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Abstract

We characterize which systems of sign vectors are the cocircuits of an oriented
matroid in terms of the cocircuit graph.
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1 Introduction

The cocircuit graph is a natural combinatorial object associated with an ori-
ented matroid. For example, in the case of spherical pseudoline-arrangements,
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i.e., rank 3 oriented matroids, the vertices of the cocircuit graph are the inter-
section points of pseudolines and two points share an edge if they are adjacent
on a pseudoline. More generally, the Topological Representation Theorem
of Folkman and Lawrence [10] says that every oriented matroid can be rep-
resented as an arrangement of pseudospheres. The cocircuit graph is the
1-skeleton of this arrangement. In particular, the cocircuit graph is invariant
under reorientation of the oriented matroid. Cordovil, Fukuda and Guedes de
Oliveira [6] show that there are non-isomorphic oriented matroids having iso-
morphic cocircuit graphs. On the other hand Babson, Finschi and Fukuda [1]
show that uniform oriented matroids are determined up to isomorphism by
their cocircuit graph. Moreover they provide a polynomial time recognition al-
gorithm for cocircuit graphs of uniform oriented matroids. In [12], Montellano-
Ballesteros and Strausz give a characterization of uniform oriented matroids
in view of sign labeled cocircuit graphs. This characterization is strengthened
by Felsner, Gómez, Knauer, Montellano-Ballesteros and Strausz [9] and used
to improve the recognition algorithm of [1].

In this paper we present a generalization and strengthening of the charac-
terization of sign labeled cocircuit graphs of uniform oriented matroids of [9]
to general oriented matroids. After introducing the necessary preliminaries in
the next section, we prove the main theorem in the last section.

2 Preliminaries

Here we will only introduce the terminology necessary for proving our result,
for a more general introduction into oriented matroids and proofs of the basic
claims in the present section, see [4]. A signed set X on a ground set E
is an ordered pair X = (X+, X−) of disjoint subsets of E. For e ∈ E we
write X(e) = + and X(e) = − if e ∈ X+ and e ∈ X−, respectively, and
X(e) = 0, otherwise. The support X of a signed set X is the set X+ ∪ X−.
The zero-support of X is X0 := E\X. By −X we denote the signed set
(X−, X+). Given signed sets X, Y their separator is defined as S(X, Y ) :=
(X+ ∩ Y −) ∪ (X− ∩ Y +).

Definition 2.1 A pair M = (E, C∗) is called an oriented matroid on the
ground set E with cocircuits C∗ if C∗ is a system of signed sets on the ground
set E, satisfying the following axioms:

(C0) ∅ /∈ C∗

(C1) C∗ = −C∗

(C2) if X, Y ∈ C∗ and X ⊆ Y then X = ±Y



(C3) for all X, Y ∈ C∗ with X 6= ±Y and e ∈ S(X, Y ) exists Z ∈ C∗ with
Z(e) = 0, Z+ ⊆ X+ ∪ Y + and Z− ⊆ X− ∪ Y −

Given signed sets X, Y their composition is the signed set X ◦Y defined as
(X+∪(Y +\X−), X−∪(Y −\X+)). If S is a system of signed sets we denote by
L(S) := {X1 ◦ . . . ◦Xk | X1, . . . , Xk ∈ S} the set of all (finite) compositions of
S. The empty set is considered as the empty composition of signed sets, and
so ∅ ∈ L(S). One can endow L(S) with a partial order relation where Y ≤ X
if and only if S(X, Y ) = ∅ and Y ⊆ X. Adding a global maximum 1̂ this
partial order becomes a lattice denoted by Fbig(S) := (L(S) ∪ {1̂},≤). The
lattice property is easily seen: the empty set is the global minimum and the
unique join of two signed sets X, Y is 1̂ if S(X, Y ) 6= ∅ and X ◦ Y otherwise.

There are two important undirected graphs associated to Fbig(S) – one on
its atoms and one on its coatoms. So the first is a graph G(S) with vertex set
S such that two signed sets X, Y ∈ S are connected by an edge if and only
if there is Z ∈ L(S) ∪ {1̂} such that X, Y are the only elements of S with
X, Y ≤ Z.

The second graph is called called the tope graph G(T ). It is defined on
the set T of coatoms of Fbig(S). The elements of T are called topes. Topes
S, T ∈ T are contained in an edge of G(T ) if and only if there is Z ∈ L(S)
such that S, T are the only elements of T with X, Y ≥ Z.

Let G be any graph on a system R of signed sets with ground set E. For
X1, . . . , Xk ∈ R we denote by [X1, . . . , Xk] the subgraph of G induced by
{Z ∈ R | Z(e) ∈ {0, X1(e), . . . , Xk(e)} for all e ∈ E}. We call [X1, . . . , Xk]
the crabbed hull of X1, . . . , Xk. An (X, Y )-path in G is called crabbed if it is
contained in [X, Y ].

If S is the system of cocircuits C∗ of an oriented matroid M, then the
elements of L(C∗) are called the covectors of M. Moreover, Fbig(C∗) is a
graded lattice with rank function r, see [4]. In this case Fbig(C∗) is called the
big face lattice of M. The rank rk(M) of M is defined as r(1̂) − 1, i.e., one
less than the rank of Fbig(C∗). Moreover, G(C∗) is called the cocircuit graph
of M.

One important oriented matroid operation is the contraction, again proofs
for its properties can be found in [4]. For a subset A ⊆ E, the contraction of A
yields an oriented matroidM/A on the ground set E\A with C∗/A := {X\A |
X ∈ C∗ and A ⊆ X0}. The set L(C∗/A) is {X\A | X ∈ L(C∗) and A ⊆ X0}.
Furthermore, for U ∈ L(C∗) we have rk(M/U0) = r(U), where r(U) is the
rank of U in Fbig(C∗).



3 Result

In order to prove Theorem 3.3 we need two lemmas. The first one is about tope
graphs of oriented matroids. Tope graphs of oriented matroids are a special
class of partial cubes [11]. We will make use of a particular consequence of
this, which in our terminology reads like:

Lemma 3.1 ([5]) LetM be an oriented matroid with topes T . For all U, V ∈
T there is a crabbed (U, V )-path in G(T ).

The second lemma establishes a connection between tope graph and co-
circuit graph. As an application of a theorem of Barnette [2], Cordovil and
Fukuda prove:

Lemma 3.2 ([6]) Let M be an oriented matroid of rank r and U ∈ T a
tope of M. The graph G(U) induced by {X ∈ C∗ | X ◦ U = U} in G(C∗) is
(r − 1)-connected.

Together this enables us to prove a graph-theoretical axiomatization of
oriented matroids:

Theorem 3.3 Let S be a set of sign vectors satisfying (C0)–(C2) then the
following are equivalent

(i) S is the system C∗ of cocircuits of an oriented matroidM,

(ii) for any X1, . . . , Xk ∈ S the crabbed hull [X1, . . . , Xk] is an induced sub-
graph of G(S) of connectivity h(X1 ◦ . . .◦Xk)−1, where h is the height-
function of Fbig(S),

(iii) for all X, Y ∈ S with X 6= ±Y there is a crabbed (X, Y )-path in G(S).

Proof. (i)=⇒ (ii): Let U := X1 ◦ . . . ◦ Xk be a covector of rank rk′ :=
h(X1 ◦ . . . ◦ Xk) and X, Y cocircuits in [X1, . . . , Xk]. Contract U0 obtaining
M′ :=M/U0 of rank rk′, and topes T ′. Since U0 ⊆ X0, Y 0, X0

i for i = 1, . . . , k
the contraction does not affect the set of cocircuits we are considering other
than changing the ground set. We denote them with respect to the smaller
ground set by X ′, Y ′, X ′i for i = 1, . . . , k. In particular, for the crabbed hull
we are considering we have [X1, . . . , Xk] ∼= [X ′1, . . . , X

′
k]. Now U ′ is a tope of

M′ and so are V ′ := X ′ ◦ U ′ and W ′ := Y ′ ◦ U ′. By Lemma 3.1 there is a
crabbed (V ′,W ′)-path P = (V ′ = T1, . . . , Tk = W ′) in G(T ′). The graphs
G(Ti) are all contained in [X ′1, . . . , X

′
k] and (r − 1)-connected by Lemma 3.2.

Consecutive Ti and Ti+1 differ only with respect to the sign of a single element
– say e. Thus, the intersection of G(Ti) and G(Ti+1) is the graph of a tope
Ti,i+1 of the rank rk′ − 1 oriented matroid M′/e. By Lemma 3.2 the graph



G(Ti,i+1) is (rk′− 1)-connected. Hence, in particular G(Ti) and G(Ti+1) share
at least rk′ − 1 vertices. Together with Menger’s theorem (see e.g. [8]) this
yields that the graph G(T1)∪ . . .∪G(Tk) is (rk′− 1)-connected. In particular
there are rk′−1 internally disjoint paths connecting X ′ and Y ′ in [X ′1, . . . , X

′
k]

and thus the analogue holds for X and Y in [X1, . . . , Xk]. Hence [X1, . . . , Xk]
is (h(X1 ◦ . . . ◦Xk)− 1)-connected.

(ii)=⇒ (iii): If X 6= ±Y then (h(X◦Y )−1) > 0. Hence [X, Y ] is connected
and there is a crabbed (X, Y )-path in G(S).

(iii)=⇒ (i): We have to show that (C3) holds for S. Let X, Y ∈ S with
X 6= ±Y and e ∈ S(X, Y ). Let P be a crabbed (X, Y )-path. Since adjacent
cocircuits have empty separator, there must be Z ∈ P with Z(e) = 0. Since
P is crabbed Z also satisfies Z+ ⊆ X+ ∪ Y + and Z− ⊆ X− ∪ Y −. 2

It shall be mentioned that the “(i)=⇒ (ii)”-part of the proof is only a slight
generalization of a result in [6]. But there the characterizing quality of (ii)
was not noted. Furthermore we remark that the connectivity in (ii) is best-
possible, since in uniform oriented matroids Xi has exactly h(X1 ◦ . . .◦Xk)−1
neighbors in [X1, . . . , Xk].

Even if the cocircuit graph does not uniquely determine the oriented ma-
troid, Theorem 3.3 might lead to an efficient recognition algorithm for cocircuit
graphs of general oriented matroids, as its uniform specialization did in [9].

Apart from contributing yet another axiomatization of oriented matroids,
a big goal would be to characterize cocircuit graphs in purely graph-theoretic
terms, i.e., excluding any information about signed sets. We see our result as
a step into that direction.

A somewhat dual question arises, when considering tope-graphs of oriented
matroids, which in contrast to cocircuit graphs do determine the oriented
matroid up to isomorphism, as shown by Björner, Edelman, and Ziegler [3].
Is there a theorem analogous to Theorem 3.3 for signed tope-graphs? It is open
to characterize tope-graphs of oriented matroids in purely graph-theoretical
terms.
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