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What is this thesis about?

The title “Lattices and Polyhedra from Graphs” of this tlseisi general though describes
quite well the aim of this thesis. Among the most importarnjeots of this work aredlis-
tributive latticesandupper locally distributive latticesWhile distributive lattices certainly
are one of the most studied lattice classes, also uppetytadiatributive lattices enjoy fre-
guent reappearance in combinatorial order theory undey diifferent names. Upper locally
distributive lattices correspond smtimatroidsandabstract convex geometriesobjects of
major importance in combinatorics.

Besides results of a purely lattice or order theoretic kirdonesent new characterizations
of (upper locally) distributive lattices in terms of antah-covers of posets, arc-colorings
of digraphs, point sets iN?, vector addition languages, chip-firing games, and venek a
(integer) point sets of polyhedra. We exhibit links to a widege of graph theoretical,
combinatorial, and geometrical objects. With respect ¢éddltter we study and characterize
polyhedra which seen as subposets of the componentwiserayaé Euclidean space form
(upper locally) distributive lattices.

Distributive lattice structures have been constructed anymsets of combinatorial
objects, such as lozenge tilings, planar bipartite penfeatichings, pla-

nar orientations with prescribed outdegree, domino tjrqganar circu- ﬁ
lar flow, orientations with prescribed number of backwartkarn cycles ﬁﬂ
and several more. A common feature of all of them is that theseali-

agram of the distributive lattice may be constructed apgliocal trans- @

formationsto the objects. These local transformations lead tawral [[1| —H [[I]
arc-coloringof the diagram. For an example see the distributive lattice o E @
the domino-tilings of a rectangular region on the side. Tual transfor-

mation consists in flipping two tiles, which share a long sidehis work @

we present the first unifying generalization of all suchanstes of graph- @
related distributive lattices. We obtain a distributivétitze structure on

thetensionsof a digraph.

In order to provide a flavor of what we refer to as “unifying geadization”, we show
two consecutive steps of generalizing the domino tilinga glane region, see the figure.
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The left-most part of the figure shows two domino tilings, @hcan be transformed into
each other by a single flip of two neighboring tiles. In the dhidof the figure we show
how planar bipartite perfect matchings model
domino tilings. The local transformation now cor-
EH responds to switching the matching on an alter-
nating facial cycle. More generally, the right-most
part of the figure shows how to interpet the pre-
EH ceeding objects as orientations of prescribed out-
degree of a bipartite planar graph. Every yellow
vertex has outdegreeand every blue vertex has
outdegreddeg — 1). Reversing the orientation on directed facial cycles weldlistributive
lattice structure on the set of orientations with these egrtee constraints.

A particular interest of this work lies in embedding latddato Euclidean space. The
motivation is to combine geometrical and order-theorétivethods and perspectives. We
investigate polyhedra, which seen as subposets of the amenpasise ordering of Euclidean
space form upper locally distributive or distributive legis. In both cases we obtain full
characterizations of these classes of polyhedra in terrtieofdescription as intersection of
bounded halfspaces.

In particular we obtain a polyhedral structure on knagiscretedistributive lattices on
combinatorial objects as those mentioned above as integetspof distributive polytopes.
A classical polytope which was defined in the spirit of conitjndiscrete geometry and
order-theory appears as a special case of our considesasind thus might provide an idea
of what kind of objects we will study: Given a poset Stanley'sorder polytopeP» may be
defined as the convex hull of the characteristic vectorsefdbals of a posep.

z

Figure 1: A posefP with an ideal on the left with its order polytoge- and the vertex the
corresponding to the ideal, on the right.

Our characterization afpper locally distributivgpolyhedra opens connections to the the-
ory of feasible polytopes of antimatroids. In the settingdgtributive polyhedra we find
graph objects that might be considered as the most geneza) aich form a distributive
lattice and carry a polyhedral structure. The connectiqrotgtope theory links distributive
lattices to generalized flows on digraphs. Thus, there iskatb important objects of com-
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binatorial optimization. Moreover we exhibit new contritmns to the theory of bicircular
oriented matroids.

Large parts of the thesis are based on publications betwe@® &1d 2010 [40, 43, 41,
42, 54, 69]. In the following we give a rough overview over leamgle chapter. For more
detailed introductions we refer to the first pages of theviddial chapters.

Chapter 1: Lattices

The first chapter of the thesis is about lattices. It is basegapers [41, 42, 69] and
includes joint work with Stefan Felsner. After giving a madetailed introduction into lattice
theory and the chapter itself, we present some basic notaktid vocabulary in Section 1.1.

The main result of Section 1.2 is a new representation résuleneral finite lattices. We
provide a one-to-one correspondence between finite latdod antichain-covered posets.
As an application we strengthen a characterization of ufgmaly distributive lattices in
terms of antichain-partitioned posets due to Nourine. Hmedilest” special case of our the-
orem is the Fundamental Theorem of Finite Distributive icatt alias Birkhoff's Theorem.

Section 1.3 proves three classes of combinatorial objectsetequivalent. We show
that acyclic digraphs with a certain arc-coloring and ueigource, cover-preserving join-
sublattices oN? and upper locally distributive lattices correspond to eattler. The charac-
terization turns out to be very useful in many applicatiom&re one actually wants to prove
an (upper locally) distributive lattice structure on a giveet of objects. Another applica-
tion of this section is a generalization of Dilworth’s Emblath Theorem for Distributive
Lattices to upper locally distributive lattices.

In Section 1.4 we present the distributive lattice/ftensions of a digraph. As men-
tioned before, many known distributive lattices comingnfrgraphs are special cases of
A-tensions. At the end of the section we show reductions toib&t important special cases
of A-tensions: Flow in planar graphs, prescribed outdegremtadions of planar graphs, and
orientations with prescribed circular flow-difference eihgral graphs.

Section 1.5 is motivated by Biner and Lo@sz’ chip-firing game on directed graphs.
As an easy application of the results in the sections abdip;faing games lead to upper
locally distributive lattices. Moreover chip-firing gamleave a representation as vector ad-
dition languages. We capture the most important featurssaf languages to generalize the
concept tayeneralized chip-firing game contrast to ordinary chip-firing games, the latter
indeed are general enough to represent every upper lodgsifibdtive lattice. Moreover we
show that every such lattice is representable as the interaeof finitely many chip-firing
games.

We close the chapter with concluding remarks and open prubie Section 1.6.



Chapter 2: Polyhedra

This chapter is based on parts of [43, 69] and partial joimkwath Stefan Felsner. After
a brief introduction, make first observation about ordemtietic properties of convex subset
of R with respect to the componentwise ordering of the spacedtid®e2.1. In particular
we define upper locally distributive and distributive padghna.

As a basic ingredient Section 2.2 is devoted to affine Euahdgpace satisfying poset
properties. We characterize distributive affine space lgpeaasentation in terms of directed
graphs. This is an important part of the characterizatidngper locally distributive and
distributive polyhedra in the following sections.

In Section 2.3 we characterize upper locally distributieéypedra via their description
as nitersection of bounded halfspaces. We find relationsesft polyhedra tfeasible poly-
topesof antimatroids and draw connections to a membership pnolliscussed by Korte
and Lowasz. We show how to view every upper locally distributiveybeldron as the inter-
section of polyhedra associatedduip-firing games

Section 2.4 develops the theory of distributive polyhedie obtain a characterization
of their description as intersection of bounded halfspat®s obtain that these polyhedra
are dual to polyhedra of generalized digraph flows, i.e., Slow digraphs with lossy and
gainy arcs. We establish a correspondence between distélpolyhedra andjeneralized
tensions of digraphs yielding in a sense the most generailditve lattices arising from a
graph, in Subsection 2.4.1. We show how to obtain the latticem Section 1.4 as integer
point lattices of special distributive polyhedra and privat these polyhedra coincide with
alcoved polytopes and polytropes, known in the literat@®ie, in Subsection 2.4.2. The
combinatorial model for general distributive polyhedralissely related to oriented bicircu-
lar matroids. This will be made explicit in Subsection 2.4A3 a special application we find
the first distributive lattice on generalized flows of pladaraphs in Subsection 2.4.4.

Section 2.5 concludes with some open questions and furtheanks.

Chapter 3: Cocircuit Graphs of Uniform Oriented Matroids

The last chapter is not strongly related to the rest of theishelt is based on the pa-
pers [54, 40] and is joint work with Stefan Felsner, Ricardm@z, Juan Jé&Montellano-
Ballesteros, and Ricardo Strausz. We present the first ¢uhéalgorithm which takes a
graph as input and decides if the graph is the cocircuit giapd uniform oriented ma-
troid. In the affirmative case the algorithm returns the $stgned cocircuits of the oriented
matroid. This improves an algorithm proposed by Babsorsdfinand Fukuda.

Moreover we strengthen a result of Montellano-Ballestenod Strausz characterizing
cocircuit graphs of uniform oriented matroids in termsbbedconnectivity.



Chapter 1

Lattices

Lattices are posets with unique maximal lower bound anduenmginimal upper bound for

every pair of elements, see Definition 1.1.3. They are a iclalseesearch topic and fre-

quently appear in many areas of mathematics, see [15].ckattre objects on the border
line between order theory, combinatorics, and algebra. |atter is plausible for instance

because lattices may be characterized as a ground set vathihary operations satisfy-

ing commutativeassociativeand absorptivelaws. This interpretation of lattices plays an
essential role in universal algebra.

For us the most important are relations between latticerthand combinatorics, and
there are many of them. A first reason for this is that evetyclatan be represented as an
inclusion-order on a set-system. Thus, many sets of cortdrinhobjects carry a specific
lattice structure, e.ggeometric latticesorrespond to simple matroids [13]; the divisors of a
number [103] and the stable marriages of a bipartite graphfm distributive latticesthe
inclusion-order on the normal subgroups of a groupriscalular lattice[15]. In this chapter
we will see many more examples of combinatorial objects fogna lattice. Some of these
object classes will turn out general enough to actuallyasgnt the class of finite lattices.

Another natural link from lattices to combinatorics is viagya poset as Basse diagram
One can study the particular properties of the Hasse diagneertain poset or lattice
classes. A classical example wouldBiekhoff’s criterionto characterize upper semimodu-
lar lattices by their Hasse diagram [104].

The concept of upper locally distributive lattices (ULD)dentral to this thesis. ULDs
were first investigated by Dilworth [31] and many differeattice theoretical characteriza-
tions of ULDs are known. We stick to the original definition Bylworth aslattices with
unique minimal meet-representatiosee Definition 1.1.6.

For a survey on the work on ULDs up to 1990 we refer to Monjajgé}.
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ULDs have appeared under several different names, e.@llodistributive lattices
(Dilworth [33]), meet-distributive lattices (Jamison [580], Edelman [34], Bjrner and
Ziegler [22]), locally free lattices (Nakamura [86]). FalNing Avann [5], Monjardet [84],
Stern [104] and others, we stick to the name ULD. The reasothéfrequent reappearance
of the concept is that there are many instances of ULDs,sets, of combinatorial objects
that can benaturally ordered to form an ULD, e.g.,

e Subtrees of a tree (Boulaye [24])
e Convex subsets of a poset (Birkhoff and Bennett [16])
e Convex subgraphs of an acyclic digraph (Pfaltz [91])
e Transitively oriented subgraphs of a transitively oriendégraph (Bprner [17])
* Convex sets of an abstract convex geometry (Edelman [34])
* Pruning processes (Ardila and Maneva [4])
Reachable configurations of a chip-firing game (MagniennPaad Vuillon [79])
Learning spaces (Eppstein [36])
Feasible sets of an antimatroid (Korte [70])
Feasible multi-sets of an antimatroid with repetitiondBjer and Ziegler [22])
Supports of a locally free, permutable, left-hereditangiaages (Bjrner [21])

For sets in the list colored byagentahe reverse inclusion order yields a ULD. Those
sets that are coloredue form ULDs under inclusion-order. The subtrees of a tree, the
convex subsets of a poset, the convex subgraphs of an adygiaph, and the transitively
oriented subgraphs of a transitively oriented digraph nildyeamodelled as the convex sets
of an abstract convex geometry or equivalently as prunioggsses. Indeed these last two
classes of objects are universal for the class of ULDs. Toereve labeled them with a star.
The most important of these first examples is givercbgvex geometrieg combinatorial
abstraction of convex sets in geometry.

A class which will come up later in this thesis is given by thépefiring game. Itis a clas-
sical discrete dynamical model, used in physics, econoamdsomputer science. Learning
spaces, feasible (multi-)sets of an antimatroid, and supmd a locally free, permutable,
left-hereditary languages are universal for the class dD&lL Therefore they are labelled
with a star.

The most prominent among the blue entries of the lisbatenatroids- a special case of
greedoids Antimatroids are set-systems such that the system of ammsaits is an abstract
convex geometry. Antimatroids and greedoids have manyiagtigins and connections in
mathematics, see [72]. Glasserman and Yao [51] use antiidatio model the ordering of
events in discrete event simulation systems. They are a0 model progress towards a
goal in artificial intelligence planning problems. In mategical psychology, antimatroids
have been used to describe feasible states of knowledgeurharhlearner.
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A very important subclass of the class of ULDs is given byribstive lattices. Because
of their nice structural properties and many applicatiaesithutive lattices count among the
most important lattice classes. The following list givemscexamples of objects carrying a
natural distributive lattice structure.

» domino and lozenge tilings of a plane regioné(Rila [97] and others based on
Thurston [105])

« planar spanning trees (Gilmer and Litherland [48])

* planar bipartite perfect matchings (Lam and Zhang [73])

« planar bipartitei-factors (Felsner [39], Propp [92])

« Schnyder woods of a planar triangulation (Brehm [25])

 Eulerian orientations of a planar graph (Felsner [39])

» o-orientations of a planar graph (Felsner [39], Ossona dedde{B8])

» k-fractional orientations with prescribed outdegree of anpr graph (Bernardi and
Fusy [11])

» Schnyder decompositions of a plafr@ngulations of girtll (Bernardi and Fusy [12])

« circular integer flows of a planar graph (Khuller, Naor arldiK [66])

« higher dimensional rhombic tilings (Linde, Moore, and Nainl [77])

« c-orientations of a graph (Propp [92])

Generally, having a lattice structure on a set of objects hep in understanding the
set or as Peter Panter puts it: “Ordnung muss sein!” [90{likributivelattice structure is
particularly good:

An important technique forandom samplings coupling from the pas{Propp, Wil-
son [94]). This way of analysing a Markov chain may be apptedlistributive lattices
(Propp [93]). Enumeratingthe elements of a distributive lattice, i.e., outputtingthk
elements while using little memory, can be done more effibien distributive lattices
than on other underlying structures (Habib, Medina, Nayramd Steiner [57]). The useful
FKG-inequalityof Fortuin, Kasteleyn, and Ginibre [46] and Ahlswede and k&g Four
Functions Theorem [2], as well as their recently proved gl@gues due to Birner [18] and
Christofides [26], respectively, are applicable only tdrilisitive lattices.

In many of our results, the lattice structure is derived frmset oflocal transformations
As an example recall the distributive lattice on domingijs described in the introduction,
where local transformations were given by flips of neighbgtiles. We obtain a correspon-
dence of cover-relations in the lattice and applicatiorstwénsformation to one of our com-
binatorial objects. As a direct consequence the set caythim lattice structure isonnected
with respect to these local transformations. In some casaelimg the cover-relations in
the combinatorial object yields upper bounds on height aacheter of the lattice, e.g., the
height of the lattice oé-orientations is quadratic in the size of the graph (Profp)[$ince



every finite lattice has a unique minimal element we can aatelthat our set of combi-
natorial objects has a unique element, where no more “dowdsiaransformation can be
applied. When dealing with several sets each of them cayrgimindividual lattice struc-
ture, thisunique representartan be used fobijective countingof the sets. One example
for this is the bijective counting of tree-rooted maps andffids of parenthesis systems by
Bernardi [9].

The present chapter is structured as follows:
Section 1.1 introduces basic notions and definitions nettdedghout the whole thesis.

In Section 1.2 we present a vast generalization of Birksoftieorem also known 8he
Fundamental Theorem of Finite Distributive Lattidesthe class of all finite lattices. We
establish a correspondence between finite lattices anéhpatichain-covered posets. This
will in particular yield a characterization of upper logatlistributive lattices in terms of
antichain-partitioned posets, which strengthens a re§MNburine [87]. One application of
this result will appear in Section 1.5 in connection withpzfiring games.

Section 1.3 provides a characterization of upper localritiutive lattices in terms of arc-
colored acyclic digraphs. Our characterization of ULDgmrates from a characterization
in [67] of matrices whos#ip-flop posets generate distributive lattices. It turned out thiat t
tool yields handy proofs for the distributive lattice stiure on several objects from graphs.
In the applications the arc-colors correspond to the laeasformations on combinatorial
objects in a natural way. Moreover, we prove that covergmasg join-sublattices of the
componentwise ordering d¥? correspond to upper locally distributive lattices. Thisais
generalization of Dilworth’s Embedding Theorem for disttive lattices [32]. Section 1.3
is a continuation of the first part of [42].

Section 1.4 — based on the second part of [42] — introducestidditive lattices structure
on the tensions of a directed graph. Tensions are clasdifgdts in algebraic graph theory
as they are dual to digraph flows. We provide a bijection teéexepotentials, also known
as height functions. Tensions are a unifying generalipatioall the combinatorial sets of
objects mentioned in the above list of distributive latsiceAt the end of the section we
show reductions to the most important special cases-ténsions: Flow in planar graphs,
prescribed outdegree orientations of planar graphs, dadtations with prescribed circular
flow-difference of general graphs.

Section 1.5 deals with ways of representing ULDs in a morexgocal setting. Starting
from the chip-firing game of Bjrner and Lo@sz we consider a generalization to vector-
addition languages that still admit algebraic structuseseandpile group or sandpile monoid.
We characterize the set of vector-addition languages wyiad upper locally distributive
lattice and call thengeneralized chip-firing gamed&Ve show that every upper locally dis-
tributive lattice can be represented by a generalized filiy games. Indeed, we can prove
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that every upper locally distributive lattice is thetersectiorof finitely many ordinary chip-
firing games. Parts of this chapter are based on the first pgeh

1.1 Preliminaries for Posets and Lattices

The following is a brief, a self-contained introductionsirécted to the information needed
to span the context of this thesis. We will mainly focus ontieory of finite lattices and
finite posets. For further standard terminology we refer avdy and Priestley [30].

A posetis a pairP = (E, <) of a ground sef’ and a binary relatior on E satisfying poset
forallz,y,z € £

l.x<z (reflexivity)  reflexivity
2. z<gyandy <zimplyx =y (antisymmetry antisymmetry
. x<yandy <zimplyz < z (transitivity)  transitivity

The fundamental abuse of notation which we will repeatediyimit is the lack of dis-
tinction betweent and?P, i.e., we will writexz € P instead ofr € E/, S C P instead of
S C F, etc. This does not mean that the ground set is not of impoetaRor instance an
important class of posets arelusion-orders This means thak is a set of subsets of someinclusion-order
set (also referrred to &et-systein For X, Y € F we defineX <Y ifandonlyif X CY. setsystem
We denote an inclusion order é8, C).

For a poseP = (FE, <) its dual posetP*= (F,<*) is defined ag: <* y :<—= y < x.  dual poset
Instead ofy < 2 we sometimes also write > y. The dual poset of the inclusion order
(E, Q) isdenoted by E, D).

If for x,y € P we haver > y or x < y, then we say that andy arecomparable comparability
Otherwise we say thatandy areincomparabledenoted by: || y. If z < y andx # y, then  incomparability
we say that is strictly smaller thary, denoted by < y. We generally us¢, £, }f, £ and
so on, for negating relations.

Asetl C Pis called andeal if x < y € I impliesxz € I. We collect the ideals dP  ideal
in Z(P). GivenS C P we denote by)S the idea{x € P | Jy € S : = < y}. Dual to
an ideal we callF' C P afilter if > y € F impliesz € F. The set of filters ofP is filter
denoted byF(P). ForS C P we denote byjS the filter{z € P | Jy € S : = > y}. We
call C C P achainif all elements ofC are mutually comparable. A seit C P is called chain
anantichainif all its elements are mutually incomparable. The setafimal elementsf  antichain
a subseS C P is denoted by MinS):= {z € S | y € S = y # «}. Analogously, we ™"ma etement
define amaximal elemenf S and collect them in MaS). For a finite poseP theheight  maximal element
of z € P is the cardinality of a longest chadfi in P with Max(C) = {z}. height
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For an element € P we will often use the expressianis maximal with some property.
This means that € Max(S), whereS C P is the set of elements with that property. A
first example of this is the following: We write < y if 2 is maximal with the property
x < y. We then say thaj coversz or thaty is acoverof x or thatx is acocoverof y. The
directed graplDp= (E, A) with (z,y) € A :<= z < y is called theHasse diagranof P.
Because of antisymmetry of a poset a Hasse diagram has mtedirgycles, i.e., iacyclic
Conversely, every acyclic digragh = (V, A) yields a posePp on V' as itstransitive hull
i.e.,v < wifthereis a directedv, w)-path inD. If D is the Hasse diagram @&, then we
call D transitively reduced

LetP = (F,<),Q = (F',<’) be two posets. A mapping from E to £’ is said to be

« anorder-preservingnap ifz <y = p(z) <' p(y) forall z,y € E,
 anorder-embedding = <y <= p(z) < ¢(y) forallz,y € E,
 anorder-ismorphisnif it is bijective and an embedding.

We say thatP is asubposebf Q if and only if £ C E' andz < y <= x <’ y for all
x,y € F, i.e., the identity map oP is an order-embedding int@. In this case we calP
the subposet of inducedby E.

A minimal z € P with z > x, y is called goin of x, y. Dually, a maximal element € P
with z < z,y is called ameetof z, y. If [Max(P)| = 1, then this means th& has a unique
maximal element. We denote it ly>. Dually, if P has a uniqgue minimum, then we denote
it by 0. The existence of joins and meets and unique maxima and miisiciosely related
in finite posets.

Observation 1.1.1. Since if there were several maxima one could just take tlogir ¢r
meet, respectively, we have: A finite pogehas a join for every pair of elements if and only
if P has alp. Dually, a finite? has a meet for every pair of elements if and onlihas a
unigue minimunDp.

If in a posetL we have that every pair of elements hasraguejoin, then we callC a
join-semilattice The dual of a join-semilattice is calledeet-semilatticeAs an example it
is easy to verify:

Observation 1.1.2. An inclusion-order(E, C) on aunion-closedset-systemZ, i.e., if
X,Y € E,thenalsaX UY € E, is a join-semilattice. The join of two sets is given by their
union. If E isintersection-closedhen(E, C) is a meet-semilattice with the meet being set-
intersection. Given a poseét, the set-systerfi(P) is union-closedind intersection-closed,
i.e.,(Z(P),C) is ajoin-anda meet-semilattice.

The class of posets which are join- and meet-semilatticéiseasame time is of central
importance for this entire thesis:
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lattice Definition 1.1.3. A poset/. is called alattice if every pair of elements of has a unique
join and a unique meet.

Often, we will denote lattices and semilattices®wand other posets . If z,y < z, w,
then if there is a unique join af, y, thenz vV y < z, w. This yields the easy

Observation 1.1.4. A finite join-semilatticeC which has meets for all pairs of elements
has unique meets, i.e., is a lattice. Dually a meet semilatticgwith joins for all pairs of
elements is a lattice.

In a lattice £ we denote the join and meet of elementsy € £ by x vV, y and
x Az y, respectively. If it is clear which lattice we are talkingoay, then we will usu-
ally drop the subindex:. Seen as binary operations join and meet in a lattice form

idempotent commutative semigroups., for allz, y, z € £ semigroup
cerxVr=x (idempotent  idempotent
cxVy=yVzx (commutative  commutative
cxV(yVvz)=(xVy Vz (associativg  associative

and analogously fon. In particular, they are associative binary operationasldn expres-
sion likez; Vv ... V 2, makes sense and we will denote it\$z; | ¢ € [k]}. (Here and
everywhergk] stands fo1, ..., k}.) The analogous abbreviatigh.S will be used for the
meet of aseb C L.

Let£ = (E,<)andfl’ = (E’, <') be lattices. We say thdt is asublatticeof £’ if Lisa sublattice
subposet o', and we have: V,y =z Vo yande Apy = x Apyforallz,y € E.

/D\. A ./\ s "

<L [} O/ \.

Figure 1.1: From left to right: join-semilattice; poset witniqgue minimum and maximum;
lattice; upper locally distributive lattice; distribuéattice. Join-irreducible elements are

coloredmagentameet-irreducibles are colored . We will be consistent with this
“color-code” through the entire thesis.

An elementj € L is calledjoin-irreducibleif it cannot be expressed as the join of a sgbin-ireducible
of elements not containing In the Hasse diagram join-irreducibles are those elenveitits
exactly one incoming arc, i.e., a join-irreduciljléas a unique cocover if. It is denoted
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by j~. We write 7(£) for the subposet of induced by its join-irreducibles. Dually, one

defines the poset aheet-irreduciblesdenoted byM(L£). The unique cover of a meet- meet-irreducible
irreduciblem in £ is denoted byn™. In a finite meet-semilattice (join-semilatticé)we set

A0 =1, (/0 := 0g). Hence maximum and minimum are not meet-irreducible arid no
join-irreducible, respectively. An important fact is tteso every other element of a finite

lattice may be expressed as a join of join-irreducibles Bymgotence this is clear if it is

a join-irreducible itself, otherwise it is a join of (not rexsarily join-irreducible) elements

below it. The conclusion follows by induction on the heigliually, every element of a

lattice is a meet of meet-irreducibles. More formally:

Observation 1.1.5.In a finite join-semilattice every elemefte L is the join of join-
irreducibles below it, i.e{ = \/([¢ N J(L)). Dually, in a finite meet-semilatticé we have
C=NANMNM(L))foralll e L.

The posets7 (£) and M (L) are sufficient to encode a lattice. We will show one way to do
this (Theorem 1.2.3), which specializes in a nice way to @uppcally) distributive lattices.
The latter form indeed the lattice class being most vitahie thesis. It was first defined by
Dilworth [31].

upper locally Definition 1.1.6. A finite lattice £ is calledupper locally distributive (ULD)if for every
(Giputve latice 4 < £ there is a unique inclusion-minimal skef;C M (L) such that = A M;.

lower locally The dual of a ULD is calledower locally distributive (LLD) A special and important
(Lipputve latice o helass of uppeand lower locally distributive lattices ardistributive lattices They are of
strong interest to this work. The following is their clasdic

distributive lattice  Definition 1.1.7. A lattice £ is calleddistributiveif £V (¢ Am) = (kV £) A (kV m) for all
k,l,m € L.

It is one folklore lemma of distributive lattices that thefid@ion could be equivalently
stated using A (£ Vm) = (KAL) V (kAm).

There are plenty of different characterizations and repriedions of distributive lattices.
Most famously Birkhoff's Theorem [14] states a bijectiortyeen distributive lattices and
posets, which furthermore yields a representation as wrdaad intersection-closed set-
systems. This will be a corollary of the next section, statedheorem 1.2.1.

Another characterization states that a lattice is distiwbuf and only if it is upper and
lower locally distributive. This was already shown by Dillo in the first paper about
ULDs [31]. We will obtain that characterization as a corpll@f Section 1.3, stated as
Theorem 1.3.22.
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1.2 Generalizing Birkhoff’'s Theorem

In this section we will show a correspondence between finiticks and finite posets cov-
ered by antichains. A very special case of this is Birkhofteorem [14] also known akhe
Fundamental Theorem of Finite Distributive Lattices

Theorem 1.2.1. A finite lattice £ is distributive if and only ifC = (Z(P), C) for a finite
posetP. Moreover,P = J(L).

Note that Theorem 1.2.1 yield>= (Z(J (L)), <) andP = J(Z(P), C) for every finite
distributive lattice and every finite posé®. This is, mapping a finite posét to the finite
distributive lattice(Z(P), C) induces a one-to-one correspondence between isomorphism-
classes of finite posets and isomorphism-classes of firsteldlitive lattices.

As an application of the main theorem of this section we wiinove Birkhoff’s Theorem
at the end of the section. However, the main motivation #citd this chapter is a result of
Nourine establishing a partial generalization of Birkf®ifheorem to ULDs and antichain-
partitioned posets [87]. For the statement of Nourine'sltage need one further definition.
Let S be a subset of a pos@tand. Ag = {4, | y € Q} C 27 a set of antichains, i.e.,
the antichains indy are indexed by the s&. We define thdingerprint of S in Ao as fingerprint
fing 4, (S):={y € Q| SN A, # 0}. So given a pose® and a set of antichains indexed by
a setQ the fingerprint takes subsetsBfto subsets 0f. Given a setS of subsets of” we

write fing 4, (S) for {fing 4, (5) | S € S}.

D9
\ ®
o {1} {c}
3 4
0
Figure 1.2: On the left: a pos@ with ground set{1, 2, 3,4} and an antichain-partition
Ao = {1, 1,/ }, i.e., the index-se@ equals{«,/, }. On the right: the correspond-
ing ULD as inclusion order on the fingerprints of the idealsif The ideal has

fingerprint{«, », ¢ }.

Nourine’s Theorem then reads:

Theorem 1.2.2. A finite lattice£ is a ULD if and only ifC = (fing 4, (Z(P)), C) for some
posetP with antichain-partition4,.
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Nourine’s Theorem is important for the study of ULDs. We camebNourine’s Theo-
rem with join-sublattice embeddings of ULDs into the donmioa order oriN? to obtain a
generalization of Dilworth’s Embedding Theorem for Firdestributive Lattices to ULDs,
see Theorem 1.3.18. At another point we will use Nourine’sdrem to prove that every
ULD may be represented generalized chip-firing gameee Theorem 1.5.10. But compare
Birkhoff’'s Theorem with Nourine’s Theorem: Birkhoff’s Theem yields that up to isomor-
phism there is a unique poset representing a given distréblattice. Nourine’s Theorem
does not accomplish the analogue, i.e., there may exisly'f#ifferent” antichain-partitoned
posets all representing the same ULD. As an applicationis#rction’s results we will ob-
tain a strengthening of Nourine’s Theorem fully generaligBirkhoff’'s Theorem: On the
one hand we find a notion of isomorphisms of antichain-pant#td posets. On the other
hand we find the class eéducedantichain-partitoned poset®, .Ao) such that mapping
(P, Ag) = (fing,(Z(P)),<) induces a bijection between isomorphism-classes of re-
duced antichain-partitioned posets and isomorphisnsekasf ULDs, see Theorem 1.2.24.

What we develop in the present section is actually much mereeigl. We obtain a
way of representingveryfinite lattice as inclusion-order on the fingerprints of tteals of
an antichain-covered poset. Moreover, we find the clagpofiantichain-covered posets,
such that every finite lattice is represented by a memberisfdhss which is unique up
to isomorphism Analogously to the case of Birkhoff's Theorem we obtain &-6o-one
correspondence between isomorphism-classes of finite gotchain-covered posets and
isomorphism-classes of finite lattices. This is the mainltes the present section. We will
define good antichain-covered posets and their isomorghiatar on in this section, see
Definition 1.2.14 and Definition 1.2.18, respectively. Nthreless, in order to give a more
precise idea of the main result of this section we state éizaly:

Theorem 1.2.3. A finite posetC is a lattice if and only ifC = (fing 4, (Z(P)), C) for a
good antichain-covered posgP, Ag). Moreover(P, Ag) = (J (L), Apm(c))-

Note that in comparison to the case of ULDs we have to uselaitiecovers instead of
antichain-partitions. We hope that this result leads teegalizations of our results obtained
with the help of Nourine’s Theorem to more general latticessks. Theorem 1.2.3 is sim-
ilar to the finite case othe basic theorem on concept latticd®8] and to a theorem of
Markowsky [80]. Nevertheless, the representation fordat as described in Theorem 1.2.3
is essentially new.

We will now begin with the proof of Theorem 1.2.3, it will getuige technical.
A pair (P, Ag) of a finite posetP and a setdg of antichains of P is called an
antichain-covered poset (ACHf) for every x € P there is at least ong € Q such that
x € Ay, i.e., Ag is a cover ofP. First we show that the inclusion-order on the fingerprints
of the ideals of an antichain-covered posets indeed isiadaffhis can be understood as the
first part of Theorem 1.2.3. We start with an easy
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Observation 1.2.4.Let (P, Ag) be an ACP and, S’ C P. We have

fing 4o () U fing 4, (S") = fing 4, (SUS).

Now we can show:

Proposition 1.2.5. Let (P,.Ag) be an ACP. The inclusion-ord€fing ,,(Z(P)),C) is a
lattice. More precisely, we show:

* the set-systeffing 4, (Z(P)) is union-closed,
« for everyfing 4, (1) there is a unique inclusion-maximal idepl| 4, € Z(P) such
thatﬁngAQ(mAQ) fing 4, (I), we callfing 4, ([1].4,) distinguished ideal. distinguished
ideal
* We havefing 4, (Z(P)), <) = ({[I1ag [ I € Z(P)}, ), e
* the set-systefiZ(P)|4,:= {[I]a, | I € Z(P)} is intersection-closed.

Proof. By Observation 1.2.4 fof, I’ € Z(P) we have thafing 4, () U fing 4, (I') equals
fing 4, (I U I"). Sincel U I' is again an ideal ofP the set-systenfing 4, (Z(P)) is
union-closed. Thus, by Observation 1.1.2 the inclusiafeo(fing 4, (Z(P)), C) is a join-
semilattice and the join of two sets is their union.

By Observation 1.2.4, the union of a pair of ideals with thensdingerprint has again
the same fingerprint. Thus, by Observation 1.1.1 the ingclusirder on these ideals has a
unique maximum. Hence for evefing 4, (I) € fing 4, (Z(P)) there is a unique inclusion-
maximal [I] 4, € Z(P) with fing 4, ([1]4g) = fing 4,(I), by Observation 1.1.1. This
yields that the fingerprint is an inclusion-preserving tiijgen to the distinguished ideals,
L., (fing 4o (Z(P)), C) = ([Z(P)] 40, C).

Now we show thatfing 4, (Z(P)), C) is a meet-semilattice, by showing thak(P)] 4,
is intersection-closed. Lefll4, # [I'l4, be distinguished ideals. SincgP) is
intersection-closed the intersection f] 4, and [I'] 4, is an ideal again. Suppose it
is not distinguished, i.e., there is an idddl ¢ Z(P) with 1" O [I]4, N [1'] 4, and
fing 4, (I") = fing 4, ([T1.4o N [I"] 45). Then with Observation 1.2.4 we have

= finga,
= ﬁngAQ I.AQUI”)

Similarly we obtainfing 4, ([1"]ag) = fing a,([I']ag U I"). Sincel” is not contained
in both [ 4, and [I"] 4,, this contradicts the maximality of at least one[dfl 4, and
[I" 4o- Thus,[Z(P)] 4, is intersection-closed. Hence, by Observation 1.1.2 tbleigion-
order([Z(P)] a4, €) is a meet-semilattice.

Since(fing 4, (Z(P)), ) is a join-semilattice and is isomorphic to the meet-setidet

([Z(P)]ag, ) itis alattice. O
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Before we proceed with the next part of the proof of Theore23lwe look at the two set-
systems representing the same lattice in the above prapuostthey have different features.
Since the set of distinguished ideal5(P)]| 4, of an ACP(P, Ag) is intersection-closed,
the inclusion-orde([Z(P)] 4., ) is a meet-sublattice of the distributive latti&P), C).

We will now show that on the other han@ing 4, (Z(P)), C) may be seen as join-
subslattice of a distributive lattice which is given by theclusion-order of ideals of a
poset on the index-s&. So given an ACRP,.Ag) define a poset on the index sét
byy <y <= T4, D TA4,,. We call the pose@ theindex-poset of P, Ag).

Proposition 1.2.6. We havefing 4, (Z(P)) € Z(Q). This s, the latticéfing 4, (Z(P)), C)
is a join-sublattice of the distributive lattiqgg (Q), C).

Proof. Let [I]4, be a distinguished ideal dfP, Ag) and fing 4, ([114,) C Q its fin-
gerprint. We show thafing 4, ([1].4,) is an ideal of the index-pos&®. So lety €
fing 4, ([1]4g), i€, there ist € [I]4o N Ay. Now take ay’ < y. Hence by defini-
tion 14, € 14, i.e., there is an’ € A, with 2/ < z. Since[I] 4, is an ideal and
z € [T]ag alsox’ € [T ag. Thus, Ay N [I]ag # 0 andy’ € fing 4, ([1]4,)- We have
shown thatfing 4, ([1].4,) is an ideal ofQ, and thus(fing 4, (Z(P)), C) may be seen as a
subposet of the inclusion-order @itQ). Since by Proposition 1.2.5 the set of fingerprints
is union-closed fing 4, (Z(P)), €) and by Observation 1.1.2 the union is the join of both
set-systemsfing 4, (Z(P)), C) is a join-sublattice ofZ(Q), ). O
Any fing 4, () may clearly be represented as the union of fingerplifts; fing 4, (1z).
(Define the union over an empty index-set as empty.) Theviatig is an analogue statement
for distinguished ideals which will be useful at severalntsiin this section. We denote by
S the complemenk\S of a subsets C E.

Lemma 1.2.7. Let (P, Ag) be an ACP. An ideal € Z(P) is distinguished if and only if
I =, TA, for afilter F of Q. We sef), . 14, := P.

Proof. “<=": Clearly P is a distinguished ideal, so assutfie (. Observe thatA, is

a distinguished ideal: All elements that might be addeti4p while maintaining an ideal
increase the fingerprint by at leastBy Proposition 1.2.5 their intersection is distinguished
too.

‘=" I [Iay = P, i€, [Ila, = 0 we are done by taking” = . Otherwise,
since adding any element to a distinguished iddals, increases its fingerprint we have
T4, = Uy%ﬁngAQ(HMQ) TAy. By Proposition 1.2.6 the s¢ftng 4, ([1]4,) € Z(Q)
and consequently for the index-set of the union on the rgind side we have
ﬁngAQ(mAQ) € F(Q). Applying the complement on both sides of the equation we ob-
tain the result. O

The index-pose® will be of importance through the rest of this chapter. Irdléeés in
a certain duality tdP, which will be explained in more detail in the last subsattid this
section.
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We will now return to the proof of Theorem 1.2.3. We have shahat given an ACP
(P, Ag) the inclusion-ordeffing 4, (Z(P)), C) is a finite lattice. Next we show that for
every finite latticeC there is &(P, Ag) such thatC = (fing 4, (Z(P)), C). We start with
some basic lemmas.

Lemma 1.2.8. Let ¢,/ be elements of a finite latticel. We have
UNTJL)CWNTL)<—=¢<anddualyl/NM(L) S W NM(L)<=L>1.

Proof. Because of duality we only prove the first part of the statanfeor “<—=" note that
¢ < ¢'implies[¢ C [/ andthus/ N T (L) C W' NJ(L).

For“="let /N J(L) C W' NJ(L). Thisimplies\/(/ N T (L)) < V(' NIT(L)).
By Observation 1.1.5 the sides of that inequality equaid/’, respectively, i.ed < ¢'. [

Lemma 1.2.9.Let/, ¢’ be elements of a latticé. We have that the set of minirivan (|¢\|¢')
is a subset of7 (£) and duallyMax(1¢\1¢') C M(L).

Proof. Because of duality we only prove the first part of the statemeet ¢, /' € £. We
can assume/\|[/"\7 (L) # 0 since otherwise the statement is trivially true. So take an
(" e [#\|¢' which is not join-irreducible. By Observation 1.12% may be represented as a
join of join-irreducibles below”, i.e, ¢ = j; V...V ji andj; < ¢’ for all i € [k]. Since

" < /¢ all thej; are in]¢. Observe that/’ is closed under taking joins. Hence at least one
Jiisin [A\[Z'. If ¢ € Min([¢\|¢') there cannot be suchja < ¢”, i.e., " itself must be a
join-irreducible. O

We will now define an ACP representing as the inclusion-order on the fingerpints
of its ideals. For everyn € M(L) setA,, := {j € J(L) | m € 157\Ij} and let
Amc):={Am | m € M(L)}. For an example of this construction consider Figure 1.3.

1 2
®
()
3 4
Figure 1.3: On the right: the ULIZ from Figure 1.2. Meet-irreducibles ale and

join-irreducibles arenagentaOn the left: the ACRJ (L), Apq(c))



18

Remark 1.2.10. Note that since7 (£) and M (L) are subposets af when applyingf, |
or the complement to subsets or elements/oL) and M (L) it is notad hocclear which
ground set we are considering. We do not want to define newioot@nd new subindeces.
Generally we will view[S, |S, andS as subsets of even ifS is a subset of (£) or M(L).

In order to avoid confusion, we point out the only two excepsi to this rule:

« If 15, S, or S appears as the argument of the fingerprint, ﬁ@gMM(m (17), then we
consider it as a subset gf(L).

« If S C Apg), thents, IS, or S and their compositions are considered as subset of
J(L), e.9.,1An for Ay € Apqr).-

e If § = ﬁngAM(m (I), then1S, S, or S and their compositions are considered as
subset ofM(L).

Before proving that7 (£), Ar(c)) is an ACP we need another lemma.

Lemma 1.2.11.Let;j € J(£) andm € M(L). We havefing 4, ., (17) = 1N M(L)and
1A, = ImNnJ(L).

Proof. First we showfing 4, , (17) C TINM(L). f m e fing ., (17), then by defini-
tionthereis g’ < j withm € 15/7\15’. In particularj’ £ m and thus by transitivity ¢ m.
Thisis,m € Tj N M(L).

To showﬁngAM(C)(lj) D TiNM(L) letm € Tj N M(L). This particularly means
17\lm # 0 and by Lemma 1.2.9 the set Miy\|lm) N J(L£) is non-empty. So take an
element;’ € Min(|5\lm) N J(L). It satisfiesn € 15/7\1j’ andj’ < j. By definition this
meansym € ﬁngAM(ﬁ)(lj) .

The proof of the second statement is very similar: First wawsd,,, C [mn J(L). Let
j € 1An. Hence there is @ < j with j' € Ay, i.e.,m € 75'7\1j'. In particularj’ £ m
hencej £ m. Thus,j € [m N J(L).

To show 4, 2 [m N J(L) letj € [m N J(L£). In particular [j\lm # 0
and by Lemma 1.2.9 the set Mig\lm) N J(£) is non-empty. Any elemenj’ in
Min([j\lm) N J (L) satisfiesn € 15'~\1j' andj’ < j. Thisis,j € 1A;,. O

Proposition 1.2.12. Let £ be a finite lattice. The paifJ (L), Ax(c)) is an ACP with
index-posetM (L).

Proof. To see thatd ,,.) consists of antichains take join-irreduciblgs< j € A,,. We
havej’ < j~ soj’ < m. Thus,m ¢ 15~ \1j’ which meang’ ¢ A,,.

In order to prove thatd,, ) is a set suppose it is not. This is, there are two an-
tichains A, = A,,. This implie§A,, = 14,, which by Lemma 1.2.11 implies
ImNJ(L)=1m' nJ(L). This is equivalent tojm N J(£) = |m' N J(L£). Thus,
VimnJ(L))=V({m' nJ (L)), where by Observation 1.1.5 both sides equalndm’,
respectively, i.e., we have = m’.
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In order to show thatl vy covers7 (L) letj € J(L). The second part of Lemma 1.2.9
yields that the non-empty set M@y ~—\1j) contains at least one meet-irreduciible By
definitionm € 157 \1j is equivalent tg € A,,.

The last thing to prove is that(L£) is isomorphic to the index-poset Q7 (L), Arq(c))-
But by Lemma 1.2.8 and the second part of Lemma 1.2.11 we have

m<m < ImNJ(L)CIm' NT(L) <= 14m 2 1A

O

We are ready to prove the next part of Theorem 1.2.3, i.et fohaevery finite lattice there
is an ACP representing it:

Proposition 1.2.13.Let £ be a finite lattice. We havé = (fing 4, ., (Z(J(£))), S).

Proof. As a candidate for an order-isomorphism fr()ﬁﬁngAMw> (Z(J(L))), ©) to L define
P ﬁngAM(ﬁ) (I) — \/ I. To see thap is well-defined we use Lemma 1.2.11 and calculate

VI
= AVI) N M(L))
AN jer 17N M(L))
/\(ﬂjejﬁngAMm(U))
AU fng ay,e, (1)
Ning ey, ().

Hence,p does not depend on the choicelpbut only Onﬁ”!JAM(,;) (I). Clearly,p is order-
preserving. As inverse mapping we clagm’ : ¢ — ﬁngAM(L)(wmj(/:)) for¢ € L. Also
¢~ is order-preserving by Lemma 1.2.8. Nowo ¢~ 1(¢) = \/{j € J(L) | j < ¢} = ¢.
Thus it remains to show that™! o ¢ = id.

We have to shovy‘ingAM(L)(l\/I NJ(L)) = ﬁngAM(L)(I). Since|\/INJ(L) DI
the direction ©” is clear. For ‘C" let j < \/ I andm € ﬁngAM(m(lj). By Lemma 1.2.11
we havej £ m, so\/I £ m. Hence there must be soniec I with ;' £ m. Thus by
Lemma 1.2.11m € fing 4, ., (13') € fing.a,,, (1)- O

We have shown that every finite lattice can be represented BWC#® (P, Ao). But there
are many “fairly different looking” ACPs representing thense lattice. See for example
Figure 1.4. We will now defingoodACPs and prove that ACPs of the foill (£), A ()
are good. Afterwards we will show that up to isomorphigf( L), Aprq()) is the only good
ACP representing.

Definition 1.2.14. We call an ACP(P, Ag) goodif good ACP
L x|l 2" = fing ao (1) || fing.ag (1),
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Figure 1.4: Three ACPs representing the lattice on the.righty the ACP in the middle is
good. The antichain in the left-most ACP violates part 2. of Definitibi2.14. The
elements of the right-most ACP violate part 1. of Definitio.14.

2.Vy € Q3w e Ay : fingay (T1Ay U {2}) = fing 4, (TAy) U {y}.
Proposition 1.2.15. Let £ be a finite lattice. The ACRT (L), Ax(c)) is good.

Proof. We start proving part 1. of Definiton 1.2.14. Letj;’ € J(£) and
say ﬁngAM(C)(lj) - ﬁngAM(C)(lj/). By Lemma 1.2.11 this is the same as
1 NM(L) D1 N M(L). Now Lemma 1.2.8 yieldg < j'.

It remains part 2. of Definition 1.2.14. So we have to show évaty A,,, € A, con-
tains aj such tha;ﬁngAM(L)(TAm u{sj} = fing Ay o) (TAm) U{m}. Soletd,, € Ay ).
By Lemma 1.2.9 we can choose a join-irreduciple Min(|m™\|m). In particularm > j~
andm % j and thusj € A,,. We haveﬁngAM<£>(TAm u{j}) 2 ﬁngAM(ﬁ)(TAm) U{m}.
Let us see what happensﬁthM(C) (j) contains more elements than Assume now that
jE Ay

If m’" # m, then by definition some elemente A, is not contained in'A,,. Hence
y € 1Am andm’ € fing 4, ., (1Am).

If m’ > m, thenm’ > m™. Sincej € |m™\|m this impliesm’ > j and in particular,
m’ ¢ 157\14,i.e.,j ¢ A, —acontradiction.

We have showtfing 4, ., (TAm U {j}) = fing ., ., (TAm) U {m}. O

The last part of Theorem 1.2.3 that remains to be shown isetiey good ACRP, Ag)
with (fing 4, (Z(P)), <) = L is isomorphic to(J (L), Ar(c)), where ACP isomorphisms
still has to be defined. First we need two more lemmas.

Lemma 1.2.16.1f (P, Ag) is good, then

P = (fingag({{x | € P}),C) = T (fing 4o (Z(P)), ).

Proof. It is a direct consequence of part 1. of Definition 1.2.14 thappingz € P to
fing 4, (Ix) € (fing 4, ({1z | x € P}), ) is an order-isomorphism.

For (fing 4, ({1z | € P}),C) = T (fing 4, (Z(P)), C) we show equality of the ground
sets. This is enough since the order is defined equivalentlyoth sides. First proveC”.
Since Ag consists of antichains and is a cover/f addingz’ > z to |z increases the
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fingerprint. SincgP, Ag) is good, also adding’ || = to |z increases the fingerprint. We
have that|x is a distinguished ideal.

Now supposefing 4, (lz) is not join-irreducible, i.e., there ard and I’ with
fing 4, (I), fing 4, (I') # fing a,(x) but fing 4, (I) U fing 4, (I') = fing 4, (lx). Thus,
fing 4, (I UI'") = fing 4, (lx) by Observation 1.2.4. Sincg is distinguished we have
IuTI' C |x. SinceAg consists of antichains at least onelofl’ containsz and hence
equals|z — a contradiction.

For “2" let 1], be a  distinguished ideal  such  that
fing ag ([T 40) € T (fing 4, (Z(P)),C). Observe thal) ¢ J(fing,(Z(P)),C), be-
causé) = fing 4, (0) is the minmum offing 4, (Z(P)), ) and thus is not join-irreducible
by definition. Hence[I|4, is not empty. Suppose M&X|4,) = {z1,...,7%}
with & > 1, because otherwisgl |4, = |z1. Sincel = |z1 U ... U |z, we have
fing 4, (I) = fing 4, (lx1) U... U ﬁngAQ(l:Bk) by Observation 1.2.4. Using the first part of
(P, Ag) being good we have thiing 4, (lx1), ..., fing 4, (lxx) are mutually incompara-

ble. Sincefing 4, (1) D fing 4, (121), ..., fing 4, (lzx) we havefing 4, (I) # fing 4, (1z:)
forall i € [k]. Hencefing 4, (1) is not join-irreducible — a contradiction. O

Lemma 1.2.17.1f (P, Ag) is good then
Q = (fing 4, (14g), C) = M(fing 4, (Z(P)), <),
whereTAg:= {14, | 4, € Ag}.

Proof. We start by showingQ = (fing4,(140),C). Lety,y’ € Q. We have
y <y =14, 2 14, < 14, C 1A, . Ildeals of the form{A, are distinguished by
Lemma 1.2.7. Thus, by Proposition 1.2.5 mappip; to fing 4, (TA.) is an order-
embedding since it is obviously surjective. We have pro@e# (fing 4, (1Ao), ©).

For (fing 4, (14g), C) = M(fing 4, (Z(P)), <) we only need to show equality of the
ground sets. Start by proving", i.e., let fing 4, (TAy) € fing 4, (1Ag). Since(P, Ag)
is good there is some € A, such thatfing 4, (T4, U {z}) = finga,(T4,) U {y}.
Hencefing 4, (14, U {z}) is the unique cover ofing 4, (TAy) in (fing 4, (Z(P)), <), i.e.,
fing 4, (14y) is a meet-irreducible.

For the ‘O"-direction let [I]4, be a distinguished ideal such that
fing 4o ([T1ag) € M(fing 4,(Z(P)),<). By Lemma 1.2.7 we may represeff |4,
as meet of distinguished ideals i.el}| 4, = ﬂyeFEfor some sef” C Q. Since[I] 4,
is meet-irreducible it is not the maximu® of ([Z(P)].4,, <) and consequently” # (.

Thus, becausgl | 4, is meet-irreducible we havid | 4, = T4, for somey € F'.

0

Definition 1.2.18. Let (P, Ag) and(P’, Ao/) be ACPs. A mapping : P — P’ is called
anACP-isomorphisnf ¢ is an order-isomorphism and( 4,) € Ag <= A, € Ag. ACP-isomorphism
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This is, ¢ preserves the order and the antichain-partititon. Noté ¢halso induces an
order-isomorphism of the index-posets. After this fairftural definition we first check that
isomorphic lattices will be represented by isomorphic gd@Ps. Otherwise the definition
would not be so good.

Proposition 1.2.19.Let £, £ be isomorphic finite lattices. The ACRS (L), Ax(.)) and
(T (L"), Apzry) are isomorphic.

Proof. Let ¢ : £L — L’ be an order-isomorphism. We show thatinduces an ACP-
isomorphism from(J (£), Anz)) t0 (T(L'), Apmery). Clearly, ¢ induces an order-
isomorphism of7(£) and J(£') and also ofM(L£) and M(L’). It remains to show
that A,, € Anpe) <= ©(Am) € Anme)- But Ay € Apyr) by definition is equiv-
alenttoA,, = {j € J(L) | m € 15~\lj} form € M(L). We applye and since it
is an order-isomorphism of join- and meet-irreducibles wtam the equivalent statement

e(Am) = {p(j) € T(L') | (m) € To(5)"\lp(j)} for p(m) € M(L'). This is equivalent
top(Ap) = Atp(m) € AM(L’)- U

We are ready to prove the last part of Theorem 1.2.3.

Proposition 1.2.20. Let £ be a finite lattice and(P,.Ag) a good ACP such that
L= (fing 4,(Z(P)), S). We havgP, Ag) = (T (L), Am(z))-

Proof. By Proposition 1.2.19 it is enough to show

(P, Ag) = (I (fing o (Z(P)), ©)s AM(fing 4, (2(P)).C))-

Solety : P — J(fing4,(Z(P)),C) be the map defined as(z) = fing 4, (lz).
By Lemma 1.2.16p is an order-isomorphism so we takeas our candidate for the ACP-
isomorphism. We still need to show thatinduces an isomorphism of the antichain-

partitions. Ao andAM(ﬁngAQ(I(p))Q.
Let A, € Ag. We want to prove thap(A,) € AM(ﬁngAQ(I(p))Q. Recall that an ele-

ment ofAM(ﬁngAQ(I(p))Q looks like Ay, = {j € T (finga,(Z(P)),C) | m € 15~\I5}
for a meet-irreduciblen € M(fing 4,(Z(P)),<). Now since every join-irreducible
is of the form fing 4, (lx) the unique cocover may be written #isg 4, (lz\{z}). By
Lemma 1.2.17 meet-irreducibles correspond to elementseofdrm fing 4, (l4,). Hence
every antichainélﬁngAQ(m) € AM(ﬁngAQ(I(p))Q is of the form

{fing 4 () | fing 4y (lx\{z}) C fing 4, (IA,) andfing 4, (1x) € fing 4, (1A,)}

We show thatp(Ay) = {fing 4, (z) | v € Ay} equalsAg (7. For “C” note that
_ AW
v € Ay = fing 4o (lx) € fing o (14y) andfing 4o (le\{x}) C fing aq (14y)-

For “2” observe thaffing 4, (1) Z fing 4, (1A,) impliesz € A,. On the other hand
fing 4o (lx\{z}) C fing 4,(14,) means that all cocovers ofare infA4,. Hencer € A,
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We have shown equality. Since by Lemma 1.2.17 all meeticitdes of
(fing 4, (Z(P)),C) are of the formfing 4 (14,), we may represent all elements of
AM(ﬁngAQ(I(p))vg in the above fashion. This ig(A,) € AM(ﬁngAQ(I(p))vg if and only
if A, € Ao. O

Let us plug everything together to resume how we proved Tmat.2.3. In Proposi-
tion 1.2.5 we have shown that a finite pogés a lattice ifC = (fing 4, (Z(P)), C) for some
(good) antichain-covered pos@®, . Ag). On the other hand Propsition 1.2.13 shows that
every finite£ is isomorphic to(ﬁngAM(C) (Z(J(L))), ), where(T (L), Apc)) is @ good
ACP, by Propition 1.2.15. Finally, Proposition 1.2.20 skdhat if C = (fing 4, (Z(P)), ©),
then(P, Ag) = (7 (L), Apz)).

To obtain that the map, which takes ACPs to the inclusiore@an the fingerprints of
their ideals indeed induces a one-to-one corresponderiaeée isomorphism-classes of
good ACPs and isomorphism-classes of finite lattices, we baprove one last thing. By
Propsition 1.2.19 we know that isomorphic lattices canioote from non-isomorphic good
ACPs but we have to show that isomorphic good ACPs yield isphio lattices.

Proposition 1.2.21.Let (P, Ag) and (P’, Ao/) be ACPs. If(P, Ag) = (P, Ag), then
(fing 4o (Z(P)), ) = (fing 4, (Z(P')), S).

Proof. Let ¢ : P — P’ an isomorphism of P, Ag) and (P’, Ag/). We will prove that
¢ : [Iag = ¢([I]ag) is an isomorphism of[Z(P)]ag, <) and([Z(P')] 4, ). This
is enough by Proposition 1.2.5.

The first and most difficult thing to prove here is, thd{ I] 4, ) is indeed a distinguished
ideal of (P’, Ag/): We will use thatp induces an order-isomorphispi of Q andQ’, by

y <y o 14, 214y & o(14y) 2 (1Ay) &: 1Ay 2 1wy < ¢ () < ¢'(Y).

Moreover we apply Lemma 1.2.7 to obtain that an ideal ismiigtished with respect td o
if and only if I = N, .- TA, for a filter F of Q. We calculate:

ravey = o(Nyer T4y)
= o(P\Uyer 14y) = ©(PN\Uyer ¢(14y)
- P/\Uso/(y)Eso/(F) 14g()

Sincey is an isomorphisnp(F) is a filter of @', and we obtain a distinguished ideal by
Lemma 1.2.7.

The above chain of arguments could equivalently be apptigdt. Thus¢ is a bijec-
tion of [Z(P)] 4, and[Z(P')] a,,- Thate is an order-embedding follows from a straight-
forward equivalence transformation yielding| 4, € [11'4, < #([1]4o) € ©([114,,)-

We restate the result as a new theorem:
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Theorem 1.2.22. Isomorphism-classes of finite lattices and of good ACPs are
in one-to-one-correspondence, induced By — (J(£), Ay g)) and its inverse
(P, Ag) = (fing 45 (Z(P)), ©).

How Theorem 1.2.3 specializes back to Birkhoff's Theorend anstrengthening of
Nourine’s Theorem will be shown in the next subsection.

1.2.1 Applications

In this section we will refine Theorem 1.2.3 to specific clasddinite lattices. As promised
in the beginning of the section we first prove a strengtheniridourine’s Theorem (Theo-
rem 1.2.2). For that matter we call an antichain-partittbpeset P, Ao ) reducedf

|| o' = fing 4, (l2) || fing 4, (l2).
We introduced this definition because it is more economrh¢jood but:

Observation 1.2.23.An antichainpartitionedposet is good if and only if it is reduced.

We can now prove:

Theorem 1.2.24.Afinite latticeL is a ULD if and only ifC = (fing 4, (Z(P)), C) for some
posetP with reduced antichain-partitiog. Moreover,(P, Ag) = (J (L), Anmc))-

Proof. By Observation 1.2.23 an antichain-partitioned poset isadf and only if it is re-
duced. Thus by Theorem 1.2.3 it is enough to show th@®jf4o) is antichain-partitioned,
then (fing 4, (Z(P)),C) is a ULD and that ifC is a ULD, then(J (L), Aprq(c)) is an
antichain-partitioned poset.

So let (P, Ag) be an antichain-partitioned poset. By Proposition 1.2.5
(fing 4, (Z(P)), <) is isomorphic to the inclusion-orde([Z(P)]4,,<), where the
meet coincides with set-intersection. We prove tha(P)] 4., €) is a ULD.

Let [Iay € [Z(P)]ag. We claim thatM := {TA, | y € fing 4o, (Min([1].4,))}
is the M[HAQ of the definition of ULD (Definition 1.1.6), i.e.MmAQ is the unique
inclusion-minimal set of meet-irreducibles such that 4, = ﬂMMAQ- Recall that ide-

als of the form(4, are distinguished ideals and correspond\tifing 4, (Z(P)), <), by
Lemma 1.2.17. Hencé/ € M([Z(P)]aq, C).

We start by showing thafl] 4, is indeed the meet ofi/. First, we show that
[Ilao S M. Let 1A, € M. If there werex € A, N [I]4, then either adding
Ay N Min([1I]4,) to [T] 4, does not increase the fingerprint [af| 4, which contradicts
maximality of [ I'] 4, or A, "Min([I]4,) must intersect some othdr, € Ag\{A,} with
Yy € finga,([I]4,) contradicting thatdg is a partition. Thusd, N [I]4, = 0 which
implies[I] 4, C TA,. We obtain[I] 4, € (M.
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In order to to show[I|4, 2 (M, let x € (M. This is equivalent to
x¢Uy€ﬁngAQ(Min(m)) TAy. In particular z ¢ 1Min([I]4,) and consequently
x € [I]a,. We have proved!| 4, = M.

Now supposé€/ is not the unique inclusion-minimal with' | 4, = (M, i.e., there is
another set of meet-irreduciblég’ whose intersection i$I] 4, and there is some meet-
irreducibleTA, € M\M'. By the choice of\/ at least one of the elementse A, has all
its predecessors iV ] 4. Now if 1A, € M’ thenz € 1A/, otherwisex € 1A,/ but since
Ag is a partition andr € A, we havex ¢ A,. Thus,A, N [I]4, # 0. This implies
(I, € 1A,. Hencex € T4, for all TA,, € M'. Thusz € (M’ - a contradiction
because: ¢ [I]4,-

Let on the other hand be a ULD andj € J7(£), i.e., for every/ € L there is a unique
inclusion-minimal setV/, C M(L) such that\ M, = ¢. Suppose thal.7 (L), Apyq(c)) is
not an antichain-partitioned poset. We know that it is an AgHProposition 1.2.15, hence
the problem must be that v is no partition. So for somg € J(£) we have two meet-
irreduciblesm, m’ € 157\1j. This impliesm A j = m’ A j = j~. Thus, the sed/;- must
satisfy M;- C (M; U {m}) N (M; U {m'}) andm,m’ ¢ M;. ThusM,- C Mj, thus
A M;- > A\ M; which meang~ > j —a contradiction. O

By Theorem 1.2.22 there is indeed a one-to-one-correspoedetween finite ULDs and
posets with reduced antichain-partition. We will now regr®irkhoff’s Theorem [14]. It
was stated as Theorem 1.2.1 in the beginning of the sectisrNd\irine’s Theorem it is a
refinement of Theorem 1.2.3. We restate for convenience:

Theorem 1.2.1.A finite lattice£ is distributive if and only ifC = (Z(P), C) for a posetP.
Moreover,P = J(L).

Proof. Let Ao be the singleton-partition @, i.e., all antichains consist of a single element.
Thus we may identiff@ andP. Hence we identifyfing 4, (I) with I and(P, Ag) with P.
Note that the singleton-partition is good and we can applgorém 1.2.3. We show that
(Z(P), <) is distributive and that ifC is distributive, then(J (L), Aprq()) is a singleton-
partitioned poset.

For (Z(P),C) we know by Observation 1.1.2 that meet and join of this latace in-

tersection and union. It is straight forward to check thaand U satisfy the distributive
laws.

On the other hand, lef be distributive. We know that7 (L), Axq()) is an ACP by
Proposition 1.2.15, so if it is no singleton-partitionedspbthere arg, k € J(£) and a
meet-irreduciblen € (157\17) N (1k~\1k), i.e., an antchainl,,, of size at leas?. If k > j,
thenk~ > jsom > k=~ > j, i.e.,,m cannot lie in(15~\17) N (7~ \1k). Thusj and
k are incomparable. Hencen k = j~ A k™. Sincej~,k~ < m by assumption we
calculate(j A k) Vm = (5= A k™) V- m = m. On the other hand sincgk || m we have
( vm),(kVm) # m and sincen is meet-irreducible we have. # (5 vV m) A (kV m).
This contradicts distributivity. O
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Question 1.2.25.1t would be interesting to characterize other lattice @ase terms of their
representation as antichain-covered posets. One reasthiginterest is that these repre-
sentations are more economical. One example where no sachotérization is known,
are upper semi-modular lattices. Another class of padicaterest to us are lattices whose
Hasse-diagram admits an arc-coloring, such that all mabéheins between two elements
have the same multiset of colors. Moreover, the outgoing af@n element are colored
mutually different. We call these properties together ¢hored Jordan-Dedekind chain
condition Both lattice classes are natural generalizations of ULDs.

Question 1.2.26.There is a generalization of Birkhoff's Theorem due to Dittino[32],
called Dilworth’s Embedding Theorem It establishes a correspondence between cover-
preserving sublattice embeddings of finite distributivitidas intoN¢ and chain-partitions

of posets. It would be interesting to generalize this resuttore general lattice classes. One
such generalization to cover-preserving join-sublatticteddings of finite ULDs int&¢

and chain-partitions of antichain-partitioned posetdigimed at the end of the next section,
see Theorem 1.3.18.

1.2.2 Duality

Before we continue with a new type of results in the next segtin this subsection we
will remark, that there is a “dual” way of characterizing fanlattices by antichain-covered
posets. These results will not be used further on and we orettiem just because, they
somehow complete the picture presented so far in this sedfie sketch this different way
of representing finite lattices in the following. The baslea is to switch the role d? and
the index-pose®.

Given a good ACRP, Ag) we defined, := Max{y € Q | =z € 14,} for everyz € P.
SettingAp := {4, | = € P}, we obtain an antichain-covered po$é}, Ap) called the
dual ACPof (P, Ag). See Figure 1.5 for an example.

’3
>
2

1

@] (O

Figure 1.5: Primal and dual ACP. Magenta numbers are elewér® and blue letters are
elements o). Both represent the lattice in Figure 1.4

Proposition 1.2.27.We havefing 4, (F(Q)), 2) = (fing 4, (Z(P)), ©).
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Proof. First observe thafing 4, (y) = 14,\Ua_c1a, A= Hence

(fing 4, (F(Q)), 2)

({Uyerdy | F € F(Q)},
= ({Uyerdy | F € F(Q)}

({14, | F e F(Q)}, )

yeF

= ([Z(P)]ag, ©)

The last equality comes from Lemma 1.2.7 Finally, Propositil.2.5 says that the
([Z(P)]ag, ©) = (fing 4, (Z(P)), ). O

Dual to Definition 1.2.14 one defines an AC®, Ap) to becogoodif

Ly lly = fingap(1y) || fing 4, (19'), -
2. Vx € Py € Ay : fing 4, (1Az U{y}) = fing 4, (1Az) U {z}.

Indeed, an ACRQ, Ap) is cogood if and only if it is the dual of a good ACP. Given
a finite latticeC we defined; := {m € M(L) | j € Im™\Im} forall j € J(£) and
let A7 () be their collection. One can then prove that (L), A7 (.)) is the dual ACP of
(T(L); Apmey)-

Figure 1.6: Representation of a ULD by its cogood ACP. Compagure 1.2 for a repre-
sentation by its good ACP

Question 1.2.28.An example for the representation of a ULD by a cogood ACP @svsh
in Figure 1.6. Is there a nice characterization of cogood $\f&presenting ULDs? It would
be enough to characterize the duals of reduced antichafitigqas. By Theorem 1.2.24 this
would yield a new characterization of ULDs.



28

1.3 Hasse Diagrams of Upper Locally Distributive Lattices

In this section we prove a new characterization of ULD lattin terms of arc-colorings of
Hasse diagrams. In many instances where a set of combimabbjects carries the order
structure of a lattice this characterization yields a sposof of distributivity or upper local
distributivity. We have mentioned examples for this in tleginning of this chapter and we
will provide a new major application in Section 1.4.

In the proof of our characterization we will establish theiigglence to the original defi-
nition of ULD given by Dilworth [31], see Definition 1.1.6. Ahe end we add a new proof
of the known fact that a lattice which is both ULD and LLD istdisutive. Graphs, posets
and lattices in this section are generally assumed fnlie unless specified differently. The
following is the class of arc-colorings, which will play tieentral role in this section:

Definition 1.3.1. Let D = (V, A) be a directed graph and € N. An arc-coloring
U-coloring c: A — [d] of D is aU-coloringif it satisfies the following two rules. For evety y, z € V
with y # z and(z,y), (z, z) € A one has:

up-proper * (V1) e(z,y) # c(z,2), (up-prope)

* (Uz) There is aw € V and arcs(y,w), (z,w) such thate(z,y) = ¢(z,w) and

up-complete c(z,w) = c(y,w), see Figure 1.7. up-completg
w

Figure 1.7: The up-completion of U-colorings.

In order to motivate this definition and to present the flavibit®applications think of
the vertex sel” of D as a set of combinatorial objects and of

,,,,,,;M the arcs as local transformations. We have seen one example
. e .< of this in the introduction in terms of domino tilings. Even
- o if we will not treat concrete application until the next dent
§H|eenrtigt?0n . — X " by K as an example et be the set oEulerian orientationsof a
‘. planar graph’, i.e., orientations such that every vertex has
‘ :4‘%'/ o« equal in- and outdegree. It is easy to see, that reversing the
N e orientation of a directed cycle in such an orientation pness

the property of being Eulerian. Now choose the local trans-
formations as reversals of directed facial cycles. Moreigady, an arc ofD corresponds
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to a pair(D1, D) of Eulerian orientations off such thatD, may be obtained fron; by

reversing the orientation of @unter-clockwise (ccwprward directed facial cycl€'. The

natural colorof the arc(D1, D2) then isC and it is easy to see that the natural coloring is @atural color
U-coloring. In many applications certain natural locahsBrmations lead to such a natural
coloring.

For our applications we want that the U-colored digrdptyields the cover-relations
of a poset. This way, we obtain order-structure on many kifdsets of combinatorial
objects. So we define a posetto be aU-posetif the arcs of its Hasse diagramp admit  u-poset
a U-coloring. The first main result of this section is thatuadly everyacyclic digraph with
a U-coloring is the Hasse diagram of a U-poset. Moreover, wegsome properties of
U-posets. Therefore define tierdan-Dedekind chain conditiaof a posetP as: given any Jordan-Dedekind
pair of elements all maximal chains between them are of theedangth. Even stronger, chain condition
the P together with an up-proper coloring of its cover-relati¢gagy. with a U-coloring) is
said to satisfy theolored Jordan-Dedekind chain conditidrgiven any pair of elements the 33L%§#_Dedekmd
maximal chains between them all use the same multiset ofsolthe first main results of chain condition

the present section then reads:

Theorem 1.3.2. An acyclic digraphD admits a U-coloring if and only iDp is the Hasse
diagram of a U-poseP. Moreover, each connected component of a U-poset has aeniqu
maximum and satisfies the colored Jordan-Dedekind chaidition.

The second main result of this section is that under relgtimeak conditions U-posets
are ULDs and equivalently isomorphic to cover-preservaig-gublattice of the dominance
order. We will indeed be in this case for all our main applwas later on.

We define thedominance ordeon N¢ asz < y <= x; < y; for alli € [d]. With  dominance order
this orderN“ forms an infinite distributive lattice with componentwis@ximummax and
minimummin as join and meet. We will only consider finite subposetdaf A subpose
of Q is cover-preservingf x <p y = x <¢ y. These definitions allow to state the secon@over-preserving
main result of this section.

Theorem 1.3.3.For a finite poseti’ the following are equivalent:
(i) Thereis an acyclic digrapl® with U-coloringc and unique source such thét= Pp,
wherePp is the transitive hull oD,
(i) there isd € N and an order-embedding : £ — N¢ such thaty(£) is a cover-
preserving join-sublattice df?,
(i) L is an upper locally distributive lattice.

Moreover, given suclt its U-colorings, the cover-preserving join-sublattice lmaddings,
and chain-partitions ofM (L) translate into each other via the equivalence.

The following lemma describes the iterated applicatiorhef tules of U-colorings. It is
the main tool for the proof of Theorem 1.3.2 and {tie—> (i¢) part of Theorem 1.3.3.
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(a) ’ Ayk (b) T =2
o pTp=2 # T
P/ \\\\ ) P/ ///
8 \\., _,0,\2/6—1 ./.’13(
« » « AT
Yo = ye p oy = Ue P
o Ty =1 o o=

Figure 1.8: Iterated application of;land U, in Lemma 1.3.4.

Lemma 1.3.4.Let D = (V, A) be a digraph with a U-coloring: and z,y,z € V. If
(z,y) is an arc andP = (z = xo,...,2; = z) a directed path, then there is a path
P = (y = vo,...,y¢) With £ < k such that(z;,y;) € A andc(zi,y;) = c(z,y) for

i =1,..,¢. We either havéa): ¢ = k or (b): y, = x4, See Figure 1.8. Moreover, case (b)
happens if and only if there is an afe,, xy.1) on P with ¢(zy, xp11) = c(x, ).

Proof. We apply rule U recursively to arcs(z;,y;) and (z;,xz;+1) to define a ver-
tex y;11 € P" with arcs (y;, y;+1) and (z;41, yi41) such thate(z;, y;) = c(wiy1, yir1).
The iteration either ends ii = k& (case (a)), or if the two arcs needed for the
next application of the rule are the same, i.g,, = z;11 (case (b)). In this case
c(xi, xip1) = c(wi—1,yi—1) = c(x,y), i.e., there is an arc on the pathwhose color equals
the color of arqz, y). Rule U, implies that case (b) occurs whenever there is an ar® on
whose color equals the color of ate, y). O

Remark 1.3.5. The proof does not imply thal; # z; in all cases, as it is suggested by
Figure 1.8. An example is given Figure 1.9. From the anallgsisw it follows that in all
badcasesD is not acyclic (or infinite).

.z R
O&'3
T2 =Y
*~—@ x5
X1
& rT=y=w I
- To =2

Figure 1.9: Two bad things that can happen in U-colored giggsawith directed cycles.
The one on the left visualizes that the up-completion of aoldwing might look differ-
ent from the one in Figure 1.7. The digraph on the right shahat the application of
Lemma 1.3.4 does not always look as in Figure 1.8. Chdbsex, .., x5 andy = z5. We
getP’ = (yi)o<i<e, Wherey; = ;s (mod 6)-
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If D = (V,A) is a connected, acyclic digraph with a U-coloriagthen the transitive
closure ofD is a finite pose®Pp. From the next two propositions it will follow that in this
caseD is indeed transitively reduced, i.e., it is the Hasse diegod Pp. Hence,Pp is a
U-poset.

Proposition 1.3.6. Let D = (V, A) be a connected digraph with a U-coloring For every

pair s,t € V there exists a vertex € V, such thats lies on a directed s, )-path andt on

a directed(t, r)-path. In particular if D is acyclic, then it has a unique sifk i.e., a vertex sink
without outgoing arcs.

Proof. Let D = (V, A) be a connected digraph with a U-coloriagLet s,t € V. We show
that there is a shortest, t)-path.S that does not traverse a triple of vertidgsz, z) of the

form sink-source-sink By a sink-source-sink tripl¢y, =, z) we refer to thaty, = have no
outgoing arcs inS andx has no incoming arcs i§. If we have a patht’ without such a
triple, thenS has a unique sink, i.e., a vertex without outgoing arcS.ifThis would ber.

The proof is constructive. Lef be any shortegts, ¢)-path with sink-source-sink-triple
(y,z,2). Letyg be the vertex before arriving atand denote the restriction ¢f between
xanzasP = (z = xo,...,2, = z). We apply Lemma 1.3.4 to the afe,yy) and P.
Since P was a shortest path we are in case (a) of the lemma. The lenvesug a pati’
from yo to y;. and assures that, ) € A. We have a new shortest pagh It consists ofS
until yo, thenP’, then the argz, yx) and then the part of from z to ¢. Our new path has
the sink-source-sink-tripléy, yo, yx). The number of arcs connecting the trigte vo, yx)
is less than iny, x, z). We can continue like that until the sink-source-sinkigifies on
a 2-path as in the precondition forolAnd we transform it into a single sink. This way we
reduceS until we obtain a path with a unique sink.

If D is acyclic, then it has at least one sink. Suppose it has tksSi; andT,. By what
we have proved there is a vertexsuch thatT; lies on a directed T, r)-path andT, on a
directed( T2, r)-path. Thus at least one 6f; and T, was no sink — a contradiction. [J

Let P be a directed path inD = (V,A) with U-coloring c. We define the
colorsetc(P) of P as the multi-set of colors used on the arcgof colorset of a path

Proposition 1.3.7. Let D = (V, A) be an acyclic digraph with U-coloringandz, z € V.
If P,Q are directed(z, z)-paths inD, thenc(P) = ¢(Q).

Proof. AssumeD to be connected otherwise we prove the claim component bycoent.
By Proposition 1.3.6 there is a unique sifikin D. Denote for anyr € V by S(z) the
set of vertices that lie on directed:;, T)-paths. SinceD is acyclic if (z,y) € A, then
S(x) 2 S(y).

Suppose there is a pair of vertices: contradicting the statement of the proposition. Take
a counterexample that minimiz€$z). Let P, @ be directedz, z)-paths and:(P) # ¢(Q).
Let y be the successor aof on Q). The arc(x,y) and the pathP fulfill the conditions of
Lemma 1.3.4.
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If we are in case (a) of Lemma 1.3.4, then the path= (y = yo, . . ., yx) has the colorset
¢(P). The path@’ defined by starting a#, then following@ until z and then taking the
arc toy, has the same colorset & This contradicts the minimality in the choice ©fz,
because we have constructedy)-pathsP’ and@’ with ¢(P’) # ¢(Q') andS(y) € S(z).

If we are in <case (b) of Lemma 1.34, then the path
P =Ww=uvo,.-- Yyt = Tys+1,-..,2x = z) has the colorset(P)\{c(z,y)}. The path
Q' starting aty, and then following@ until z has the colorset(Q)\{c(z,y)}. This
contradicts minimality ofr, z, because we have constructed z)-paths P’ and Q' with
o(P') # ¢(Q') andS(y) < S(x). 0

Since the colorset of a directéd, z)-path in an acyclid> with U-coloring only depends
on the end-vertices, z we also know that allz, z)-paths have the same length. This implies
that D is transitively reduced and means tigs fulfills the colored Jordan-Dedekind chain
condition. Proposition 1.3.6 yields the existence of a uaimaximum per component. We
have thus shown Theorem 1.3.2.

Question 1.3.8.1s it true that in every connected U-colored digraph there is a set of
colorsI C [d], such thatD\c~!(I) is connected and directed paths with coinciding start and
end vertices have same colorsets? To obtaiacclicconnected digraph with that property
would be even better, but this is not generally possibletlseexample in Figure 1.9.

We will now proceed to prove Theorem 1.3.3 in the form=g}(ii) = (iii)) =-(i). At
the end of every part of the proof we emphasize how U-colsiimgver-preserving join-
sublattice embeddings, and chain-partitons of the posetest-irreducible translate into
each other (Remark 1.3.10, Remark 1.3.13, Remark 1.3.16).

For the first part of the proof we will show that every U-coldmcyclic digraphD with
uniquesource i.e., a vertex with indegree, leads to an order-embeddingof Pp into
the dominance order ol? such thaty(Pp) a cover-preserving join-sublattice bf. By
Theorem 1.3.2Pp =: L is a U-poset with Hasse diagram = D,. So let£ be a finite
U-poset with U-coloring: of D, and minimumoO,. In particular,D, is connected thus
L has a unique maximurh, by Proposition 1.3.6. A consequence of Proposition 1.3.7 is
that thecolorsetc(z) of a vertexz, i.e., the colorset of any directé@,, z)-path inD. is
well-defined. Define a mapping : £ — N¢, whered is the number of colors of, as
y(z) := x(c(x)). Herex € N is thecharacteristic vector of a multise, i.e., the entry
x(S); counts how often elemenappears irb. In our particular case this means that);
records how many arcs of coloappear in 0., x)-path.

Proposition 1.3.9. The mappingy is an order-isomorphism fromd to a cover-preserving
join-sublattice of the dominance order if.

Proof. We have to show thay < z <= ~(y) < v(z), that there is av € £ such that
~v(w) = max(v(y),v(z)), and thaty(y) < v(z) = v(2) — v(y) = e;, Wheree; is theith
unit-vector for some € [d],
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The implication fromy < z to y(y) < ~(z) follows from the fact that extending a path
requires more colors.

Now we prove thatforalt,y € Lthereisa,y < w € Lwithy(w) = max(y(y), v(z)).

For any fixedy we proceed by top-down induction. If a givenis comparable tagy,
thenw := Max(z,y) and we are done by the first part of the proof. Consider otlserai
maximalx with the propertyr < z andx < y. By Observation 1.1.1, this exists because
L has a unique minimum. Létr,y’) be the first arc on &z, y)-path in D, and letP be
an (z, z)-path. Case (b) of Lemma 1.3.4 is impossible becaliseould have prevented
us from choosing:, we would obtaint < 3’ < z,y in that case. Hence, we are in case
(a) and there is @’ coveringz such that the arcéz, 2') and(x,y’) have the same colar
and moreoverP has no arc of colot. Induction implies that there is@a’ > 2,y such
that v(w’) = max(y(z’),7(y)). Sincevy(z’) = 7(z) + e; and for thei-th component

7i(z) = vi(x) < vi(y) holds we can concludeax(y(z'),v(y)) = max(y(z),v(y)), i.e.,
w’ may also serve as. Note that in the case that| z we havew > y, z.

This already implies/(y) < v(z) = y < z. If otherwisey || z andy(y) < v(z) by the
above there would bea > y, z with v(w) = 7(z) contradicting the first part of the proof.

Since an arcy, z) of the Hasse diagram df is colored by precisely one color, saywe
havey < z = 7(2) — v(y) = ei = (y) < 7(2).

Sincey(L) is a join-closed subposet 8 and has a unique minimum(0,) it is a join-
sublattice ofN? by Observation 1.1.4. O

Remark 1.3.10. We have shown, that every U-coloring of an acydliavith unique source
yields an order embeddingof Pp as a cover-preserving join-sublatticeN.

The next part of the proof of Theorem 1.3.3 is to show thatyeedement of a finite
cover-preserving join-sublatticé of N¢ has a unique minimal representation as a meet of
meet-irreducibles.

Foreveryz € £ C NeletI(z) := {i € [d] | = + e; € L} be the set of directions of
the arcs emanating from in the embedding of the Hasse diagram it With the next
lemma we associate a meet-irreducible element with every(z).

Lemma 1.3.11.Let £ be a cover-preserving join-sublattice if. For everyi ¢ I(xz) there
is a unique maximal elementi) € £ such that

y(i) = o andy(i); = .

The elemeny (i) is meet-irreducible ang(:); > x; forall j € I(x)\{i}.

Proof. Leti € I(z) and consider the sét;(z) of all y > z with y; = x;. The (finite) set
S;(x) containse, and is closed with respect to componentwise maximum heratains
a unique maximal elemeni(i). The elemeny (i) is meet-irreducible, otherwise we could
find a successor af; in S;(x).

Sincezx + ¢; € S;(z) for j € I(x)\{i} we conclude thag(i); > x;. O
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Proposition 1.3.12. A cover-preserving join-sublatticg of N¢ is an upper locally distribu-
tive lattice.

Proof. We claim thatM,, = {y; : i € I(x)} is the uniqgue minimal set of meet-irreducibles
with z = A\ M,. If x = 1, the statement is clear singef) := 1.

First we showr = A M,. Sincel is a subposet oN? we have/\ M, < min(M,),
where the latter is the componentwise minimum of all elemehd/,. Since Lemma 1.3.11
tells usz < M, we moreover knowe < A M,. By Lemma 1.3.11 we know that for each
i € I(z) thereis ar < y(i) € M, with y(i); = z;. We concluder = min(M,) and
consequently: = A M,. In particular the meet of andN? coincide onM,.

It remains to show that the representatioa: /\ M, is the uniqgue minimal representation
of x as meet of meet-irreducibles. Let I(z) and consider a sét/ of meet-irreducibles
with y(i) ¢ M. Itis enough to show that # A M. If M contains a with = £ y, then
x # \ M is obvious. Consider the s8f(x) from the proof of Lemma 1.3.11, every element
y # y(i) in this set is contained in @, y(i))-path P that contains no arc with directian
On the other hang < ¥+ ¢; is an arc emanating fromwith directioni. This implies tha
is not meet-irreducible. Hende N S;(z) = 0. All y > z withy & S;(z) satisfyy > x+e;.
This implies that: + ¢; is a lower bound o/, i.e.,z # A\ M. O

Figure 1.10: An embedded ULD and the corresponding chain-partition , ., } of
(£).

Remark 1.3.13. Note that every cover-preserving join-sublattitef N yields ad-element
chain-partitionC of M (L) consisting of chaing; := {y € M(L) | y + e; € L}, see
Figure 1.10.

To complete the proof of Theorem 1.3.3 it remains to show ¢katy ULD has a repre-
sentation as a U-poset, i.e., we have to present a U-colofiitg Hasse diagram. Indeed,
we provide a U-coloring of the Hasse-diagram depending drainepartition ofM(L).

So let £ be a ULD with chain-partitionC of its poset of meet-irreducibles1(L).
Consider the mapz,; := Tz N M(L). The definition of meet-irreducible implies that
x = N(1z,,) for all z, i.e., the setx,, uniquely determines, by Observation 1.1.5. More-
over,z < yifand only if {z;; 2 Ty, by Lemma 1.2.8.
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On the basis of the mapping¥, and Jz,;, we will define a U-coloring of the cover
relations of. As colors we use the elements@f

Lemmal1.3.14.LetLbeaULD andr,y € £. We haver < yifand only if| Tz, \ Ty = 1.

Proof. By Lemma 1.2.8 for general finite lattices, an elemenmtith x < z < y satisfies

Letx < y and suppose thétz,, \ Tys| > 2. Since\ M, < A Ty, there has to be some
m € M, \ Tyy,. Letz = A(Tz,; —m). By Definition 1.1.6 we have = A\ (M, — m) > x.
Since(1z,,—m) 2 Ty, We haver < y. Letm/ be an elementwithn # m’ € T2, \ Ty, it
follows thatm’ € 1z,, andm’ & 1y,,. Therefore: # y and we have shown that< > < y,
i.e., the pairr, y is not in a cover relation. O

Proposition 1.3.15. Let £ be a ULD with Hasse diagran® and C a chain-partition of
M(L). The mapping : A — C with ¢(z, y) being theC' € C which containgz,, \ Ty, is
a U-coloring of Dp.

Proof. To verify thatc is a U-coloring we have to check the two propertigsdod U,. First
note thatlz,, \ Ty, € M, foraz < y.

We start with U: Letz < y(1),y(2) be two cover relations. Since= y(1) Ay(2) we have
the representation = A(Ty(1),, U Ty(2),,) of « as the meet of meet-irreducibles, hence,
M, C Ty(1),,UTy(2),,- Suppose both covers have the same color. Sificés an antichain
and the colors correspond to chains both covers must camdgp the same element df,.,
e, T \ Ty(Da = T \ Ty(2)m = m. Thus,m € M, butm & Ty(1),, U Ty(2),, —a
contradiction.

It remains to show that the coloring satisfies Wet = < y(1),y(2) be two cover relations
such thatr < y(i) has colorg;, i.e., there ism; € C; such thatly(i)y = Tz — mi.
Considerz = A(1z;; — m1 — mz2). Sincez is representable as the meet of elements from
Ty(i),, we knowz > y(i) fori = 1,2. Sincey(1), y(2) both coverr and are incomparable

it follows thatz > y(1),y(2). FromTz,, —mq —ma C T2y, C Ty(i),, = Top — my it
follows that|Ty(¢),, \ 12)/] = 1. Lemma 1.3.14 implies thatcovers eacly and the labels

of these covers are as required. O

Remark 1.3.16. We have shown that every chain-partitichof M(L) determines a
U-coloring of L.

We have now shown the equivalence of the three parts of The@r8.3. As noted in
Remark 1.3.10, Remark 1.3.13, and Remark 1.3.16, U-c@srinover-preserving join-
sublattice embeddings and chain-partitions of the poseieaft-irreducibles translate to each
other via the equivalence.

Remark 1.3.17. In order to establish a one-to-one correspondence of Udogke, cover-
preserving join-sublattice embeddings and chain-pantitiof the poset of meet-irreducibles
along the lines of the proof of Theorem 1.3.3 it is necesgadgfine adequate isomorphism-
classes of these objects. This can be done but we will nottgdhiat detail here.
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it

Figure 1.11: On the left: an antichain-partitoned posehwithain-partition{« ', ", }
of the index-poset on the antichainé € A’ :< 1A > 1A/, see Section 1.2). On the right:
the corresponding embedded ULDNH.

o—0 0

In the light of the representation of ULDs as antichain{tiaried posets (Theo-
rem 1.2.24), Theorem 1.3.3 enables us to state the follog@mgralization of Dilworth’s
Embedding Theorem for distributive lattices, see Figutd 1.

Theorem 1.3.18.Every order-embedding of a finite ULD as a cover-preserving join-
sublattice of the dominance order &¥f' corresponds to a reduced antichain-partitioned
(P, Ag) with a chain-partition ofQ into d chains and viceversa.

Remark 1.3.19. Since finding a minimum chain-partition of a poset is equnato finding
a maximum matching in a bipartite graph by [47], Theorem1Baarticularly yields that a
join-sublattice embedding of a ULD of minimal dimension nieycomputed in polynomial
time in|M(L)|. This result may be deduced from a result of David Eppstedutthe lattice
dimension of a graph [35].

Before proving a special case of Theorem 1.3.3 for distibutattices, we con-
tinue with some comments about possible generalizationghi®f section’s results.
Let D be a digraph with a U-coloring. We need acyclicity, connéftiand
w the unigue source to conclude thatcorresponds to a finite ULD. We feel
u‘/' that among these conditions thaique sourcenas a somewhat artificial
Y flavor. Abstaining on this condition it can be shown (along times of
./ our proof) that the corresponding po%gt has a unique maximum and the
§ t property that for alke € Pp there is a unique minimal sét/, of meet-
irreducibles such that is a maximal lower bound fok/,. The figure on
the right shows a small example, in this cade = M; = {u,v}. As exemplified by the
figure such a poset does not need to have unique joins nor atesdts

Question 1.3.20.The meet-representability in general U-posets is quitekwéastead it
would be of interest to characterize join-semilattid@swhere for allz € P there is a
unique minimal sef/,, of meet-irreducibles such thatis theuniquemaximal lower bound
for M. Note that this still does not turR into a lattice.

Question 1.3.21.Another question arises, when dropping the restrictiomiitefiattices. A
first class of interest would be ULDs with the property thamwwo elements are connected
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by afinite path in the Hasse diagram. How can their Hasse diagrams bactbdzed as class
of arc-colored digraphs.

Instead of generalizing Theorem 1.3.3, it is very be useh#nvspecializing it. In many
applications of the characterization of ULDs the latticejurestion is actually distributive.
Such a situation is the topic of the next section.

Theorem 1.3.22.1f an acyclic and connected digraph admits a U- and an L-coloring
thenD is a Hasse diagram and p is isomorphic to a cover-preserving sublatticeNsf. In
particular, £ p is a distributive lattice.

Proof. Let ¢y andcy, be a U- and an L-coloring ab, respectively. Consider the coloring
¢ = ¢y X cr. The claim is that is both a U- and an L-coloring ab. The rule U and its
dual L; are immediately inherited from the corresponding rules:foandcy..

Consider a subposet < y(1), = < y(2), y(1) < =z, y(2) < =z Proposi-
tion 1.3.7 guarantees the colored Jordan-Dedekind chaiditton for c¢. We have that
{c(z,y(1)),c(y(1),2)} = {c(z,y(2)), c(y(2), 2)}. Together withl/; and L, for ¢ we con-
clude thate(z, y(i)) = c(y(j), z) for ¢ # j. This implies rules Yand Ly for c.

Since D is connected, Proposition 1.3.6 appliedRp andc yields thatPp has unique
Op,, and a uniqudp,,.

With Proposition 1.3.9 we have thayields an order-embedding: Pp — N? which is
cover-, meet-, and join-preserving. Herfeg is a sublattice of the dominance orderksfu
Since the latter is distributive, so 3. O

In the following we will show one of our main application of ¢blorings. We will use
Theorem 1.3.22 to show distributivity. For an applicatidritee criterion to ULDs that are
not distributive see Section 1.5, where chip-firing gamekb\aattor-addition languages will
be introduced.
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1.4 The Lattice of Tensions

The concept ofA-tensionds a unifying generalization of many known distributivetiets
coming from digraphs. The mostimportant special casedeiéixplained in the subsections
at the end of this section. In this section we prove thatAhensions of any digraph carry a
distributive lattice structure twice. First we show tletensions may be seen as a sublattice
of the dominance order and thus inherit the distributivedatstructure. Second we will
provide local transformations afv-tensions, which yield an acyclic and connected digraph
with a U- and an L-coloring on the set df-tensions. Applying Theorem 1.3.22 we will
then obtain the result again, but with the additional infation of how to generate the lattice
combinatorially.

Our proof starts with the observation thattensions are actually affinely equivalent to
ordinary tensions. Those form the orthogonal space to tiegén flows of a digraph. In the
literature the space of integer tensions is also referrad¢at space Tensions are a classical
research topic of algebraic graph theory, see [52]. A seated is to reduce ordinary
tensions to feasible vertex potentials. Vertex potentiedsalso referred to dmight functions
in many contexts, e.g., Propp [92]. We will introduce a (sleal) bijection between tensions
and vertex potentials. It may be seertlas coboundary operator of a grapkee [78]. The
structural results we obtain fak-tensions in this section, will all first be proved on vertex-
potentials and then be translated back\tdensions.

For the definitionA-tensions we need to introduce some standard vocabulargcted
graphs lead toriented arc-setsAn oriented cycle”' of a digraphD = (V, A) corresponds
to a cycle of the underlying undirected graph together witirection of traversal. This way
C'is partitioned in a set dbrward arcsC* andbackward arc<C~. We collect the oriented
cycles of D in C(D). Similarly we will view walks and paths as oriented arc-sétsw we
come to the main definition of this section.

Definition 1.4.1. . Let D = (V, A) be a directed multi-graph with upper and lower integral
arc capacities,,, ¢; : A — Z U {£oc}, i.e., some arcs might have unbounded capacities.
Given a numbe\ - for each oriented cycl€’ € C of D we define the seTa (D, ¢, ¢,,) of
A-tensionsas the set of vectors € Z4 such that

(D1) ¢la) < x(a) < cyla) foralla € A, (capacity constraints)
(D2) Ac =3 ccr (@) = e x(a) forall C. (circular balance conditions)

We abbreviate theircular balance) .+ z(a) — >, z(a) of a tensionz with re-
spect to a cycl€' by 6(C, x).

Remark 1.4.2. In previous work on the subject [41, 42, 43] we have refercedl #ensions
as A-bonds. Also, in [39, 41, 42, 92] instead dfcular balancethe termcircular flow-
differencewas used. Since tensions are not flows but orthogonal to floatsniame may
cause confusion.
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Remark 1.4.3. Note that prescribing\ on a basis of the cycle spafef D already suffices
to determineA everywhere.

We will prove a distributive lattice structure dfn (D, ¢;, ¢,). The proof of our result
relies on a reduction tordinary tensions and then teertex potentials For this in the
following two lemmas we will reduce the variety of dat®, ¢;, c,,, A) we need to look
at. First note that restricting our attention to connectigglagphs does not cause a loss of
generality. Given datéD', ¢}, cl, A') and(D?,c?, 2, A?) there is an obvious extension

to a union structuréD, ¢;, ¢,, A) where D is the union of graphs and the, c¢,, A are
concatenations of vectors. Sindetensions factor into &!- and aA2-tension we have:

Lemma 1.4.4. TA(D, ¢, cy) = Tar (DY, ¢}, cl) x Ta2(D?, ¢, c2).

The most important case df-tensions is ifA =0 is the all-zeroes-vector. In this case
we refer toA-tensions asensions For convenience, we will denote the set of tensions &ssion
T (D, ¢y, c,). By the circular balance condition tensions without cafyaoonstraints form
the orthogonal space to the integer flows of a digraph, alswkrascut space Indeed, we
can restrict our attention to the case of tensions:

Lemma 1.4.5. Let D be any digraph with arc-capacitiesy,c,. Given some
x € Ta(D, ¢4, ) We have

TA(D,cp ) ZT(D,cyg— 0 — ).

Proof. The mapy : Ta(D, ¢, cy) — T(D,cp — x, ¢, — x) is defined byp(y) := y — x.
The image clearly satisfies the capacity constraints amdthéscircular balance conditions
by

3(Cre(y) = Y (yla) —z(a)) = D (yla) — z(a)) = 6(C.y) - 6(C,z) = 0.

acCt aeC—

Indeed, the translatiop is a bijection with inverse — z + x. O

Given a connected with capacitiesy, ¢, fix an arbitrary vertexvy € V. Call a vector
7 € ZV afeasible vertex potentiaf m(vo) = 0 andcy(a) < m(w) — 7(v) < cu(a) for all  feasible potential
a = (v,w) € A. We collect the set of feasible vertex potential$lip (D, ¢y, c,,).

Lemma 1.4.6. Let D be a connected digraph with arc-capacitiesc, andvg € V. We
haveT (D, ¢y, cy) = 1, (D, ¢y, )

Proof. To every x € 7(D,¢sc,) We can associate a feasible vertex potential
e € Iy (D, ¢, cu) by settingm,(v) = > cpr z(a) — > cp- x(a), for a(vo,v)-path
P. HereP™ and P~ are forward and backward arcs Bf respectively. To see that, is
well-defined, i.e., independent of the choicelaftake two(uvg, v)-pathsP and@. Their
symmetric difference is a union of oriented cydes . . ., Cy: traverse arcs af’; N P in the
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order they appear along and those ir’; NQ in the reverse order @. Itis straight-forward
toget(d,cp+ (@)= aep- 2(a)) = (Laeqr 2(a) =2 eq- #(a) = 6(C1)+.. .+6(Cy).
Since the circular balance of is 0 on all cycles ofD this difference is0 and the map
m:T(D,cp,cy) — Iy, (D, ¢y, cyy) is well-defined, i.e., independent of the choicefof

On the other hand forr € IL,,(D, ¢, ¢,) definez, aszr(a) = m(w) — w(v) for
a = (v,w) € A. Itis straight-forward to calculate that for every dirattealk 1" with start
vertexu and end vertex)’ we have)_ i+ 2x(a) — > e r(a) = m(u') — w(u). In
particular if W is a cycle the sum 8, i.e.,z, € T (D, ¢y, ¢).

To seer,, = m we computer,, (v) = >, + Tr(a) = >, Tx(a) = m(v) — m(vo).
Since m(vg) = 0 by default, this equalsr(v). On the other hand let’ = (v, w)
then z,, (a’) = m,(w) — m,(v). Let P be a(vy,w)-path takinga’ as last arc and
@ the path withouta’. (If this is not possible take® as a(vg,v)-path.) We compute
Sers 7(0) = Yaep- () = (Cpeqr 2(a) = X peq- 2(a) = x(a’).

We have showr? (D, ¢y, ¢,,) = 1L, (D, c¢, ci). Moreover, the bijectiong — z, and
x — m, are inverses of each other. O

We can summarize the last lemmas as:

Lemma 1.4.7. For every set of data(D,c,c,, A) there are ¢, ¢, such that
IA(D, ¢, c) = Iy (D, ¢, ¢,) for everyyy € V(D).

This lemma is so useful for finding a distributive lattice dre tA-tensions of a digraph
because we can prove:

Theorem 1.4.8.Let D be a digraph with capacitiegy, ¢,,. For everyvy € V(D) the set
I, (D, ¢y, c,,) induces a sublattice of the dominance ordern, i.e., carries the structure
of a distributive lattice.

Proof. We only have to show thdt,, (D, ¢, ¢,,) is closed with respect to componentwise
max andmin. These are meet and join of the dominance order.

Letmy, ma € Iy, (D, cr, cu), 1.€.,¢co(a) < mi(w) — m(v) < ¢y(a) foralla = (v,w) € A
andi = 1, 2. Sayr; (w) < me(w) andr(v) > ma(v), then
7T2(w) - 7T2(U) S 7T2(’LU) — 7T1(U) S 7r1(w) — 7T1(1}).

Hence the maximum is feasible an The caser; (w) > m2(w) andnw; (v) < w2 (v) works
similar. ThusIl,, (D, ¢/, ¢,) is max-closed. By an analogous argument it can be shown
thatIl,, (D, ¢, ¢,,) is min-closed. As a sublattice of a distributive lattidg, (D, ¢, ¢,,) then
carries a distributive structure. O

The following is now an easy consequence:

Theorem 1.4.9.Let D be a digraph with capacities, ¢,,. The sea (D, ¢, ¢,,) carries the
structure of a distributive lattice.
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Proof. By Lemma 1.4.7 the séfa (D, ¢;, ¢,,) is isomorphic tdl,, (D, ¢;, ¢,,) for vy € V(D)
and some capacitie$, ¢,,. By Theorem 1.4.8 the dominance orderIdp, (D, ¢, c,) is a
distributive lattice. The sefa (D, ¢, ¢,,) inherits this structure frorl,, (D, ¢}, c,,). O

The rest of the section consists of having a closer look atittese diagram of the distribu-
tive lattice on theA-tensions. Reducing the input-data we can find a U- and arnldriog
of the Hasse diagram of the lattice, where colmaturally correspond to vertices d?. The
whole lattice then will be generated lmcal vertex pushesThis is important, because it will
in fact unify thelocal transformationghat come up in many special cases of tensions.

From now on we shall assume that the d@gfa ¢;, ¢, A) are such that the set of corre-
spondingA-tensions is hon-empty and finite. Moreover, we want to siipphatters by
concentrating on connected graphs and getting ridgad arcs. These are aras € A with  rigid arc
z(a) = y(a) for all pairsz, y of A-tensions.

Let a be a rigid arc ofD. If a is a loop we delete it from the graph. Singavas rigid,
restricting all the data t®\a yields a bijection betweeA-tensions. Ifa is not a loop, then
contracta obtainingD/a. The cycles inD/a and the cycles inD are in bijection. Let
C'/a be the cycle inD/a corresponding t& in D. DefineA’C/a = Ac¢ifa ¢ C and
A’C/a =Ac—x(a)ifaeCT andA’C/a = Ac + z(a) if a € C™. These settings yield the
bijection that proves

Lemma 1.4.10.7A (D, ¢;, ¢y) = Ta/(D/a, ¢,y cy).

The data(D, ¢, c,,A) are reduced if D is connected, there is no rigid arc, andeduced data
TA(D, ¢, ¢y,) is neither empty nor infinite. Henceforth we will assume thiay given set
of data is reduced.

As for the proof of Theorem 1.4.9 in the first part of this sewti we will reduce
A-tensions to vertex-potentials. Lemma 1.4.7 establisheaton-one-correspondence be-
tween reduced data fak-tensions and reduced data for vertex potentials, i.e.,re/gigen
a finite non-empty sdil,,, (D, ¢, ¢,,), without rigid arcs. This is, for every € A(D) there
are potentialsry, mo With 2, (a) # z,(a).

We will now introduce the local tansfromations of vertexgttals, called push and pop,
and show that they yield a connected acyclic digraph with hél B-coloring on the set of
vertex-potentials. We then apply Theorem 1.3.22 and olatdistributive lattice on that set.

Givenr € I, (D, ¢¢, ¢r,) @andv € V\{vp} pushingv in 7 is to move fromr to  + e,.  vertex push
Heree, denotes the vector, which haslan the vth entry and i) elsewhere. Pushing
v in m is only allowed ifr + e, is feasible. The inverse operation of vertex pushing is
vertex popping Define Dy as the directed graph with vertex $&t, (D, ¢/, ¢,) and arcs of  vertex pop
the form(x, 7 + e,). Thenatural colorc(m, m + e,,) of an arc(w, 7 + e,) of Dy is . natural color
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Note that Dy; is a subgraph of the Hasse diagram of the dominance order on
IT,, (D, ce,cy). The latter is a distributive lattice by Theorem 1.4.8. Tyimlds thatDy
is acyclic. Sincdl,, (D, ¢y, c,) is closed with respect tmin andmax, it follows that the
natural coloring ofDyy is a U- and an L-coloring. In order to apply Theorem 1.3.22iyo
remains to show thaby; is connected, in other words:

Lemma 1.4.11.Let (D, ¢, ¢,) be reduced data and;, 7y € II,,(D,csc,). Thereis a
sequence of pushes and pops that transfarato .

Proof. We proceed by induction on thg-distance |, ., |71 (v) — m2(v)| of 71 andm. If
this sum i) the statement is clearly true.

Otherwise, partitiorV” into the the setS™ := {v € V | m1(v) — m2(v) < 0} and its
complementS™. If we can push one vertex € S~ in 71, then we can apply induction
onm + e, andmsy. First, observeS— # (), otherwise interchange the rolesof and .
Second, notey ¢ S—. Suppose no vertex if~ can be pushed im;. This means every
saturated arc v € S~ has asaturatedincoming arc(w, v), i.e., m1(v) — m(w) = ¢,, or acosaturated
cosawratedarc o tgoing arqv, w), i.e.,¢; = 1 (w) — 1 (v). No such are: can have its other endpoint
in ST. Otherwise withra (w) < 71 (w) andma(v) > 71 (v) we obtain thatr; is not feasible
with respect tau.

Hence the digraph induced I#/~ contains a cycle&’ with saturated backward arcs and
cosaturated forward arcs, i.€., .o+ c/(a) — > ,cc- cu(a) = 0. Changing any of the
values on the arcs would force some others to violate themaéy constraints. Henag is
rigid — a contradiction t@ D, ¢;, ¢,,) being reduced. O

We have proved thaby; is a connected, acyclic digraph on the set of feasible vertex
potentials. Moreover pushes and pops yield a U- and L-andoof Dr;. Since the data
(D, ¢y, c,,) are reduced in particuldi,, (D, ¢, ¢,,) is finite. We can apply Theorem 1.3.22
and get:

Theorem 1.4.12.For reduced data(D, ¢y, ¢,,) the setll,, (D, ¢, ¢,,) carries the struc-
ture of a distributive lattice. The local transformationswertex pushing and popping in
11, (D, ¢, ¢,,) correspond to moving upwards and downwards on the arcs dfitisse dia-
gram of that lattice, respectively.

forbidden vertex In order to translate our result to the languagéetensions we choosefarbidden vertex
vertex push vo € V and definepushing a vertex € V\{vg} in a A-tensionz as moving from
x to z + xz,, wherez(v) is:

+1 ifa=(w,v)
zy(a) =< =1 ifa=(v,w)
0 otherwise
vertex pop Analogously defingpopping a vertex in a A-tensionz as moving frome to z — x,,. Push-

ing and popping in tension just is defined in the way that esgbs to prove the very analo-
gous theorem to Theorem 1.4.12 in termg\efensions:
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Theorem 1.4.13.For reduced data D, ¢, ¢y, A) the setZa (D, ¢, ¢,) carries the struc-
ture of a distributive lattice. The local transformationkw@rtex pushing and popping in
TA(D, ¢, ¢,,) correspond to moving upwards and downwards on the arcs dfitese dia-
gram of that lattice, respectively.

Proof. Given the set7a(D, ¢, ¢,,) we apply Lemma 1.4.7 to obtain an isomorphic set
Iy, (D, ¢y, ), Which by Theorem 1.4.12 is a distributive lattice with covelations cor-
responding to pushes and pops. In order to prove out theoremnly have to convince
ourselves that pushing a vertex in a potentiallp (D, ¢, c,,) corresponds to pushing a
vertex in the correspondingy-tension in7x (D, ¢, ¢y,)

We want to understand a push,z + z,) of A-tensions. Lemma 1.4.5 transfers
r + z, to a tensiorz + z, of (D, ¢, c,). Lemma 1.4.6 maps this to.,,,. Let P be
a (vo,u)-path in D, then by definition ofr,;,, in the proof of Lemma 1.4.6 we have
Tota, (W) := Y sept (2 + o) (a) = Y ,cp- (2 + ) (a), which equalsr, (u) + 7, (u). By
the definition ofz,, it is straight-forward to see that,, (u) = > ,c p+ To(a) = > ,cp- To(a)
is 1 if w = v and0 otherwise. This, isr,;,, = 7, + e,. We have computed that the push
(x,x + z,) of A-tensions corresponds to a push, 7, + e,)) of potentials. This concludes
the proof. O

Remark 1.4.14. In order to prove the push-connectivity of the distributildtice of
A-tensions we reduced the data. Instead of contracting &agid one could push poten-
tials on connected subgraphs induced by rigid arcs. Thiddvthen generate the same
distributive lattice by local transformations. A speciake of this is the generation of the
distributive lattice ornv-orientations by reversingssential cyclems [39].

Remark 1.4.15. It is possible to get rid of all lower arc-capacities. For ao@a= (v, w)
add an antiparallel copy~ := (w, v) with upper arc-capacity, (a~) := —cy(a). The new
cycle (a,a™) gets theA value(. Even if more new cycles emerge from this operatian,
keeps being defined on a cycle basis, i.e., there is no probjeRemark 1.4.3. Applying
this to all arcs one obtains a description with only upperaagacities. The most reduced
description of tensions would then be of the fo¥riD, ¢), whereD is a digraph and upper
arc-capacities.

Question 1.4.16.Lattices of A-tensions depend on the choice of a vertgxc V. Choos-
ing another vertex; yields a different lattice on the same set of objects. Isdlzar easy
description of the transformation frobh,, (D, ¢y, ¢,,) to 11, (D, ¢, ¢,,)? Understanding this
transformation might help when looking for a distributiegtice onA-tensions with partic-
ular properties.

Question 1.4.17.The generation of a random element from a distributivedatis a nice
application forcoupling from the pagfc.f. Propp and Wilson [94]). The challenge is to find
good estimates for the mixing time, see Propp [93]. Whatfi#ttice is aA-tension lattice?

We will now continue with several applications &ftensions.
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1.4.1 Applications

In the following three subsections we deal with the threetrimaportant special cases of
A-tensions. We show, how they may be interpreted\aensions. Thus, as a corollary of
Theorem 1.4.13 they carry a distributive lattice structUfegure 1.12 illustrates this at an
example.

TQ(D*7 07 1)

Figure 1.12: The different special cases/®ftensions represented by the combinatorial
information that encodes them. All the four in the picture aguivalent as we will see
in the following subsections. On the right we depict theribstive lattice they carry by
Theorem 1.4.13.

1.4.2 The lattice ofc-orientations (Propp [92])

Given an orientatio = (V, A) and an oriented cycl€ of an undirected grap& = (V, &)

we denote by (C):= |C}| — |Cp| thecircular flow-differenceof D aroundC, whereC

is the set of forward arcs af' in D andC7; is the set of backward arcs. Given a vector
c € Z°, which assigns to every oriented cycleof G an integer:(C'), we call an orientation
D of G with ¢(C) = ¢p(C) ac-orientation We denote the set eforientations ofG' by
c-or(G). The main result in Propp’s article [92] is:

Theorem 1.4.18.LetG = (V, €) be a graph and: € Z°. The set-or(G) of c-orientations
of G carries the structure of a distributive lattice.

Proof. Let D = (V, A) be any orientation ofs. DefineA := 1(cp — c). We interpret
x € Ta(D,0,1) as the orientatioD(x) of G which arises fromD by changing the orien-
tation ofa € A if z(a) = 1. For an arc setl’ C A we writex(A’) for 3~ . 4 z(a). We
calculate:
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CD(m)(C) = IC&@I - |CB(I)|
= |Cpl = a(Ch) +2(Cp) = (ICp] — 2(Cp) +2(Cp))
CHl = 1Cp| = 2(=(C) — 2(Cp))
= ¢p(C)—26(z,C) =cp(C) —2A¢
= C
This shows that-orientations ofG correspond bijectively td\-tensions in7x (D, 0, 1).

By Theorem 1.4.9 we obtain a distributive lattice structmehe set ot-orientations of.
For an example, see Figure 1.12. O

Remark 1.4.19. The reducedness for Theorem 1.4.13 corresponds to coimgjdesuch
that all c-orientations are acyclic. The local transformations tb@mespond to reversals of
directed vertex cuts.

For planar graphe-orientations dualize ta-orientations. Hence Theorem 1.4.18 implies
Theorem 1.4.23 of Subsection 1.4.4. This special case hag agplications which are
collected in Subsection 1.4.4.

/ /
/ /
I I
I I
| |
\ \
Al |

Figure 1.13: Modeling lozenge tilings hyorientations. Flipping tiles corresponds to re-
versing directed vertex-cuts.

One application of Theorem 1.4.18 that cannot be obtained)ydanara-orientations
is a distributive lattice structure drigher dimensional rhombic tilingsThese objects were higher
introduced and proven to carry a distributive lattice sinee in [77]. Since usual lozenge 9%%%?3%'95
tilings may be seen as sets of piles of cube&in(just look at Figure 1.13 and try to give
some spacial perspective to what you see), the generalizaitihigher dimensions are piles
of hypercubes ifZ.?. We will not prove this here, neither that they carry a disttive lattice
structure, nor that they may be modelled-awientations of a (generally non-planar) graph.

Instead in Figure 1.13 we suggest how to interpret ordinaagige tilings as-orientations.
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Since this generalizes to non-planar graphs it is esshndidfierent then just dualizing the
interpretation as-orientations in Figure 1.14.

In [67, 68] and independently by Latapy and Magnien in [75wis proven that
c-orientations are indeed universal for the class of distiie lattices, i.e., every distributive
lattice may be represented as therientations of a graph. In [67, 68] the set of graphs
representing a given lattice was characterized.

1.4.3 The lattice of flows in planar graphs (Khuller, Naor andKlein [66])

Consider a planar digrapp = (V, A), with each ara: having an integetower and up-
per bound on its capacity, denoted(a) and c,(a). For a functionf : A — Z call
w(v, £):= X aemw) f(@) = Xacout(v) (@) theexcessatv. The setdn(v) andout(v) de-
note the incoming and outgoing arcswgfrespectively. Given a vectét € NV call f an
Q-flow if ¢o(a) < f(a) < cyu(a) for all @ and$?, = w(v, f) for all v € V. Denote by
Fa(D, ¢y, c,,) the set of2-flows.

For the proof we need to discuss briefly duality of planaigraphs.
Given a crossing-free plane embedding/ofwe look at the

f\>. planardual digraphD*. It is an orientation of the planar dual
$\ / G* of the underlying undirected graph of D. Letwv be a
><\/\*4 vertex of G* corresponding to a facial cyclg, of the embed-
/\ P B ding of D. Orient an edge incident to as outgoing arc of
/‘K v if the primal arc is forward when traversirg, in counter-
RS - \4 clockwise direction. Given values on the arcdafe.g. a flow

) / 70 ' or a tension, we simply transfer them to the correspondicg ar

of D*. Duality translates concepts as displayed in the table be-
low. Note that duality of planar digraphs is not an involates for undirected graphs, but a
map of degree four. This may be seen looking at the last foeslof the table.

D ~ D*
vertices ~ faces
faces ~ vertices
arcs ~ arcs
ccw forward arcs of facial cycle ~ outgoing arcs
outgoing arcs arcs ~ ccw backward arcs of facial cycle
excess ~ circular balance
circular balance ~ -excess

Theorem 1.4.20.1f D is a planar digraph thenFq (D, ¢, ¢,,) carries the structure of a
distributive lattice.
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Proof. So, we consider the duél* of D. Since the excess at a vertex ofD dualizes to the
circular balancé around the corresponding facial cycle bf, we have a correspondence
betweenFq (D, ¢y, ¢,,) andZq(D*, ¢y, ). This yields the distributive lattice structure on
Q-flows of planar graphs via Theorem 1.4.9. For an examplef-gpage 1.12. O

Remark 1.4.21. Analogously to the case ofA-tensions we can assume the data

(D, ¢y, cy, 2) to be reduced. Now the dual operation to vertex pushes isdmant the

flow around facial cycles. Instead of choosing a forbiddemexevy, which is not allowed

to be pushed this time we chooséoabidden face Usually one takes the unbounded facerbidden face
of the plane embedding. Theorem 1.4.13 yields that by flograntation at the remaining

facial cycles we can construct the Hasse diagram of a digivéblattice onFq (D, ¢y, ¢y,).

An application of Theorem 1.4.20, which may not be obtainsthgic-orientations or
a-orientations is the distributive lattice structure érfractional orientations of planar  k-fractional
graphs with prescribed outdegr%e(Bernardi and Fusy [11]). For the definition of pla—Orlentatlon
nar k-fractional orientation take a planar graph = (V, &), where every ordinary edge
e = {v,w} is replaced by two directed half-edgks(e), h,,(e) pointing from their vertex
to the middle ofe. Additionally we have a ma@ mapping every half-edges to a value in
{0,4,%,...,1} such thatO(hy(e)) + O(hw(e)) = 1 for all edgese = {v,w}. The out-
degree of a vertex is just the sumd _ . O(h,(e)). We modelk-fractional orientations of
G with prescribed outdegrefg, as planaf2-flows of an orientation ofy. Let D = (V, A)
be any orientation off. Leta = (v,w) € A ande = {v,w} € £. Given ak-fractional
orientationO define a flow byf(a) := kO(h,(e)). We have a correspondence between
k-fractional orientations and integer valued maps frdno {0, ..., k}. The outdegree of
O atvis % = (kindeg(v) — f(in(v)))/k + f(out(v))/k. Equivalently the excess gfatv
isw(v, f) = kindeg(v) — j. Hence we may model thie-fractional orientations o+ with
prescribed outdegre@asQ—ﬂows and Theorem 1.4.20 yields a distributive lattice cite
on them.

In [12] Bernardi and Fusy show that for certain parametefi®ctional orientations with
prescribed outdegree correspon@thnyder decomposition§planed-angulations of girth
d and several equivalent concepts related to planar graghthe&e thus carry a distributive
lattice structure, as well.

Khuller, Naor and Klein [66] only consider the special caselbeorem 1.4.20 where
2 = 0. SuchQ-flows without excess are simply callédwsor circulations We restate their flow
result as clear corollary of Theorem 1.4.20: circulation

Theorem 1.4.22.Let D be a planar digraph with upper and lower arc capacitig@ndc,.
The set of flows ab within ¢; and¢,, carries the structure of a distributive lattice.
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1.4.4 Planar orientations with prescribed outdegree (Felser [39], Ossona de
Mendez [88])

Consider a plane grapty = (V,€). Given a mapa : V — N an orientation
D = (V, A) of G is called anx-orientationif « records the outdegrees of all vertices, i.e.,
outdegp(v) = a(v) for all v € V. We denote the set af-orientations ofG by a-or(G).
The main result in [39] also obtained in [88] is:

Theorem 1.4.23.Given a planar graph and a mapping : V' — N the seta-or(G) of
a-orientations of(G' carries the structure of a distributive lattice.

Proof. This may be proven analogously to Theorem 1.4.18, wherdecations were
interpreted as elements @i\ (C,0,1). Let D be some orientation off. We look at
Fa(D,0,1), wheref(a) = 1 means reorienting and f(a) = 0, leaving it unchanged.
If we setw(v) := «a(v) — outdegp(v) for all v, thenFq (D, 0,1) corresponds to the set of
a-orientationgz. Application of Theorem 1.4.20 yields the distributivetiee structure.

Another way to prove the theorem is to look at the planar dualGo For a
counter-clockwise facial cycle”, of G* corresponding to a vertex of G define
c(Cy) = deg(v) — 2a(v). Now thec-orientations ofG* correspond to thev-orientations
of G and we may apply Theorem 1.4.18.

For examples of both constructions, see Figure 1.12. O

In view of Section 1.4x-orientations appear as a special case of both, planar flodis a
c-orientations. Nevertheless they already capture a biggbaine applications. In the intro-
duction of the thesis, we explained, how domino-tilings rhaymodelled as-orientations.
Similarly, this can be done for lozenge-tilings, see Figudet

Figure 1.14: Local transformations and generalizatiomemflozenge tilings via planar
bipartite perfect matchings te-orientations.
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We list some objects which may be modelledcasrientations on plane graphs and thus
carry a distributive lattice structure:

« domino and lozenge tilings of plane regionsé(®la [97] and others based on
Thurston [105])

planar bipartite perfect matchings (Lam and Zhang [73])

* planar bipartitel-factors (Felsner [39], Propp [92])

 planar spanning trees (Gilmer and Litherland [48])

« Schnyder woods of planar triangulations (Brehm [25])

 Eulerian orientations of planar graphs (Felsner [39])

Because of their rich applications in the planar casarientations of non-planar graphs
are very interesting. Propp [92] comments that to move betwbed-factors intoroidal
graphsit is necessary to operate on non-contractible cycles. iBhsade more explicit in
terms of homology of orientable surfaces in [67], where galimations ofa-orientations to
non-planar graphs and oriented matroids are investigétezginains the difficult:

Question 1.4.24.What is the structure ofi-orientations of graphs embedded on an ori-
entable surface different from the plane?

For some application there might be a way “around” non-planarientations. Consider
for example of lozenge-tilings, whose lattice structureyrba proven without the use of
planara-orientations. They may be modelled directlycagrientations, as a special case of
higher-dimensional rhombic tilings, see Figure 1.13. luldobe interesting to find a way
around non-planat-orientations in other special casesogbrientations. A good candidate
may be the set of spanning trees of a graph or bases of a matroid
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1.5 Chip-Firing Games, Vector Addition Languages, and Uppe
Locally Distributive Lattices

Chip-firing games (CFG) on directed graphs were introdugejbrner and Loasz in [20].
They are a generalization of CFGs on undirected graphsdated by Bjrner, Lo\asz, and
Shor [21]. CFGs have gained a big amount of attention, becalheir relations to many
areas of mathematics such as algebra, physics, combitgtdyinamical systems, statistics,
algorithms, and computational complexity, see Merino [&88Y Goles, Latapy, Magnien,
Morvan, and Phan [53] for surveys. The connection to rotoitingg and the concept of
sandpile groupare made explicit by Holroyd, Levine, &zAros, Peres, Propp, and Wilson
in [58]. A connection from CFGs to subgraphs, orientatidngte polynomial, and embed-
dings into orientable surfaces is drawn by Bernardi [10].r&bwer, there are connections
to tropical geometry, see Baker [8] and Haase, Musiker, an{b8]. Here we deal with
the fundamental role of CFGs as examples of ULDs or equitiglemtimatroids(Korte
and Lowasz [70]),antimatroids with repetitioriBjorner and Ziegler [22]), deft-hereditary,
permutable, locally free languagé€Bjorner and Loasz [21]). So CFGs are important and
popular instances of ULDs but not every ULD arises as a CF@hérpresent section we
show how CFGs may be interpreted as vector-addition laregiagVe then characterize
those vector-addition languages which yield a ULD in the savay CFGs do. These lan-
guages are then callagkneralized chip-firing gamgdheorem1.5.9). The main result of
this section is that every ULD may be represented gsreeralized CFGTheorem 1.5.10)
and that these in turn correspond to finiitersectionof CFGs (Theorem 1.5.14).

For the definition of CFG leD = (V, A) be a loop-free directed graph without isolated
vertices ands € N a vector called ahip-configuration The numbet (v) records the
number of chip®n vertexv in o. Given a chip-configuration a vertexv can befired if it
contains at least as many chips as its outdegree and is nd.sink(v) > outdeg(v) > 0.
Firing v consists of sending a chip along each of the outgoing arestoftheir respective
end-vertices. The chip-configuration resulting from firingn a chip-configurationr is
denoted byr’. We call a sequence= (vy, ..., vy) of vertices ofD afiring-sequencé v;
can be fired in((c¥1))vi-1), for all i € [k]. (Sete™ := ¢.) We define a directed graph
CFG(D, o) on the set of those chip-configuration®n D which arereachableby a firing-
sequence fromr, i.e.,7 = o° := ((c"1))"*) for a firing sequence = (vy,...,v;). For
two such reachable chip-configurations”’ we define(r, 7’) to be an arc of CF@, o)
if 7v = 7/ for some vertexw € V. In this case theatural color of the arc(r,7’) is v.
Hence, the arcs of CH®, o) are naturally colored wity'. We call the digraph CFQ@, o)
together with its natural arc-colringchip-firing games (CFG)

Remark 1.5.1. Since sinks are not allowed to be fired ilC&G(D, o) we may actually
identify all sinks of a givenD to a single super-sink without changifd"G(D, o). From
now on we assume that our digraphs have either no sink or aesigk.
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Figure 1.15: A chip-firing game on a sinky digraph representhe ULD on the right.

Itis possible, that a digraph admits a starting configuratian such that there are firing-
sequences of infinite length. Take for example a directetecydth any positive number
of chips distributed arbitrarily on the graph. Here we wantliscuss only the finite case.
We say that a digrap is globally finiteif there is no starting configuration that allows  globally finite
firing-sequences of infinite length.

Later on, as a special case we obtain the following well knosgult. It was our original
motivation for looking at chip-firing games.

Theorem 1.5.2.1f D = (V, A) is globally finite, then for every ¢ NV the digraph
CFG(D, o) is the Hasse diagram of a ULD.

In particular we will get that the natural arc-coloring of GED, o) is a U-coloring and
that CFG D, o) is finite and acyclic. Since CH®, o) has a unique soureg Theorem 1.5.2
then can be proven as a direct application of Theorem 1.3.3.

We say that the resulting ULD iepresentedoy the CFG. The ULD-properties imply
that for a globally finiteD in CFG(D, o) there is a uniquetable chip-configuratiorr, (s:ﬁg%onﬁguraﬁon
i.e., inoT no vertex can be fired. All maximal firing sequences from tlaetisty config-
urationo end ator. Moreover, by the colored Jordan-Dedekind chain condigitbfiring
sequences between any two configurations fire the same etufigertices. Eriksson calls
this behavior of a solitary ganstrongly convergen37].
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Figure 1.16: A ULD which cannot be represented by a CFG.

In [79] Magnien, Phan, and Vuillon show that every distribeitattice can be represented
as a CFG (actually of an undirected graph). Moreover theyshat every ULD repre-
sentable by a CFG is representable bsiraple CFG i.e., no vertex appears twice in any
firing-sequence. On the other hand not every ULD can be repted as CFG. An example
for that (also due to the same group of people) is shown inrEigLl6. There are two natural
question arising here:

Question 1.5.3.1s there a lattice theoretical characterization of ULDsrespntable by
CFGs?

Question 1.5.4.1s there a generalization of CFGs representing the whoss daULDs?

While we leave Question 1.5.3 unanswered the remainingopéris section presents and
analyzes an answer to Question 1.5.4. In the following weimtiloduce a generalization of
CFGs powerful enough to represent the class of ULDs, in ¢gtidrundefined) words: every
generalized CFG yields a ULD for every starting configuratimd conversely every ULD
may be represented as a generalized CFG (Theorem 1.5.1i8géfrteralization is still quite
close to usual CFGs. More precisely every generalized CrGlerefore every ULD may
be represented as artersectiorof CFGs (Theorem 1.5.14 and Corollary 1.5.15). Moreover
our construction still allows important algebraic constioins related to CFGs such as the
sandpile groug58] and thesandpile monoid6].

To the end of capturing generalized CFGs we define vectatiaddanguages. Vector
addition languages were introduced by Karp and Miller [@3jey are also known ageneral
Petri nets(Reisig [96]) and are one of the most popular formal methadsahalysis and
representation of parallel processes [38]. We will only thesn for the very specific reason
to define generalized CFGs.
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A vector-addition languagés a languagéd.(M, o) given by analphabet)M c R? and a vector-addition
anguage
starting configuratiornr Rzo- Aword s = (x1,...,z)isin L(M, o) if x; € M and grag

o+x1+...+x; >0foralll <¢<k.

For a words € L(M,o) denote byscr(s) its score, i.e., the multiset of its letters and score of word
by enf(s):= 0 + >, cen(s) ¢ its configuration We define a digrapt® (M, o) on the ver-  configuration of
tex setenf(L(M, 0)). Two configurationgnf(s), cnf(¢) of words inL(M, o) form an arc word
(cnf(s),cnf(t)) of D(M, o) if there is anx € M such thaienf(s) + z = cnf(¢). In this

case thenatural colorof the arc(cnf(s), cnf(¢)) is definedr. natural color

We will later on define generalized CFGs in terms of vectati&mh languages. So in
order togeneralizeCFGs it would be good if CFGs could be encoded as vectoriaddit
languages themselves. And indeed, one important featufe-@fs is, that theyxan be
interpreted as vector-addition languages:

Let D be a loopless digraph without isolated vertices. Thplacianof D is a setM of  Laplacian
|V| vectors inZ" , where for every € V there is a vector(v) € M with:

(0} :={ fa€Ala=(vw)} ifvw,

—outdeg(v) otherwise

If D has a sink, (by Remark 1.5/ has either one or none), then we delete the corre-
sponding element af/ and corresponding components of the remaining elemehf.ofve
obtain thereduced Laplacian\/’ of D. The pairM’, c encodes the same information aseduced Laplacian
D,o. ltis a classical and easy result tHatL(M’, o)) models CFGD, o), see [20]. More
precisely one has correspondences:

D,o s M, o
chip-configuration e r €2l
firevino® s addz(v) to enf(s)
firing-sequences s words mL(M’ o)
reachable chip-configurations«~ elements ofnf(L(M ))
CFG(D, o) s D(M', o)

We want to generalize reduced Laplacians of digraphs, ierdalcharacterize the class
of vector-addition languages which represent a ULD for g\&arting configuration, i.e.,
the class of alphabet®/ such thatD(M, o) is the Hasse diagram of a ULD for evesy
As mentioned in the beginning we only want to consider gligbfhite digraphs, i.e., no
starting configuration allows firing sequences of infinitegh. So this is another property
which we want to generalize to vector-addition languageshé graph case there is an easy
necessary condition fro global finiteness. A digrdplis sinkyif there is a sinkT € V, i.e., sinky
outdeg(T) = 0, such that every € V lies on a directedv, T )-path.
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Lemma 1.5.5. Every globally finite digraph is sinky.

Proof. SupposeD is not sinky, i.e., there is a vertexin D which does not lie on a directed
path to a sink ofD. ThenD has a non-trivial strong componefif such that no arcs point
from S into D\S. Letd™ be the maximal outdegree of the induced subgr@phi|. Define

a chip-configurationr by puttingd™ chips on every vertex of and0 elsewhere. Every
reachable configuration fromhas at least one vertex with at least as many chips on it than
d*,i.e.,o(v) > outdeg(v). Thus, there are infinite firing-sequences dnds not globally
finite. O

It will turn out soon in the more general context of vectod#ion languages (Proposi-
tion 1.5.7), that the converse of Lemma 1.5.5 is true, as well

In order to find a generalization gflobally finiteto vector-addition languages define a

finite language language to béinite if it consists of words of finite lengths only. In analogy tetdigraph
globally finite case call an alphabétl C R? globally finite if L(M, o) is finite for all. An alphabet
sinky M C R%is said to besinkyif all z € M satisfyzie[d] x; < 0 and there arspecial vectors

special vector z* € M, satisfyingy", iy #; < 0 or z* has a private negative coordinatee [d], i.e.,

zf < 0 =y; foraly € M\{z*}. Now for all z € M we require adirected path
from x to some speciat* € M. By directed path fromx to x* we refer to a sequence
(x = 2(0),z(1),...,z(k) = z*) in M with the property: for allj € [k] there is ai € [d]
such that:(j — 1); > 0 > z(j);.

Lemma 1.5.6.An alphabet\/ C Z¢ is the reduced Laplacian of a sinky digraph if and only
if M is sinky, everyc € M has exactly one negative entry, and for every [d] there is
exactly oner € M with z; < 0.

Proof. “=": Let D be a sinky digraph with sink’ and reduced Laplaciaih/’. Clearly,
M’ is for everyi € [d] there is exactly onec € M with z; < 0 and every
z(v) € M’ has exactly one negative entmy(v),. Moreover, for everyy € V we have
>_; x(v); = outdeg(v) —{a € A|a= (v, T)} <0. The special vectors* of the defini-
tion of sinky then correspond to neighbors ©f For any vertexv there is a directed
(v, T)-path P in D. Let P’ be the(v, 2*)-path obtained fronP by deletingT. By defi-
nition of the reducd Laplacia®’ corresponds to a directéd, z*)-path in the sense of the
definition of a sinky set of vectors.

“<=": For everyi € [d] there is exactly one € M with z; < 0, i.e., no twoz,z’ € M
share a negative entry. Since on the other hand everyl/ has exactly one negative entry
M has exactlyl elements. Refer to the element bf with z; < 0 asx(i). Construct a
digraphD with vertex setM U { T }. Introducez (i) ; arcs fromz () to () for i # j. Since
M s sinky}_, z(i); < 0foralli. In case for some* (i) we have) ; z*(i); < 0, introduce
—>_;x*(1); arcs fromz* (i) to T. Clearly M is the reduced Laplacian d?. The vertices
x*(i) are special vectors in the sense of the definition of a sinkpfseectors. A directed
(z(i), z*(j))-path in the sense of the that definition corresponds to ®idda: (i), T)-path
of D. O
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Another class which by Lemma 1.5.6 clearly generalizes ldesmf reduced Laplacians
is the following: We call a finite set/ c R? Laplaciousif for everyi € [d] there is at most Laplacious
onex € M with z; < 0.

So a Laplacious sinky alphabgf C Z¢ differs from the reduced Laplacian of a sinky
digraphD only by the fact that vectors it may have more than one negative entry (sinky
implies that they have at least one), and that there might be[d] with x; > 0 for all
x € M. Indeed, as in the graphic case (Lemma 1.5.6) sinky is entm@msure global
finiteness for a Laplacious alphalieft

Proposition 1.5.7. If M C R% is sinky and Laplacious, thel is globally finite.

Proof. Leto € R? be any starting configuration. Suppose there is a waedL (M.o) with
infinite scorescr(s). LetY be the set of vectors appearing infinitely many timescirs)
and! := {i € [d] | y; < 0forsomey € Y}. Sinky together implies, that eveny € M
has at least one negative entry, ie# (). Clearly, there are no special vectorstinand alll
y € Y have) . ;y; = 0. Now lety be aneighborof somez ¢ Y, i.e., there is g € [d]
with y; > 0 > ;. Sincex is notinY and A/ is Laplacious we havg ¢ I. SinceM is
sinky we have) ;. vi < > e % — y; < 0. Butfory € Y we clearly need_,.; y; = 0
in order to apply it infinitely many times — a contradiction. O

As promised, with Lemma 1.5.6 Proposition 1.5.7 proves taektvard direction of
Lemma 1.5.5, i.e., a sinky digraph is globally finite. Thewense of Propostion 1.5.7 is

4 —4
not true, e.g., the alphabéf = {| —1|,| 3 |} is globally finite and Laplacious but
-3 1

not sinky. As a first theorem we can now characterize the dbgsctor-addition languages
which represent finite ULDs for every starting configuratamd therefore keep one of the
properties of CFGs being of major interest to us. Therefaranake the following

Definition 1.5.8. Let M C R% ando € R?. If M is globally finite and Laplacious, then
we call the digraphD (M, o) together with its natural arc-coloringgeneralized CFGand  generalized CFG
denote it byCFG (M, o).

Theorem 1.5.9.Let M C R? ando € R%. The digraphD(M, o) is the Hasse diagram of a
ULD for all o ifand onlyD (M, o) is a generalized CFG. Moreover, in that case the natural
arc-coloring of D(M, o) is a U-coloring.

Proof. “=": If M is not globally finite, then there is such thatL(M, o) has in-
finitely many elements. For us ULDs are finite, i.e., this agrimappen. So supposd

is not Laplacious. Then there atey € M with z;,y; < 0 for somei € [d]. Define

o = max(|z|, |y|). ThenD(M, o) contains the arcé&, ), (o, y) with colorsz andy. But
sincemax(|z;|, |yi|) + x; + y; < 0 there is no vertex corresponding to the configuration
o + x + y. Hence, the natural coloring is not a U-coloring. It vioktelle U,. Indeed,
D(M, o) admits no U-coloring at all.
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“<=": We start by showing, that the natural coloringldf M, o) is a U-coloring. Whenever
there are two outgoing ardsnf(s), cnf(s) + ), (cnf(s), enf(s) + y) of the same vertex
cnf(s) they clearly are of different colotsandy, i.e., the coloring obeys to rule;U

Moreover, since noxz,y € M share negative entries we conclude that
O+ sz txo+) c,z+y>0implieso + 3 _ z+ 2 +y > 0. This s, if
enf(s), enf(s) + x, enf(s) + y are configurations of words ih(Mo), thenenf(s) + = + y
is, as well. Hence the natural arc-coloringlof/, o) is a U-coloring.

If there was a directed cycle iR(M, o), then traversing it forever would correspond to a
word of infinite score, contradicting global finiteness.

Suppose there is an infinite number of wordsZiV/, o), i.e., D(M, o) has infinitely
many vertices. We show thd?(M, o) has no sinks. Letnf(s) a vertex of distancé to
o. If enf(s) was the only vertex with that distancedothencnf(s) cannot be a sink, since
by U; the set of vertices of distance at masts finite. So say there is a differentf(¢)
of distancek to 0. Take a directedo, cnf(s))-path P and a directedo, cnf(t))-path Q
which stay together as long as possible. &) be the last element they have in common
andcnf(y) be the first element only of. We can apply Lemma 1.3.4 to the restriction of
P from cnf(z) to cnf(s) and the ardcenf(z), cnf(y)). We have to be in case (a), because
otherwise there would be a pait staying longer with). Hence Lemma 1.3.4 yields that
cnf(s) has an outgoing arc and was no sink. Sifig@\/, o) has no sinks but is acyclic it
must have paths of infinite lengths, ilg()/, o) was not globally finite.

We have proven thab (M, o) is a finite acyclic digraph with unique soureeand its
natural coloring is a U-coloring. Theorem 1.3.3 gives théf\/, o) is the Hasse diagram of
a ULD. O

Since by Lemma 1.5.6 the reduced Laplacidh of a sinky directed grapl® is sinky
and Laplacious and thus globally finite by Proposition 1,.&& can apply Theorem 1.5.9 to
obtain Theorem 1.5.2, i.e., every CFG represents a ULD.

As mentioned above, in [79] it is shown that every ULD repréable by a CFG can be
represented by a simple CFG. To generalize this result weacadctor-addition language
simpleif no word contains twice the same letter. A generalized-¢hipg game CFGM, o)
is called simple ifL.(M, o) is simple. We prove

Theorem 1.5.10.Every ULD can be represented by a simple generalized CFG.

Proof. Let £ be a ULD. We look at the representation/és a reduced antichain-partitoned
poset(J (L), Anc)), whereA,, := {j € J(L) | m € 157\Ij}. By Theorem 1.2.24 we
have thall = (fing 4, ,, (Z(J (£))), ©)-

For everym € M(L) we define a vectar(m). These will form our alphabét/. In order
to prove our theorem we prove that given a were: (x(mq),...,z(mg)) € L(M,o) in
our simple language and a lettefm) € M we have(s,z(m)) € L(M,o) if and only
if {ma,...,mg, m} is the fingerprint of an ideal af/ (£) andm # m; for i € [k]. This
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is, there is & € A, such that the fingerprirﬁngAM(ﬁ)(lj\{j}) C {mi,...,my} and
m # m; fori € [k].

DenoteP(j) := ﬁngAM(ﬁ)(lj\{j}) for everyj € J(L£). The set of coordinatdd] of the
vectors of our alphabét/ will correspond to elements of

U (XjeanP(i) x {m}) uM(L).

meM(L)

Forall: = m' € M(L) defines; = 1 andxz(m); = —1if m = m' and
xz(m); = 0, otherwise. This guarantees th&f is sinky and L(M, o) simple. Let
1€ P(jl) X ... X P(]k) X {m} for someA,,, = {jl, . ,]k} S -AM(E) S AM([:) We
setz(m); := —lando; :=0. If i € P(j1) x ... x {m'} x ... x P(ji) x {m}, then we set
x(m'); := 1 and otherwise:(m'); := 0.

We have already argued that is sinky, i.e., by Proposition 1.5.7 it is globally fi-
nite. In particular we constructed such thatL(M, o) is simple. For everyi € [d]
there is a uniquer(m) with z(m) < 0, if i = m € M(L), then this isz(m). If
i€ P(j1) x...x P(jr) x {m}, then itis alsar(m). ThusM is Laplacious and globally
finite, i.e.,D(M, o) is a simple generalized CFG.

We show thatD (M, o) is the Hasse diagram af.

Let x(m) € M, j, € A, ands = (x(my),...,z(mg)) € L(M,o) such that
P(je) € {mi,...,my} andz(m) ¢ s fori € [k]. Sincex(m) ¢ s we havecnf(s),, = 1.
For every negative entry(m); < Owithi = (m/,...,m},m) € P(j1)x...xP(ji) x{m}
we know thatz(m;) € s andA,,, N P(j¢) # 0. Thus by definitionz(m;); = 1. We have
thats + x(m) € cnf(L(M, 0)).

On the other hand if(m) € s thens+ z(m) ¢ cnf (L(M, o)) by simplicity of L(M, o).
Suppose for every, € A,, there is anm, € P(j,) butz(m;) ¢ s. Fori = (m/,...,m})
there is nox(m’) € s with z(m’); > 0, butz(m); = —1. Thus,z(m) cannot be added
to s. ]

Remark 1.5.11. Note that the simple generalized CFG constructed in thefppb@®heo-
rem 1.5.10 has a very special property. Given a sequercér(my),...,z(my)) in M we
have:

o+z(mi)+...+x(m;) >0foralli e k] <= oc+xz(m)+...+x(mg) >0

This is,ser(L(M,0)) = {z € {0,1}™ | Mz > —o}. The fact thatZ(M, o) has a de-
scription by a system of linear inequalities, i.e., may bensas the set of integer points
of a polyhedron, will be used in the context of feasible popgs of antimatroids (Subsec-
tion 2.3.1 of the next Chapter).

Remark 1.5.12. The dimensiorl of the space containiny/ in Theorem 1.5.10 is desired to
be small. Clearly, smallef just yields a more compact representation. In Subsect®i 2.
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of the next Chapter we will relate that parameter indeed topimization-problem of Korte
and Lovasz [71].

If the size of the antichaingd,,, := {j € J(£) | m € 17\Ij} € A ) is bounded by
k, then the construction in the proof of Theorem 1.5.10 yieldspresentation of the ULD
by M c 74, whered € O(|M(L)|F*1).

The size of the vectors idd may be reduced further. Even if it does not cause a
change of the asymptotical behavior, we present a methoghwh helpful for special
ULD-classes: Define the set of antichaiBgj) as Max A,, € Ay | Am € 17\{j}}
andC(j):={j e J(L) | j” < j < jforsome;” € A,, € B(j)}. In the proof of Theo-
rem 1.5.10 we can s€t(j) := ﬁngAMw)(C(j)). This suffices and reduces the sizedof
in the construction. In the case of the singleton chain fertii.e., distributive lattices by
Theorem 1.2.1¢'(j) would just be the set of cocovers pf

Question 1.5.13.Theorem 1.5.10 shows representability of ULDs by simpleylages.
It would be interesting to see whether every Hasse diagram OLD together with a
U-coloring may arise as a generalized CFG with its naturlaroay.

In the following we will present a method to represent a galiwed CFG by a finite set
of ordinary CFGs. This then yields that every ULD may be reprgéed as an intersection of
CFGs. But first let us mention a similar result already in ttexdture:

colored CFG In [79] Magnien, Phan, and Vuillon prove that every ULD canrégresented asalored
or extended CFG. This game is played on a set of loop-freapigD,, ..., D; on the
same vertex set each having arcs only of its private color{k] but all sinky with respect
to the same verteX. Every digraph has a chip-configuratieti:) of chips in its private
color. Firing a vertex in the colored CFG means to fitein all D; where it has more chips
of color than outgoing arcs in that color. This is, fire it in the senfsa classical CFG in
all D; where it is allowed to be fired. This representation of ULDgglaot carry over to
vector-addition languages.

Based on the theory of generalized CFGs we will develop a nawtw present a ULD
by a finite set of CFGs: Also this game is played on a set of fwep-digraphsD+, ..., Dy
on the same vertex set each having arcs of its private ¢atofk] and all being sinky with

respect to the same vertéx Given respective chip-configuration$l), ..., 7(k) firing a
vertexv € V is allowed ifv can be fired in all th¢ D;, 7(i)) (viewed as ordinary CFGS).
Firing v then consists in actually doing so. Given starting configona o (1), ...,o0(k)
intersection of the intersection of the CFGs denoted by \CFG(D;, o(i)). Itis the digraph on the set
of reachable chip-configurations and there is an arc froh), ..., 7(k) to7'(1),...,7'(k)

if 7(¢)? = 7'(¢) for all ¢ € [k] and somev € V. Thus, as in ordinary CFGs the arcs of
(N CFG(D;,o(i)) are naturally colored by .

Examples for both of the above constructions can be foundgurgé 1.17. We can prove
the very analogue result to the one of [79].
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Figure 1.17: The ULD of Figure 1.16 can be represented addrab CFG following [79]
and as intersection of two CFGs with the depicted startimgigarations, respectively.

Theorem 1.5.14.For every Laplacious, globally finitd/ C Z¢ ando € Z? there are sinky
(Di, a(i))ier such that the digraph€FG(M, o) and(\CFG(D;, 0(i)) are isomorphic
and have identical natural colorings, and viceversa.

Proof. For “«<=" just take the reduced Laplaciaig’(D), ..., M'(Dy) and write them
vertically one above the other. We obtain a sinky, Laplagibliand firing a vertex in the
intersection ofD4, . . ., Dy, in a chip-configuratiom (1), .. ., o(k) corresponds to adding the
corresponding vector i/’ to the vector concatenatidar(1), ..., o(k)).

For “—" Let M C Z? be globally finite and Laplacious. Consid€FG (M, ) with
starting configuratiornr. We obtain a representation as intersection of CFGs as in the
“«<="-direction by partitioning|d] and possibly adding few extra components to such that
all alphabets induced by the partition are sinky and havetgxane negative entry per row
and per column. By Lemma 1.5.6 they are reduced Laplacians.

So partition[d] = V3 U ... UV} such that the set of entrigs; | ¢ € V;} has at most
one negative element for evefy € [k] andz € M and if for somex and j we have
Zievj z; > 0, then{z; | ¢ € V;} has no negative entries.

Now if for somez andj we havezievj xz; > 0or{z; | i € V;} has no negative entries,
then we add a componefito Vj. Setz, = —3 ;. xi — 1 andoy = 3,y x; + 7 and
xj, = 0 for all 2’ # x. Herer is the number of times appears in a directed path framto
o1 in CFG(M, o). The number exists becaus#/ is globally finite. We have not changed
CFG(M, o) nor its U-coloring. For the new sét/ we have) ;. z; < 0, i.e., for everyz.

J

That s, itis sinky. Also{z; | i € V]/} has exactly one negative entry for all If there was

a coordinate < Vj/ with z; > 0 for all x € M we can clearly delete it without changing the
vector-addition language. So becaudewas Laplacious for every € Vj’ there is exactly
onezx with z; < 0 and by Lemma 1.5.6 the alphaﬁg’[is a reduced Laplacian.
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Applying this to the whole alphabet/ we call the new alphabet and starting configu-
ration M andao, respectively. The restriction/ to anyV/ is the reduced Laplacian of a
digraphD;. Denote bys (i) the restriction of the starting configurationto V. We have

CFG(M,0) = CFG(M,5) = ;e CFG(D;, 5(3)). O

Theorem 1.5.10 and Theorem 1.5.14 together yield
Corollary 1.5.15. Every ULD is the intersection of finitely many CFGs and vicgae

Question 1.5.16.0ne interesting question arising from Corollary 1.5.15adetermine
the CFG-dimensionof a given ULD, i.e., the minimum number of CFGs that are ndede
to represent a given ULD as their intersection. For examipéeUWLD of Figure 1.16 is
not representable by a CFG, but by the intersection of two £&Bown in the right of
Figure 1.17). Hence it has CFG-dimensian

Question 1.5.17.The proof of Theorem 1.5.10 relies on the representation ldd$Jas
antichain-partitoned posets (Theorem 1.2.24). In thetlagfhTheorem 1.2.3, where gen-
eral lattices are represented by antichain-covered padsetslld be an interesting question
whether every lattic&€ can be represented as a certain type of vector-additionéagey

In [67] it has been shown that even every acyclic digraph @arepresented as a type of
vector-addition language with/ C {0, +1}¢, but for this representation every arc would
is represented by an individual vector. In the case of Haeggraims of lattices it would be
sensible to ask for a correspondence betweeand M (L).
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1.6 Conclusions

In this chapter we have characterized ULDs in terms of cdlétasse diagrams, (multi)set-
systems, antichain-covered posets, vector-additiogtlages, intersections of chip-firing
games, and embeddings in¥. There are many possible directions of further study. In
the following we discuss some of them.

Classes of combinatorial objects

We have provided (upper locally) distributive latticessarg from local transformations
on given sets of combinatorial objects. Indeed, the contbiiws encoded in these lattices
correspond to chain-partitions of meet-irreducible ppsétULDs or to join-sublattices of
N¢ (Theorem 1.3.18).

A-tensions

c-orientations

planar flows

rhombic tilings

@Ianara-orientations)

G)Ianar spanning tre% G)Ianar bipartite perfect matchira

. lozenge tilings
domino tilings (M

Figure 1.18: What happened in Chapter 17?

In Figure 1.18 we give a retrospective overview. Theelation induced by the Hasse
diagram in Figure 1.18 stands for the inclusions of the adssnbeddings int&¢ induced
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by the combinatorial objects in the bubbles. All bubbleshi& pink area yield embeddings
of distributive lattices. The bubbles in the blue area yirttbeddings of upper locally dis-
tributive lattices. Already-orientations suffice to represent all distributive laschbut even
A-tensions are not general enough to represent all distréblatttice embeddings. General-
ized CFGs represent all upper locally distributive laidaut may every embedded ULD be
represented by a generalized chip-firing game?

Tension Lattices

The generation of a random element from a distributivedatis a nice application for
coupling from the pasfc.f. Propp and Wilson [94]). The challenge is to find good-est
mates for the mixing time, see Propp [93]. What if the lattgca A-tension lattice or more
restrictively the set ofv-orientations of a planar graph? For the latter it would bpantic-
ular interest to obtain a lattice theoretic characterniwatf distributive lattices arising from
planara-orientations.

Lattices of A-tensions depend on the choice of a vertgxe V. Choosing another
vertexv yields a different lattice on the same set of objects. Isetzar easy description
of the transformationl,, (D, ¢, ¢,,) to 11, (D, ¢, ¢,,)? Or is there a natural candidate for
choosingyg in order to guarantee certain properties of the lattice?

Because of their diverse applications it would be very usefwbtain structural results
for a-orientations of graphs embedded on an orientable (or memtable) surface different
from the plane — or more generally for nonplanar graphs. $&ésns to be a hard problem.
We feel that it is better to start with particular instancéglanar a-orientations, such as
perfect bipartite matchings or spanning trees. In thesesgésmight be possible to general-
ize their distributive lattice structure to the non-planase without making the step through
«-orientations.

U-Posets Without Global Minimum

The characterization of ULDs in terms of U-posets with glabaimum leads to ques-
tions about U-posets without global minimum.

We have shown that in U-posets every elemertias a unique minimal set of meet-
irreducibles havinge as lower bound. But might not be the only lower bound of that
set. It would be of interest to characterize join-semitasiC, where for allx € £ there ex-
ists a unique minimal se¥/,, of meet-irreducibles such thatis the unique maximal lower
bound forM,.. Note that this still does not tur@ into a lattice. Also it would be interesting
to describe those U-posets, which correspond to join-suitstices ofN¢. Another point
would be to characterize infinite ULDs which arise as joitiattices ofN?.

In the context of chip-firing games it is natural to allowdofire vertices, i.e., a vertex
receives a chip from all its out-neighbors. Versions of tiasne where negative numbers
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of chips are allowed, have been considered under the nardellaf gameby Baker and
Norine [8]. They are related to tropical geometry [56]. Bitig to the non-negative case, i.e.,
insisting on the non-negativity constraint, it would besigtsting to investigate the resulting
class of U-posets. This relates to Question 1.3.20. A riegutopic to analyze would be
vector-addition subtraction languages

Note that the distributive lattice ak-tensions corresponds to finite vector-addition sub-
traction language. The alphabet consisits of the rows oféntex by arc network matrix of
a digraph.

More Questions Related to Chip-Firing Games

In the last section we put a certain emphasis on generalZi@s while “staying close”
to them. So Question 1.5.16 asks for the minimum number of CR€Eessary to repre-
sent a ULD as their intersection. And in particular we areriested in a lattice theoretical
characterization of ULDs representable by CFGs.

Here comes a description of several concepts, which génefedm CFGs to generalized
CFGs and possible research topics related to themsa@hdpile monoiaf a sinky digraph sandpile monoid
consists of all stable configurations, i.e., such that ntexecan be fired. The “sum” of
two configurations is defined by adding chips of both confiians on corresponding ver-
tices and afterwards fire, until the maximum configuratioreached. Our generalization to
globally finite Laplacious matrices now allows to define thens structure for such matri-
ces. There is a remarkable theory about sandpile monoidd\J6ht can we say about the
generalization to vector-addition languages?

In particular thesandpile groupis an Abelian subgroup of the sandpile monoid, whickandpile group
has been of vivid interest again quite recently [58, 76]rélations to theritical group of
a digraph form a strong connection to algebraic graph thedop, also this concept may
be generalized to generalized CFGs and we would like to hemerglizations of the known
results for the sandpile group in this broader setting.

A last question relates to famotsankl’'s Conjecturealso known asinion-closed sets
conjecture It states that every latticé contains a join-irreduciblg, such that1j| < |£|/2.
The maximal lattice class for which the conjecture is knoarbé true is the class ddwer
semi-modular latticef@5] — a class containing distributive, but not upper logdiktributive
lattices. We feel that ULDs are the next class to tackle. htiqdar it would be a challenge
to prove Frankl’'s Conjecture for chip-firing games.

Similar Results for Other Classes of Lattices

We have characterized ULDs in terms of antichain-partétposets. In Theorem 1.2.3
we show that every finite lattice corresponds to an antichairered poset. In view of duality
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we ask for a characterization of dual ACPs of good anticlpairiitioned posets. This would
yield a new characterization of ULDs.

Also, what other lattice classes have nice characterizatio terms of their antichain-
covered posets? We have characterized cover-presenimgyblattice embeddings of
ULDs into N? in terms of chain-partitions of the poset of meet-irredigsbin Theo-
rem 1.3.18. Can this generalization of Dilworth’s Embeddirheorem be taken further
to other lattice classes? The proof of Theorem 1.5.10 reliethe representation of ULDs
as antichain-partitoned posets. In the light of TheorenB8lt2vould be an interesting ques-
tion whether every lattic€ can be represented as a certain type of vector-additioniéayey
Natural-seeming candidates for such generalizationsdvaulthe one hand be upper semi-
modular lattices and other hand lattices which satisfy wlered Jordan-Dedekind chain
condition.



Chapter 2

Polyhedra

In the previous chapter we dealt with different types ofitas and their representations,
e.g. colored Hasse diagrams, (multi)set-systems, amtictvered posets, vector-addition-
languages, chip-firing games and embeddingsiftdn the present chapter we will develop
geometric representations of lattices combined with Eeelh convexity. Or turned the other
way around we will look at polyhedra iR¢ combined with the dominance order. Looking
back, one result of this chapter is that all the (upper lggalistributive lattices arising in the
previous chapter may be seen as integral points or evenxsats of polyhedra which form
(join-)sublattices oR?. Therefore they carry an (upper locally) distributiveitztstructure
in a natural way. Indeed, this was the starting point for tieedtudy of polyhedra having
order-theoretical properties as subsets of the dominaniez.o

So the classes of polyhedra we look at form (upper locallgrittiutive lattices inR.
Thus, they are calle(upper locally) distributive polyhedraWe will provide characteri-
zations of upper locally distributive polyhedra (ULD-phBdra) and distributive polyhe-
dra (D-polyhedra) in terms of their representation as g#etion of bounded halfspaces
(H-description. Figure 2.1 suggests how such polyhedra might look like. H-description

N/
-

Figure 2.1: A3-dimensional ULD-polytope and&adimensional D-polytope.

Generally, the polyhedral point of view allows links to diste geometry such as lin-
ear programming or the theory of face lattices of polytope8ur characterization of
ULD-polyhedra in termg+-descriptions yields a combinatorial model for these peta
in terms of chip-firing games. Moreover, we obtain a conmectd feasible polytopes of

65
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antimatroids A corollary of our characterization is a short new proofdorharacterization
of distributive polyhedra.

Aside from being an interesting combination of geometrid arder theoretic concepts,
distributive polyhedra are a unifying generalization ofesal distributive lattices which arise
from graphs. In fact a distributive polyhedron correspotala directed graph with arc-
parameters, such that every point in the polyhedron cooreggpto a vertex potential on the
graph. Alternatively, an edge-based description of thatmet can be given. The objects in
this model are dual to generalized flows, i.e., dual to flowth wains and losses. Moreover
we obtain a connection to oriented bicircular matroids -aa€bf graph-related matroids of
recent interest in combinatorics.

A particular specialization are tensions of digraphs,used in Section 1.4. These mod-
els can be specialized to yield some cases of distributitieda that have been studied
previously. The contribution here is, that they additibnalay be seen as the integer points
of a distributive polyhedron.

As another new application of the theory of D-polyhedra wiileix a distributive lattice
structure on generalized flows bfeakeverplanar digraphs.

So this chapter is about polytopes and polyhedra. It retat¢he second parts of the
paper [69] and presents the content of [43]. It is structastbllows:

In Section 2.1 we introduce those notions of order which watwa combine with con-
vexity. We discuss polyhedra which are join-closed withpees to the dominance order and
polyhedra that have meets for every pair of elements. Campiboth notions we define
upper locally distributive polyhedra and distributive yloédra. We will not provide a real
introduction into the theory of polyhedra, but define newrter‘on the fly” whenever we
need them. For the basics we refer to [110].

In Section 2.2 we study distributivity and upper local dmitivity for affine spaces in
R?. We find that both classes coincide and provide a full charaztion. We associate
graph-model to distributive affine spaces and characténgebases. This characterization
is a main ingredient for the characterizations of ULD-p@lgita and D-polyhedra.

In Section 2.3 we give a characterization of upper localstriutive polyhedra in terms
of their H-description. As main ingredients we characterize polyaethich are closed
under taking the componentwise maximum and polyhedra whaede lower bounds for all
pairs of points. Moreover, it is shown that ULD-polyhedra ¢ modelled by chip-firing
games. Based on th¥-description of ULD-polyhedra we also contribute new igsg
to a membership problem for feasible polytopes of antinidsraliscussed by Korte and
Lovasz [71].

In Section 2.4 we discuss the important subclass of D-palgghand prove a character-
ization of D-polyhedra in terms of thet-description. This is a corollary of the main the
characterization of ULD-polyhedra.
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The characterization of D-polyhedra leads to a wide rangeoaibinatorial interpreta-
tions. In Subsection 2.4.1 we use the geometric charaatenzof D-polyhedra to give a
combinatorial description in terms of vertex-potentidlam@-parameterized digraphs. More-
over, we provide a family of objects in the arc-space of arpam@meterized digraph — called
generalized tensiong hey correspond to the points of a distributive polyheditéance they
carry a distributive lattice structure and turn out to berttest general distributive lattice ob-
tainable by the “potential approach”.

In Subsection 2.4.2 we consider the special case of disiréypolyhedra coming from or-
dinary digraphs (without arc-parameters) as an exampletwsiof fundamental importance.
We prove that in this case even timegral generalized tensions carry a distributive lattice
structure. These integral generalized tensions correspmithe A-tensions of a directed
graph. Hence we endow those with a polyhedral structure. asssliown in Section 1.4, the
distributive lattice onA-tensions generalizes an extensive list of distributivides related
to graphs. Our results imply that these objects correspotidet integral points of integral
distributive polyhedra. In particular we obtain that knowlasses of polytopes, e.grder-
polytopeq102] and more generallgolytropeg63], also callecalcoved polytopef/4], are
distributive and may be modeled By-tensions.

In Subsection 2.4.3 we consider the case of general arergdesized digraphs. We give a
combinatorial description of the generalized tensions pdi@meterized digraph. We show
that they are dual to generalized flows — important objectsoofibinatorial optimization.
Moreover, our theory opens a new perspectivebmircular oriented matroids Our main
theorem may be seen as a characterization of arc-spacedbjeich carry a distributive
lattice structure coming from a D-polyhedron.

Subsection 2.4.4 contains a new application of the theorg. pyéve a distributive lat-
tice structure on the class bfeakevergeneralized flows of planar digraphs. This can be
understood as a generalization of the distributive latticéntegral planar flow obtained in
Subsection 1.4.3.

Section 2.5 concludes with final remarks and open problems.
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2.1 Polyhedra and Poset Properties

In this section we will introduce those poset properties avhiviewed in the domi-
nance order, will be combined with convexity in order to auderize ULD-polyhedra and
D-polyhedra. Besides proving the first few lemmas and pewidouple of observations, the
idea is to give a first impression of how the combination ofeoraind geometry feels like.
As a kind of “preliminaries section” some things might seemmotivated. The main idea
here is to carry over properties and intuitions from the pucembinatorial setting in the
first chapter to Euclidean space. We will from now on alwaymrdR? together with the
dominance order on it, i.e., far,y € R we haver < y <= z; < y; forall i € [d]. One
of the most important definitions for this chapter is thedaling:

Definition 2.1.1. We define dJLD-polyhedronas a polyhedro® C R? such that for all
x,y €P
1. the componentwise maximumax(x,y) is in P, (U-polyhedron
2. there is some € P with z < z, y. (meet-polyhedrgn

max(z, )

Figure 2.2: A3-dimensional ULD-polytope.

A polyhedron which is closed underin is called an_-polyhedron Since for everye, y
in an L-polyhedronP alsomin(z,y) € P andmin(z,y) < z,y L-polyhedra are meet-
polyhedra.

Observation 2.1.2. The property of being a U-polyhedron is invariant unslealing trans-

lation, cartesian productand intersection The same holds for meet-polyhedra with the
exception ofintersectionsee Remark 2.3.10 for an example.

Observation 2.1.3. An important observation about the interplay of order anongetry is
that the set of elements belaw i.e., |z := {y € R? | y < z} and dually]z are convex

polyhedral cones iiR¢. Theirapexis = and they argeneratedy the vectors-e, ..., —eq
andey, ..., eq, respectively. Generally theone with apexz generated by a finite set of
vectorsV is

condV,z) := =z +{>_ Ay | Ay > 0}.
yeVv
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This already serves to prove the following basic analoguthéofact that a finite join-
semilattice has a unique maximum, see Observation 1.1.1.

Lemma 2.1.4. LetP be a U-polyhedron ana < y for all z € P and somey € R¢. ThenP
has a unique vertekp, such thatr < 1p forall x € P.

Proof. Denote by|y the cone{z € R? | 2 < y}. Translatey such that every bounding
hyperplane ofly touchesP, i.e., for alli € [d] there isz € P such thatr; = y;. Themax of
all thosez isy and itis inP. Thusy = 1p € P. Sincelp € P is the apex of the conglp
which containd?, 1p is a vertex. O

So one page ago we defined ULD-polyhedra. We want that thet geinof a ULD-
polyhedron forms a ULD with respect to the dominance ordefR8n The first prob-
lem here is that ULDs were defined only dmite ground sets (Definition 1.1.6).
The figure suggests that in particular for unbounded polsdnadiirect trans-
lation of Definition 1.1.6 is difficult. We need to find for eyeglement/ a
set of meet-irreducibles?, representing it as its meet, but there is no such
element inx,-direction. On the other hand the example in the figure eyen
is a D-polyhedron (see Definition 2.1.8). Thus it should ¢aasa ULD-
polyhedron. This problem can be overcome if we endow the dantie or-
der with points at infinity, i.e., we have to look @ U {c0})¢ and again we
take the componentwise ordering wh&e {co} is ordered as usual but en-
dowed with a global maximumo. This allows to interpret unboundedness

in a way which is compatible with the idea of ULDs. In our exdenfhe meet-irreducible
representation of would then be{m, (¢1,00)}.

Therefore make the following definition. L&t C R% andz € S. We calll C [d] aset
of unbounded directionsf  if for everyv € R/ there is av > v such that: + w € S and
denote byZ(x) their collection. Define

o(z) = {y € (RU{c0})? | y; = xoif i € I andy; = x; otherwise, for somé € Z(z)}.

One can then show the following

Theorem 2.1.5.A setS C R? s a join-sublattice of the dominance order if and only(f5)
forms a ULD with respect to the dominance order(@U {co})?, i.e., for everyy € ¢(S)
there is a unique inclusion-minimal set of meet-irredueibl, C (R U {co0})? such that

Z/:/\My-

Note that this makes sense in view of the finite case, whererasgondence between
ULDs and join-sublattices di¢ was established (Theorem 1.3.3). Since here we will deal
with polyhedra and points at infinity is something we wantvoid we take the above theo-
rem as a definition, i.e.:
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Definition 2.1.6. A subsetS C R¢ is calledEuclidean ULDif S forms a join-sublattice of Euclidean ULD
the dominance order.

Now we prove a proposition justifying the name ULD-polyhedt can be understood as
a Euclidean generalization of the fact that a finite join-#a&ttice which has meets for all
pairs of elements is a lattice (Observation 1.1.4).

Proposition 2.1.7. A polyhedronP is a ULD-polyhedron if and only iP endowed with
the dominance order forms a join-sublattice®f. This is, ULD-polyhedra are Euclidean
ULDs.

Proof. By Definition 2.1.6 the <="-direction is trivial. Let us prove ==-":

A U-polytopeP forms a join-subsemilattice of the dominance ordeiRn The property
of being a meet-polyhedron, i.e., for ally € P there is some € P with z < z,y, means
that every pair of elements has a meet. In order to show thhtgroperties together imply
that P forms a lattice it remains to prove that every paity € P has a uniqgue meet. The
setZ := {z € P | z < x,y} equals|z N [y N P, where all the three are U-polyhedra.
Hence by Observation 2.1.2 algois a U-polyhedron. Now sinceiin(z,y) > zforz € Z
Lemma 2.1.4 tells us th&f has a unique maximurdy, — the meet of: andy. HenceP is a
join-sublattice ofR?. O

As in the case of ordinary ULDs and distributive lattices, eayvimportant subclass of
ULD-polyhedra with plenty of nice combinatorial interps&ibns is the following:

disltrihbuotlive Definition 2.1.8. A polyhedronP C R is calleddistributiveif it is a U-polyhedron and an
E’S_{m?yggg‘mn) L-polyhedron. Distributive polyhedra are abbreviated dypedra.

In other words, a polyhedrdn is distributive if and only if

x,y € P = min(z,y), max(z,y) € P.

Figure 2.3: A2-dimensional D-polytope.

Since L-polyhedra are meet-polyhedra D-polyhedra aregddié_D-polyhedra.
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Remark 2.1.9. The dominance order is a distributive lattice Bf. Join and meet in the
lattice are given by the componentwisax andmin. Sublattices of distributive lattices are
distributive. Since D-polyhedra are exactly those polyhedhich form sublattices dR¢,
they are distributive lattices. This justifies the nadmgributive polyhedra

Remark 2.1.10. By Birkhoff's Fundamental Theorem of Finite Distributiveattices [14]
everyfinite distributive lattice is isomorphic to a union- and inteitsat-closed set of finite
sets. The characteristic vectors of these sets form thiegsif a distributive polytope — the
order polytope see [102] or the figure in the introduction of the thesis foreaample. We
will explain in Section 2.4.2 that the order polytope is iadea D-polytope. In this sense,
every finite distributive lattice may be represented as #reex set of an integral distributive
polyhedron.

An analogue statement for ULDs is not known, but as we willisegubsection 2.3.1 ev-
ery finite ULD may be represented as the set of integer-poiragnot necessarily integral)
ULD-polytope.

2.2 Affine Space

In this section we will characterize distributive and upfmerally distributive affine space.
The proof will take the whole section. Indeed, one of the tingigs to note will be that
both properties are equivalent for affine spaces. The ctaization will be an important
ingredient for the characterization of distributive angeplocally distributive polyhedra.
We will see the first link to the theory of arc-parameterizégraphs and an interesting
description of distributive space in terms of basis.

An affine spaceS C R" is the translation of a linear spa&é by some vector, i.e., affine space
S:={y eR"|y=s+zforsomes e S'}.

Remark 2.2.1. Since by Observation 2.1.2 the class of U-polyhedra is daos®ler trans-
lation, we actually will only consider linear spaces in théxtion. At the end we resume the
results of this section in terms of general affine spacesTseerem 2.2.11.

As announced, the first easy and basic result of this sedion i

Proposition 2.2.2. A linear space is a U-polyhedron if and only if it is an L-padytion if
and only if it is a D-polyhedron.

Proof. Sincemin(z,y) = = + y — max(z, y) the result follows. O

So in the following we will characterize linear distributigpace. We display this charac-
terization already, even if several terms in the stateméhbw/defined only in the course of
the proof.

Theorem 2.2.3.For a linear subspac& C R" the following are equivalent:
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(i) Sis distributive.
(i) S has a non-negative disjoint basis
(i) S = {p € R* | NIp = 0}, where N, is the generalized network-matrix of an
arc-parameterized digrapiv .

The structure of the proof is to show “&(ii) =(iii) =>(i)". So we start by showing
the “(i)=(ii)"-part of Theorem 2.2.3. Therefore we need to define NN&»ib. For a
vectorr € R™ we callz := {i € [n] | x; # 0} thesupportof z. Setp(x) := max(0, z)
andn(z) := —min(0,x). Call a set of vectord3 C R"™ non-negative disjoint (NNDJf
the elements oB are componentwise non-negative and have pairwise disgoipports.
Note that an NND set of non-zero vectors is linearly indegendMoreover, we have the
following useful extension-property.

Lemma2.2.4.Let/ U {xz} C R" be linearly independent, thenu {p(z)} or I U{n(z)}is
linearly independent.

Proof. Suppose there are linear combinatipis) = ;. ; b andn(z) = >, ; b, then
r = e r(y—wp)xp, which proves that U{z} is linearly dependent — a contradiction]

And indeed:
Proposition 2.2.5. Every linear distributiveS C R™ has a non-negative disjoint basis

Proof. LetS be distributive and € S an NND set of support-minimal non-zero vectors. If
I is not a basis 0§, then there i € S such that:

(1) I U {z}islinearly independent,
(2) Jigpn) @i >0,
(3) z is minimal among the vectors with (1) and (2).

Claim: I U {x} is NND.

If z is not non-negative, thew(z) andn(x) are non-negative. Also sin&eis distributive
both are contained if and have smaller support thanBy Lemma 2.2.4 one of U {p(x)}
andI U {n(z)} is linearly independent — a contradiction to the supportimality of z.

If there isb € I such thate N b # 0, then choosg: € R such that for some coordinate
J € N bwe haver; = pub;. We distinguish two cases.

If z C b, then( # ub — z C b contradicts the support-minimality in the choicebof 1.

If « ¢ b, then sincel U {ub — z} is linearly independent one dfuU {p(ub — x)} and
I U {n(ub — z)} is linearly independent by Lemma 2.2.4. By the choiceuoie have
p(pb —x) € bandn(ub — x) C z and obtain a contradiction to the support-minimality in
the choice ob or z, respectively. O
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We have proven the part “é)=(ii)” of Theorem 2.2.3. But the NND basis of a distributive
space even basically unique:

Proposition 2.2.6. An NND basis is unique up to scaling.

Proof. Suppose&s C R™ has NND base# and B’. Suppose there atec B andd € B’
such tha®) # bnN Y # b/, b. By Proposition 2.2.5 we hauein(b,b’) € S butmin(b,?’) is
strictly contained in the supports bfandd’. SinceB and B’ are NND the vectomin(b, b’)
can neither be linearly combined [B/nor by B’'.

Suppose that there abec B andb’ € B’ such thab C b'. By the above we then know,
thatd' is a disjoint union of supports of several vectorsddnBut this contradicts thaB and
B’ generate the same space.

By the same reason we havg ;b = Uy 5 b'. Together we know that the supports
of vectors inB and B’ induce the same partition of that set. Sidé@and B’ are NND, the
vectorsh € B andd’ € B’ with b = b’ must be scalar multiples of each other. O

The next step is to prove part “(#=-(iii)” of Theorem 2.2.3. We want to define a class of
network matrices of arc-parameterized digraphs such ¢naviery linear spacg which has
a NND basis there is a network mati, in the class such th&t= {p € R" | N{p = 0}.

An arc-parameterized digraplis a triple Dy= (V, A, A), whereD = (V, A) is a di- arc-parameterized
rected multi-graph, i.e.pD may have loops, parallel, and anti-parallel arcs. We Pathe digraph
underlying digraphof D,. Moreover, for convenience we sét= [n] and|A| = m. NOW  underlying
A is a non-negative vector iR, with and entry), for everya € A. It has the property “92"
that A\, = 0 implies thata is afloop. For emphasis we repeat: All arc-paramekgrare
non-negative.

Given an arc-parameterized digrapiy we define itgyeneralized network-matrig be the  generalized -
matrix Ny € R™*™ with a columnz, := e;—\qe; for every ara: = (i, j) with paramete,. network-matrix
Heree;, denotes thé&th unit-vectorin R™, i.e, ¢, has al in the kth entry and i9) elsewhere. unit-vector
Note that ifa is a loop, then this produces a columpwith at most one non-zero entry,
which can be negative or positive dependinggn The columnz, has only zero-entries if
and only ifa is a loop and\, = 1.

Observation 2.2.7. A matrix is a generalized network matrix if and only if eacHuron
contains at most one positive entry and at most one negativg @ositive entries sharing a
column with a negative entry aile

Proposition 2.2.8. LetS C R" be a linear subspace which has a NND baBisThere is a
generalized network-matri¥’, such thatS = {p € R" | Nfp = 0}. Moreover,N, can
be chosen, such that the underlying digraprof D, is a union of a forest and loops with
arc-parametef at isolated vertices.
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Proof. We construct an arc-parameterized digrdpk, such that the columns of its gener-
alized network-matrixV, form a basis of the orthogonal complementajwith respect to
the standard scalar product).

For everyb € B choose some directed spanning treeborFor everyi ¢ J,.zb in-
sert a loopa = (i,7). To an arca = (i,j) with i, j € b we associate the arc parame-
ter A\, :=b;/b; > 0. For loops we sed, := 0. Collect the), of all the arcs in a vector
A € RZ,. The resulting arc-parameterized digraph is a disjoint union of loops and a
forest — as claimed in the proposition’s statement.

Denote bycol(N,) the set of column-vectors dfy. If b € B andz, € col(NV,), then
eitherb Nz, = D or (b, z,) = bj — A\obi = bj — (bj/b;)b; = 0 for a = (4, j). Therefore,
col(IVy) is orthogonal td. The underlying digraph ab, consists of trees and loops only,
and)\, # 1 for loopsa. Thus,col(V,) is linearly independent. To conclude that (N, )
generate$= in R” we calculate:

| B| + |col(N,)]

1Bl + 2 pes(1b] = 1) + [[n]\ Upep bl
= ZbeB b +n — ’UbeB bl.

Since the supports iR are mutually disjoint this equals. Thus the dimension of the span
of col(Ny ) isn— | B|, the dimension of+. Sincecol(N,) C S+ both spaces coincide.(]

For the proof of Theorem 2.2.3 it remains to show “&-(i)".

Proposition 2.2.9. Let Ny, be a generalized network-matrix.  The linear space
S = {p € R* | Nfp = 0} is distributive.

Proof. Note that {p € R"™ | NIp = 0} is the intersection ofhyperplanes
H.:= {z € R" | (2,x) = 0}, where thez €col(N,).

We want to prove thatl, is distributive. By Proposition 2.2.2 it is enough to shdvgtiH ,
is max-closed. By Observation 2.27has at most one positive entty and one negative
entryz;. Letx,y € H,. If z; < y; andz; < y; orz; > y; andz; > y;, then clearly
max(z,y) € H,.

So sayr; < y; andx; > y;. We have) = T2+ X424 > YjR5 + X524 > YjZ5 + Yizi = 0.
Buty;z; + z;2z; = (z,max(z,y)), i.e.,max(x,y) € H,. The caser; > y; andz; < y; is
symmetric.

Thus, S is the intersection of distributive spaces and is itseltritigtive by Observa-
tion 2.1.2. O

We have proved Theorem 2.2.3. Note that together with Piopo<.2.8 we actually
showed that the generalized network matrix representinigtalulitive linear space, may be
assumed to come from a union of a forest and loops. We restate:
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Theorem 2.2.10. Every linear distributive spac& C R"™ may be represented as
{p € R" | NI'p = 0}, where the underlying digrapp of D, is the union of a forest and
loops at isolated vertices with arc-parameter

As remarked at the beginning of the section all the involvexgbprties in the above results
are invariant under translations. In particular we definasidof an affine space as a basis of
the linear space obtained by translation onto the originr&¥ame the results of the section
in terms of affine spaces.

Theorem 2.2.11.For an affine subspacg C R” the following are equivalent:

(i) Sis distributive.
(i) S has a non-negative disjoint basis
(i) S = {p € R" | Nfp = c}, whereN, is the generalized network-matrix of an arc-
parameterized digrapt,. Moreover, the underlying digrapP may be assumed to
be the union of a forest and loops with arc parameteit isolated vertices.

We close this section with a lemma, which will prove usefaltihe upcoming sections.
We show how the representation by equalities in Theoremi2.thay be replaced by an
inequality-description, while maintaining a generalizextwork matrix.

Lemma 2.2.12. A distributive affine spaceS C R" may be represented as
{peR"|Nfp<ecland{p € R" | NTp > ¢}, where Ny and N~ are generalized
network-matrices.

Proof. It is standard to replace a description by linear equaltigénequalities. In order
to obtain again a generalized network matrix, we have teessath that all positive entries
equall, by Observation 2.2.7. More precisely:

LetS = {p € R* | N{l'p = ¢’} be the representation Bfguaranteed by Theorem 2.2.11.
We scale the rows of negatlve copied’'. and—¢’ such that all positive entries ef N AT, be-
comel. Denote the new generalized network matrix\§(§, and the new capacity-vector as
¢”. We obtain a generalized network matfi = (N},, N7,,) and a vectoe = (¢, ¢"1)T
suchthat = {p e R" | Nip < c}.

To obtain a description &g € R | N%p > ¢}, just scale every columm,, of N, and
the corresponding entry, of ¢ by a negative number such that the positive entry @im,,
is1. O

2.3 Upper Locally Distributive Polyhedra

In the following we will characterize U-polyhedra and meetyhedra. By Definition 2.1.1
we can then combine both characterizations to obtain a cterzation of ULD-polyhedra.
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We start with U-polyhedra not yet ULD-polyhedra, c.f. Defiion 2.1.1. We will use the
Representation Theorem for Polyhedra [110], which sat, @éliery polyhedron is repre-
sentable as the intersection of its affine hull with all fadetining halfspaces. Hence the
following lemmas will describe properties of the single riedjients of the Representation
Theorem for Polyhedra in the case of U-polyhedra.

Define theaffine hullof a point setS C R? as the minimal affine space containifigThe
affine hull may as well be defined as:

aff(S) :=={)_ M\p | S’ C Sisfiniteand > " A, = 1}.

p€eS’ peS’

Lemma 2.3.1. The affine hulkff(P) of a U-polyhedrorP is a U-polyhedron.

Proof. Let z,y € aff(P). ScaleP to P’ such thatr,y € P’ C aff(P). Since by Observa-
tion 2.1.2 scaling preservesax-closedness we haveax(x,y) € P’ C aff(P). O

Lemma 2.3.2. The orthogonal projectio®’ C R’ of a U-polyhedrorP C R¢ to a subset
of I C [d] of coordinates is a U-polyhedron.

Proof. Let 2/, y' € P’ be projections of points,y € P with z; = 2 andy; = y; for all
i € I. Nowmax(x,y) € P and its projection equalsax(z’, y'). O

Given an affine hyperplaneH = {z € R? | (2,2) = ¢} we denote by
HZ= {x ¢ R? | (x,2) > c} andH== {z € R¢ | (x, z) < ¢} thehalfspaces inducebly H.

Lemma 2.3.3. A halfspaceH> = {z € R? | (z,2) > ¢} is a U-polyhedron if and only if
has a most one negative entry. Moreow, is max-closed if and only if for allz, y on the
hyperplaneH we havemax(z,y) € HZ.

Proof. By translation invariance we may assume-= 0.

“+<=": Let z be a vector with unique negative entryand letz,y € HZ. If z; < y;, then
3 zjmax(zj,y;) > Y. zjy; > 0. Hencemax(x,y) € H=Z. If z > 0, then the statement
follows directly.

“==": Suppose on the other hand there are two entrjes; < 0. Thenz :=e;/z; —e;/z;
andy := ej/z; — e;/z; are inH=. Butmax(z,y) = —e;/z; — e;/x; is certainly not inH=.
HenceH= is not a U-polyhedron.

To see the last part of the statement, suppose thereaygre HZ andmax(z,y) ¢ HZ.
Consider the line segmerts max(z, y)] and[y, max(z, y)]. For everyz’ € [z, max(x,y)]
andy’ € [y, max(z,y)] we havemax(z’,y') = max(z,y). Both line segments intersek,
i.e., in particular there ar€,y’ € H with max(z',y) ¢ H=. O
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face of polyhedron For a polyhedrorP we defineF C P to be afaceif there is a hyperplanélg such that

P is contained in the induced halfspadé andF = P N Hg. The halfspacéiZ is called
fhach?-defining face-definingln particular, a face of a polyhedron is a polyhedron.
alispace
dimezsion The dimensionof a polyhedronP is defined as the dimension eff(P). A faceF of
facet of P is calledfacet if F has dimension one less th& A polyhedronP C R¢ is called
fj:}’dr}ﬁngs;onal full-dimensionalif aff(P) = R¢. Facets of full-dimensional polyhedra have unique facet-

defining halfspaces.

Lemma 2.3.4. Let P be a U-polyhedron. Every facet Bf has a facet-defining halfspace
which is a U-polyhedron.

Proof. LetS := aff(P), which by Lemma 2.3.1 is also a U-polyhedron. By Theoremila4.2.
there is an NND basi® = {b,...,b;} for S. Choose coordinates = {1, ..., i} with
i; € b; forall j € [k]. Every pointinS and therefore every point iR is determined by
its 7-coordinates. So in order to descriBewe projectP onto its/-coordinates. The new
polyhedronP’ € R’ is a U-polyhedron by Lemma 2.3.2 and it is full-dimensional.

Now let H'Z, be the unique facet-defining halfspace of a fd¢eaf P’. SupposeH’z, is

notmax-closed, i.e., by Lemma 2.3.3 there arg/ € H'e andmax(z,y) ¢ H'5. We can
scaleP’ to P” such that the scaled facet containsz,y. Thenmax(z,y) ¢ P”. Hence
by Observation 2.1.2 ald®’ was not a U-polyhedron — a contradiction. Thus, all the facet
defining halfspaces @’ are U-polyhedra.

Taking the cartesian product of the facet-defining halfepti&Z, of P’ with RI%Y one ob-
tains a complete set of facet-defining halfspace®fdinceR“V and H’E, aremax-closed
also their cartesian product is, by Observation 2.1.2. We ludbtained a complete set of
max-closed facet-defining halfspaces for O

Remark 2.3.5. Considering the middle paragraph of the proof of Lemma 2{@4nin-
andmax-closedness simultaneously, one obtains, that every éde@D-polyhedron has a
defining halfspace which is distributive. But we will seettfa D-polyhedra we actually
have that the faces are D-polyhedra themselves, see Lerdmia 2.

We now have all the ingredients to characterize U-polyhadtarms of their{ descrip-
tion. Analogously to alphabets in Section 1.5 a maidxs calledLaplaciousif and only if  Laplacious
M has at most one negative entry per row.

Theorem 2.3.6. A polyhedrorP C R¢ is a U-polyhedron if and only if there is Laplacious
matrix M such thatP = {x € R? | Mz > c}, for somec.

Proof. “<=": If M is of the claimed form, theR is the intersection of halfspaces, which
are U-polyhedra by Lemma 2.3.3. Since by Observation 2rité¥section preserves the
property of being a U-polyhedron, al§ois a U-polyhedron.

“=": By the Representation Theorem for Polyhedra [110] we catew

P=([) HF)nafi(P).

F facet
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By Lemma 2.3.1 alsaff(P) a U-polyhedron. Sinceff(P) is an affine space by
Lemma 2.2.12 we may represent it&8(P) = {p € R" | N(P)K(P)p > ¢(P)}, where
N(P)(p) is a generalized network-matrix.

By Lemma 2.3.4 the facet-defining halfspatb% of P may be chosen as U-polyhedra.
Hence, by Lemma 2.3.3 each of them may be represented by gesow) Laplacious
matrix z(F), i.e., HE = {z € R?| (x,2(F)) > ¢(F)}. Putting all of the row-vectors(F)
vertically onN(P)X(P) and thec(F) on ¢(P), we obtain a description d? of the desired
form. O

Remark 2.3.7. Equivalently one proves, that a polyhedréhis a L-polyhedron if
and only if there is matrix\M/ with at most onepositive entry per row such that
P={ze RA | Mz > c}, for somec. This is,—M is Laplacious.

Remark 2.3.8. Full-dimensional polyhedra have a unique irredundant rifgtsen as inter-
section of bounded halfspaces. Thus, if we insist that thqualities are of the fornz, then
any irredundani/ describing a full-dimensional U-polyhedron must be Lajuas.

We have characterized U-polyhedra. ULD-polyhedra werenddfas being U-polyhedra
and meet-polyhedra at the same time. Thus, in order to desize=ULD-polyhedra, we are
left with the task to characterize meet-polyhedra. S@let R? be a polyhedron. We call
a translated coordinate hyperplafgc):= {z € R? | (e;,z) = ¢} alower boundof P if
P C HZ(c) andP N H;(c) # 0. The polyhedrom®(P):= Ny jower bound op H N P arising as
the intersection of all lower bounds Bfwith P is called thamin-polyhedrorof P.

Figure 2.4: Some polyhedra and their min-polyhedra. Thestdwounds are dotted. The
polyhedron on the left has an empty min-polyhedron. Onlyweright-most polyhedra are
meet-polyhedra.

Proposition 2.3.9. A polyhedrorP is a meet-polyhedron if and only if its min-polyhedron
Q(P) is not empty and has the same lower boundB.akn particular for the bounded case
we have that a polytopB is a meet-polytope if and only if it has an elemerguch that

P Cz.

Proof. “=": Let P be a meet-polyhedron, i.e., for ally € P there is az’ € P with
z' < min(z,y). Choose one(i) € H;(c) from each lower bound d?. Let 2’ be an element
of P belowmin(z(1),...,z(k)). Clearly,z’ isin Q(P), i.e., the latter is not empty. Lgtbe
such thaH;(c) is not a lower bound of for anyc, i.e., thej-coordinates of points iR are
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not bounded from below. For evegye P there is a point < min(z’,y) in P. Sincez’ isin
the intersection of all lower bounds and< 2/, alsoz is. Thusz € Q(P) andH;(c) is not a
lower bound forQ(P) either.

“«<=": Let z,y € P. SinceQ(P) # () there is &’ € Q(P), which is a less or equal than
andy on all entries which have a lower bound. Sir@€P) has not more lower bounds than
P, there is & € Q(P) with z < 2’ which is also less or equal y on all other entries, i.e.,
z < x,y. ]

Remark 2.3.10. As noted in Observation 2.1.2 the class of meet-polyhedretilosed
under intersection. This particularly explains, why we ruatnexpect a characterization of
their H-descriptions only in terms of the describing matrix. Thikoiwing example, shows
that this problem occurs even for U-polytopes. Consider= {x € R?® | 0 < z <
1,2y — 20+ 23 > 0} andPy = {2 € R | 0 < 2 < 1;27 — 29 + 23 > ¢} for
some smalk > 0. Both are defined by the same Laplacious matrix, i.e., ar@lt@pes
by Theorem 2.3.6. Moreovefl € P, and70 > P;. Hence,P; is a meet-polytope by
Proposition 2.3.9, i.e., it is a ULD-polytope. Indedt, is the ULD-polytope depicted in
Figure 2.2. On the other harid, 0,0), (0,0,¢) € P2 but neither their minimun® nor any
point below it is contained iR>. HencePs is no meet-polytope. Since both are intersections
of up to translation the same meet-closed halfspaces thepyoof meet-closedness is not
intersection-closed.

Plugging Proposition 2.3.9 and Theorem 2.3.6 together we fozally characterize
ULD-polyhedra.

Theorem 2.3.11.A polyhedrorP is a ULD-polyhedron if and only if

1 0 c
d S (G
{xreR ’(Ml M2>x_<c2 h
wherel is the identity matrix and)/;, M5) is Laplacious.
2. There igy < 0 such thatMsy > max(0, co — Mycy).

1. Pisrepresentable as

Proof. “<=": The matrix in the statement clearly is Laplacious, heRdgs a U-polyhedron
by Theorem 2.3.6. Takg < O such thatMsy > max(0,ca — Micp). Let (10) be the
“upper half” of the matrix in the statement of the theoremnc®i(10)(c1,y) = ¢; and
Msy > co — Mjcy, the vector(cy,y) is in P. SinceMay > 0 also(ci, A\y) € P for all

A > 1. Sincey < 0 and\y gets arbitrary large negative entries the lower bound? afe
exactly H;(c) wherei is a column-index ofV/; andc theith entry ofc;. Since(ci, Ay)

is in their intersection we have:, \y) € Q(P). Since this is true for al\ > 1 the min-
polyhedronQ(P) does not have more lower bounds thHan By Proposition 2.3.%® is a
meet-polyhedron.

“=": Since P is a U-polyhedron it may be represented by a Laplacious matriand
a vectorce. To obtain the special representation claimed in the theose partition the
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column-indeces of\/ into C1, Cy — those corresponding to lower bounds and those who
do not. This is, there is a(i) such thatH;(c(i)) is a lower bound ofP if and only if

i € C1. By M7 and M, we denote the submatrices bf induced by the partition. We may
lay a rowe; on top of (M, M) and add a top-entry(i) to ¢ for everyi € Cy, without
changingP. We end up with an identity matrix on top ofM; and a vector; on ¢y as
desired. NowQ(P) consists of those elements Bfwith (/0)z = ¢;. SinceP is a meet-
polyhedron by Proposition 2.3.Q(P) has no more lower bounds th& So there is a
(z,y) € Q(P) with (z,y) € R“1* | < 0 and(zx, \y) € Q(P) for all A\ > 0. Clearly,
Moy > co — Myx > co — Mycy. Sincecy — Micy < Mady = AMoy for all A > 0 we have

Note that the min-polyhedron of a megetytopeP consists of a single point. Since the
case of polytopes is of most interest to us, we restate tiisialcase of Theorem 2.3.11 as
an individual theorem:

Theorem 2.3.12.A polytopeP is a ULD-polytop if and only if it is representable as
P={zeR?| Mz>cuz>z}
whereM is Laplacious andV/z > c. In particular, z is a vertex oP.

Remark 2.3.13. In Section 1.5 we prove that every generalized CFG may besepted
by the intersection of ordinary CFGs. We replace the Laplaialphabefl/ in the de-
scription of a generalized CFG by a set of vertically attacheduced Laplaciana/; of
digraphsD;. Everyz in such a reduced Laplaciavi] has exactly one negative entry. This
change of representation does not affect the particulagrgéned chip-firing game (Theo-
rem 1.5.14). Analogously to that, one can prove that a Lamlscmatrix M/ representing
a ULD-polyhedron may be replaced by a set of vertically dttaclaplacious matricel/;
each of which has exactly one negative entry pglumn and the sum of the entries of
any column is less or equal to In contrast to the situation of Section 1.5 the matrices
M; may have non-integer-entries. In order to interpret sudlf; aombinatorially we can
define chip-firing games on digraplis with arcs of real, positive'olumeinstead of arc-
multiplicity. This is, every araz € A(D;) has a volume/, > 0. Now, firing a vertexv

of D; consits in sending, chips fromwv along each outgoing are to the corresponding
neighbor. Now,/; is the reduced Laplacian d;. In this sense, every ULD-polyhedron
may be represented as the intersection of CFG-polyhedra.

2.3.1 Feasible Polytopes of Antimatroids

In the following we will discuss a link to a problem of Kortechovasz [71].

Definition 2.3.14. An antimatroid ' = (E, F) is a pair of a finite ground sdf and a set
F C 2F of feasiblesubsets of7, which satisfy the following three properties:

1. The empty setis itF.
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2. The systenf is union-closed.
3. EveryF € F\) contains an elememtsuch thatF'\{e} € F.

Antimatroids were introduced by Edelman [34] and Jamisaieer [61]. The axioms
defining antimatroids as set systems have some similaritgdse of matroids. Matroids
can be defined by an exchange axiom (e.g., the basis exclarigéependent set exchange
axioms). Korte [70] proved the following theorem, whoseqginae will sketch as an appli-
cation of some of the ULD-characterizations of Chapter 1.

Theorem 2.3.15.Antimatroids correspond to ULDs.

Proof. The orderC:= (F, C) on the feasible sets of an antimatroid is a ULD. Indeed we
can color the arcs of its Hasse diagram of the fofmF U {e}) by e and obtain a U-coloring

by property 2. in Definition 2.3.14. The first together witle tthird property yield that the
Hasse diagram has a unique soujceSince the diagram is clearly acyclic Theorem 1.3.3
yields the claim.

On the other hand it is easy to see, that every ULDnay be represented as the in-
clusion order on the feasible sets of an antimatroid. We bheeACP-construction from
Section 1.2. The ground set for our antimatroid consisthefreet-irreducibled (L)
of L. For everym € M(L) setA,, := {j € J(L) | m € 157\1j} and denote by
Amc) = {Am | m € M(L)} their collection. The feasible sets of the antimatroid are
now given byﬁngAM(E)(I(j(ﬁ))). We haveﬁngAM(ﬂ)((Z)) = () and by Proposition 1.2.5
the Systenying 4, ., (Z(J(L))) is union-closed. By Theorem 1.2.24 we have tHa )
is an antichain-partition. This implies the third part offDéion 2.3.14. 0

Thefeasible polytop& s of an antimatroidV' = (F, F) is defined as theonvex hullof  feasible polytope
the characteristic vectors of its feasible sets, i.e., ¢pp() € {0,1}F | F € F}). The convexhul
convex hull of a finite set of vectong is:

convV) == {> Ay | > A, =1land), > 0}.

yev yev

In [71] the membership-problerfor feasible polytopes is discussed, i.e., giver R”
decide whether € P,. The input-size iJE| and the difficulty is, that the number of
vertices ofP is generally exponential ifF|. In [71] it is shown that for some classes of
antimatroids the membership-problem idHwhereas for other classes itNg-hard.

In the following we describe an attempt to find &fidescription ofP -, the size of the
description and the time to construct it are certainly anenfgound for the time-complexity
of the membership-problem &f-. Since an antimatroid/ corresponds to a ULIZ yr we
may apply Theorem 1.5.10 and represé€pt as a vector-addition language. This is, we
produce a Laplacious matrix/ € Z?*F and a vector € Z<, such thatF € F if and
only if there is an ordering of” = {e(1), ..., e(k)} with o + z(e(1)) + ... + z(e(i)) > 0
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for all i € [k]. If the representation of the antimatroid as antichairtifp@med poset may
be obtained in polynomial time the proof of Theorem 1.5.16stauctiveM in polynomial
time ind. Now, by Remark 1.5.11 the producéd has actually a stronger property which
in terms of antimatroids reads(F) | F € F} = {2 € {0,1}¥ | Mz > —0} =: P,.

Hence the polytop®, containsP, andP,. N {0,1}* = P, N {0,1}¥. Since both
polytopes lie inside th€0), 1)-hypercube ané  is a(0/1)-polytope all vertices oP s are
vertices ofP .. The other vertices d? - are no(0, 1)-vectors. The obvious question is:

Question 2.3.16.Under which circumstancesis: = Pas?

In advance: this is not always the case. But for a moment sgio= P,/ . If the num-
ber d of rows of the matrix)/ is polynomial in|E|, then we can answer the membership
problem in polynomial time. In particular, if the size of thetichains in the representation
of Ly is bounded by a constant, théns polynomial in|E| by Remark 1.5.12. We will
now discuss a certain class of antimatrolsfor which the membership-problem has been
shown to beNP-hard in [71]. We will show, that the size of the antichaingtie representa-
tion of L is bounded by2. Hence, membership testing fBi: works in polynomial time.
Thus, for this class of antimatroids we ha¥g # P s, unlessP=NP.

point-line search The point-line search antimatroidV'(G) of an undirected grapty = (V, &) is defined

antimatroid as follows. The groundset consists¥6fu £ and a subsef’ is feasible if and only if for
every edge{u,v} € F at least one of its ends is also i In [71] it was shown that the
membership-problem fd? \/ is NP-hard. On the other hand there is a representation as
antichain-partitioned posé¢P, Ao) of £ with antichain size bounded &y

The bipartite poseP has a lower hall/; with an element; for every vertexv of G. The

upper halfV, contains degree many copi¢sa(1),...,v2(deg(v))} of every vertexv of

G. The order relation is defined byy < w2 (7) if and only if v = w. To define the
antichain-partitiond g take the singleton-partition ovi; and for every edgév, w} € £ lay

an antichainA(v, w) over still uncovered copies ef andw, respectively, inls. It is easy
to check that the feasible sets.bf coincide withfing 4, (Z(P)) and thatdg is a reduced
antichain-partition, see Theorem 1.2.24.

Despite the fact, that the constructed polytéhe containing a given feasible polytope
P s, does not generally coincide with the latter, we have eeddne knowledge concering
the membership-problem. The inequalities derived fromofam 1.2.24 are new ingredients
to the study of feasible polytopes of antimatroids.

Since M is Laplacious,M0 > —o andP, > 0 by Theorem 2.3.1P, is a ULD-
polytope. So, we have constructed a ULD-polytope contgirirfeasible polytope of an
antimatroid, but this might not be the smallest one. Ord#yippes are exactly those full-
dimensional(0/1)-polytopes which are distributive one might hope for a gatization of
that statement. It is easy to see, tftl)-polytopes which are ULD-polytopes are feasible
polytopes of antimatroids but the converse is not clear.
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Figure 2.5: A graph and the antichain-partitioned posaesmonding to its point-line search
antimatroid. We have marked a on the left and the corresponding
of the ACP on the right.

Question 2.3.17.Are feasible polytopes of antimatroids ULD-polytopes?

For polytopes which are nqt)/1)-polytopes it is easy to find exampl&where the
vertices ofP form a ULD with respect to the dominance-order, but the whmé/tope
is not a ULD-polytope. Cyclic polytopes even give a classxdmples for this in terms
of distributive lattices and D-polytopes. In contrastHedescription byV-descriptionof a  V-description
polyhedrorP we refer to a set of poinfg = UUW C R¢ such thaP = con\U)+cong V).
The “+” denotes theMinkowski sumwhich consists of the pointwise sums of both object$inkowski sum
We are far away from any answer to the following generaliratf Question 2.3.17.

Question 2.3.18.Is there a characterization of ULD-polyhedra in terms ofirthe
V-description?
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2.4 Distributive Polyhedra

For the rest of the chapter we will fully concentrate on thesslof distributive polyhedra.
D-polyhedra will turn out to have very nice connections teesal combinatorial objects
such as arc-parameterized digraphs, generalized flowsjieincular oriented matroids. In
particular we will see, how the discrete distributive ke discussed in the previous chapter
turn out to be the sets of integer points of particularly nitegral distributive polytopes.

For a start, as we did for ULD-polyhedra we want to find a geoimeharacterization
of distributive polyhedra. D-polyhedra are exactly thost/pedra, which are U-polyhedra
and L-polyhedra at the same time, see Definition 2.1.8. Hémgeincipal we obtain an
‘H-description as a consequence of Theorem 2.3.6 and its duaterpart in terms of L-
polyhedra. But in order to promote a special property whichdlyhedra have and ULD-
polyhedra do not share, we use a little different approaelces of D-polyhedra are D-
polyhedra. We use this to obtain a new proof of the charazttoin of D-polyhedra.

Lemma 2.4.1. Faces of D-polyhedra are D-polyhedra.

Proof. Let P be a D-polyhedron such th®® C HS = {z € R" | (z,2) <
c} and letF=PnNH be a face. Suppose that there arey < F such that
max(z,y) ¢ F. Sincemax(z,y) € P this means(z,max(z,y)) < ¢ Since
2c = (z,x 4+ y) = (z,max(x,y)) + (z, min(x, y)) this impliesmin(z,y) ¢ P — a contra-
diction. O

We have gathered enough instruments to characterize:

Theorem 2.4.2. A polyhedrorP C R™ is a D-polyhedron if and only if
P={zeR"|Niz<c}

for some generalized network-mat¥%, andc € R™.

Proof. “<=": If P may be represented as claimed, then it is a U-polyhedron l@p-Th
rem 2.3.6 and an L-polyhedron by Remark 2.3.7.

“

=" By Lemma 2.4.1 every fack of P is distributive. Lemma 2.3.1 ensures th#t(F)

is distributive. Theorem 2.2.11 yield$f (F) = {z € R™ | N(F);{(F)x = ¢(F)} for a gener-
alized network-matrixV (F) s . In particular this holds fosff(P), which we will actually
represent agz € R™ | N(P)X(P)x < ¢(P)}, using Lemma 2.2.12. For a facetchoose
a columnzg of N(F)r) such tha E = {z € R" | (zr,z) < cf} is a facet-defining
halfspace forF. Sincezg is a column of a generalized network matrix it is a generdlize
network matrix itself and by Lemma 2.3.3 we have tHatis distributive.

By the above chain of arguments we can transform the repiesmngiven by the Repre-
sentation Theorem for Polyhedra [110]:

P=(() HR)Naff(P) = ([ {z € R"| (2, 2) < ce})N{z € R" | N(P)] pya < c(P)}.

F facet F facet
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Here the single matrices involved are generalized netwaakrices. Glueing all these matri-
ces horizontally together one obtains a single generatizédork-matrixV, and a vector
suchthaP = {z € R" | N1z < c}. O

Remark 2.4.3. By Proposition 2.2.8 it follows that the systemATa: < ¢ with equality-
and inequality-constraints defines a D-polyhedron wheneVgris a generalized network-
matrix.

Remark 2.4.4. Generalized network matrices are not the only matricesciatoe used to
represent D-polyhedra. Scaling columns\gf and entries of simultaneously preserves the
polyhedron but may destroy the property of the matrix beiggreeralized network matrix. If
the polyhedron is full-dimensional, thigé-description is unique up to that scaling-operation.
Hence, for full-dimensional D-polyhedra there is no morebaguity than scaling in our
characterization.

There may, however, be representations of different tyghkdfpolyhedron is not full-
dimensional. Consider e.g., the D-polyhedron consistfradlgcalar multiples of1,1,1, 1)
in R?, it can be described by the six inequalitle} y =i — Y_,x xi < 0, for X a 2-subset
of {1,2,3,4}.

2.4.1 Towards a Combinatorial Model

After the geometrical characterization of D-polyhedra thst of this section is devoted

to understand the combinatorial meaning of distributivlylpedra. We have shown that a
D-polyhedronP is completely described by an arc-parameterized digiaphand an arc-
capacity vector € R™. This characterization suggests to consider the poingsas ‘graph
objects’. Apotentialfor D, is a vectorp € R", which assigns a real numbgy to each potential
vertexi of Dy, such that the inequality; — A\,p; < ¢, holds for every ara. = (4, j) of Dj.

The points of the D-polyhedra®(Dx, c):= {p € R" | Nip < c} are exactly the potentials

of Dy.

—
N
(an]
S—
|
O~
|
= =N
(VAN
O =

Figure 2.6: D-polytope represented by an arc parametefizednd transposed generalized
network—matrixNAT with capacities:. The arcs correspond to the defining inequalities. A
tuple at ara: stands for(cg, Ag ).

Theorem 2.4.2 then can be rewritten in terms of vertex piasnt
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Theorem 2.4.5. A polyhedron is distributive if and only if it is the set of potials of an
arc-parameterized digrapi , .

Interestingly there is a second class of graph objects adedcwith the points of a
D-polyhedron. While potentials are weights on verticess #econd class consists of el-
ements of the arc-space @#,. We defineT(D,) to be the space I&VY). In the
spirit of the terminology ofjeneralized flowsc.f. [3], we call the elements of (D,) the
tgene_:ralized generalized tensiorsf D. Given a D-polyhedrof( Dy, ¢) with capacity constraintswe
ensions IOOk a.t

T(Da,c) :={x € R™ |z < candz € IN(N])} = NIP(Da,c).

The elements off (Dy, ¢) are then called generalized tensiomihin the capacity con-
straintsc.

Theorem 2.4.6.Let D be an arc-parameterized digraph with capacitiess R™. The
set T(Dy,c) is a polyhedron and affinely isomorphic to a D-polyhedi®n Here P’/
can be obtained fronP = P(Dj,c) by intersectingP with some hyperplanes of type
H; = {x | ; = 0}. In particular T(Dj, ¢) inherits the structure of a distributive lattice by
the bijection toP’.

Proof. SinceT(Dy,c) = N{P for the D-polyhedrorP of feasible vertex-potentials db,,
andN}( is a linear map, the set of generalized tensions is a polgimedr

If NT is bijective onP, then the sefl (D, ¢) inherits the distributive lattice structure
from P. This is not always the case. In the rest of the proof we shawie always find a
D-polyhedronP’ C P such thatV} is a bijection fromP’ to T(Dj, ¢).

From Theorem 2.2.11 we know that K&f!) is a distributive space and that there is an
NND basisB of Ker(NT). For everyb € B fix an arbitrary element(b) € b. Denote the
set of these elements iy B). DefineS := span({e; € R" | i € [n]\I(B)}).

1. Sis distributive:
By definitionS has an NND basis, i.e., is distributive by Proposition 212.1

2. T(Dy) = NIs:
SinceT(Dy) = Im(NT) O NTS it suffices to show ", So letNip = x € T(Dy).
Definep’ := p— 3", p(52b). Sinced ", 5 (piw)b) € Ker(N7) we haveN{p' = .
Moreoverp, = 0 forall i € I(B), i.e.,p’ €S.

3. NI':S < T(D,) is injective:
Suppose there agep’ € S such thatVip = Nip'. Thenp—p' € Ker(NI)NS. But
by the definition ofS this intersection is trivial, i.ep = p'.

We have shown thav? is an isomorphism fror to T(D, ) and thas is distributive. Thus
P’ := P NS is a D-polyhedron such that the linear map defined by the mafﬁ is a
bijection fromP’ to T(Dy, ¢). O
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The intersection oP with H; can be modeled by adding a loep= (i, ) with capacity
ce = 0to the digraph. Hence, with Remark 2.4.3 the preceding #ramays that for every
T(Dax, ¢) we can add some loops to yield a graPhy, and capacitieg’ such that

T(Dp,c) = T(D;v,c/) &~ P(Dﬁ\,,c/) =P

In the following we will always assume that generalized tensT (D, ¢) have the property
thatT(Dy, c) = P(Dy,¢). In this case we callDy, ¢) reduced reduced

Note thatT (D, ¢) can be far from being a D-polyhedron, but it inherits therdistive
lattice structure via an isomorphism from a D-polyhedron. the following we investi-
gate generalized tensions, i.e., the elements(d@?, ), as objects in their own right. Since
T(Dy) = Im(N}) = Ker(Np)* we can make the following fundamental:

Observation 2.4.7. A vector z € R™ is a generalized tensions ¢D,) if and only if
(x, f) =0forall f € Ker(Ny).

Thus, understanding the elements of (€ ) as objects in the arc spaceBf, is vital to
our analysis. This will provide the link to flows and genezadl flows of directed graphs. In
Section 2.4.2 we review the caseaftlinary tensions, which leads to a description closely
related to the definition ofA-tensions. In Section 2.4.3 we then are able to describe the
generalized tensions db, as capacity-respecting arc values, which satisfeneralized
circular balance conditioraround elements of KéN, ), see Theorem 2.4.18.

2.4.2 Tensions and Alcoved Polytopes

In this section we present a special case of distributivgtppes with particularly nice prop-

erties with respect to integrality constraints and manyliegpons in graph theory. In fact,

the results presented here are those which gave first ribe idéa of considering distribu-
tive polyhedra in general. In a sense the results of thisexilos are a very special version
of what we will obtain as a generalization in the subsectaftexwards.One particular prop-
erty of the polytopes in this section is their behavior wigspect to integrality constraints.
This is something which will not carry over to the generalecas

We look at the case wher®, = (V,A) is an arc-parameterized digraph with
A € {0,1}™,. More precisely\, = 0 if and only if a is a loop and\, = 1 otherwise.
In this casel, is the network-matrix N of the underlying digraptD, i.e., N € R™ ™  network-matrix
consists of columns; — e; for every non-loop are. = (7, j) ande; for a loopa = (3, 1).
Thus, we identifyD, with D and forget abouA.

By Observation 2.4.7 in order to understand the generalizesions ofD we have to
analyze KefN). This is a classical subject of algebraic graph theory [S2je elements
of Ker(N) =:F(D) are theflows of D, i.e., those real arc valugs € R which respect flow
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flow-conservatiomt every vertex o). Each support-minimal elemefite F(D) is a scalar
multiple of thesigned characteristic vectoy (C) of an oriented cycl€” € C(D) of D. We  signed
sign vector define’ (C') as thesign vectory (C) € {+1, —1,0}" associated t6’, where Y (C), = 1  veaar e ="

ifacCt, X (C)y=—1ifa e C™and’x (C), = 0 otherwise.

The sefT (D) of generalized tensions @b consists of those € R with (x, f) = 0 for
all flows f. This is equivalent tdz, %' (C)) = 0 for all C' € C — the circular balance condi-
tions for tensions. So in this particular casedof {0, 1}™ we may define the generalized
tensionsT (D)< very analogously to ordinary tensions (Definition 1.4.1jtasser € R™

such that
(D) z(a) < c(a)foralla € A. (capacity constraints)
(D'2) 0=3 cc+ z(a) = > co- x(a)forall C. (circular balance conditions)

The only difference here is, that we have no lower arc-caigacind that we do not restrict
to the set tointeger vectors. We refer to the generalized tensions in this speaise as
real tension real tension®f D within c.

Theorem 2.4.6 yields a distributive lattice structure amgbt of real tensions(D, ¢) by
identifying it via affine equivalence with a distributivelgtopeP (D, c).

The particular form ofA allows us to show a distributive lattice structure on the
tension integral tensions7 (D, ¢):= 7o(D, —00,c) = T(D,c) N Z™ with upper arc-capacities
of D, as originally defined in Definition 1.4.1. Just eto the all-zeroes vector and let all
arcs have unbounded lower capacity. To the end of provingtalalitive lattice structure on
integral tensions we first make the following:

Observation 2.4.8. The intersection of a D-polytope C R™ and any other (particularly
finite) distributive sublattic& of R™ yields a distributive lattic® N L.

So if P C R™ is a D-polyhedron, the® N Z™ is a distributive lattice. Since by The-
orem 2.4.6 we can assuné’ to be bijective onP(D, c¢) we obtain a distributive lattice
structure onNT(P(D, ¢) N Z™). However, what we want is a distributive lattice on integral
tensions, i.e., o (D,c) = T(D,c)NZ™ = (NTP(D,c)) N Z™. Luckily, N is a totally
unimodular matrix, which yield$NTP(D, c)) N Z™ = NT(P(D,c) N Z"), see [99]. We
obtain:

Theorem 2.4.9.The set of integral tensioris( D, ¢) is affinely isomorphic t& (D, ¢c) N Z™.
Thus,7 (D, ¢) carries a distributive lattice structure and is the set ofeger points of a
polyhedron.

Indeed, the result obtained is even more general. In Settdbwe have shown that the
set of A-tensions of a digraph with lower and upper arc-capacisésimorphic to the set of
integral tensions (Lemma 1.4.5) of a digraph with only uggrercapacities (Remark 1.4.15),
the isomorphism is just a translation[®i*. We obtain a version of the first main result of
Section 1.4 (Theorem 1.4.9) enhanced with a statement abauéxity.
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Theorem 2.4.10.Let D be a digraph with capacitiegy, ¢,. The setZa (D, ¢, ¢,,) carries
the structure of a distributive lattice and is the set of g&epoints of a polyhedron.

As a reminder we restate a list of formerly constructed iistive lattices, which may be
modelled ag\-tensions and by Theorem 2.4.10 form sets of integer pofrslghedra:

« domino and lozenge tilings of a plane regioné(Rla [97] and others based on
Thurston [105])

 planar spanning trees (Gilmer and Litherland [48])

« planar bipartite perfect matchings (Lam and Zhang [73])

* planar bipartitel-factors (Felsner [39], Propp [92])

¢ Schnyder woods of a planar triangulations (Brehm [25])

« Eulerian orientations of a planar graph (Felsner [39])

» o-orientations of a planar graph (Felsner [39], Ossona deddefB8])

* k-fractional orientations with prescribed outdegree of angr graph (Bernardi and
Fusy [11])

« Schnyder decompositions of a plati@ngulations of girthl (Bernardi and Fusy [12])

« circular integer flows of a planar graph (Khuller, Naor arldiK [66])

* higher dimensional rhombic tilings (Linde, Moore, and Nainl [77])

« c-orientations of a graph (Propp [92])

From a polytopal point of view, the distributive polyhedmriesponding to tensions of
digraphs form pretty nice and special classes:

Given a poseP its order polytopds defined as the convex hull of the characteristic veerder polytope
tors of the ideald € Z(P) of a the poset. Order polytopes encode many poset properties
and enhance them with a notion of geometry. In [102] Stanteyides a characterization of
order polytopes in terms of thei{-description. It is easy to see, that thedescription
in fact coincides with the one of those distributive polygef?’(D,,c) with parameters
A, c € {0,1}™. The underlying digrapl® is the isomorphic to the Hasse diagranfband
the tensions oD correspond to the ideals &f. Indeed, one can prove that@/1)-polytope (0/1)-polytope
P (all vertices ofP are(0/1)-vectors) is a D-polytope if and only if it is an order-polpt&
Is an analogue statement true {0y1)-polytopes that are ULD-polytopes and feasible poly-
topes of antimatroids? This relates to Question 2.3.17.

If we broaden the set of parameters from order polytope#styjigo A € {0,1}" and
c € Z™ we obtain the more general classal€oved polytopes Alcoved polytopes have
proven to model a big variety of combinatorial objects [MJ just contributed\-tensions
and all their special instances to it. Moreover, it has bdwws in [63] that alcoved poly-
topes coincide withpolytropeswhich are of importance in the study wbpical convexity.
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Theorem 2.4.2 tells us that alcoved polytopes are distvibutMoreover, their integer
points correspond to vertex potentials of digraphs witlime capacity constraints. Theo-
rem 2.4.9 characterizes the integer point sets of alcovidgpes in terms of the arc-space,
i.e., P is an alcoved polytope if and only ¥ 7P N Z™ corresponds to the integral tensions
of directed graph.

In the next section we characterize those real-valued &ib§¢he arc space of parame-
terized digraphs, which can be proven to carry a distrilaut@ttice structure by the above
method agyeneralizedA-tensions. The generalization of Theorem 2.4.10 to geizedhl
A-tensions is stated in Theorem 2.4.20.

2.4.3 General Parameters

In this subsection we will develop a full characterizatidrgeneralized tensions. We will
make connections to generalized flows and to bicirculambei matroids. So we look at
the case of general tensions of an arc-parameterized digdap The aim of this section is
to describel (Dy, ¢) as the orthogonal complement of K&k, ) within the capacity bounds
given byc. For f € R"™ andj € V we define theexces®f f atj as

w(],f) ::( Z fa)_( Z )‘afa)'

a=(4,j) a=(j,k)

Since f € Ker(Ny) meansw(j, f)= 0 for all j € V we think of f as an edge-
valuation satisfying @eneralized flow-conservatioiVe call the elements of KéN, ) the
generalized flowsf Dj.

Generalized flows were introduced by Dantzig [29] in theieixand there has been much
interest in related algorithmic problems. For surveys anwiork, see [3, 106]. The most
efficient algorithms known today have been proposed in [44].

We will denoteF(Dp) := Ker(Ny) and call it thegeneralized flow spaceLet C(Djy)
be the set of support-minimal vectors BfDx)\{0}, i.e., f € C(D,) if and only if
g C fimpliesg = fforall g € F(DA)\{0}. The elements o€(D,) will be called
generalized cyclesSince the support-minimal vecto€§ D, ) span the entire spa¢€ D)
the generalized tensions 6f, are already determined by being orthogonaC{®, ), i.e.,
to all generalized cycles.

In the following we answer the question what generalizedesiook like as subgraphs of
D,. After some definitions and technical lemmas we give a coatbiial characterization
of generalized cycles, see Theorem 2.4.17, which makeskadibicircular oriented ma-
troids. Later this leads to a description of generalizeditars in the spirit of the definition
of ordinary tensions in Section 1.4

For anoriented arc-set of D, define itsmultiplier as
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A(S) = T AX e,

a€sS
where' (S), = +1 depending on the orientation afin S.

An oriented cycleC' in the underlying digraptD will be calledlossyif A(C)< 1, and lossy
gainyif A(C') > 1, andbreakeverif \(C) = 1. A bicycleis an oriented arc set that can beyainy
written asC' U P U C’ with a gainy cycleC, a lossy cycle®” and a (possibly trivial) simple E{S;Cklg"e”
oriented pathP from C to C’; moreover, the intersection 6f andC’ is a (possibly empty)
interval of both. Moreover' andC’ are equally oriented on this interval. See Figure 2.7
for the three typical examples. More precisely, every deyg isomorphic to a subdivison
of one the graphs in the figure. We denote the set of bicycl@derakeven cycles db, by

B(Dy).

Figure 2.7: Bicycles with? = () and P # ().

Recall that forz € R™ the support was defined as= {i € [m] | x; # 0}. Generally,
asigned sefX = (X, X ™) is a pair of disjoint sets of positive and negative elemeéfts signed set
and X —, respectively. Thaupportof X is X:= XT U X . Fori ¢ X we write X; = =1  support
if i € X+, respectively. Ifi ¢ X, then we denoté(; = 0.

Note that this is a direct generalization of oriented arts-aad their forward and backward
arcs and their signed characteristic vector. We definsitfreed supportf a vectorz as the signed support
signed set with suppotand 2 * := {i € z | z; > 0} and 2~ := {i € z | z; < 0}.

Remark 2.4.11. Note thatC (D, ) is exactly the set of signed circuits of tbeented ma-
troid induced by the matrixVy, see [19]. In Theorem 2.4.17 we pro#¢Dy) = C (Da).
Hence we provide a description of the circuits of the matrioéded only on the arc-
parameterized digrapb,. It turns out that oriented matroids arising 86D, ) are ori-
ented versions of a combination of a classimatle matroidand abicircular matroid The
latter were introduced in the seventies [81, 101]. Activeesrrch in the field can be found
in [49, 50, 82]. We feel that oriented matroids of generalinetwork matrices are worth
further investigation.

In order to understand generalized flows, in the followingeas we will determine
how flow is transformed when transported trough an arc-paranzed digraph. Let
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W = (a(0),...,a(k)) be a walk inD, i.e., W' may repeat vertices and arcs. We abuse
notation and identifyy” with its signed supportV, which is defined as the signed support
of the signed characteristic vector df, i.e., W := M Even more, we writéV; and
W for the same sign, namely the orientation of the & in 1. Note that cycles and
bicycles can be regarded to be walks; these will turn out tthbemost interesting cases
in our context. A vectorf C R™ is aninner flowof W if f = +W and [ satisfies the
generalized flow conservation law between consecutivechﬁé.

Lemma2.4.12.LetW = (a(0),...,a(k)) be awalkinD, and f an inner flow ofi¥’. Then

faey = EXW) ™ fo0)

where the ‘correction termkK is given byK = WOWk)\m(?)’)‘(O W(’)/\Zl(i;l)(o’w’“). In particular
the space of inner flows ¥ is one-dimensional.
Proof. We proceed by induction ol If £ = 0, then
max(0,Wp) y min(0,W —
WoWoroy OO N W) £y
= A AW fag)
= A AG(EVO Fa)
= fa
If k£ =1, then our walk consisting of two arcs has a middle vertex;js&ncej is an inner
flow w(i, f) = 0. This can be rewritten a8’y \ (H)“n (0.Wo) fa Wl)\gz"ix(o W) fa . Now
we can transform
max(0,W, min(0,W- —
WOWI)\ (a)( O)Aa(l)( 1) ( ) 1fa(0)
o max(0,Wp) W min(0,W1) \ —W.
= WoA a(0) YA Ofa oW1, ) YA (1)1
. max(0,W7) min(0,W1) y\ — W
= W )\a(l) ' fa(l)Wl)‘au) ' )\a(l)l
= Jfa(1)-
If & > 1, then we can look at two overlapping walk&’ = (a(0),...,a(¥)) and

W" = (a(?),...,a(k)). Clearly f restricted tol¥’’ and W" respectively satisfies the pre-
conditions for the induction hypothesis. By applying thduntion hypothesis té/” and
W' we obtain

fary = WeWk)\ZZT(O’WZ)Agtikn)(o’wk))\(wﬁ)_lfa(e) and

fay = WoWMm(%))((OWO)AZI(}I;(OWUA( N7 -

Substitute the second formula into the first and observelthdt, = 1, and that from the
product of four terms\,,, with different exponents the singhe, (ig)/e needed for\(W)~!
remains. This proves the claimed formula fQyy) - O
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Lemma 2.4.13.Let P = (a(0),...,a(k)) be a simple path froma to v’ in Dy. If fis an
inner flow of P with f = P, thenw(v, f) < 0 andw(v’, f) > 0.
—
Proof. By definitionw(v, f) = —Po)\%’)‘ (0.P0) fa . Since, ) > 0 andj‘a_(o)) = Py we
concludew(v, f) < 0. For the second inequality we use Lemma 2.4.12:
w(v/,f) — P (;mnOPk fa
_ Pk)\ min(0, Pk)POPk/\max(O,Po)/\min(O,Pk))\(P)_lfa(O)

a(k) a(0) a(k)
POAZI(%))((O’PO))\(P)_lfa(O)
Since), (), A(P)~ > 0 and f,) = P, = Po we concludes(v’, f) > 0. O

Lemma 2.4.14.LetC = (a(0),...,a(k)) be a cycle inD, and f an inner flow ofC with
f = C.Thenthe excess(v, f) at the initial vertex satisfiesv(v, f) =1 — A(C).
J,

Proof. Reusing the computations from Lemma 2.4.12 we obtain
wv, f) = Cedy, mm(o C) fa(k) — C’o)\mx(0 CO)fa(o
max(0,C max(0,Co)

= C A (0)( O))\( ) fa(O) - CO)‘(Z(O (0.Co) fa

= G ™ faoy M) = 1),

SinceA,(g) > 0 andfa_(o)) = Cy we concludev(v, f) = A(C)~! — 1. Finally observe that
MOt —1=1-)O). O

Theorem 2.4.15.Given a bicycle or breakeven cyck of Dy, the set of flows with
f = +H is a 1-dimensional subspaceffDy ).
LR

Proof. Given H € B(D,) we want to characterize thoge € F(Dy) with f = +H.
—_

Lemma 2.4.12 implies that the dimension of the inner flow#/af at most one. Hence, it

is enough to identify a single nontrivial flow df.

If H=C e B(D,) is a breakeven cycle, which traverses the an¢8), . . ., a(k)) start-
ing and ending at vertex, then by Lemma 2.4.14 we haugv, f) = 1 — A(C). SinceC

is breakeven\(C') = 1, this implies generalized flow-conservation:in Since by defini-
tion generalized flow-conservation holds for all other i we may conclude thdtis a
generalized flow, i.e., a nontrivial flow oH .

Let H € B(Dp) be a bicycle which traverses the args0),. (k ) such that
C = (a(0),....a(i), P = (a(i +1),....a(j — 1)) andC" = (a(j)....,a(k)). Letu
andv’ be the initial vertices of® and(’, respectively.

Consider the case whereis non-trivial. We construct € F(D,) with f = H. First

—

take any inner flowfc of C with fo = C. SinceC' is gainy Lemma 2.4.14 implies a
—
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positive excess at. Let fp be an inner flow of” with fp = P. Lemma 2.4.13 ensures
—

w(v, fp) < 0. By scalingfp with a positive scalar we can achievév, fo+ fp) = 0. From
Lemma 2.4.13 we know thgt: + fp has positive excess at. SinceC’ is lossy any inner
flow for of C” has negative excessw@t(Lemma 2.4.14). Hence we can scgie to achieve
w(v', fer + fp) = 0. Together we have obtained a generalized ffow= fo + fp + for,
i.e., a nontrivial flow onA.

If Pis empty, therv andv’ coincide. As in the above construction we can scale flows on
C andC’ such thatw(v, f) = 0 holds forf := fo + for, i.e., f is a generalized flow. 1€
and(C’ share an interval, then the sign vectorsbandC’ coincide on this interval. From
f_q =C andf_’C) = (! itfollows tha‘ri> = CUC’ = H. Hencef is a flow onH. O

As a last lemma for the description of generalized cycles eaxin
Lemma 2.4.16. A bicycle does not contain a breakeven cycle.

Proof. The cyclesC andC” of a bicycleH = C'U P U C’ are not breakeven. Il contains
an additional cyclce? then the support of’ must equal the symmetric difference of supports
of C'andC’. Letz := A(C\C'),y := A\(C' N "), andz := \(C'\C), where orientations
are taken according t6' andC”, respectlvely We havey = A\(C) > 1 > A\(C') = zy.
HenceA(C) = (zz~1)*!, butzz—! = zy(ay)~! < 1. Thatis,C cannot be breakeven.[]

Theorem 2.4.17.For an arc-parameterized digrapP, the set of the supports of general-
ized cycles, i.e., of support-minimal flows, coincides withset of bicycles and breakeven
cycles. Stated more formallyC (D) = B(Da).

Proof. By Theorem 2.4.15 ever¥f € B(D,) admits a generalized flo. To see support-
minimality of f, assume thatl € B(D,) has a strict subsef which is support-minimal
admitting a generalized flow. Clearlycannot have vertices of degré¢o admit a flow and
must be connected to be support-minimal. Sifce H € B(D,) this implies thatS is a
cycle. Lemma 2.4.14 ensures tifamust be a breakeven cycle. Af was a breakeven cycle
itself, then it cannot strictly contaif. Otherwise ifH = C U P U C" is a bicycle then by
Lemma 2.4.16 it contains no breakeven cycle.

For the converse consider asye C(D,), i.e., the signed support of some flgv We
claim thatS := f contains a breakeven cycle or a bicycle. If it contains akwesn cycle,
then we are done. So we assume that it does not. Under thimpsisn it follows that there
are two cycleg”;, C5 in a connected component 6f If ¢, and C; intersect in at most
one vertex, then, since reorientation corresponds totimgethe multiplier, we can choose
the orientations for these cycles such thaf;) > 1 andA(Cs) < 1. If C1 N Cy = 0,
then letP be an oriented path fromy; to Cy. Now C; U P U Cs is a bicycle contained in
S. The final case is thaf, andCy share several vertices. L&t be an interval of”y over
(1, i.e., a consecutive piece 6% that intersectg’; in its two endpoints andw only. The
union of Cy and B is a theta-graph, i.e., it consists of three disjoint path B2, B3 joining
v andw, see Figure 2.8. Let the three paths be oriented as showae ffigtire, i.e., not all
in the same direction, and |ét = B, U B, andC’ = B, U Bs. If C U C’ is not a bicycle,
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then the cycles are either both gainy or both lossy. Assuraktliey are both gainy, i.e.,
AC) > 1and\(C’) > 1. Consider the cycleE = B; U By ' andE’ = B! U B3, since
AE) = M(B)A(B3)~! = ME")~! it follows that eitherE or E’ is a lossy cycle. The
orientation ofF is consistent withC' and the orientation of’ is consistent withC’. Hence
eitherC' U FE or C' U E' is a bicycle contained if. This contradicts the support-minimality
of f. O

N_ S

Bg —_—
Figure 2.8: A theta graph and an orientation of the threegpath

We are now ready to obtain a characterization of generateesions which clearly gen-
eralizes the one of tensions in Section 1.4. Hoe B(Dj) we definef(H) as the unique
f € C(D)with f(H) = H and||f(H)|| = 1. Letz € R™ andH € B(D,). Denote by

R

0(H,x):= (x, f(H)) thebicircular balanceof 2 on H. bicircular balance

Theorem 2.4.18.Let D) be an arc-parameterized digraph andc¢ € R™. Then
x € T(Dy)<. if and only if
(1) =z, <c,forallacA. (capacity constraints)
(2) O(H,z)=0forall H € B(Dy). (bicircular balance conditions)

The theorem helps to explain the nageneralized tensionsisually a tension is a vector
x € Z* such that for every cycl€' its signed characteristic vectors is orthogonattae.,
(z, X (C)) = 0. In our context the role of cycles is played by generalizedes; i.e., by
generalized flowg with i = H forsomeH € B(D,).

Remark 2.4.19. The appearance of Theorem 2.4.18 is based on the analydie afet
B(Dp). The combinatorial description d3(D,) in terms of oriented matroids (see Re-
mark 2.4.11) is what sheds a particularly interesting ligiitgeneralized tensions. While
we have already characterized and understood the cirduitsr@mriented matroids, finding
a combinatorial characterization of the signed supporsupport-minimal tensions corre-
sponds to a characterization of the cocircuits of the ogi@mhatroid and enrich the theory.

We want to make the statement of the Theorem 2.4.18 more gjeanaat for aesthetical
reasons we want to make it resemble the first main theorent @béensions in Section 1.4
(Theorem 1.4.9). For the case of making the analogy morerappave will use Theo-
rem 2.4.18 as a definition and the definition of generalizeditms as a theorem. So let
Dy be an arc-parameterized digraph with upper and lower araoitgsc,,c, € R™,
respectively, and a numbeXy for eachH < B(D,). A vectorz € R™ is called a

generalizedA-tensionif generalized
A-tension
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(B1) ce(a) < z(a) < cy(a)foralla € A. (capacity constraints)
(B2) 6(H,z) = Apforall H € B(D,). (bicircular A-balance conditions)

Denote byT A (Dj, ¢) the set of generalizefi-tensions ofD 4, note the similarity to the def-
inition of A-tensions (Definition 1.4.1). Arguments as in Section 1eld/thatT A(Dy, ¢)

is just a translation in the arc-space of som@,,¢’). Thus we obtain the real-valued
generalization of Theorem 2.4.9 as a corollary of Theoreh62.

Theorem 2.4.20.Let Dy be an arc-parameterized digraph with capacitiess R™ and
A € RB(PA), The sefTa(Day, c) of generalizedA-tensions carries the structure of a dis-
tributive lattice and forms a polyhedron.

2.4.4 Planar Generalized Flow

As an application of the theory of generalized tensions is sbsection we prove a dis-
tributive lattice structure on certain classes of geneedlliflows of planar digraphs. This can
be understood as a generalization of the results in Subset#.3. Thalual digraphD* of

a crossing-free embedding oRaconnected planar digraph in the sphere is an orientation
of the planar duaiz* of the underlying grapldz of D: Orient an edgdv, w} of G* from

v to w if it appears as a forward arc in the clockwise facial cycldoflual tow. Call an
arc-parameterized digrapgh, breakevenf all its cycles are breakeven.

Theorem 2.4.21.Let D be a planar breakeven digraph. There is an arc parametdonat
A* of the dualD* of D such thatF(Dy) = T(Dj}.). More precisely, there is a vector
o € R™ with positive components such thats a generalized flow oD, if and only if
x = S(o)f is a generalized tension d@}., whereS(c) denotes the diagonal matrix with
entries fromo.

Proof. Let 4, ..., C,~ be the list of clockwise oriented facial cycles bf For eachC;
let f; be a generahzed flow W|tm = CZ, since C; is breakeven such afi exists by

Lemma 2.4.14. Collect the flowﬁ as rows of a matrix//. Columns ofM correspond to
edges ofD and due to our selection of cycles each column contains lgxaa non-zero
entries. The orientation of the facial cycles and the sigrddmn implies that each column
has a positive and a negative entry. For the column of.det 1, > 0 andv, < 0 be the
positive and negative entry. Defing := u,! > 0 and note that scaling the column of
with o, yields entriesl and—X: = v,u; ! < 0 in this column. ThereforeV := M S(o)
is a generalized network matrix. The construction impliegt the underlying digraph of
N+ is just the dualD* of D.

Let f € F(Dy) be aflow. Thenf can be expressed as linear combination of generalized
cycles. SinceD, is breakeven we know that the support of every generalizetedg a
simple cycle. The facial cycles generate the cycle spade.oWoreover, ifC' is a simple
cycle andf¢ is a flow withf_q = C, thenfc can be expressed as a linear combination of
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the flowsf;, i« = 1,...,n*. This implies that the rows o/ are spanning foF(D,), i.e.,
for every f there is ay € R"" such thatf = M7q. In other wordsF (D) = MTR™".

A vectorz is a tension forVy- if and only if z is in the row space oy, i.e., there is a
potentialp € R™" with z = NZLp. In other words

T(Dj) = NER" = (MS(0))TR" = S(o)MTR™ = S(0)F(Dy).
O

Corollary 2.4.22. Let D) be a planar breakeven digraph arde R™. The sef(Dj)<.
carries the structure of a distributive lattice.

Proof. The matrixS(o) is an isomorphism betwedi{D, ) andT(D3}.). Sinceo is positive
we obtainF (D)<, = S(o)T(D}., < S(o)c. Theorem 2.4.20 implies a distributive lattice
structure onTl (D}, ) <s(o) Which can be pushed ®(Dj ) <. O

In fact Theorem 2.4.20 even allows us to obtain a distrileulittice structure for planar
generalized flows of breakeven digraphs with an arbitrargscribed excess at every vertex.

The reader may worry about the existence of non-trivial gaxameterizations\
of a digraph D such thatD, is breakeven. Here is a nice construction for such
parameterizations. Lef) be arbitrary andr € R™ be a 0-tension of D, i.e.,
3(C,x) =3 et Ta — Dgec— Ta = 0 for all oriented cycleg”. Considerh = exp(z)
and note that\, > 0 for all arcsa and thatA(C) = ([Tyec+ Aa) ([luco- Aa) =
exp(d(C,x)) = 1 for all oriented cycle€”. Hence weighting the arcs @ with \ yields a
breakeven arc-parameterization/of This construction is universal in the sense that appli-
cation of the logarithm to a breakeven parameterizatiollyia0-tension.
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2.5 Conclusions

Old and New

In the present chapter we have obtained a distributiveetatépresentation for the set of
real-valued generalizedd-tensions of an arc-parameterized digraph. The proof isbas
the bijection between generalized tensions and vertesrpials. This way the tensions in-
herit the lattice structure based on componentwisse andmin from the vertex-potentials.
Consequently we obtain a distributive lattice on the gdirdtensions.

In Section 1.4 of the previous chapter we obtained the digikie lattice structure on
integral A-tensions, by showing that we can build the cover-graph dadtibutive lattice by
local vertex-push-operations and reach ev&riension this way. This qualitatively different
distributive lattice representation was possible becaweseould assume the digraph to be
reducedin a certain way.

Question 2.5.1.1s there a way to reduce an arc-parameterized digraph satththdistribu-
tive lattice on its generalized tensions can be construotsdly by pushingvertices?

A reduction toD, such thaP(Dy, c) is full-dimensional, seem to be sufficient,
when we ask for pure push-connectivity of the space of géimetatensions. If
we additionally require that every pair of generalized tens is connected via
a finite sequence of vertex-pushes, we will have to seriously mdtre set of
arc-parameterized digraphs. See the figure for a bad examplénteresting
class of D-polyhedra which if push-connected is also figimlish-connected
are D-polyhedra coming from breakeven arc-parameteriggdmhs.

Order Theory

There is a naturdinite (upper locally) distributive lattice associated to a (uplpeally)
distributive polytopeP. Start from the vertices o® and consider the closure of this set
under join and in the distributive case also meet. LE®) be the resulting (upper locally)
distributivevertex latticeof P. It would be interesting to know what information regarding
P is already contained ig(P).

Question 2.5.2.What do the generalized tensions associated to the elewiedt$) look
like for a distributiveP? In particular some special generalized tension8§(#f) including
join-irreducible, minimal and maximal elements are of iatd.

Another question arises, when viewing the results of thidiee as generalizations of
results related to the order polytope. Feasible polytopastimatroids may be seen as order
polytopes of antichain-partitioned posets. In [102] Stgrdescribes thehain-polytopeas a
polytope closely related to the order polytope.
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/

Figure 2.9: The vertex lattice of a distributive polytope.

Question 2.5.3.1Is there a generalization of the chain-polytope to anticipartitioned
posets?

An answer to this question may contribute new insights tasthdy of feasible polytopes
of antimatroids. Similarly, the integer points of alcoveayopes form a distributive lat-
tice as shown in Section 2.4.2. By Dilworth’'s Embedding Tieeo for Distributive Lattices
such embedded lattices correspond to chain-partitionegdtg. In the case of alcoved poly-
topes the corresponding chain-partitons may actually laeacierized as so-callgiisse
partitions.

Question 2.5.4.1s there a generalization of the chain-polytope to chainiEned posets?

An affirmative result into this direction would enrich theetity of alcoved polytopes.

Geometry

We have derived at{-description of D-polyhedra and ULD-polyhedra. The faetttthe
set of vertices is closed underin andmax does not imply that the polytope is distributive.
The vertices of @yclic polytopgorm a chain in the dominance order. It can be checked that
already the3-dimensional cyclic polytope ohverticesCs(4) C R? is no D-polytope. More
explicitely, aH-description ofCy(8) violating Theorem 2.4.2 may be found in [110].

Question 2.5.5.What does a’-description of (upper locally) distributive polytopeslo
like? (This again asks for a special set of elements of thiexdatticeL(P).)

On the other hand if a full-dimension@1-polytopehasmin- andmax-closed vertex-set,
then it is anorder-polytopeand consequently distributive. If a full-dimensio®&l-polytope
has onlymax-closed vertex-set, then it is the feasible polytope of amaatroid.

Question 2.5.6.Are feasible polytopes of an antimatroids ULD-polytopes?
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We have been working with sublattices of the dominance codéR¢. More generally
one could look at &Riesz spagdattice-ordered vector spacer vector latticeon R?. A
Riesz space is always a distributive lattice and (in thedidimensional case) it may be
characterized by the full-dimensional copeof any element of the space [107], see Obser-
vation 2.1.3.

Question 2.5.7.What generalizations of ULD- and D-polytopes can be obtjivehen
looking at general Riesz spaces instead of the dominanegrd

Matroid Theory

In Section 2.4.3 we have related arc-parameterized digraphicircular oriented ma-
troids, see Remark 2.4.11 and Remark 2.4.19. We have charactéheeatrcuits of the
mixed bicircular oriented matroids, we are dealing withill 8t miss a combinatorial de-
scription of the signed supports of minimal generalizeditms.

Question 2.5.8.What does the cocircuit of the mixed bicircular orientednoials related to
generalized tensions look like?

Apart from these bicircular oriented matroids the facedatof a D-polyhedron is a geo-
metric lattice, hence it encodes a simple matroid, see [@@feover faces of D-polyhedra
are D-polyhedra (Lemma 2.4.1). In the spirit of [109] it wdlde interesting to determine
the subgraphs ab,, which correspond to faces B{ Dy, ).

Question 2.5.9.What is the relation between these two matroids? What dol#ditiees of
D-polyhedra look like?

Optimization

There has been a considerable amount of research conceithealgorithms for gener-
alized flows, see [3] for references. As far as we know it hagmnkeen taken into account
that the LP-dual problem of a min-cost generalized flow is ptintization problem on a
D-polyhedron. We feel that it might be fruitful to look at $htonnection. A special case
is given by generalized flows of planar breakeven digrapiere/the flow-polyhedron is
affinely isomorphic to a distributive polyhedron (Coroll&.4.22).

In particular, it would be interesting to understand thegnal points of a D-polyhedron,
which by Observation 2.4.8 form a distributive lattice. &eH to this and to [42] is the
following:

Question 2.5.10.Find conditions o\ andc such that the set of integral generalized tensions
for these parameters forms a distributive lattice.
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Another question related to optimization issues, is the beship-problem discussed in
Subsection 2.3.1.
Question 2.5.11.0ur methods enriched the set of inequalities known ofHhdescription

of the feasible polytope of an antimatroid. Does this heljnit more antimatroids for which
the membership-problem may be efficiently solved?
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Chapter 3

Cocircuit Graphs of Uniform
Oriented Matroids

The notion of oriented matroids (OMs) is a combinatorialtedagion of linear subspaces of
the Euclidean spadg®. The theory of OMs has applications and connections to megasa
including combinatorics, discrete and computational gefoynoptimization, and graph the-
ory; see e.g. Rjrner et al. [19]. OMs have several different representatid he translation
from one into another representation are of practical @siethe present chapter discusses
graph representations of OMs, focussing on algorithmslagid¢omplexity, and extends the
work of Cordovil, Fukuda, and Guedes de Oliveira [28], Bahdeinschi, and Fukuda [7],
and Montellano-Ballesteros and Strausz [85].

Figure 3.1: A simple spherical pseudoline-arrangemenitsrabcircuit graph.

OMs may be represented by systems of signed sets (see [@efiBifi.1 for the uniform
case). The Topological Representation Theorem of FolknmanLawrence [45] says that
every oriented matroid can be represented as a fimisngement of pseudospheiiesR?.
The signed set representation then is derived from the otlise resulting cell complex.

103
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The cocircuit graph is thé-skeleton of such an arrangement of pseudospheres. Ingbe ca
of spherical pseudoline-arrangementsRity i.e., rank3 oriented matroids, its vertices are
the intersection points of the lines and two points sharedge & they are adjacent on a line.
See Figure 3.1 for an example.

Compared to the set of signed sets of a cell complex, theaotgraph is a compact and
simple structure. It is a natural question, whether thercadigraph of an OM determines
the cell complex.

Cordovil, Fukuda and Guedes de Oliveira [28] show that #hisot true for general OMs.
Nevertheless they show thatiaiformoriented matroid is determined by its cocircuit graph
together with arantipodal labeling Babson, Finschi and Fukuda [7] provide a polynomial
time recognition algorithm for cocircuit graphs of unifoeriented matroids, which recon-
structs a uniform oriented matroid from its cocircuit grajghto isomorphism.

In [85], Montellano-Ballesteros and Strausz provide a abt@rization of cocircuit graphs
of uniform oriented matroids in terms of a certain connettiof sign-labeled graphs by
signed paths.

After introducing basic notions of oriented matroids, wevg a stronger version of the
characterization of [85], i.e., a new characterizationaficcuit graphs of uniform oriented
matroids (Theorem 3.1.4). Afterwards, we describe an #dlgarwhich, given a grapld-,
decides in cubic time if7 is the cocircuit We obtain an essentially better runtimentBab-
son, Finschi and Fukuda [7]. This in particular answers atjore of Babson et al. However,
some parts of our algorithm are identical to parts of the ar{&]i

At the end we will look at another question posed in [7] cona®g antipodalityin co-
circuit graphs, which is essential for reducing the runtohthe algorithm furthermore. We
support the feeling that the antipodality problem is deeg laard by showing that a quite
natural-seeming assumption about cocircuit graphs obumibriented matroids implies the
Hirsch conjecture. Since the latter was recently disprdwe&antos [98] the assumption
is false and without it it is not clear how to progress on sorhéhe problems related to
antipodality.

The present work is also related Rerles’s conjecturevhich says that the 1-skeleton of
a simpled-dimensional polytope determines its face lattice; thisjecture was first proved
by Blind and Mani-Levitska [23] and then constructively bglii [64]. The present work
extends the discussion of Perles’s conjecture to a classesimple polytopes. Joswig [62]
conjectured that every cubical polytope can be recongduitom its dual graph; our result
proves this conjecture for the special case of cubical zipest up to graph isomorphism.
In other words, the face lattice of every cubical zonotopaigjuely determined by its dual
graph up to isomorphism.
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3.1 Properties of Cocircuit Graphs

In this section we will define the basic concepts needed &dibcussion of uniform oriented
matroids. The notions introduced here are specialized iforam oriented matroids, for a
more general introduction see [19]. After proving some b&sinmas we will reprove and
generalize a characterization of cocircuit graphs of uniforiented matroids due to [85].

We recall the definition of signed set from the last chaptesighed sefX = (X*, X~)  signed set
is a pair of disjoint subsetsX*™, X~ C FE of a ground setE. The supportofX  support
is X:=XtUX~. Fore € X we write X, = +1 if e € X%, respectively. If
e ¢ X, then we writeX, = 0. By X° we denote thezero-support E\X. The zero-support
separator of two signed sef§, Y is defined a5 (X,Y):= {e € E | {X,,Ye} = {+,—}}. separator
For a signed sefX the signed set-X is the one where all signs are reversed, i.e.,
X =Xt X").

Definition 3.1.1. We define auniform oriented matroicf rank » as a pairM = (E,C*)  uniform oriented

whereC* is a system of signed sets with ground BefThe elements af* are thecocircuits ?;itkmid (UOM)
of M. Denote byn the size ofE. ThenC* must satisfy the following axioms cocircuit

(C1) EveryX € C* has support of size — r + 1.

(C2) For everyl C FE of sizen — r + 1 there are exactly two cocircuifs, Y with support
I. Moreover—X =Y.

(C3) For everyX,Y € C* ande € S(X,Y) there is aZ € C* with Z. = 0 and
Zy € {Xy,Yy,0}, foreveryf € E\{e}.

In the rest of this chapter we will abbreviate a uniform oréghmatroid by UOM. On the
setC* of cocircuits of a UOMM one defines theocircuit graphG o, by makingX andY  cocircuit graph
adjacent if they differ only a “little bit”, i.e.| X°AY"| = 2 andS(X,Y) = 0.

A more general notion is the following. Given a graph= (V, £) with verticesV and
edgesf let ¢ : V — S be a bijection to a set of signed s&ton a ground seE, which
satisfies axioms (C1) and (C2). We céh sign labelingof G if we have{v,w} € £ ifand sign labeling
only if [¢(v)°Al(w)°| = 2 andS(4(v), £(w)) = (. Every sign labeling of G comes with
the two parametersandn.

If G has a sign labeling witls satisfying also axiom (C3), i.eG* := S is the set of
cocircuits of a UOMM, thend is a cocircuit graplz .. We then call aUOM-labeling.  uom-labeling
In [7] it is shown thatG'\, = G, if and only if M = M'.

By (C1) and (C2)G, clearly has exactljz(n_’;ﬂ) vertices. In this section, such as the
following, all the lemmas are well-known.

Lemma 3.1.2. Let Gy = (V, ) be a cocircuit graph with UOM-labeling andv € V.
Then for everyf € ¢(v)° there are exactly two neighbois w of v with ¢(u); = — and
l(w)y = +. In particular G o is 2(r — 1)-regular.
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Proof. Let / be a UOM-labelingv a vertex andf € /(v)°. Letw be a vertex with
lw)y = + andl(w)\{f} C ¢(v), such thatS(¢(v), (w)) is minimal. If there is an
e € S(4(v), £(w)) then we apply (C3) td(v), £(w) with respect taz. We obtain/(u) with
Lu)\{f} C l(v)\{e} andl(u); = +. Sincel(u). = 0 andl(u), € {{(v)y,¢(w)gy,0}
for g # e we haveS(¢(v), £(u)) C S(¢(v),£(w)), a contradiction. Thusy is adjacent to
v. If there was another neighbar of v with ¢(w’); = + then (C3) applied td(w’) and
—{(w) with respect tof would yield a cocircuit(u) with ¢(u) = £(v). Itis easy to see that

0(u) # +L(v), a contradiction to (C2). O

contraction minor A contractionminor of a UOM M = (E,C*) is a UOM of the form
M/E' = (E\E',C*/E') whereE' C E andC*/E' := {Xp\p | X € C*,E' C X°}.
Here X\ i denotes the restriction of to the ground seb\ E’. GenerallyG /g is an
induced subgraph a . The rank ofM/E" isr — |E'|. If M/E’ has rank we call it a
coline colineof M.

Lemma 3.1.3. Let Gupq be a cocircuit graph with UOM-labeling /¢ and
v,w € V with £(v) # —l(w). If ¢(v) and 4(w) lie in a coline M’ then
d(v,w) = [S((v), £(w))| + 5]¢(v)°Al(w)°| and the uniqudv, w)-path of this length lies
in Gy .

Proof. First note thatS(¢(v), £(w))| + 3[¢(v)°Al(w)°| is a lower bound for the distance
in any sign labeled graph. These are just the necessary ehémgransform one signed set
into the other. To see that in a coline there exists a pathisfength we use induction on
|S(6(v), £(w))|+3]6(v)°Al(w)°|. The induction base is clear per definition of sign labeling.
So we proceed with the induction step.

Sincewv, w lie in a coline we havé(v)?\¢(w)? = {e} for somee € E. By Lemma 3.1.2
vertexv has a unique neighbar with /(u), = (w).. If S(¢(u),4(w)) = () we have
u = w, because otherwisewould have two neighbors with(u). = ¢(w)., a contradiction
to Lemma 3.1.2. I#(u); = 0 butl(v)y = {(w)s # 0 for somef € E then we can apply
(C3) to/(w) and—¢(u) with respect tee. Any resulting signed set has suppé(t). Since
S(£(u), £(w)) # () it cannot have sign labeling/(v). On the other hand it§-entry equals
—{(v)y, i.e., it cannot have sign labelingv) either, a contradiction to (C2). This yields
1S(L(u), £(w))] = |S(l(v), £(w))| — 1. Moreover|¢(v)°Al(w)°| is not decreased, since
v, w are not adjacent. Applying the induction hypothesis gihesresult.

For a neighborv’ of v not in a coline with v,w it is easy to check that
|S(e(u), 6(w))| + $16(w)°AL(w)°] > [S(E(v), L(w))| + F|¢(v)°Al(w)°|. Hencew' cannot
lie on a shortestv, w)-path. O

Let G be a graph with sign labeling: V — S. Let X,Y € §. We say that a path
Pin G is (X,Y)-crabbedif for every vertexw € P we have/(w)*™ C XT UY™ and
crabbed path l(w)” € X~ UY~. We call a(u, v)-path justcrabbedif it is (¢(u), ¢(v))-crabbed. The
following theorem is a strengthening of the main result & [8

Theorem 3.1.4.Let/ be a sign labeling of~. Then the following are equivalent:
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(i) ¢is a UOM-labeling.
(ii) Forall v,w € V there are exactly/(v)°\/(w)°| vertex-disjoint crabbed, w-paths.
(iii) Forall v,w € V with £(v)? # ¢(w)° there exists a crabbed w-path.

Proof. (i)=-(ii): Let G = G a cocircuit graph. First by Lemma 3.1.2 it is clear that
between any two vertices w there can be at most(v)°\¢(w)?| vertex-disjoint crabbed
v, w-paths. For the other inequality we proceed by inductionhensize of the ground set
FE of M. The induction base is skipped. For the inductive step we hawdistinguish three
cases.

If there is somee € £(v)? N ¢(w)® then consider the contraction mingvt/{e}. By
induction hypothesis there are at lefgtv)°\ {e})\ (/(w)°\{e})| = [£(v)°\L(w)°| vertex-
disjoint crabbed, w-paths inG o/} Since the latter is an induced subgraphthf, we
are done.

Otherwise, ifS(¢(v), ¢(w)) = 0 thenl(v),¢(w) lie in atope of M. This is the set of tope
signed setsX with X+ C /(v)* U l(w)T and X~ C ¢(v)~ U ¢(w)~. Topes of a rank
UOM are(r — 1)-dimensional PL-spheres and hence their gragh is 1)-connected [19].
A less topological argument for the same fact can be foundh [

Otherwise, if there is some < S(¢(v),l(w)) we consider thedeletion minor deletion minor

M\{e}. It is the oriented matroid on the ground sét\{e} with cocircuit set

C*\{e} := {Xp\( | X € C*, X, # 0}. By induction hypothesis there af&v)?\¢(w)"|
vertex-disjoint crabbed, w-paths inG v\ (¢} If on such a pathP in G v\ (¢} two consecu-

tive verticesr, y havee = S(¢(x), £(y)) then we apply (C3) with respect to We obtain a

unique vertex: with £(z). = 0 and{(z)s = {(x)y if £(x); # 0 and/(z)s = {(y)s other-

wise. The new vertex is adjacent ta, y in G 4. In this way we can exteng to a crabbed

(v, w)-path P’ in G 4.

Now suppose two different extended patf$ and P, share a vertex:. Thus
there are mutually different,y1,z2,y2 Yyielding z. This implies that their labels
Ux1) B\ (e} L(Y1) B\ (e} > €(T2) B\ e} £(Y2) E\ [y 1N M\ {e} have mutually empty separa-
tor. Moreover the zero-supports of these labels have mytsgimmetrical difference
two. Hence inG (. the verticeszy,y1,z2,y2 induce aKy. On the other hand
U(x1) p\je}, L(W1) B\ (e} €(T2) B\ e} £(Y2) B\ (e} IN M\{e} lie together in a rank contrac-
tion minor of M\{e}. Thus by Lemma 3.1.3, the vertices, y1, z2, y2 should induce a
subgraph of a cycle, a contradiction.

(i) =(ii): Obvious.

(iii)=(): We only have to check (C3). So letv) # +{¢(w) be two labels and
e € S{(v),4(w)). On any(v, w)-path P there must be a vertex with ¢(u). = 0. If P
is crabbed/(u) satisfies (C3) fof(v), £(w) with respect tce. O

Cocircuit graphs of general oriented matroids 2(re— 1)-connected [27]. Here we have
shown a crabbed analogue for uniform oriented matroids.

Question 3.1.5.An interesting question would be if there is a result sintiteFheorem 3.1.4
for non-uniform oriented matroids.
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Let us now turn to another basic concept for the recognitf@ooircuit graphs. A sign la-
beling? of G o induces the mag, which takes to the unique vertew with £(w) = —£(v).
We call A, the AP-labelinginduced by/.

Lemma 3.1.6. If £ is a UOM-labeling ther4, is an involution inAut(G ) which satisfies
d(v, A¢(v)) =n —r+ 2 foreveryv € V.

Proof. Let ¢ be the UOM-labeling inducing the AP-labelindy. By the definition of sign
labeling it is clear thatd, is an automorphism of ord@r Since any neighbat of v lies in
a coline withA4,(v) and|S(¢(u), —¢(v))| + 3|6(u)°Al(v)°| = n —r 4+ 1, by Lemma 3.1.3
we haved(v, Ay(v)) =n —r + 2. O

More generally, in a context where the parameters are given amntipodal labeling
of a graphG is an involution A € Aut(G) such that the graph distance satisfies
d(v,A(v)) =n —r+2foreveryv € V.

3.2 The Algorithm

The input is an undirected simple connected grépk- (V, ). The algorithm decides if
G = G for some UOMM = (E,C*). In the affirmative case it return$t. Otherwise
one of the steps of the algorithm fails.

Check ifG is 2(r — 1)-regular for some-.
Check if|V| = 2(,_".,) for somen.
Calculate thé” x V distance matrix of5.
Fixv € V and defineD(v) := {w € V | d(v,w) = n —r + 2}.
For allw € D(v) do
A. Construct an antipodal labeling with A(v) = w.
B. Construct a sign labelingof G with A = A,.
C. Checkif¢is a UOM-labeling. If so, definé* := ¢(V), return(E, C*) and stop.

6. Return thaty is no cocircuit graph.

a b wbdhe

Parts 1 and 2 runintim| = (r—1)|V| and are necessary to determine the parameters
andn of M. The distance matrix is computed to avoid repeated apitaf shortest path
algorithms during the main part of the algorithm. Sird¢és unweighted and undirected we
can obtain its distance matrix M(|V||£]), see for instance Chapter 6.2 of [100]. Hence we
can do the first three parts (r|V|?).

For the rest of the algorithm we have to execute steps A to @at|P(v)| times. These
will be explained in the following.



CHAPTER3. ORIENTED MATROIDS 109

A. Construct an antipodal labeling.

Lemma 3.2.1. Let G be a cocircuit graph with AP-labelind,. If A(v) = w andu is a
neighbor ofv then A(u) is the unique neighbai’ of w with d(u,v') =n —r + 2.

Proof. Suppose that, besides = A(u), there is another neighbat” of w with
d(u,u") =n —r+ 2. Sinced(v',u") < 2, we havell(u')°Al(u")°| < 4. Sincel is a
UOM:-labeling, ¢(u), £(u'), £(u") lie in a rankr’ = 3 contraction minor om’ elements.
Contraction inM just means deletion of vertices @#y,. This implies that we havé < d’
for the distance functions of the cocircuit graphs/ef and the contraction minaokt’, re-
spectively. On the otherhand — ' +2 =n — (r —3) — 3+ 2 =n —r + 2. This yields
d' (u,u') = d'(u,u") =n—r+2inaUOM of rank3, which contradicts Lemma 3.3.1[]

We obtain a simple breadth-first search algorithm that gidén) = w determines4 in
time O(r2|V|). Just walk from the root through a breadth-first search tree. For vertex
u with father f(u) the vertexA(f(u)) is known. Look through thé(r — 1) neighbors of
A(f(u)). For the unique neighbar havingd(u,u') = n —r+ 2 setA(u) = «’. If v’ is not
unigque or does not exist, then no AP-labelid@f G with A(v) = w exists.

B. Construct a sign labeling ofG.

We use the algorithm presented in [7], which given an antptadbelingA tries to construct
a sign labeling such thatd = A,. We will not go into detail here. Just to have a vague
idea how to do this: Based on Lemma 3.1.3 and Lemma 3.1.6 ¢jugithlm constructs an
edge-partition of~ into the subgraphs induced by the colines. Every coline neagdfined
by anr-set as the set of vertices with zero-support containedaingét. Using this and two
intersection-lemmas for colines one assigns zero-suppmthe vertices of7. This is done
in a way unique up to isomorphism. In a last step one assigimedisets to the vertices,
which then is unique up to isomorphism again. The algoritiithree encounters a problem,
i.e., a contradiction to some of the properties of cocirguitphs, and returns thét is not

a cocircuit graph or it returns a sign labeliAgvith A = A,. If A is an AP-labeling for
some UOM-labelind, then the algorithm finds such @nlf A is not the AP-labeling for a
UOM-labeling the algorithm might return a non UOM-labeliwgh A = A,. The algorithm
runs in timeO (rn|V|).

C. Check if a sign labeling is a UOM-labeling.

We check for every, € V(G) if there is a crabbed path to every veriexc V (G)\{ A¢(u)}.
By Theorem 3.1.4 this is equivalent édeing a UOM-labeling. To improve running time
we need the following simple lemma.
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Lemma 3.2.2. If a (u,v)-path P and a (v,w)-path P’ are (¢(u),Y)-crabbed and
(¢(v),Y)-crabbed, respectively, then their concatenatiéh P’) is (¢(u), Y )-crabbed.

Proof. The vertices in P — in particular v — satisfy the conditions for being
(¢(u),Y)-crabbed. Hence for every € P’ we have/(w)* C ¢(v)T UY T Cl(u)t UY ™.
The analogue statement holds f¢w) ™. O

We are ready to describe the algorithm:
* Foreveryu € V(G) do
1. For every edgév, w} do

— Delete the undirected edde, w}.
— If (v,w) is (¢(v), £(u))-crabbed insert that directed edge.
— If (w,v) is (¢(w), £(u))-crabbed insert that directed edge.

2. Start a breadth-first search on the resulting directephgté at « such that only
backward arcs are traversed.

3. If not every vertex is reached by the search, return thatho UOM-labeling
and stop.

* Return tha¥ is a UOM-labeling ofG

Lemma 3.2.2 tells us that for checking if there is a crabhed)-path for every € V(G)
it is enough to check that if the directed graghhas a directed path from every vertex to
u. Step 2 does exactly this. Loop 1 will be executed- 1)|V| times and each round costs
O(n—r) many comparisons. Step 2 runs in time linear in the edgese$ie whole process
has to be repeatddl’ | times, we need(r(n — r)|V'|?) many operations.

Overall Runtime

We add the runtimes of the single parts of the algorithm. Véetsat part C dominates all
other parts of the algorithm, thus we obtain an overall mastofO(|D(v)|r(n — 7)|V|?).
So far the best known upper bounds for the siz&¢#) are inO(|V|), hence our runtime is
O(r(n — 7)|V|?). For comparison, the runtime of the algorithm in [7J0¢rn?|V|*). The
improvement of runtime comes from approaching step C in awmay Already in [7] it was
asked if in that part some better algorithm was possible.

3.3 Antipodality

The problem of bounding the size 6f(v) is hard. In the present section we will point out
some open problems concerning this value. The followingwans well-known.
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Lemma 3.3.1. If the rank of M is at most3 then for v,w € V(Gr) we have
d(v,w)=n—r+2if and only if —¢(v) = ¢(w). Moreovern — r + 2 is the diameter
of G-

Proof. Let ¢ be a UOM-labeling of7 4 with induced AP-labelingd,. Let v, w be vertices
with A,(v) # w. We observe the following

For any shortestv, w)-path P in G we haveP N A,(P) = (. On a shortest path there
cannot occur anything likew', u, . .., Ay(u)), because by Lemma 3.1.3, for every neighbor
v’ of u, we haved(u', Ag(u)) =n —r + 1 sinceu’ and A,(u) lie in a coline. Hencey' lies
on a shortestu, A,(u))-path.

Every shortest patt® = (v = v, ...,v; = w) satisfies/(v;). = 0 and?(v;11). # 0,
implying £(w)e = ¢(vit+1)e. Otherwise there would be, v; in P lying in a coline M /e,
but the part of connecting;, v; would leaveM /e. Sincel(v;) # —{(v;), this contradicts
Lemma 3.1.3.

This yields that, on a shortest, w)-path, we will have/(v;). = 0 and4(v;+1)e # 0
at most once pee ¢ {(v)° N £(w)" and never ife € £(v)° N ¢(w)°. This yields
dv,w) < [l(v)|=n—r+1. O
The proof actually shows that in a UOM of raBlevery shortest path is crabbed. In [7] it
was asked if the statement of Lemma 3.3.1 holds for every:rank

Question 3.3.2.Given a UOM of rank- onn elements, doeg(X,Y) = n — r + 2 imply
—X =Y?Isn — r + 2 the diameter ofi y(?

One could hope that the signed sets of two verticgs give some crucial information
about how to connect them by a path. As in the case of Bamlatroids one would like to
use crabbed paths to prove something about the distancedinioé G o,. More precisely,
atopein M is a maximal sef” C C* such thatS(X,Y) = ) for everyX,Y € T. In  tope
particular cocircuitsX, Y with —X = Y are not contained in a common tope. So if the
answers to the questions posed in Question 3.3.2 are bash, ‘then cocircuitsX, Y being
contained in a common toge must have distance less or equakite- r + 1. In order to
prove such thing one might hope, that even stronger thestsexicrabbedX, Y')-path of
length at most — r + 1 for all X, Y € T. But unfortunately this is not generally true:

Proposition 3.3.3. The assumption that for a fixed tofpeof M everyX,Y € T are con-
nected by a crabbed path of length— » + 1 implies the Hirsch conjecture. Hence the
assumption is false [98].

Proof. The Hirsch conjecture says that the graph @fdimensional simple polytope with
f facets has diameter at mgét- d. Take ad-dimensional simple polytope with f facets
in R¢. The f facet-defining hyperplanes &fform an affine hyperplane arrangemétn
R%. Put™ into the (x4, = 1)-hyperplane oR%+! and extendH to a central hyperplane
arrangemert!’ in R*!, The arrangemenit’ encodes a rank+ 1 uniform oriented matroid
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M on f elements. We obtain co(fe) as a maximal cell of{’. This means that the vertices
of P correspond to the cocircuits of a tofi. The graph ofP is the subgraph oz v
induced byTp. Now for two cocircuits inlp a path connecting them is crabbed if and only
if it is contained inTp. The parameters o1 are just so that the existence of a crabbed path
of the desired length il is equivalent to the existence of a path of length- d in the
graph ofP. O

The Hirsch conjecture is true in dimensi8rand topes of UOMs of rank are combi-
natorially equivalent to simple polytopes of dimensitin Thus, for UOMs of ranki the
assumption of the above proposition is true for every tog#l tBis does not immediately
yield a positive answer to Question 3.3.2 foe 4. Actually r = 4 is the first rank for which
Question 3.3.2 is open.

Another question, which already seems to be hard and isaitoilone posed in [7] is the
following:

Question 3.3.4.How many different antipodal labelings that pass throughs# and B of
the algorithm does a cocircuit graph admit?

Every answer to Question 3.3.4 better th@fi1’|) would improve the runtime of our
algorithm.
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Q-flow, 46

«a-orientation, 48
‘H-description, 65
V-description, 83
c-orientation, 44
k-fractional orientation, 47

ACP-isomorphism, 21

acyclic, 10

affine hull, 76
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antimatroid, 80

antipodal labeling, 108
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associative , 11

backward arcs, 38
bicircular balance, 95
bicycle, 91
breakeven, 91, 96

CFG-dimension, 60
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chip-configuration, 50

chip-firing game (CFG), 50

circular balance, 38

circular flow-difference, 44
circulation, 47
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coline, 106

colored CFG, 58

colored Jordan-Dedekind chain condition,
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colorset of a path, 31

colorset of a vertex, 32

commutative, 11

comparability, 9

cone, 68

configuration of word, 53
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convex hull, 81

cosaturated arc, 42
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distributive lattice, 12
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dual digraph, 46, 96
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Euclidean ULD, 70
Eulerian orientation, 28
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flow, 47, 87
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Laplacian, 53
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lattice, 11

lossy, 91
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union-closed, 10
unit-vector, 73
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