that realizeL as the flip flop poset on theirc-reorientations.

So letL be a distributive lattice. Denote byJ(L) the sub poset of its join-irreducible
elements. ViewJ(L) as a directed graphD′ on the elements ofJ(L), where

(u, v) ∈ A(D′) :⇔ u ≺J(L) v.

Add a vertex⊤ to D′ and introduce arcs from the sources ofD′ (minima ofJ(L)) to ⊤.
Call this new graphD. Denote by[D] the set of digraphs that can be obtained fromD
by adding transitive arcs. Ordering the elements of[D] by arc set inclusion,[D] forms a
boolean lattice. The minimal element of[D] is D.

The construction is exemplified by Figure 4.1.

62
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⊤⊤

DJ(L)L [D]

Figure 4.1: The construction of[D] out ofL. The dashed arcs in the drawing of[D] stand
for arcs that can be added toD.

The set of graphs[D] induced byL has a nice property. Let̃D ∈ [D] andB the matrix,
that is obtained fromInc(D̃) by deleting the row that corresponds to the⊤-vertex.

Theorem 4.1.1.The flip flop posetPff(B) is isomorphic to the distributive latticeL.

Proof. This result is a special case of the theory developed in Section 4.2. Anyways, here
is a proof:
As shown by Corollary 2.2.6,Pff(B) is a distributive lattice. AsB has no negatively
directed rows,B corresponds to the minimum ofPff(B). So every element ofPff(B) can
be reached by a flip sequence based atB. By the fundamental theorem of distributive
lattices, (see [5], pp171), it is enough to show that the distributive latticeO(J(L)) = L
of ideals ofJ(L) is isomorphic toPff(B).
First, the rows that come from the sources ofD̃ are positively directed inB. But as the
sources are connected to the forbidden vertex⊤, after flipping them once, they cannot
have a positively directed vertex cut again.
Second, any row can be flipped only after the rows, that correspond to its predecessors
in D̃, have been flipped. So iteratively every row can be flipped at least as often as the
sources.
This means that every row can be flipped at least once in a flip sequence. And it tells
us that the set of vertices that have been flipped in any flip sequences corresponds to an
ideal ofJ(L).
To see now, that we get any ideal ofJ(L) this way, take an antichainA in J(L). We
try to flip all the verticesÃ of D̃ that correspond toA and none of their successors. So
take all the vertices that lie on directed paths from sourcesof D̃ to elements ofÃ. This
vertex set induces a directed cut iñD. Directed cuts correspond toc-reorientations of
D̃, which by Corollary 3.6.8 can be reversed by a flip sequence based atB. The rows
in this sequence corresponds to the vertices in one of the sides of the cut - the interior
of the cut. One of the sides contains⊤, thus cannot be flipped. The other side of the
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cut corresponds exactly to the vertices between the sourcesof D̃ and Ã. So Ã can be
flipped and the vertices flipped in this flip sequence correspond to the ideal ofA in J(L).

�

The construction for[D] used by the theorem does not generally give the only graphs
which flip flop generateL. We will see in the next section that the graphs in[D] are vertex
number maximal for doing the job.

4.2 Towards a Structure on Digraphs with the Same Flip
Flop Poset

We try to analyze the entire set of digraphs that generate a given flip flop poset. Therefore,
our aim is to look more precisely how a given digraphD produces a flip flop poset on its
c-reorientations. We have seen in Chapter 2 that flip flop posets as the ones coming from
the vertex cuts of a graph are integral, i.e. are naturally embedded intoZ|V (D)|−1. Every
orientations is mapped to an integral point, that counts forevery vertex how many times
it has been flipped. Heading towards a structure on the set of digraphs that generate a
given distributive lattice, it is useful to observe how the digraph embeds the generated
distributive lattice into someZ|V (D)|−1.

⊤D

Pff(D)

c

c

b

b

a

a

Figure 4.2: A digraphD with associated embedded flip flop poset.

First observe that we can restrict us to acyclic digraphs with unique sink at the for-
bidden vertex. LetD be an acyclic directed graph, with a forbidden vertex⊤. All the
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c-reorientations ofD are elements ofD’s flip flop poset. Starting the flip flopping at any
of these orientations generates the same distributive lattice. The difference between the
different embeddings is, that the respective starting orientation is mapped to the0 ∈ Zm.
So the embeddings coming from anyD′ ∈ reorc(D) are all translations of another.

Therefore let the orientation ofD be the minimum orientation of the associated flip
flop poset. This means thatD has exactly one sink, which sits at the forbidden vertex⊤.
From now on we will considerD always like that and denote byPff(D) the distributive
lattice induced by flip flops of vertex cuts different from theone of⊤. This way we get
an embedding ofPff(D) whose minimal element is0 ∈ Z|V (D)|−1.

To understand now the embeddings of flip flop posets we must characterize when a
vertex can be flipped thekth time in terms of the other vertex flips. By doing so, the
following lemmas will lead to a description of the embedding.

For every vertexv ∈ V (D)\{⊤} there is a directed(v,⊤)-path inD. Denote by↓ v
the set of verticesw such that there is a directed(w, v)-path and by↑ v the the vertices
such that a directed(v, w)-path exists.

Lemma 4.2.1.To flipv ∈ V (D)\{⊤} exactlyk times every vertex in↓ v has to be flipped
exactlyk times before.

Proof. Let w ∈↓ v. We proceed by induction ondist(w, v), the length of the shortest
directed(w, v)-path inD.
If dist(w, v) = 1, we havea = (w, v) ∈ A(D). Thus, each timev wants to be flipped,w
had to be flipped before, because otherwisea would point intov and the vertex cut ofv
could not be positively directed. On the other handw cannot have been flipped more than
once, without flippingv in between.
If dist(w, v) > 1 choose w′ as a vertex that is the last vertex on
a shortest (w, v)-path before arriving at v. To flip v’s vertex cut k
times w′ must be flipped k times, and as dist(w,w′) < dist(w, v),
by induction hypothesis, w hast to be flipped exactly as often asw′.

�

Lemma 4.2.2.To flip v ∈ V (D)\{⊤} exactlyk times every vertex inw ∈↑ v has to be
flipped exactlyk − dist(v, w) times before.

Proof. Let w ∈↑ v. Again, we proceed by induction ondist(v, w).
If dist(v, w) = 1, we havea = (v, w) ∈ A(D). Thus, each timev wants to be flipped,
w had to be flipped once after the last timev was flipped, because otherwisea would still
point intov and the vertex cut ofv could not be positively directed. Obviouslyw cannot
have been flipped more than once, asv would have to be flipped in between to make this
possible. Thus before thekth flip of v can be performed, the vertex cut ofw has been
flipped exactlyk − 1 times.
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If dist(v, w) > 1 choose w′ as a vertex that is the first vertex on a short-
est (v, w)-path after leavingv. To flip v’s vertex cut k times w′ must be
flipped k − 1 times, and asdist(w′, w) < dist(v, w), by induction hypothe-
sis, w hast to be flipped exactlyk − 1 − dist(w′, w) = k − dist(v, w) times.

�

Denote byN−(v) the set of vertices that point tov and byN+(v) the set of verticesv
is pointing to. During the whole chapter these terms refer tothe starting orientation ofD.
MoreoverN(v) := N+(v) ∪ N−(v) is called the set ofneighborsof v.

Lemma 4.2.3. If we can flip everyw ∈ N−(v) at leastk times and everyu ∈ N+(v) at
leastk − 1 times, then we can flipv at leastk times.

Proof. For everyu ∈ N+(v) andw ∈ N−(v) denote byuk−1 andwk some orientations
whereu has been flippedk − 1 times orw has been flippedk times, respectively.
Take the orientation ofD that is the join of all these orientations with respect to the
integral embedding. By Lemma4.2.2 and Lemma4.2.1, in order to generate this ori-
entationsv has been flipped at leastk − 1 times. Suppose thatv has been flipped
exactly k − 1 times. By Lemma4.2.2 and Lemma4.2.1 the entireN+(v) has been
flipped exactlyk − 1 times andN−(v) has been flipped exactlyk times. More-
over the vertex cuts of the elements ofN+(v) have been flipped once since the last
flip of v. The same holds for the vertex cuts of the elements ofN−(v). But this
means thatv’s vertex cut is positively directed again and can be flipped the kth time.

�

The three above Lemmas give rise to a new definition. Introduce for every arc(v, w)
in D the oppositely directed arc(w, v). Let the original arcs ofD have length1 and the
new auxiliary arcs length0. Denote byπ(v) the distance fromv to ⊤ in this new graph.
We call the functionπ : V → Z≥0 the potential function of D.

Lemma 4.2.4.For everyv ∈ V the valueπ(v) gives the maximal number ofv occurring
in a flip sequence.

Proof. First we show thatv can be flipped at mostπ(v) times.
Assume thatv can be flippedk > π(v) times. By the definition ofπ, there is a shortest
path of auxiliary and original arcs with lengthπ(v) from v to ⊤. Applying Lemma 4.2.2
and Lemma 4.2.1 along this path one gets that⊤ has to be flipped, which is impossible.

Now we must prove thatv indeed can be flippedπ(v) times. We proceed by induction
onπ(v).
If π(v) = 0 we havev = ⊤ and nothing to show.
If π(v) > 0, first assume to have av such thatN+(v) consists only of vertices with poten-
tial π(v) − 1. After flipping all the vertices inN+(v) exactlyπ(v) − 1 times, by Lemma
4.2.1 all↓ v ∪ {v} has been flipped at leastπ(v) − 1 times.
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First observe that for every elementw ∈ (↓ v ∪ {v}) we haveπ(w) ≥ π(v). So every
element inN+(w) can be flipped at leastπ(v) − 1 times.
Therefore, if any elementw ∈↓ v ∪ {v} has been flipped more thanπ(v) − 1 we can flip
v at leastπ(v) times by applying Lemma 4.2.3 along a directed(w, v)-path.
So suppose all↓ v∪{v} has been flipped exactlyπ(v)−1 times. The vertices in↓ v∪{v}
with longest paths tov (the sources ofD in ↓ v∪{v}) have emptyN−. So with the above
observation they can be flipped again by Lemma 4.2.3.
This way one can reverse the orientation ofv theπ(v)th time.
If not every vertex in N+(v) has potential π(v) − 1, we can move to-
wards ⊤ without changing the potential until we arrive at a vertexv′ with
this property. By Lemma 4.2.1 we obtain, thatv can be flippedπ(v) times.

�

Theorem 4.2.5.For D as above the embedded distributive latticePff(D) is isomorphic
to the dominance order on the integral point set given by

{0 ≤ z ≤ π | (v, w) ∈ A(D) ⇒ 0 ≤ z(v) − z(w) ≤ 1} ⊆ ZV (D)\⊤.

Proof. The isomorphism works by identification of the orientationsof D with the vectors
0 ≤ z ≤ π that count for every vertex how many times it has been flipped.
Injectivity is obvious, and asPff(D) is integral, we have an order-embedding into
ZV (D)\⊤.
By Lemma 4.2.4, Lemma 4.2.2, and Lemma 4.2.1 we have thatPff(D) is indeed embed-
ded into{0 ≤ z ≤ π | (v, w) ∈ A(D) ⇒ 0 ≤ z(v) − z(w) ≤ 1} ⊆ ZV (D)\⊤.
To prove surjectivity letz ∈ {0 ≤ z ≤ π | (v, w) ∈ A(D) ⇒ 0 ≤ z(v) −
z(w) ≤ 1}. For every vertexv 6= ⊤ by Lemma 4.2.4 and distributivity there is
a minimal orientationxv with xv(v) = z(v) and xv ≤ z. We can take the join∨

v∈V (D)\{⊤} xv of all these orientations which is still smaller or equal than z, thus by
the choice of the orientationsxv it is the same asz. We have obtained surjectivity.

�

Now that we have a way to write down the embedded distributivelattice coming from a
digraph, we will try to investigate the set of graphs that have the same distributive flip flop
lattice, by comparing the embeddings they lead to. Some leadto the same embedding,
some do not.

For a distributive latticeL there is a correspondence of the embeddings ofL into some
Zm and the set of chain partitions ofJ(L). Given a chain partitioned poset(P, {Ci}i∈[m])
the corresponding distributive lattice of idealsO(P ) will be embedded intoZm the fol-
lowing way. Map every idealI of P to the vectorzI ∈ Zm, wherezI(i) := |I ∩ Ci|. The
inverse consists of putting a join irreduciblex ≻ y in L into the chainCi if x − y = ei.

In the following we will give a characterization of those chain partitions that correspond
to the embedded flip flops acyclic digraphs.
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⊤D

(P, {Ca, Cb, Cc})

123

Figure 4.3: On the one hand a good plissée partitioned poset(P, {Ca, Cb, Cc}), that comes
from the embedded distributive lattice of Figure 4.2, with its projectionD. On the other
hand an acyclic graphD with is potential poset carrying the canonical chain partiton.

For any posetP , we call a chain partition{Ci}1≤i≤k plissée for every i, j ∈ [k] we
have thatCi ∪Cj contains a cover relation impliesCi ∪Cj is a alternating chain between
Ci andCj. In order to approach the properties of chain partitioned posets coming from
embedded flip flop posets, the idea of this definition is to reflect, that adjacent vertices of
a digraph can only be flipped in an alternating fashion.

Having P together with a plisśee partition{Ci}1≤i≤k, we definethe projection of
(P, {Ci}1≤i≤k) as the directed graph∆(P,{Ci}1≤i≤k) = (V,A), where

V := {Min(Ci) | 1 ≤ i ≤ k} ∪ {⊤}

and
(v, w) ∈ A :⇔ eitherv <P w andCv ∪ Cw alternates between both chains or|Cv| = 1
andw = ⊤.

A plissée partition (P, {Ci}) is called good if the potential functionπ of the
∆(P,{Ci}1≤i≤k) coincides with the values|Cv| that are naturally assigned to the vertices
of the projection of(P, {Ci}).

Given an acyclic digraphD with unique sink⊤ and potential functionπ, we define its
potential poset, as the setΠD := {vi | 1 ≤ i ≤ π(v), v ∈ V (D)} together with the order
relation transitively induced by

vi ≤ wj :⇐ i ≤ j and((v, w) ∈ A(D) or v = w).

The potential poset carries a canonical chain partition

{Cv | v ∈ V } := {{vi | 1 ≤ i ≤ π(v)} | v ∈ V (D)}.
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We want to understand the maps between the classes of acyclicdirected graphs with
unique sink, good plisśee partitioned posets, and embedded flip flop posets. They are
depicted in Figure 4.4.

L ⊆ Zd

(D,⊤)

(P, {Ci}1≤i≤k)

Π ∆ ff

Figure 4.4: The classes of objects involved and the maps between them.

Theorem 4.2.6.Let D be acyclic with unique sink⊤. Let (J(Pff(D)), {Ci}i∈[m]) be
the chain partitioned poset coming from the embedded flip flopposetPff(D). Then
(J(Pff(D)), {Ci}i∈[m]) is isomorphic to(Π(D), {Cv | v ∈ V }) the potential poset ofD
with its canonical chain partition.

Proof. We establish a correspondence between the elements of(J(Pff(D)), {Ci}i∈[m])
and(Π(D), {Cv | v ∈ V }). It must preserve the respective chain partitions. The ideais
to map the join-irreducible orientationvk of Pff(D) to the elementvk of Π(D). Herevk

stands for the orientation, wherev has been flipped exactlyk times and is the only vertex
with negatively directed vertex cut.

So first observe that in any orientation, wherev has just been flipped exactlyk times
(1 ≤ k ≤ π(v)), one can flop other vertex cuts untilv is the only floppable. This way one
obtains a join-irreducible orientationvk for everyk ∈ [π(v)].
Suppose there were two incomparable join-irreducible orientationsvk and(vk)′ wherev
has been flipped exactlyk times. Take their meetvk ∧ (vk)′, which corresponds to the
meet of the dominance order inZ|V (D)|−1. In vk∧(vk)′ the vertex cut ofv has been flipped
k times, as well. So the last flip on flip sequences fromvk ∧ (vk)′ to vk and(vk)′ cannot
be the flip ofv’s vertex cut, sovk and(vk)′ are not join-irreducible.
We have already obtained an ismorphism between the elementsof (J(Pff(D)), {Ci}i∈[m])
and(Π(D), {Cv | v ∈ V }), that preserves the chain partitions.

It remains to check if it is an order isomorphism, i.e.vk ≺ wl ⇔ vk ≺ wl.
For both directions we clearly havev 6= w.
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vk

vk+1

v wk

wk+1

w

D Π(D)

Figure 4.5: Candidates for covering relations inΠ(D)

Moreover by looking at the construction ofΠ(D) (Figure 4.5), one observes that

(((v, w) ∈ A(D) andl = k) or ((w, v) ∈ A(D) andl = k + 1)) ⇒ vk < wl.

and

(((v, w) ∈ A(D) andl = k) or ((w, v) ∈ A(D) andl = k + 1)) ⇐ vk ≺ wl.

So we havevk ≺ wl if and only if there is no longer(vk, wl)-path inΠ(D) consisting of
this kind of relations.

We start with ”⇒”:
Let vk ≺ wl in Π(D). Together with Lemma 4.2.1 and Lemma 4.2.2 having

((v, w) ∈ A(D) andl = k) or ((w, v) ∈ A(D) andl = k + 1))

clearly impliesvk < wl. In order to showvk ≺ wl we observe the following:
If we havevk ≺ um in (J(Pff(D)), {Ci}i∈[m]) then a pure flip sequences leading from
vk to um must flip a vertex cutx which is incident to the vertex cut ofv, in order to
destroy the negativity ofv’s vertex cut. Takex to be the first such vertex ins and look at
the orientation just after this flip. Now flop negatively directed vertex cuts different from
x, until x is the only negatively directed, i.e. we stand atxi. The arcs ofv, which are
not incident tox have not been reoriented during this process, because they point into v.
So floppingx gives an orientation, wherev is negatively directed and has been flipped
exactlyk times. As argumented above, this orientation is bigger thanvk.
Therefore one obtains a join-irreducible orientationxi with vk < xi < um. Sovk ≺ um

implies thatu must be incident tov and with Lemma 4.2.1 and Lemma 4.2.2 we get

((v, u) ∈ A(D) andm = k) or ((u, v) ∈ A(D) andm = k + 1)).

So suppose there werevk ≺ um1

1 ≺ . . . ≺ umn
n ≺ wl. Then one has a(vk, wl)-path in

Π(D) consisting of the kind of relations that was forbidden.
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For ”⇐ it is enough to showvk ≺ wl ⇒ vk < wl. But as just observedvk ≺ wl implies
thatw must be incident tov and

((v, w) ∈ A(D) andl = k) or ((w, v) ∈ A(D) andl = k + 1)).

This impliesvk < wl.

Theorem 4.2.7.The canonical chain partition of the potential poset, is a good plisśee
partition.

Proof. Let D be a graph with unique sink⊤. It is easy to see that(Π(D), {Cv | v ∈
V (D)}) is a plisśee partitioned poset. LetD′ = ∆(Π(D),{Cv|v∈V (D)}) be the projection of
the potential poset ofD. ObviouslyV (D′) = V (D) andA(D′) ⊇ A(D).
To see that the plissée partition is good, we must show that the potential function π′ of D′

equals the potential functionπ of D. As A(D′) ⊇ A(D) we haveπ′ ≤ π.
Suppose there is an arca = (u, v) in D′ but not inD, which comes from an alternating
(Cu ∪ Cv)-chain inΠ(D) and letsπ′ be smaller thanπ. There are two possibilities how
this can happen.
On the one hand the new arc can lowerπ(u), i.e. π(v) + 1 < π(u). So by reasons of
cardinalityCu ∪ Cv cannot have been an alternating chain.
On the other hand introducinga could lowerπ(v), i.e. π(u) < π(v). But this again
contradicts the fact thatCu ∪ Cv is an alternating chain with minmal element inCu.

�

Theorem 4.2.8.A posetP with a chain partition{Ci}1≤i≤k is the chain partitioned poset
of join-irreducibles of an embedded distributive latticePff(D) if and only if{Ci}1≤i≤k is
a good plisśee partition.

Proof. We begin with” ⇒ ”:
Let P be the the chain partitioned poset of join-irreducibles of an embedded distributive
latticePff(D). By Theorem 4.2.6 it is the potential poset with canonical chain partition
coming fromD. By Theorem 4.2.7 this is a good plissée partition.
” ⇐ ”:
Let P be a poset with a chain partition{Ci}1≤i≤k that is a good plisśee
partition. It is the potential poset of its own projection, which by The-
orem 4.2.6 comes from the corresponding embedded flip flop poset.

�

The plisśee partition ofJ(L) we have used to prove Theorem 4.1.1, is the only one that
generally exists for every poset. It consists of singletonsonly.

Recall that our goal is to understand the set of digraphs thatgenerate the same dis-
tributive lattice. We indeed are closer now to what we wanted, as we can say that the
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⊤

11

11

22

22

3

33

Figure 4.6: Thin projection of a plissée partitioned poset. The desiredπ-values are written
next to the vertices. Arcs that can be added in order to achieve the right potential are
drawn dashed. Only one outgoing dashed arc per vertex is needed to repair the potential
function.

”essentially different” graphs, that generate our distributive latticeL correspond to the
good plisśee partitions ofJ(L).

First we consider the set of ”essentially equal” graphs - those that have the same par-
titioned potential poset. As in Section 4.1, given a good plisśee partitioned poset, we
denote them as[D] := Π−1((J(L), {Ci}1≤i≤k)). Are they ordered as nicely with respect
to arc set inclusion as in Section 4.1?

We have seen in the proof of Theorem 4.2.7 that the projection∆ of a plisśee partitioned
poset gives the arc maximal digraph among the essentially equal graphs in[∆].

Now what can we say about an elementD ∈ [∆]? Obviously neither the vertex set of
two graphs that generate the same chain partitioned poset nor their potential functions can
differ. We have seen in the proof of Theorem 4.2.7 that we can add an arca = (u, v) to
such a graphD without leaving[∆] if this does not change the potential posetΠ(D). This
can be guaranteed if the corresponding alternating chainCu ∪ Cv consists of transitive
arcs only. So adding arcs toD without changing the corresponding chain partition can be
done in any order. The graphs in[∆] that can be obtained by arc adding fromD form a
Boolean lattice under arc set inclusion, with minimumD.

Analogously, deleting an arca = (u, v) is only allowed if the deletion ofa does not
changeπ. The problem is, that this cannot be assured by only requiring the corresponding
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chainCu ∪ Cv to consist of transitive arcs only.

The additional condition for an arc to be allowed to be deleted destroys the Boolean that
we had in Theorem 4.1.1. How do the minima of[∆] look like? Still there is a fairly easy
way to construct the minima of[∆], and we know that from these on we have a Boolean
lattice in upwards direction.

Given the chain partitioned potential poset(Π(D), {Cv | v ∈ V (D)}), we define the
thin projection as∆′((Π(D), {Cv | v ∈ V (D)})), which is the graph obtained from the
projection, by deleting all the arcsa = (u, v) that come fromCu ∪ Cv-chains consisting
of transitive arcs only. The potential function of the thin projection does not generally
coincide with the potential function of the projectionπ. The arcs that can be added to
repair the potential function without changing the potential poset are transitive arcs of the
form a = (u, v) with π(u) = π(v) + 1. So the minimal such arc sets take only verticesu
which satisfyπ(↓ u) > π(u) and introduce some arc of the given form.

In general there is no unique inclusion minmum among these arc sets as exemplified by
the thin projection in Figure 4.6.

Now we turn to ”essentially different” graphs. What can we say about them?

⊤D′

(P, {Ca, . . . , Cd})

1 122

Figure 4.7: Another good plissée partition of the posetP from Figure 4.7 with its projec-
tion D′. Transitive arcs that appear in alternating chains are drawn dotted.

For instance the graphs[D] constructed for Theorem 4.1.1 are the vertex number max-
imal graphs as every chain partition has less chains than thesingleton partition. Some
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posets admit no other plissée partition than that. Take for instance height-two posets. So
in this case, we know the unique[D] that generates a given height-two poset.

Take on the other hand the poset in Figure 4.3. There it is drawn with a partition
different from the singleton partition. Figure 4.7 shows another one.

Our general aim is to find some order structure carried by the different [D] or equiva-
lently among the set of plissée partitions of a given poset. This could be a way to obtain
in some sense small representatives for a given distributive lattice.

A related teasing question is how to characterize classes ofdistributive lattices that arise
from special classes of directed graphs.

One first example into that direction is, that not every distributive lattice comes from
thec-reorientations of a planar graph, which equivalently means that not every distributive
lattice comes from theα-orientations of a planar graph.

To see this, consider the height-three poset drawn in Figure4.8. We call itP3,3,3.

Figure 4.8: Every plisśee partition of the posetP3,3,3 comes from a graph that hasK3,3 as
a underlying subgraph.

Every chain in a plisśee partiton ofP3,3,3 can have at most2 elements. One from the top
level and one from the bottom level. The thin projection is inall the cases an orientation
of a subgraph ofK3,3,3 that hasK3,3 as underlying subgraph. More precisely there are up
to isomorphism4 different plisśee partitions given by their thin projectionsD0, . . . , D3.
Counting withi the number of two-element chains in the partitionDi

∼= K3,3,3−i. So no
D that hasP3,3,3 as its potential poset can be planar.



Conclusions

In this thesis we have developed some theory that particularly opened up a bouquet of
questions. We summarize three of the most intriguing directions to further investigation.

The first couple of questions are related to the universalityof flip flop sequences:

In Chapter 4 we have shown that every distributive lattice comes from the flip flops of a
digraph. As every digraph leads to an embedded distributivelattice, we have characterized
the embeddings, that come from digraphs. Our aim is to find some order structure among
the directed graphs, which generate the same flip flop poset. It would be very interesting
to find a set of directed operations transforming one digraphto another, while leaving the
generated distributive lattice invariant. A first step could be to analyze the subposet of
the partition lattice induced by the good plissée partitions of a poset. In particular the
minima of the resulting partial order are teasing to be understood. This would lead to
small representatives for embedded flip flop posets of digraphs.

Moreover it would be interesting to characterize classes ofdistributive lattices, that are
generated by certain classes of graphs. Outerplanar graphs, interval graphs and planar
graphs are teasing candidates.

A question concerning a bigger class of flip flop posets is the following. As commented
in Proposition 2.2.2, every integral flip flop poset is embedded in someZm, such that
its elements form the vertices of a polytope. Only very few subposets ofZm have this
special property. The characterization of embedded flip flopposets coming from graphs in
Chapter 4 could maybe be extended in the sense that every (in the above sense) polytopally
embedded poset is an integral flip flop poset.

A last question concerning universality is in terms of flip flop graphs. Theorem 2.1.3
proves that every connected loop-free digraph is the flip flopgraph generated by some
sign matrix. Moreover the arc set of every flip flop graph comeswith a natural matching
partition. The matching partition that arises from the construction in Theorem 2.1.3 is the
trivial one, i.e. every matching consists of a single arc. Can the matching partitions of a
digraph, that arise from flip flop sequences be characterized?

Another type of question arises, when attempting to find a small generating sign matrix
for a fixed set of reorientations:
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Particularly forα-reorientations of graphic oriented matroids, i.e. non-planar digraphs,
this is an interesting question. Take such a digraph as embedded into an orientable surface.
We want to extend the set of facial cycles by Eulerians that are not 0-homologous. A
”good” extension has to provide two properties:

By Proposition 3.3.4, we know that the extended set must spanthe digraphs cycle space.
This condition is easy to handle by requiring the homology classes of the new Eulerians to
span the first Homology group. But we have seen that this is notsufficient. Theorem 3.6.7
characterizes all those 0-EuleriansE which cannot be reversed by facial flip flops. The
extension has to be able to repair all these. It is an open question, to identify or construct
sets of cycles, which satisfy both these properties.

Suppose we could find ”good” generating systems for theα-reorientations of graphic
oriented matroids. We have understood theα-reorientations ofR10 and cographic ori-
ented matroids. Moreover we have seen that1-sums of regular oriented matroids conserve
the flip flop structure. The last step to establish a theory ofα-reorientations of regular ma-
troids, would be to investigate whether a ”good” flip flop structure on theα-reorientations
of two regular oriented matroidsM1 andM2 leads to a structure on thei-sum ofM1 and
M2, for i ∈ {2, 3}.

A last open problem diverges a little more from the subjects treated in the thesis:

We have seen that we cannot generalize the theory ofα-orientations to the set of all
oriented matroids. As in general oriented matroids there isno canonical choice for a
representative of two cocircuitsX,−X, we have no analogue to in- and outdegree. So we
must broaden the set of orientations at our concern. Such a bigger set of graph orientations
which is suitable to be generalized consists of those orientations that fix the absolute value
of the difference of in- and outdegree. In oriented matroidsthis invariant coincides with
a cocircuit parameter calledimbalanceor log-discrepancyin [10]. It is a teasing question
whether - specializing back - these graph orientations carry an order structure similar to
those onα-reorientations.



Zusammenfassung

Thema dieser Diplomarbeit sind partielle Ordnungen auf Orientierungen und Re-
orientierungen gerichteter Strukturen. Anlass dazu gebenArbeiten von Felsner [7] und
Propp [12].

Felsner konstruiert einen distributiven Verband auf den Orientierungen eines planaren
Graphen, die knotenweise denselben Ausgrad haben (α-Orientierungen). Dieα-
Orientierungen eines Graphen verallgemeinernf -Faktoren, spannende Bäume, eulersche
Orientierungen und Schnyder-Ẅalder.

Propp gibt eine Methode zur Erzeugung eines distributiven Verbands auf den Orien-
tierungen eines (nicht notwendigerweise planaren) Graphen an, deren Invariante die An-
zahl der Vorẅartskanten in Kreisen ist (c-Orientierungen).

Die dieser Diplomarbeit zugrundeliegende Motivation besteht in der Frage, wie weit
und mit welchen Einschränkungen man Felsners und Propps Ergebnisse auf orientierte
Matroideübertragen kann. Es stellt sich heraus, dass ein Verallgemeinerung m̈oglich ist,
jedoch zu einer Theorie führt, die nicht mehr so schön ist wie in [7, 12]. Deshalb konzen-
trieren wir uns ab einem bestimmten Punkt auf spezielle Klassen orientierter Matroide.

Indem wir die Orientierungen eines ungerichteten Graphen mit den Reorientierungen
eines gerichteten Graphen identifizieren, ermöglichen wir eine Zusammenführung und
Verallgemeinerung der von Felsner und Propp betrachteten Strukturen. Außerdem
übertragen wir die Invarianten der untersuchten Reorientierungsklassen in die Terminolo-
gie orientierter Matroide und zeigen, dass sie in diesem Sinne dual zueinander sind.

Desweiteren werden die Erzeugungsmethoden (Flip-Flop-Folgen) der distributiven
Verbände in [7, 12] reformuliert, um zu zeigen, dass es sich im Wesentlichen um ein
und dieselbe handelt. Diese kann nicht nur auf gerichtete Graphen sondern auf beliebige
(1,−1, 0)-Matrizen angewandt werden. Da orientierte Matroide als(1,−1, 0)-Matrizen
darstellbar sind, verspricht diese Theorie in unserem Sinne anwendbar zu sein. Flip-Flop-
Folgen auf(1,−1, 0)-Matrizen generieren nicht mehr nur Hasse-Diagramme distributiver
Verbände sondern fast beliebige gerichtete Graphen. Tatsáchlich l̈aßt sich jeder zusam-
menḧangende, schlingenfreie gerichtete Graph als Ergebnis einer solchen Konstruktion
darstellen.
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Diesem Kontrollverlust entgehend finden wir hinreichende Kriterien für die erzeugen-
den Matrizen, sodass der resultierende Graph das Hasse-Diagramm eines distributiven
Verbandes ist. Zus̈atzlich ergibt sich eine natürliche Einbettung in das höherdimensionale
ganzzahlige Gitter. Als Korollar erhalten wir die Distributivit ät der Verb̈ande in [7] und
[12] nebst deren Einbettung. Diesem Korollar liegt in beiden Fällen eine 2-Basis des
Kreis- respektive Schnittraums zugrunde.

Im Folgenden vereinen wir die Erkenntnisse aus der Anlayse der Flip-Flop-Folgen
mit geeigneten Verallgemeinung vonα-Reorientierungen auf allgemeine orientierte
Matroide. Wir zeigen die Existenz eines Flip-Flop-Erzeugendensystems für die α-
Reorientierungen beliebiger orientierter Matroide. Im Weiteren stellen wir fest, dass eine
strengere Analogie zum Graphenfall im Kontext von Kreisbasen nur bei regul̈aren orien-
tierten Matroiden m̈oglich ist. Dies nehmen wir zum Anlass, unsere Untersuchungen auf
eben jene Matroidklasse zu spezialisieren.

Aus Seymours Dekompositionstheorem für regul̈are Matroide [13] ergibt sich die Ana-
lyse der drei orientierten Splitter:R10, graphische und cographische orientierte Ma-
troide.

• Der MatroidR10 hat eine endliche Anzahl von Reorientierungen, die wir per Com-
puter enumerieren.

• Aus der Theorie derα-Reorientierungengraphischer orientierter Matroide er-
halten wir als Korollar zusammen mit der bereits bewiesenenDisrtibutivität die
Hautptheoreme aus [7] und [12]. Ein weiteres positives Ergebnis ist eine Halbord-
nung auf den eulerschen Orientierungen des quadratischen Torusgitters. Ein allge-
meines Konstruktionsverfahren für scḧone Verb̈ande auf diesenα-Reorientierungen
zu finden, bleibt ein offenes Problem.

• Die α-Reorientierungencographischer orientierter Matroide entsprechen den in
[12] untersuchten Orientierungen. Deshalb tragen sie die Struktur eines distribu-
tiven Verbandes.

Als letztes Ergebnis beweisen wir, dass jeder distributiveVerband via Flip-Flop-
Folgen aus denα-Reorientierungen eines cographischen orientierten Matroids entspringt.
Schließlich beschreiben wir die Menge aller cographischerorientierter Matroide, die
einen gegebenen distributiven Verband erzeugen und unternehmen erste Schritte hin zu
einer Ordnungsstruktur auf dieser Menge.
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