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What is this thesis about?

The title “Lattices and Polyhedra from Graphs” of this thesis is general though describes
quite well the aim of this thesis. Among the most important objects of this work aredis-
tributive latticesandupper locally distributive lattices. While distributive lattices certainly
are one of the most studied lattice classes, also upper locally distributive lattices enjoy fre-
quent reappearance in combinatorial order theory under many different names. Upper locally
distributive lattices correspond toantimatroidsandabstract convex geometries– objects of
major importance in combinatorics.

Besides results of a purely lattice or order theoretic kind we present new characterizations
of (upper locally) distributive lattices in terms of antichain-covers of posets, arc-colorings
of digraphs, point sets inNd, vector addition languages, chip-firing games, and vertex and
(integer) point sets of polyhedra. We exhibit links to a widerange of graph theoretical,
combinatorial, and geometrical objects. With respect to the latter we study and characterize
polyhedra which seen as subposets of the componentwise ordering of Euclidean space form
(upper locally) distributive lattices.

Distributive lattice structures have been constructed on many sets of combinatorial
objects, such as lozenge tilings, planar bipartite perfectmatchings, pla-
nar orientations with prescribed outdegree, domino tilings, planar circu-
lar flow, orientations with prescribed number of backward arcs on cycles
and several more. A common feature of all of them is that the Hasse di-
agram of the distributive lattice may be constructed applying local trans-
formationsto the objects. These local transformations lead to anatural
arc-coloringof the diagram. For an example see the distributive lattice on
the domino-tilings of a rectangular region on the side. The local transfor-
mation consists in flipping two tiles, which share a long side. In this work
we present the first unifying generalization of all such instances of graph-
related distributive lattices. We obtain a distributive lattice structure on
thetensionsof a digraph.

In order to provide a flavor of what we refer to as “unifying generalization”, we show
two consecutive steps of generalizing the domino tilings ofa plane region, see the figure.
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The left-most part of the figure shows two domino tilings, which can be transformed into
each other by a single flip of two neighboring tiles. In the middle of the figure we show

how planar bipartite perfect matchings model
domino tilings. The local transformation now cor-
responds to switching the matching on an alter-
nating facial cycle. More generally, the right-most
part of the figure shows how to interpet the pre-
ceeding objects as orientations of prescribed out-
degree of a bipartite planar graph. Every yellow
vertex has outdegree1 and every blue vertex has

outdegree(deg− 1). Reversing the orientation on directed facial cycles yields a distributive
lattice structure on the set of orientations with these outdegree constraints.

A particular interest of this work lies in embedding lattices into Euclidean space. The
motivation is to combine geometrical and order-theoretical methods and perspectives. We
investigate polyhedra, which seen as subposets of the componentwise ordering of Euclidean
space form upper locally distributive or distributive lattices. In both cases we obtain full
characterizations of these classes of polyhedra in terms oftheir description as intersection of
bounded halfspaces.

In particular we obtain a polyhedral structure on knowndiscretedistributive lattices on
combinatorial objects as those mentioned above as integer points ofdistributivepolytopes.
A classical polytope which was defined in the spirit of combining discrete geometry and
order-theory appears as a special case of our considerations, and thus might provide an idea
of what kind of objects we will study: Given a posetP, Stanley’sorder polytopePP may be
defined as the convex hull of the characteristic vectors of the ideals of a posetP.

x x

y

y

z

z

Figure 1: A posetP with an ideal on the left with its order polytopePP and the vertex the
corresponding to the ideal, on the right.

Our characterization ofupper locally distributivepolyhedra opens connections to the the-
ory of feasible polytopes of antimatroids. In the setting ofdistributivepolyhedra we find
graph objects that might be considered as the most general ones, which form a distributive
lattice and carry a polyhedral structure. The connection topolytope theory links distributive
lattices to generalized flows on digraphs. Thus, there is a link to important objects of com-
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binatorial optimization. Moreover we exhibit new contributions to the theory of bicircular
oriented matroids.

Large parts of the thesis are based on publications between 2008 and 2010 [40, 43, 41,
42, 54, 69]. In the following we give a rough overview over each single chapter. For more
detailed introductions we refer to the first pages of the individual chapters.

Chapter 1: Lattices

The first chapter of the thesis is about lattices. It is based on papers [41, 42, 69] and
includes joint work with Stefan Felsner. After giving a moredetailed introduction into lattice
theory and the chapter itself, we present some basic notation and vocabulary in Section 1.1.

The main result of Section 1.2 is a new representation resultfor general finite lattices. We
provide a one-to-one correspondence between finite lattices and antichain-covered posets.
As an application we strengthen a characterization of upperlocally distributive lattices in
terms of antichain-partitioned posets due to Nourine. The “smallest” special case of our the-
orem is the Fundamental Theorem of Finite Distributive Lattices alias Birkhoff’s Theorem.

Section 1.3 proves three classes of combinatorial objects to be equivalent. We show
that acyclic digraphs with a certain arc-coloring and unique source, cover-preserving join-
sublattices ofNd and upper locally distributive lattices correspond to eachother. The charac-
terization turns out to be very useful in many applications where one actually wants to prove
an (upper locally) distributive lattice structure on a given set of objects. Another applica-
tion of this section is a generalization of Dilworth’s Embedding Theorem for Distributive
Lattices to upper locally distributive lattices.

In Section 1.4 we present the distributive lattice of∆-tensions of a digraph. As men-
tioned before, many known distributive lattices coming from graphs are special cases of
∆-tensions. At the end of the section we show reductions to themost important special cases
of ∆-tensions: Flow in planar graphs, prescribed outdegree orientations of planar graphs, and
orientations with prescribed circular flow-difference of general graphs.

Section 1.5 is motivated by Björner and Lov́asz’ chip-firing game on directed graphs.
As an easy application of the results in the sections above, chip-firing games lead to upper
locally distributive lattices. Moreover chip-firing gameshave a representation as vector ad-
dition languages. We capture the most important features ofsuch languages to generalize the
concept togeneralized chip-firing games. In contrast to ordinary chip-firing games, the latter
indeed are general enough to represent every upper locally distributive lattice. Moreover we
show that every such lattice is representable as the intersection of finitely many chip-firing
games.

We close the chapter with concluding remarks and open problems in Section 1.6.
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Chapter 2: Polyhedra

This chapter is based on parts of [43, 69] and partial joint work with Stefan Felsner. After
a brief introduction, make first observation about order-theoretic properties of convex subset
of Rd with respect to the componentwise ordering of the space in Section 2.1. In particular
we define upper locally distributive and distributive polyhedra.

As a basic ingredient Section 2.2 is devoted to affine Euclidean space satisfying poset
properties. We characterize distributive affine space by a representation in terms of directed
graphs. This is an important part of the characterizations of upper locally distributive and
distributive polyhedra in the following sections.

In Section 2.3 we characterize upper locally distributive polyhedra via their description
as nitersection of bounded halfspaces. We find relations of these polyhedra tofeasible poly-
topesof antimatroids and draw connections to a membership problem discussed by Korte
and Lov́asz. We show how to view every upper locally distributive polyhedron as the inter-
section of polyhedra associated tochip-firing games.

Section 2.4 develops the theory of distributive polyhedra.We obtain a characterization
of their description as intersection of bounded halfspaces. We obtain that these polyhedra
are dual to polyhedra of generalized digraph flows, i.e., flows on digraphs with lossy and
gainy arcs. We establish a correspondence between distributive polyhedra andgeneralized
tensions of digraphs yielding in a sense the most general distributive lattices arising from a
graph, in Subsection 2.4.1. We show how to obtain the lattices from Section 1.4 as integer
point lattices of special distributive polyhedra and provethat these polyhedra coincide with
alcoved polytopes and polytropes, known in the literature before, in Subsection 2.4.2. The
combinatorial model for general distributive polyhedra isclosely related to oriented bicircu-
lar matroids. This will be made explicit in Subsection 2.4.3. As a special application we find
the first distributive lattice on generalized flows of planardigraphs in Subsection 2.4.4.

Section 2.5 concludes with some open questions and further remarks.

Chapter 3: Cocircuit Graphs of Uniform Oriented Matroids

The last chapter is not strongly related to the rest of the thesis. It is based on the pa-
pers [54, 40] and is joint work with Stefan Felsner, Ricardo Gómez, Juan José Montellano-
Ballesteros, and Ricardo Strausz. We present the first cubic-time algorithm which takes a
graph as input and decides if the graph is the cocircuit graphof a uniform oriented ma-
troid. In the affirmative case the algorithm returns the set of signed cocircuits of the oriented
matroid. This improves an algorithm proposed by Babson, Finschi and Fukuda.

Moreover we strengthen a result of Montellano-Ballesterosand Strausz characterizing
cocircuit graphs of uniform oriented matroids in terms ofcrabbedconnectivity.



Chapter 1

Lattices

Lattices are posets with unique maximal lower bound and unique minimal upper bound for
every pair of elements, see Definition 1.1.3. They are a classical research topic and fre-
quently appear in many areas of mathematics, see [15]. Lattices are objects on the border
line between order theory, combinatorics, and algebra. Thelatter is plausible for instance
because lattices may be characterized as a ground set with two binary operations satisfy-
ing commutative, associativeandabsorptivelaws. This interpretation of lattices plays an
essential role in universal algebra.

For us the most important are relations between lattice theory and combinatorics, and
there are many of them. A first reason for this is that every lattice can be represented as an
inclusion-order on a set-system. Thus, many sets of combinatorial objects carry a specific
lattice structure, e.g.,geometric latticescorrespond to simple matroids [13]; the divisors of a
number [103] and the stable marriages of a bipartite graph [55] form distributive lattices; the
inclusion-order on the normal subgroups of a group is amodular lattice[15]. In this chapter
we will see many more examples of combinatorial objects forming a lattice. Some of these
object classes will turn out general enough to actually represent the class of finite lattices.

Another natural link from lattices to combinatorics is viewing a poset as aHasse diagram.
One can study the particular properties of the Hasse diagrams of certain poset or lattice
classes. A classical example would beBirkhoff ’s criterionto characterize upper semimodu-
lar lattices by their Hasse diagram [104].

The concept of upper locally distributive lattices (ULD) iscentral to this thesis. ULDs
were first investigated by Dilworth [31] and many different lattice theoretical characteriza-
tions of ULDs are known. We stick to the original definition byDilworth as lattices with
unique minimal meet-representations, see Definition 1.1.6.

For a survey on the work on ULDs up to 1990 we refer to Monjardet[84].

5
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ULDs have appeared under several different names, e.g., locally distributive lattices
(Dilworth [33]), meet-distributive lattices (Jamison [59, 60], Edelman [34], Bj̈orner and
Ziegler [22]), locally free lattices (Nakamura [86]). Following Avann [5], Monjardet [84],
Stern [104] and others, we stick to the name ULD. The reason for the frequent reappearance
of the concept is that there are many instances of ULDs, i.e.,sets of combinatorial objects
that can benaturallyordered to form an ULD, e.g.,

• Subtrees of a tree (Boulaye [24])

• Convex subsets of a poset (Birkhoff and Bennett [16])

• Convex subgraphs of an acyclic digraph (Pfaltz [91])

• Transitively oriented subgraphs of a transitively oriented digraph (Bj̈orner [17])

⋆ Convex sets of an abstract convex geometry (Edelman [34])

⋆ Pruning processes (Ardila and Maneva [4])

• Reachable configurations of a chip-firing game (Magnien, Phan, and Vuillon [79])

⋆ Learning spaces (Eppstein [36])

⋆ Feasible sets of an antimatroid (Korte [70])

⋆ Feasible multi-sets of an antimatroid with repetition (Björner and Ziegler [22])

⋆ Supports of a locally free, permutable, left-hereditary languages (Bj̈orner [21])

For sets in the list colored bymagentathe reverse inclusion order yields a ULD. Those
sets that are coloredblue form ULDs under inclusion-order. The subtrees of a tree, the
convex subsets of a poset, the convex subgraphs of an acyclicdigraph, and the transitively
oriented subgraphs of a transitively oriented digraph may all be modelled as the convex sets
of an abstract convex geometry or equivalently as pruning processes. Indeed these last two
classes of objects are universal for the class of ULDs. Therefore we labeled them with a star.
The most important of these first examples is given byconvex geometries, a combinatorial
abstraction of convex sets in geometry.

A class which will come up later in this thesis is given by the chip-firing game. It is a clas-
sical discrete dynamical model, used in physics, economicsand computer science. Learning
spaces, feasible (multi-)sets of an antimatroid, and supports of a locally free, permutable,
left-hereditary languages are universal for the class of ULDs. Therefore they are labelled
with a star.

The most prominent among the blue entries of the list areantimatroids– a special case of
greedoids. Antimatroids are set-systems such that the system of complements is an abstract
convex geometry. Antimatroids and greedoids have many applications and connections in
mathematics, see [72]. Glasserman and Yao [51] use antimatroids to model the ordering of
events in discrete event simulation systems. They are also used to model progress towards a
goal in artificial intelligence planning problems. In mathematical psychology, antimatroids
have been used to describe feasible states of knowledge of a human learner.
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A very important subclass of the class of ULDs is given by distributive lattices. Because
of their nice structural properties and many applications distributive lattices count among the
most important lattice classes. The following list gives some examples of objects carrying a
natural distributive lattice structure.

• domino and lozenge tilings of a plane region (Rémila [97] and others based on
Thurston [105])

• planar spanning trees (Gilmer and Litherland [48])

• planar bipartite perfect matchings (Lam and Zhang [73])

• planar bipartited-factors (Felsner [39], Propp [92])

• Schnyder woods of a planar triangulation (Brehm [25])

• Eulerian orientations of a planar graph (Felsner [39])

• α-orientations of a planar graph (Felsner [39], Ossona de Mendez [88])

• k-fractional orientations with prescribed outdegree of a planar graph (Bernardi and
Fusy [11])

• Schnyder decompositions of a planed-angulations of girthd (Bernardi and Fusy [12])

• circular integer flows of a planar graph (Khuller, Naor and Klein [66])

• higher dimensional rhombic tilings (Linde, Moore, and Nordahl [77])

• c-orientations of a graph (Propp [92])

Generally, having a lattice structure on a set of objects mayhelp in understanding the
set or as Peter Panter puts it: “Ordnung muss sein!” [90]. Adistributivelattice structure is
particularly good:

An important technique forrandom samplingis coupling from the past(Propp, Wil-
son [94]). This way of analysing a Markov chain may be appliedto distributive lattices
(Propp [93]). Enumeratingthe elements of a distributive lattice, i.e., outputting all the
elements while using little memory, can be done more efficiently on distributive lattices
than on other underlying structures (Habib, Medina, Nourine, and Steiner [57]). The useful
FKG-inequalityof Fortuin, Kasteleyn, and Ginibre [46] and Ahlswede and Daykin’s Four
Functions Theorem [2], as well as their recently proved q-analogues due to Björner [18] and
Christofides [26], respectively, are applicable only to distributive lattices.

In many of our results, the lattice structure is derived froma set oflocal transformations.
As an example recall the distributive lattice on domino-tilings described in the introduction,
where local transformations were given by flips of neighboring tiles. We obtain a correspon-
dence of cover-relations in the lattice and applications ofa transformation to one of our com-
binatorial objects. As a direct consequence the set carrying the lattice structure isconnected
with respect to these local transformations. In some cases modeling the cover-relations in
the combinatorial object yields upper bounds on height and diameter of the lattice, e.g., the
height of the lattice ofc-orientations is quadratic in the size of the graph (Propp [92]). Since
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every finite lattice has a unique minimal element we can conclude that our set of combi-
natorial objects has a unique element, where no more “downwards” transformation can be
applied. When dealing with several sets each of them carrying an individual lattice struc-
ture, thisunique representantcan be used forbijective countingof the sets. One example
for this is the bijective counting of tree-rooted maps and shuffles of parenthesis systems by
Bernardi [9].

The present chapter is structured as follows:

Section 1.1 introduces basic notions and definitions neededthroughout the whole thesis.

In Section 1.2 we present a vast generalization of Birkhoff’s Theorem also known asThe
Fundamental Theorem of Finite Distributive Latticesto the class of all finite lattices. We
establish a correspondence between finite lattices and special antichain-covered posets. This
will in particular yield a characterization of upper locally distributive lattices in terms of
antichain-partitioned posets, which strengthens a resultof Nourine [87]. One application of
this result will appear in Section 1.5 in connection with chip-firing games.

Section 1.3 provides a characterization of upper locally distributive lattices in terms of arc-
colored acyclic digraphs. Our characterization of ULDs originates from a characterization
in [67] of matrices whoseflip-flopposets generate distributive lattices. It turned out that this
tool yields handy proofs for the distributive lattice structure on several objects from graphs.
In the applications the arc-colors correspond to the local transformations on combinatorial
objects in a natural way. Moreover, we prove that cover-preserving join-sublattices of the
componentwise ordering onNd correspond to upper locally distributive lattices. This isa
generalization of Dilworth’s Embedding Theorem for distributive lattices [32]. Section 1.3
is a continuation of the first part of [42].

Section 1.4 – based on the second part of [42] – introduces a distributive lattices structure
on the tensions of a directed graph. Tensions are classical objects in algebraic graph theory
as they are dual to digraph flows. We provide a bijection to vertex-potentials, also known
as height functions. Tensions are a unifying generalization of all the combinatorial sets of
objects mentioned in the above list of distributive lattices. At the end of the section we
show reductions to the most important special cases of∆-tensions: Flow in planar graphs,
prescribed outdegree orientations of planar graphs, and orientations with prescribed circular
flow-difference of general graphs.

Section 1.5 deals with ways of representing ULDs in a more geometrical setting. Starting
from the chip-firing game of Björner and Lov́asz we consider a generalization to vector-
addition languages that still admit algebraic structures as sandpile group or sandpile monoid.
We characterize the set of vector-addition languages whichyield upper locally distributive
lattice and call themgeneralized chip-firing games. We show that every upper locally dis-
tributive lattice can be represented by a generalized chip-firing games. Indeed, we can prove
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that every upper locally distributive lattice is theintersectionof finitely many ordinary chip-
firing games. Parts of this chapter are based on the first part of [69].

1.1 Preliminaries for Posets and Lattices

The following is a brief, a self-contained introduction, restricted to the information needed
to span the context of this thesis. We will mainly focus on thetheory of finite lattices and
finite posets. For further standard terminology we refer to Davey and Priestley [30].

A posetis a pairP = (E,≤) of a ground setE and a binary relation≤ on E satisfying poset

for all x, y, z ∈ E

1. x ≤ x (reflexivity) reflexivity

2. x ≤ y andy ≤ x imply x = y (antisymmetry) antisymmetry

3. x ≤ y andy ≤ z imply x ≤ z (transitivity) transitivity

The fundamental abuse of notation which we will repeatedly commit is the lack of dis-
tinction betweenE andP, i.e., we will writex ∈ P instead ofx ∈ E, S ⊆ P instead of
S ⊆ E, etc. This does not mean that the ground set is not of importance. For instance an
important class of posets areinclusion-orders. This means thatE is a set of subsets of someinclusion-order

set (also referrred to asset-system). ForX, Y ∈ E we defineX ≤ Y if and only if X ⊆ Y . set-system

We denote an inclusion order as(E,⊆).

For a posetP = (E,≤) its dual posetP∗= (E,≤∗) is defined asx ≤∗ y :⇐⇒ y ≤ x. dual poset

Instead ofy ≤ x we sometimes also writex ≥ y. The dual poset of the inclusion order
(E,⊆) is denoted by(E,⊇).

If for x, y ∈ P we havex ≥ y or x ≤ y, then we say thatx andy arecomparable. comparability

Otherwise we say thatx andy areincomparabledenoted byx ‖ y. If x ≤ y andx 6= y, then incomparability

we say thatx is strictly smaller thany, denoted byx < y. We generally use�, �, ∦, ≮ and
so on, for negating relations.

A setI ⊆ P is called anideal if x ≤ y ∈ I impliesx ∈ I. We collect the ideals ofP ideal

in I(P). GivenS ⊆ P we denote by↓S the ideal{x ∈ P | ∃y ∈ S : x ≤ y}. Dual to
an ideal we callF ⊆ P a filter if x ≥ y ∈ F implies x ∈ F . The set of filters ofP is filter

denoted byF(P). ForS ⊆ P we denote by↑S the filter{x ∈ P | ∃y ∈ S : x ≥ y}. We
call C ⊆ P a chain if all elements ofC are mutually comparable. A setA ⊆ P is called chain

anantichain if all its elements are mutually incomparable. The set ofminimal elementsof antichain
minimal element

a subsetS ⊆ P is denoted by Min(S):= {x ∈ S | y ∈ S =⇒ y ≮ x}. Analogously, we
define amaximal elementof S and collect them in Max(S). For a finite posetP theheight maximal element

height
of x ∈ P is the cardinality of a longest chainC in P with Max(C) = {x}.



10

For an elementx ∈ P we will often use the expressionx is maximal with some property.
This means thatx ∈ Max(S), whereS ⊆ P is the set of elements with that property. A
first example of this is the following: We writex ≺ y if x is maximal with the property
x < y. We then say thaty coversx or thaty is acoverof x or thatx is acocoverof y. Thecover relation

directed graphDP= (E, A) with (x, y) ∈ A :⇐⇒ x ≺ y is called theHasse diagramof P.Hasse diagram

Because of antisymmetry of a poset a Hasse diagram has no directed cycles, i.e., isacyclic.acyclic

Conversely, every acyclic digraphD = (V, A) yields a posetPD onV as itstransitive hull,transitive hull

i.e.,v ≤ w if there is a directed(v, w)-path inD. If D is the Hasse diagram ofPD, then we
call D transitively reduced.transitively

reduced

LetP = (E,≤),Q = (E′,≤′) be two posets. A mappingϕ from E to E′ is said to be

• anorder-preservingmap ifx ≤ y =⇒ ϕ(x) ≤′ ϕ(y) for all x, y ∈ E,order-preserving

• anorder-embeddingif x ≤ y ⇐⇒ ϕ(x) ≤′ ϕ(y) for all x, y ∈ E,order-embedding

• anorder-ismorphismif it is bijective and an embedding.order-ismorphism

We say thatP is a subposetof Q if and only if E ⊆ E′ andx ≤ y ⇐⇒ x ≤′ y for allsubposet

x, y ∈ E, i.e., the identity map ofP is an order-embedding intoQ. In this case we callP
the subposet ofQ inducedby E.induced subposet

A minimal z ∈ P with z ≥ x, y is called ajoin of x, y. Dually, a maximal elementz ∈ Pjoin

with z ≤ x, y is called ameetof x, y. If |Max(P)| = 1, then this means thatP has a uniquemeet

maximal element. We denote it by1P . Dually, if P has a unique minimum, then we denote
it by 0P . The existence of joins and meets and unique maxima and minima is closely related
in finite posets.

Observation 1.1.1. Since if there were several maxima one could just take their join or
meet, respectively, we have: A finite posetP has a join for every pair of elements if and only
if P has a1P . Dually, a finiteP has a meet for every pair of elements if and only ifP has a
unique minimum0P .

If in a posetL we have that every pair of elements has auniquejoin, then we callL a
join-semilattice. The dual of a join-semilattice is calledmeet-semilattice. As an example itsemilattice

is easy to verify:

Observation 1.1.2. An inclusion-order(E,⊆) on a union-closedset-systemE, i.e., ifunion-closed

X, Y ∈ E, then alsoX ∪ Y ∈ E, is a join-semilattice. The join of two sets is given by their
union. IfE is intersection-closed, then(E,⊆) is a meet-semilattice with the meet being set-intersection-

closed
intersection. Given a posetP, the set-systemI(P) is union-closedand intersection-closed,
i.e.,(I(P),⊆) is a join-anda meet-semilattice.

The class of posets which are join- and meet-semilattices atthe same time is of central
importance for this entire thesis:



CHAPTER 1. LATTICES 11

Definition 1.1.3. A posetL is called alattice if every pair of elements ofL has a uniquelattice

join and a unique meet.

Often, we will denote lattices and semilattices byL and other posets byP. If x, y ≤ z, w,
then if there is a unique join ofx, y, thenx ∨ y ≤ z, w. This yields the easy

Observation 1.1.4. A finite join-semilatticeL which has meets for all pairs of elements
has unique meets, i.e.,L is a lattice. Dually a meet semilatticeL with joins for all pairs of
elements is a lattice.

In a latticeL we denote the join and meet of elementsx, y ∈ L by x ∨L y and
x ∧L y, respectively. If it is clear which lattice we are talking about, then we will usu-
ally drop the subindexL. Seen as binary operations join and meet in a lattice form
idempotent commutative semigroups, i.e., for allx, y, z ∈ L semigroup

• x ∨ x = x (idempotent) idempotent

• x ∨ y = y ∨ x (commutative) commutative

• x ∨ (y ∨ z) = (x ∨ y) ∨ z (associative) associative

and analogously for∧. In particular, they are associative binary operations. Thus an expres-
sion likex1 ∨ . . . ∨ xk makes sense and we will denote it as

∨
{xi | i ∈ [k]}. (Here and

everywhere[k] stands for{1, . . . , k}.) The analogous abbreviation
∧

S will be used for the
meet of a setS ⊆ L.

LetL = (E,≤) andL′ = (E′,≤′) be lattices. We say thatL is asublatticeof L′ if L is a sublattice

subposet ofL′, and we havex ∨L y = x ∨L′ y andx ∧L y = x ∧L′ y for all x, y ∈ E.

Figure 1.1: From left to right: join-semilattice; poset with unique minimum and maximum;
lattice; upper locally distributive lattice; distributive lattice. Join-irreducible elements are
coloredmagenta, meet-irreducibles are coloredlight blue. We will be consistent with this
“color-code” through the entire thesis.

An elementj ∈ L is calledjoin-irreducible if it cannot be expressed as the join of a setjoin-irreducible

of elements not containingj. In the Hasse diagram join-irreducibles are those elementswith
exactly one incoming arc, i.e., a join-irreduciblej has a unique cocover inL. It is denoted
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by j−. We writeJ (L) for the subposet ofL induced by its join-irreducibles. Dually, one
defines the poset ofmeet-irreduciblesdenoted byM(L). The unique cover of a meet- meet-irreducible

irreduciblem in L is denoted bym+. In a finite meet-semilattice (join-semilattice)L we set∧
∅ := 1L (

∨
∅ := 0L). Hence maximum and minimum are not meet-irreducible and not

join-irreducible, respectively. An important fact is thatalso every other element of a finite
lattice may be expressed as a join of join-irreducibles By idempotence this is clear if it is
a join-irreducible itself, otherwise it is a join of (not necessarily join-irreducible) elements
below it. The conclusion follows by induction on the height.Dually, every element of a
lattice is a meet of meet-irreducibles. More formally:

Observation 1.1.5. In a finite join-semilattice every elementℓ ∈ L is the join of join-
irreducibles below it, i.e,ℓ =

∨
(↓ℓ ∩ J (L)). Dually, in a finite meet-semilatticeL we have

ℓ =
∧

(↑ℓ ∩M(L)) for all ℓ ∈ L.

The posetsJ (L) andM(L) are sufficient to encode a lattice. We will show one way to do
this (Theorem 1.2.3), which specializes in a nice way to (upper locally) distributive lattices.
The latter form indeed the lattice class being most vital to this thesis. It was first defined by
Dilworth [31].

Definition 1.1.6. A finite latticeL is calledupper locally distributive (ULD)if for everyupper locally
distributive lattice
(ULD) ℓ ∈ L there is a unique inclusion-minimal setMℓ⊆ M(L) such thatℓ =

∧
Mℓ.

The dual of a ULD is calledlower locally distributive (LLD). A special and importantlower locally
distributive lattice
(LLD) subclass of upperand lower locally distributive lattices aredistributive lattices. They are of

strong interest to this work. The following is their classical:

Definition 1.1.7. A latticeL is calleddistributiveif k ∨ (ℓ∧m) = (k ∨ ℓ)∧ (k ∨m) for alldistributive lattice

k, ℓ, m ∈ L.

It is one folklore lemma of distributive lattices that the definition could be equivalently
stated usingk ∧ (ℓ ∨ m) = (k ∧ ℓ) ∨ (k ∧ m).

There are plenty of different characterizations and representations of distributive lattices.
Most famously Birkhoff’s Theorem [14] states a bijection between distributive lattices and
posets, which furthermore yields a representation as union- and intersection-closed set-
systems. This will be a corollary of the next section, statedas Theorem 1.2.1.

Another characterization states that a lattice is distributive if and only if it is upper and
lower locally distributive. This was already shown by Dilworth in the first paper about
ULDs [31]. We will obtain that characterization as a corollary of Section 1.3, stated as
Theorem 1.3.22.
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1.2 Generalizing Birkhoff’s Theorem

In this section we will show a correspondence between finite lattices and finite posets cov-
ered by antichains. A very special case of this is Birkhoff’sTheorem [14] also known asThe
Fundamental Theorem of Finite Distributive Lattices:

Theorem 1.2.1.A finite latticeL is distributive if and only ifL ∼= (I(P),⊆) for a finite
posetP. Moreover,P ∼= J (L).

Note that Theorem 1.2.1 yieldsL ∼= (I(J (L)),⊆) andP ∼= J (I(P),⊆) for every finite
distributive latticeL and every finite posetP. This is, mapping a finite posetP to the finite
distributive lattice(I(P),⊆) induces a one-to-one correspondence between isomorphism-
classes of finite posets and isomorphism-classes of finite distributive lattices.

As an application of the main theorem of this section we will reprove Birkhoff’s Theorem
at the end of the section. However, the main motivation that led to this chapter is a result of
Nourine establishing a partial generalization of Birkhoff’s Theorem to ULDs and antichain-
partitioned posets [87]. For the statement of Nourine’s result we need one further definition.
Let S be a subset of a posetP andAQ = {Ay | y ∈ Q} ⊆ 2P a set of antichains, i.e.,
the antichains inAQ are indexed by the setQ. We define thefingerprint of S in AQ as fingerprint

fingAQ
(S):= {y ∈ Q | S ∩Ay 6= ∅}. So given a posetP and a set of antichains indexed by

a setQ the fingerprint takes subsets ofP to subsets ofQ. Given a setS of subsets ofP we
write fingAQ

(S) for {fingAQ
(S) | S ∈ S}.

1 2

3 4

Aa

Ab Ac {b} {c}

{b, c}

{a, c}{a, b}

{a, b, c}

∅

Figure 1.2: On the left: a posetP with ground set{1, 2, 3, 4} and an antichain-partition
AQ = {Aa, Ab, Ac}, i.e., the index-setQ equals{a, b, c}. On the right: the correspond-
ing ULD as inclusion order on the fingerprints of the ideals ofP. The goldenideal has
fingerprint{a, b, c}.

Nourine’s Theorem then reads:

Theorem 1.2.2.A finite latticeL is a ULD if and only ifL ∼= (fingAQ
(I(P)),⊆) for some

posetP with antichain-partitionAQ.



14

Nourine’s Theorem is important for the study of ULDs. We combine Nourine’s Theo-
rem with join-sublattice embeddings of ULDs into the dominance order onNd to obtain a
generalization of Dilworth’s Embedding Theorem for FiniteDistributive Lattices to ULDs,
see Theorem 1.3.18. At another point we will use Nourine’s Theorem to prove that every
ULD may be represented asgeneralized chip-firing game, see Theorem 1.5.10. But compare
Birkhoff’s Theorem with Nourine’s Theorem: Birkhoff’s Theorem yields that up to isomor-
phism there is a unique poset representing a given distributive lattice. Nourine’s Theorem
does not accomplish the analogue, i.e., there may exist “fairly different” antichain-partitoned
posets all representing the same ULD. As an application of this section’s results we will ob-
tain a strengthening of Nourine’s Theorem fully generalizing Birkhoff’s Theorem: On the
one hand we find a notion of isomorphisms of antichain-partitioned posets. On the other
hand we find the class ofreducedantichain-partitoned posets(P,AQ) such that mapping
(P,AQ) 7→ (fingAQ

(I(P)),⊆) induces a bijection between isomorphism-classes of re-
duced antichain-partitioned posets and isomorphism-classes of ULDs, see Theorem 1.2.24.

What we develop in the present section is actually much more general. We obtain a
way of representingeveryfinite lattice as inclusion-order on the fingerprints of the ideals of
an antichain-covered poset. Moreover, we find the class ofgoodantichain-covered posets,
such that every finite lattice is represented by a member of this class which is unique up
to isomorphism. Analogously to the case of Birkhoff’s Theorem we obtain a one-to-one
correspondence between isomorphism-classes of finite goodantichain-covered posets and
isomorphism-classes of finite lattices. This is the main result of the present section. We will
define good antichain-covered posets and their isomorphisms later on in this section, see
Definition 1.2.14 and Definition 1.2.18, respectively. Nevertheless, in order to give a more
precise idea of the main result of this section we state it already:

Theorem 1.2.3. A finite posetL is a lattice if and only ifL ∼= (fingAQ
(I(P)),⊆) for a

good antichain-covered poset(P,AQ). Moreover,(P,AQ) ∼= (J (L),AM(L)).

Note that in comparison to the case of ULDs we have to use antichain-covers instead of
antichain-partitions. We hope that this result leads to generalizations of our results obtained
with the help of Nourine’s Theorem to more general lattice classes. Theorem 1.2.3 is sim-
ilar to the finite case ofthe basic theorem on concept lattices[108] and to a theorem of
Markowsky [80]. Nevertheless, the representation for lattices as described in Theorem 1.2.3
is essentially new.

We will now begin with the proof of Theorem 1.2.3, it will get quite technical.
A pair (P,AQ) of a finite posetP and a setAQ of antichains ofP is called an
antichain-covered poset (ACP)if for every x ∈ P there is at least oney ∈ Q such thatantichain-covered

poset (ACP)
x ∈ Ay, i.e.,AQ is a cover ofP. First we show that the inclusion-order on the fingerprints
of the ideals of an antichain-covered posets indeed is a lattice. This can be understood as the
first part of Theorem 1.2.3. We start with an easy
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Observation 1.2.4.Let (P,AQ) be an ACP andS, S′ ⊆ P. We have

fingAQ
(S) ∪ fingAQ

(S′) = fingAQ
(S ∪ S′).

Now we can show:

Proposition 1.2.5. Let (P,AQ) be an ACP. The inclusion-order(fingAQ
(I(P)),⊆) is a

lattice. More precisely, we show:

• the set-systemfingAQ
(I(P)) is union-closed,

• for everyfingAQ
(I) there is a unique inclusion-maximal ideal⌈I⌉AQ

∈ I(P) such
thatfingAQ

(⌈I⌉AQ
) = fingAQ

(I), we callfingAQ
(⌈I⌉AQ

) distinguished ideal. distinguished
ideal• We have(fingAQ

(I(P)),⊆) ∼= ({⌈I⌉AQ
| I ∈ I(P)},⊆),

• the set-system⌈I(P)⌉AQ
:= {⌈I⌉AQ

| I ∈ I(P)} is intersection-closed.

Proof. By Observation 1.2.4 forI, I ′ ∈ I(P) we have thatfingAQ
(I) ∪ fingAQ

(I ′) equals
fingAQ

(I ∪ I ′). Since I ∪ I ′ is again an ideal ofP the set-systemfingAQ
(I(P)) is

union-closed. Thus, by Observation 1.1.2 the inclusion-order(fingAQ
(I(P)),⊆) is a join-

semilattice and the join of two sets is their union.

By Observation 1.2.4, the union of a pair of ideals with the same fingerprint has again
the same fingerprint. Thus, by Observation 1.1.1 the inclusion-order on these ideals has a
unique maximum. Hence for everyfingAQ

(I) ∈ fingAQ
(I(P)) there is a unique inclusion-

maximal⌈I⌉AQ
∈ I(P) with fingAQ

(⌈I⌉AQ
) = fingAQ

(I), by Observation 1.1.1. This
yields that the fingerprint is an inclusion-preserving bijection to the distinguished ideals,
i.e.,(fingAQ

(I(P)),⊆) ∼= (⌈I(P)⌉AQ
,⊆).

Now we show that(fingAQ
(I(P)),⊆) is a meet-semilattice, by showing that⌈I(P)⌉AQ

is intersection-closed. Let⌈I⌉AQ
6= ⌈I ′⌉AQ

be distinguished ideals. SinceI(P) is
intersection-closed the intersection of⌈I⌉AQ

and ⌈I ′⌉AQ
is an ideal again. Suppose it

is not distinguished, i.e., there is an idealI ′′ ∈ I(P) with I ′′ ) ⌈I⌉AQ
∩ ⌈I ′⌉AQ

and
fingAQ

(I ′′) = fingAQ
(⌈I⌉AQ

∩ ⌈I ′⌉AQ
). Then with Observation 1.2.4 we have

fingAQ
(⌈I⌉AQ

)

= fingAQ
(⌈I⌉AQ

∪ (⌈I⌉AQ
∩ ⌈I ′⌉AQ

))

= fingAQ
(⌈I⌉AQ

) ∪ fingAQ
(⌈I⌉AQ

∩ ⌈I ′⌉AQ
)

= fingAQ
(⌈I⌉AQ

) ∪ fingAQ
(I ′′)

= fingAQ
(⌈I⌉AQ

∪ I ′′).

Similarly we obtainfingAQ
(⌈I ′⌉AQ

) = fingAQ
(⌈I ′⌉AQ

∪ I ′′). SinceI ′′ is not contained
in both ⌈I⌉AQ

and ⌈I ′⌉AQ
, this contradicts the maximality of at least one of⌈I⌉AQ

and
⌈I ′⌉AQ

. Thus,⌈I(P)⌉AQ
is intersection-closed. Hence, by Observation 1.1.2 the inclusion-

order(⌈I(P)⌉AQ
,⊆) is a meet-semilattice.

Since(fingAQ
(I(P)),⊆) is a join-semilattice and is isomorphic to the meet-semilattice

(⌈I(P)⌉AQ
,⊆) it is a lattice.
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Before we proceed with the next part of the proof of Theorem 1.2.3 we look at the two set-
systems representing the same lattice in the above proposition. They have different features.
Since the set of distinguished ideals⌈I(P)⌉AQ

of an ACP(P,AQ) is intersection-closed,
the inclusion-order(⌈I(P)⌉AQ

,⊆) is a meet-sublattice of the distributive lattice(I(P),⊆).

We will now show that on the other hand(fingAQ
(I(P)),⊆) may be seen as join-

subslattice of a distributive lattice which is given by the inclusion-order of ideals of a
poset on the index-setQ. So given an ACP(P,AQ) define a poset on the index setQ

by y ≤ y′ :⇐⇒ ↑Ay ⊇ ↑Ay′ . We call the posetQ the index-poset of(P,AQ).index-poset

Proposition 1.2.6.We havefingAQ
(I(P)) ⊆ I(Q). This is, the lattice(fingAQ

(I(P)),⊆)
is a join-sublattice of the distributive lattice(I(Q),⊆).

Proof. Let ⌈I⌉AQ
be a distinguished ideal of(P,AQ) andfingAQ

(⌈I⌉AQ
) ⊆ Q its fin-

gerprint. We show thatfingAQ
(⌈I⌉AQ

) is an ideal of the index-posetQ. So let y ∈
fingAQ

(⌈I⌉AQ
), i.e., there isx ∈ ⌈I⌉AQ

∩ Ay. Now take ay′ ≤ y. Hence by defini-
tion ↑Ay ⊆ ↑Ay′ , i.e., there is anx′ ∈ Ay′ with x′ ≤ x. Since⌈I⌉AQ

is an ideal and
x ∈ ⌈I⌉AQ

alsox′ ∈ ⌈I⌉AQ
. Thus,Ay′ ∩ ⌈I⌉AQ

6= ∅ andy′ ∈ fingAQ
(⌈I⌉AQ

). We have
shown thatfingAQ

(⌈I⌉AQ
) is an ideal ofQ, and thus(fingAQ

(I(P)),⊆) may be seen as a
subposet of the inclusion-order onI(Q). Since by Proposition 1.2.5 the set of fingerprints
is union-closed(fingAQ

(I(P)),⊆) and by Observation 1.1.2 the union is the join of both
set-systems,(fingAQ

(I(P)),⊆) is a join-sublattice of(I(Q),⊆).

Any fingAQ
(I) may clearly be represented as the union of fingerprints

⋃
x∈I fingAQ

(↓x).
(Define the union over an empty index-set as empty.) The following is an analogue statement
for distinguished ideals which will be useful at several points in this section. We denote by
S the complementE\S of a subsetS ⊆ E.

Lemma 1.2.7. Let (P,AQ) be an ACP. An idealI ∈ I(P) is distinguished if and only if
I =

⋂
y∈F ↑Ay for a filter F ofQ. We set

⋂
y∈∅ ↑Ay := P.

Proof. “⇐=”: Clearly P is a distinguished ideal, so assumeF 6= ∅. Observe that↑Ay is
a distinguished ideal: All elements that might be added to↑Ay while maintaining an ideal
increase the fingerprint by at leasty. By Proposition 1.2.5 their intersection is distinguished,
too.

“=⇒”: If ⌈I⌉AQ
= P, i.e., ⌈I⌉AQ

= ∅ we are done by takingF = ∅. Otherwise,
since adding any element to a distinguished ideal⌈I⌉AQ

increases its fingerprint we have
⌈I⌉AQ

=
⋃

y/∈fingAQ
(⌈I⌉AQ

) ↑Ay. By Proposition 1.2.6 the setfingAQ
(⌈I⌉AQ

) ∈ I(Q)

and consequently for the index-set of the union on the right-hand side we have
fingAQ

(⌈I⌉AQ
) ∈ F(Q). Applying the complement on both sides of the equation we ob-

tain the result.

The index-posetQ will be of importance through the rest of this chapter. Indeed it is in
a certain duality toP, which will be explained in more detail in the last subsection of this
section.
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We will now return to the proof of Theorem 1.2.3. We have shownthat given an ACP
(P,AQ) the inclusion-order(fingAQ

(I(P)),⊆) is a finite lattice. Next we show that for
every finite latticeL there is a(P,AQ) such thatL ∼= (fingAQ

(I(P)),⊆). We start with
some basic lemmas.

Lemma 1.2.8. Let ℓ, ℓ′ be elements of a finite latticeL. We have
↓ℓ ∩ J (L) ⊆ ↓ℓ′ ∩ J (L) ⇐⇒ ℓ ≤ ℓ′ and dually↑ℓ ∩M(L) ⊆ ↑ℓ′ ∩M(L) ⇐⇒ ℓ ≥ ℓ′.

Proof. Because of duality we only prove the first part of the statement. For “⇐=” note that
ℓ ≤ ℓ′ implies↓ℓ ⊆ ↓ℓ′ and thus↓ℓ ∩ J (L) ⊆ ↓ℓ′ ∩ J (L).

For “=⇒” let ↓ℓ ∩ J (L) ⊆ ↓ℓ′ ∩ J (L). This implies
∨

(↓ℓ ∩ J (L)) ≤
∨

(↓ℓ′ ∩ J (L)).
By Observation 1.1.5 the sides of that inequality equalℓ andℓ′, respectively, i.e.,ℓ ≤ ℓ′.

Lemma 1.2.9.Letℓ, ℓ′ be elements of a latticeL. We have that the set of minimaMin(↓ℓ\↓ℓ′)
is a subset ofJ (L) and duallyMax(↑ℓ\↑ℓ′) ⊆ M(L).

Proof. Because of duality we only prove the first part of the statement. Let ℓ, ℓ′ ∈ L. We
can assume↓ℓ\↓ℓ′\J (L) 6= ∅ since otherwise the statement is trivially true. So take an
ℓ′′ ∈ ↓ℓ\↓ℓ′ which is not join-irreducible. By Observation 1.1.5ℓ′′ may be represented as a
join of join-irreducibles belowℓ′′, i.e, ℓ′′ = j1 ∨ . . . ∨ jk andji < ℓ′′ for all i ∈ [k]. Since
ℓ′′ ≤ ℓ all theji are in↓ℓ. Observe that↓ℓ′ is closed under taking joins. Hence at least one
ji is in ↓ℓ\↓ℓ′. If ℓ′′ ∈ Min(↓ℓ\↓ℓ′) there cannot be such aji < ℓ′′, i.e., ℓ′′ itself must be a
join-irreducible.

We will now define an ACP representingL as the inclusion-order on the fingerpints
of its ideals. For everym ∈ M(L) set Am := {j ∈ J (L) | m ∈ ↑j−\↑j} and let
AM(L):= {Am | m ∈ M(L)}. For an example of this construction consider Figure 1.3.

11 22

33 44

Aa

Ab Ac

a

bc

Figure 1.3: On the right: the ULDL from Figure 1.2. Meet-irreducibles arelight blueand
join-irreducibles aremagenta. On the left: the ACP(J (L),AM(L))
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Remark 1.2.10. Note that sinceJ (L) andM(L) are subposets ofL when applying↑, ↓
or the complement to subsets or elements ofJ (L) andM(L) it is not ad hocclear which
ground set we are considering. We do not want to define new notation and new subindeces.
Generally we will view↑S, ↓S, andS as subsets ofL even ifS is a subset ofJ (L) orM(L).
In order to avoid confusion, we point out the only two exceptions to this rule:

• If ↑S, ↓S, orS appears as the argument of the fingerprint, e.g.,fingAM(L)
(↓j), then we

consider it as a subset ofJ (L).
• If S ⊆ AM(L), then↑S, ↓S, or S and their compositions are considered as subset of
J (L), e.g.,↑Am for Am ∈ AM(L).

• If S = fingAM(L)
(I), then↑S, ↓S, or S and their compositions are considered as

subset ofM(L).

Before proving that(J (L),AM(L)) is an ACP we need another lemma.

Lemma 1.2.11.Let j ∈ J (L) andm ∈ M(L). We havefingAM(L)
(↓j) = ↑j ∩M(L) and

↑Am = ↓m ∩ J (L).

Proof. First we showfingAM(L)
(↓j) ⊆ ↑j ∩M(L). If m ∈ fingAM(L)

(↓j), then by defini-

tion there is aj′ ≤ j with m ∈ ↑j′−\↑j′. In particularj′ � m and thus by transitivityj � m.
This is,m ∈ ↑j ∩M(L).

To showfingAM(L)
(↓j) ⊇ ↑j ∩ M(L) let m ∈ ↑j ∩ M(L). This particularly means

↓j\↓m 6= ∅ and by Lemma 1.2.9 the set Min(↓j\↓m) ∩ J (L) is non-empty. So take an
elementj′ ∈ Min(↓j\↓m) ∩ J (L). It satisfiesm ∈ ↑j′−\↑j′ andj′ ≤ j. By definition this
means,m ∈ fingAM(L)

(↓j) .

The proof of the second statement is very similar: First we show ↑Am ⊆ ↓m∩J (L). Let
j ∈ ↑Am. Hence there is aj′ ≤ j with j′ ∈ Am, i.e.,m ∈ ↑j′−\↑j′. In particularj′ � m
hencej � m. Thus,j ∈ ↓m ∩ J (L).

To show ↑Am ⊇ ↓m ∩ J (L) let j ∈ ↓m ∩ J (L). In particular ↓j\↓m 6= ∅
and by Lemma 1.2.9 the set Min(↓j\↓m) ∩ J (L) is non-empty. Any elementj′ in
Min(↓j\↓m) ∩ J (L) satisfiesm ∈ ↑j′−\↑j′ andj′ ≤ j. This is,j ∈ ↑Am.

Proposition 1.2.12. Let L be a finite lattice. The pair(J (L),AM(L)) is an ACP with
index-posetM(L).

Proof. To see thatAM(L) consists of antichains take join-irreduciblesj′ < j ∈ Am. We
havej′ ≤ j− soj′ ≤ m. Thus,m /∈ ↑j′−\↑j′ which meansj′ /∈ Am.

In order to prove thatAM(L) is a set suppose it is not. This is, there are two an-
tichains Am = Am′ . This implies↑Am = ↑Am′ which by Lemma 1.2.11 implies
↓m ∩ J (L) = ↓m′ ∩ J (L). This is equivalent to↓m ∩ J (L) = ↓m′ ∩ J (L). Thus,∨

(↓m ∩ J (L)) =
∨

(↓m′ ∩ J (L)), where by Observation 1.1.5 both sides equalm andm′,
respectively, i.e., we havem = m′.
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In order to show thatAM(L) coversJ (L) let j ∈ J (L). The second part of Lemma 1.2.9
yields that the non-empty set Max(↑j−\↑j) contains at least one meet-irreduciblem. By
definitionm ∈ ↑j−\↑j is equivalent toj ∈ Am.

The last thing to prove is thatM(L) is isomorphic to the index-poset of(J (L),AM(L)).
But by Lemma 1.2.8 and the second part of Lemma 1.2.11 we have

m ≤ m′ ⇐⇒ ↓m ∩ J (L) ⊆ ↓m′ ∩ J (L) ⇐⇒ ↑Am ⊇ ↑Am′ .

We are ready to prove the next part of Theorem 1.2.3, i.e., that for every finite lattice there
is an ACP representing it:

Proposition 1.2.13.LetL be a finite lattice. We haveL ∼= (fingAM(L)
(I(J (L))),⊆).

Proof. As a candidate for an order-isomorphism from(fingAM(L)
(I(J (L))),⊆) toL define

ϕ : fingAM(L)
(I) 7→

∨
I. To see thatϕ is well-defined we use Lemma 1.2.11 and calculate

∨
I

=
∧

(↑(
∨

I) ∩M(L))
=

∧
(
⋂

j∈I ↑j ∩M(L))

=
∧

(
⋂

j∈I fingAM(L)
(↓j))

=
∧

(
⋃

j∈I fingAM(L)
(↓j))

=
∧

(fingAM(L)
(I)).

Hence,ϕ does not depend on the choice ofI, but only onfingAM(L)
(I). Clearly,ϕ is order-

preserving. As inverse mapping we claimϕ−1 : ℓ 7→ fingAM(L)
(↓ℓ∩J (L)) for ℓ ∈ L. Also

ϕ−1 is order-preserving by Lemma 1.2.8. Nowϕ ◦ ϕ−1(ℓ) =
∨
{j ∈ J (L) | j ≤ ℓ} = ℓ.

Thus it remains to show thatϕ−1 ◦ ϕ = id.

We have to showfingAM(L)
(↓

∨
I ∩ J (L)) = fingAM(L)

(I). Since↓
∨

I ∩ J (L) ⊇ I

the direction “⊇” is clear. For “⊆” let j ≤
∨

I andm ∈ fingAM(L)
(↓j). By Lemma 1.2.11

we havej � m, so
∨

I � m. Hence there must be somej′ ∈ I with j′ � m. Thus by
Lemma 1.2.11,m ∈ fingAM(L)

(↓j′) ⊆ fingAM(L)
(I).

We have shown that every finite lattice can be represented by an ACP(P,AQ). But there
are many “fairly different looking” ACPs representing the same lattice. See for example
Figure 1.4. We will now definegoodACPs and prove that ACPs of the form(J (L),AM(L))

are good. Afterwards we will show that up to isomorphism(J (L),AM(L)) is the only good
ACP representingL.

Definition 1.2.14. We call an ACP(P,AQ) goodif good ACP

1. x ‖ x′ =⇒ fingAQ
(↓x) ‖ fingAQ

(↓x′),
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Figure 1.4: Three ACPs representing the lattice on the right. Only the ACP in the middle is
good. Thegoldenantichain in the left-most ACP violates part 2. of Definition1.2.14. The
goldenelements of the right-most ACP violate part 1. of Definition 1.2.14.

2. ∀y ∈ Q ∃x ∈ Ay : fingAQ
(↑Ay ∪ {x}) = fingAQ

(↑Ay) ∪ {y}.

Proposition 1.2.15.LetL be a finite lattice. The ACP(J (L),AM(L)) is good.

Proof. We start proving part 1. of Definition 1.2.14. Letj, j′ ∈ J (L) and
say fingAM(L)

(↓j) ⊆ fingAM(L)
(↓j′). By Lemma 1.2.11 this is the same as

↑j ∩M(L) ⊇ ↑j′ ∩M(L). Now Lemma 1.2.8 yieldsj ≤ j′.

It remains part 2. of Definition 1.2.14. So we have to show thateveryAm ∈ AM(L) con-
tains aj such thatfingAM(L)

(↑Am ∪ {j}) = fingAM(L)
(↑Am)∪ {m}. So letAm ∈ AM(L).

By Lemma 1.2.9 we can choose a join-irreduciblej ∈ Min(↓m+\↓m). In particularm ≥ j−

andm � j and thusj ∈ Am. We havefingAM(L)
(↑Am ∪ {j}) ⊇ fingAM(L)

(↑Am) ∪ {m}.
Let us see what happens iffingAM(L)

(j) contains more elements thanm. Assume now that
j ∈ Am′ .

If m′ ≯ m, then by definition some elementy ∈ Am′ is not contained in↑Am. Hence
y ∈ ↑Am andm′ ∈ fingAM(L)

(↑Am).

If m′ > m, thenm′ ≥ m+. Sincej ∈ ↓m+\↓m this impliesm′ ≥ j and in particular,
m′ /∈ ↑j−\↑j, i.e.,j /∈ Am′ – a contradiction.

We have shownfingAM(L)
(↑Am ∪ {j}) = fingAM(L)

(↑Am) ∪ {m}.

The last part of Theorem 1.2.3 that remains to be shown is, that every good ACP(P,AQ)

with (fingAQ
(I(P)),⊆) ∼= L is isomorphic to(J (L),AM(L)), where ACP isomorphisms

still has to be defined. First we need two more lemmas.

Lemma 1.2.16. If (P,AQ) is good, then

P ∼= (fingAQ
({↓x | x ∈ P}),⊆) = J (fingAQ

(I(P)),⊆).

Proof. It is a direct consequence of part 1. of Definition 1.2.14 thatmappingx ∈ P to
fingAQ

(↓x) ∈ (fingAQ
({↓x | x ∈ P}),⊆) is an order-isomorphism.

For (fingAQ
({↓x | x ∈ P}),⊆) = J (fingAQ

(I(P)),⊆) we show equality of the ground
sets. This is enough since the order is defined equivalently on both sides. First prove “⊆”.
SinceAQ consists of antichains and is a cover ofP, addingx′ > x to ↓x increases the
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fingerprint. Since(P,AQ) is good, also addingx′ ‖ x to ↓x increases the fingerprint. We
have that↓x is a distinguished ideal.

Now supposefingAQ
(↓x) is not join-irreducible, i.e., there areI and I ′ with

fingAQ
(I),fingAQ

(I ′) 6= fingAQ
(↓x) but fingAQ

(I) ∪ fingAQ
(I ′) = fingAQ

(↓x). Thus,
fingAQ

(I ∪ I ′) = fingAQ
(↓x) by Observation 1.2.4. Since↓x is distinguished we have

I ∪ I ′ ⊆ ↓x. SinceAQ consists of antichains at least one ofI, I ′ containsx and hence
equals↓x – a contradiction.

For “⊇” let ⌈I⌉AQ
be a distinguished ideal such that

fingAQ
(⌈I⌉AQ

) ∈ J (fingAQ
(I(P)),⊆). Observe that∅ /∈ J (fingAQ

(I(P)),⊆), be-
cause∅ = fingAQ

(∅) is the minmum of(fingAQ
(I(P)),⊆) and thus is not join-irreducible

by definition. Hence⌈I⌉AQ
is not empty. Suppose Max(⌈I⌉AQ

) = {x1, . . . , xk}
with k > 1, because otherwise⌈I⌉AQ

= ↓x1. SinceI = ↓x1 ∪ . . . ∪ ↓xk we have
fingAQ

(I) = fingAQ
(↓x1) ∪ . . . ∪ fingAQ

(↓xk) by Observation 1.2.4. Using the first part of
(P,AQ) being good we have thatfingAQ

(↓x1), . . . ,fingAQ
(↓xk) are mutually incompara-

ble. SincefingAQ
(I) ⊃ fingAQ

(↓x1), . . . ,fingAQ
(↓xk) we havefingAQ

(I) 6= fingAQ
(↓xi)

for all i ∈ [k]. HencefingAQ
(I) is not join-irreducible – a contradiction.

Lemma 1.2.17. If (P,AQ) is good then

Q ∼= (fingAQ
(↑AQ),⊆) = M(fingAQ

(I(P)),⊆),

where↑AQ:= {↑Ay | Ay ∈ AQ}.

Proof. We start by showingQ ∼= (fingAQ
(↑AQ),⊆). Let y, y′ ∈ Q. We have

y ≤ y′ :⇐⇒ ↑Ay ⊇ ↑Ay′ ⇐⇒ ↑Ay ⊆ ↑Ay′ . Ideals of the form↑Az are distinguished by
Lemma 1.2.7. Thus, by Proposition 1.2.5 mapping↑Az to fingAQ

(↑Az) is an order-

embedding since it is obviously surjective. We have provedQ ∼= (fingAQ
(↑AQ),⊆).

For (fingAQ
(↑AQ),⊆) = M(fingAQ

(I(P)),⊆) we only need to show equality of the

ground sets. Start by proving “⊆”, i.e., let fingAQ
(↑Ay) ∈ fingAQ

(↑AQ). Since(P,AQ)

is good there is somex ∈ Ay such thatfingAQ
(↑Ay ∪ {x}) = fingAQ

(↑Ay) ∪ {y}.

HencefingAQ
(↑Ay ∪ {x}) is the unique cover offingAQ

(↑Ay) in (fingAQ
(I(P)),⊆), i.e.,

fingAQ
(↑Ay) is a meet-irreducible.

For the “⊇”-direction let ⌈I⌉AQ
be a distinguished ideal such that

fingAQ
(⌈I⌉AQ

) ∈ M(fingAQ
(I(P)),⊆). By Lemma 1.2.7 we may represent⌈I⌉AQ

as meet of distinguished ideals i.e.,⌈I⌉AQ
=

⋂
y∈F ↑Ay for some setF ⊆ Q. Since⌈I⌉AQ

is meet-irreducible it is not the maximumP of (⌈I(P )⌉AQ
,⊆) and consequentlyF 6= ∅.

Thus, because⌈I⌉AQ
is meet-irreducible we have⌈I⌉AQ

= ↑Ay for somey ∈ F .

Definition 1.2.18. Let (P,AQ) and(P ′,AQ′) be ACPs. A mappingϕ : P → P ′ is called
anACP-isomorphismif ϕ is an order-isomorphism andϕ(Ay) ∈ AQ′ ⇐⇒ Ay ∈ AQ. ACP-isomorphism
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This is, ϕ preserves the order and the antichain-partititon. Note that ϕ also induces an
order-isomorphism of the index-posets. After this fairly natural definition we first check that
isomorphic lattices will be represented by isomorphic goodACPs. Otherwise the definition
would not be so good.

Proposition 1.2.19.LetL,L′ be isomorphic finite lattices. The ACPs(J (L),AM(L)) and
(J (L′),AM(L′)) are isomorphic.

Proof. Let ϕ : L → L′ be an order-isomorphism. We show thatϕ induces an ACP-
isomorphism from(J (L),AM(L)) to (J (L′),AM(L′)). Clearly, ϕ induces an order-
isomorphism ofJ (L) and J (L′) and also ofM(L) and M(L′). It remains to show
that Am ∈ AM(L) ⇐⇒ ϕ(Am) ∈ AM(L′). But Am ∈ AM(L) by definition is equiv-
alent toAm = {j ∈ J (L) | m ∈ ↑j−\↑j} for m ∈ M(L). We applyϕ and since it
is an order-isomorphism of join- and meet-irreducibles we obtain the equivalent statement
ϕ(Am) = {ϕ(j) ∈ J (L′) | ϕ(m) ∈ ↑ϕ(j)−\↑ϕ(j)} for ϕ(m) ∈ M(L′). This is equivalent
to ϕ(Am) = Aϕ(m) ∈ AM(L′).

We are ready to prove the last part of Theorem 1.2.3.

Proposition 1.2.20. Let L be a finite lattice and(P,AQ) a good ACP such that
L ∼= (fingAQ

(I(P)),⊆). We have(P,AQ) ∼= (J (L),AM(L)).

Proof. By Proposition 1.2.19 it is enough to show

(P,AQ) ∼= (J (fingAQ
(I(P)),⊆),AM(fingAQ

(I(P)),⊆)).

So let ϕ : P → J (fingAQ
(I(P)),⊆) be the map defined asϕ(x) := fingAQ

(↓x).
By Lemma 1.2.16ϕ is an order-isomorphism so we takeϕ as our candidate for the ACP-
isomorphism. We still need to show thatϕ induces an isomorphism of the antichain-
partitionsAQ andAM(fingAQ

(I(P)),⊆).

Let Ay ∈ AQ. We want to prove thatϕ(Ay) ∈ AM(fingAQ
(I(P)),⊆). Recall that an ele-

ment ofAM(fingAQ
(I(P)),⊆) looks likeAm = {j ∈ J (fingAQ

(I(P)),⊆) | m ∈ ↑j−\↑j}

for a meet-irreduciblem ∈ M(fingAQ
(I(P)),⊆). Now since every join-irreducible

is of the formfingAQ
(↓x) the unique cocover may be written asfingAQ

(↓x\{x}). By

Lemma 1.2.17 meet-irreducibles correspond to elements of the formfingAQ
(↓Ay). Hence

every antichainAfingAQ
(↓Ay) ∈ AM(fingAQ

(I(P)),⊆) is of the form

{fingAQ
(x) | fingAQ

(↓x\{x}) ⊆ fingAQ
(↓Ay) andfingAQ

(↓x) * fingAQ
(↓Ay)}

We show thatϕ(Ay) = {fingAQ
(x) | x ∈ Ay} equalsAfingAQ

(↓Ay). For “⊆” note that

x ∈ Ay =⇒ fingAQ
(↓x) 6⊆ fingAQ

(↑Ay) andfingAQ
(↓x\{x}) ⊆ fingAQ

(↑Ay).

For “⊇” observe thatfingAQ
(↓x) 6⊆ fingAQ

(↑Ay) impliesx ∈ ↑Ay. On the other hand

fingAQ
(↓x\{x}) ⊆ fingAQ

(↑Ay) means that all cocovers ofx are in↑Ay. Hencex ∈ Ay
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We have shown equality. Since by Lemma 1.2.17 all meet-irreducibles of
(fingAQ

(I(P)),⊆) are of the formfingAQ
(↑Ay), we may represent all elements of

AM(fingAQ
(I(P)),⊆) in the above fashion. This is,ϕ(Ay) ∈ AM(fingAQ

(I(P)),⊆) if and only

if Ay ∈ AQ.

Let us plug everything together to resume how we proved Theorem 1.2.3. In Proposi-
tion 1.2.5 we have shown that a finite posetL is a lattice ifL ∼= (fingAQ

(I(P)),⊆) for some
(good) antichain-covered poset(P,AQ). On the other hand Propsition 1.2.13 shows that
every finiteL is isomorphic to(fingAM(L)

(I(J (L))),⊆), where(J (L), AM(L)) is a good
ACP, by Propition 1.2.15. Finally, Proposition 1.2.20 shows that ifL ∼= (fingAQ

(I(P)),⊆),
then(P,AQ) ∼= (J (L),AM(L)).

To obtain that the map, which takes ACPs to the inclusion-orders on the fingerprints of
their ideals indeed induces a one-to-one correspondence between isomorphism-classes of
good ACPs and isomorphism-classes of finite lattices, we have to prove one last thing. By
Propsition 1.2.19 we know that isomorphic lattices cannot come from non-isomorphic good
ACPs but we have to show that isomorphic good ACPs yield isomorphic lattices.

Proposition 1.2.21.Let (P,AQ) and (P ′,AQ′) be ACPs. If(P,AQ) ∼= (P ′,AQ′), then
(fingAQ

(I(P)),⊆) ∼= (fingAQ′
(I(P ′)),⊆).

Proof. Let ϕ : P → P ′ an isomorphism of(P,AQ) and (P ′,AQ′). We will prove that
φ : ⌈I⌉AQ

7→ ϕ(⌈I⌉AQ
) is an isomorphism of(⌈I(P)⌉AQ

,⊆) and(⌈I(P ′)⌉AQ′ ,⊆). This
is enough by Proposition 1.2.5.

The first and most difficult thing to prove here is, thatϕ(⌈I⌉AQ
) is indeed a distinguished

ideal of(P ′,AQ′): We will use thatϕ induces an order-isomorphismϕ′ of Q andQ′, by

y ≤ y′ :⇔ ↑Ay ⊇ ↑Ay′ ⇔ ϕ(↑Ay) ⊇ ϕ(↑Ay′) ⇔: ↑Aϕ′(y) ⊇ ↑Aϕ′(y′) ⇔ ϕ′(y) ≤ ϕ′(y′).

Moreover we apply Lemma 1.2.7 to obtain that an ideal is distinguished with respect toAQ

if and only if I =
⋂

y∈F ↑Ay for a filterF of Q. We calculate:

ϕ(⌈I⌉AQ
) = ϕ(

⋂
y∈F ↑Ay)

= ϕ(P\
⋃

y∈F ↑Ay) = ϕ(P)\
⋃

y∈F ϕ(↑Ay)

= P ′\
⋃

ϕ′(y)∈ϕ′(F ) ↑Aϕ′(y)

Sinceϕ is an isomorphismϕ(F ) is a filter ofQ′, and we obtain a distinguished ideal by
Lemma 1.2.7.

The above chain of arguments could equivalently be applied to ϕ−1. Thusφ is a bijec-
tion of ⌈I(P)⌉AQ

and⌈I(P ′)⌉AQ′ . Thatφ is an order-embedding follows from a straight-
forward equivalence transformation yielding⌈I⌉AQ

⊆ ⌈I⌉′AQ
⇔ ϕ(⌈I⌉AQ

) ⊆ ϕ(⌈I⌉′AQ
).

We restate the result as a new theorem:
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Theorem 1.2.22. Isomorphism-classes of finite lattices and of good ACPs are
in one-to-one-correspondence, induced byL 7→ (J (L),AM(L)) and its inverse
(P,AQ) 7→ (fingAQ

(I(P )),⊆).

How Theorem 1.2.3 specializes back to Birkhoff’s Theorem and a strengthening of
Nourine’s Theorem will be shown in the next subsection.

1.2.1 Applications

In this section we will refine Theorem 1.2.3 to specific classes of finite lattices. As promised
in the beginning of the section we first prove a strengtheningof Nourine’s Theorem (Theo-
rem 1.2.2). For that matter we call an antichain-partitioned poset(P,AQ) reducedifreduced

antichain-partition

x ‖ x′ =⇒ fingAQ
(↓x) ‖ fingAQ

(↓x′).

We introduced this definition because it is more economical thangood, but:

Observation 1.2.23.An antichain-partitionedposet is good if and only if it is reduced.

We can now prove:

Theorem 1.2.24.A finite latticeL is a ULD if and only ifL ∼= (fingAQ
(I(P)),⊆) for some

posetP with reduced antichain-partitionAQ. Moreover,(P,AQ) ∼= (J (L),AM(L)).

Proof. By Observation 1.2.23 an antichain-partitioned poset is a good if and only if it is re-
duced. Thus by Theorem 1.2.3 it is enough to show that if(P,AQ) is antichain-partitioned,
then (fingAQ

(I(P)),⊆) is a ULD and that ifL is a ULD, then(J (L),AM(L)) is an
antichain-partitioned poset.

So let (P,AQ) be an antichain-partitioned poset. By Proposition 1.2.5
(fingAQ

(I(P)),⊆) is isomorphic to the inclusion-order(⌈I(P)⌉AQ
,⊆), where the

meet coincides with set-intersection. We prove that(⌈I(P)⌉AQ
,⊆) is a ULD.

Let ⌈I⌉AQ
∈ ⌈I(P)⌉AQ

. We claim thatM := {↑Ay | y ∈ fingAQ
(Min(⌈I⌉AQ

))}
is the M⌈I⌉AQ

of the definition of ULD (Definition 1.1.6), i.e.,M⌈I⌉AQ
is the unique

inclusion-minimal set of meet-irreducibles such that⌈I⌉AQ
=

⋂
M⌈I⌉AQ

. Recall that ide-

als of the form↑Ay are distinguished ideals and correspond toM(fingAQ
(I(P)),⊆), by

Lemma 1.2.17. Hence,M ⊆ M(⌈I(P)⌉AQ
,⊆).

We start by showing that⌈I⌉AQ
is indeed the meet ofM . First, we show that

⌈I⌉AQ
⊆

⋂
M . Let ↑Ay ∈ M . If there werex ∈ Ay ∩ ⌈I⌉AQ

then either adding
Ay ∩ Min(⌈I⌉AQ

) to ⌈I⌉AQ
does not increase the fingerprint of⌈I⌉AQ

which contradicts
maximality of⌈I⌉AQ

or Ay ∩Min(⌈I⌉AQ
) must intersect some otherAy′ ∈ AQ\{Ay} with

y′ ∈ fingAQ
(⌈I⌉AQ

) contradicting thatAQ is a partition. ThusAy ∩ ⌈I⌉AQ
= ∅ which

implies⌈I⌉AQ
⊆ ↑Ay. We obtain⌈I⌉AQ

⊆
⋂

M .
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In order to to show⌈I⌉AQ
⊇

⋂
M , let x ∈

⋂
M . This is equivalent to

x /∈
⋃

y∈fingAQ
(Min(⌈I⌉AQ

))
↑Ay. In particular x /∈ ↑Min(⌈I⌉AQ

) and consequently

x ∈ ⌈I⌉AQ
. We have proved⌈I⌉AQ

=
⋂

M .

Now supposeM is not the unique inclusion-minimal with⌈I⌉AQ
=

⋂
M , i.e., there is

another set of meet-irreduciblesM ′ whose intersection is⌈I⌉AQ
and there is some meet-

irreducible↑Ay ∈ M\M ′. By the choice ofM at least one of the elementsx ∈ Ay has all
its predecessors in⌈I⌉AQ

. Now if ↑Ay′ ∈ M ′ thenx ∈ ↑Ay′ , otherwisex ∈ ↑Ay′ but since
AQ is a partition andx ∈ Ay we havex /∈ Ay′ . Thus,Ay′ ∩ ⌈I⌉AQ

6= ∅. This implies
⌈I⌉AQ

* ↑Ay′ . Hencex ∈ ↑Ay′ for all ↑Ay′ ∈ M ′. Thusx ∈
⋂

M ′ – a contradiction
becausex /∈ ⌈I⌉AQ

.

Let on the other handL be a ULD andj ∈ J (L), i.e., for everyℓ ∈ L there is a unique
inclusion-minimal setMℓ ⊆ M(L) such that

∧
Mℓ = ℓ. Suppose that(J (L),AM(L)) is

not an antichain-partitioned poset. We know that it is an ACPby Proposition 1.2.15, hence
the problem must be thatAM(L) is no partition. So for somej ∈ J (L) we have two meet-
irreduciblesm, m′ ∈ ↑j−\↑j. This impliesm ∧ j = m′ ∧ j = j−. Thus, the setMj− must
satisfyMj− ⊆ (Mj ∪ {m}) ∩ (Mj ∪ {m′}) andm, m′ /∈ Mj . ThusMj− ⊆ Mj , thus∧

Mj− ≥
∧

Mj which meansj− ≥ j – a contradiction.

By Theorem 1.2.22 there is indeed a one-to-one-correspondence between finite ULDs and
posets with reduced antichain-partition. We will now reprove Birkhoff’s Theorem [14]. It
was stated as Theorem 1.2.1 in the beginning of the section. As Nourine’s Theorem it is a
refinement of Theorem 1.2.3. We restate for convenience:

Theorem 1.2.1.A finite latticeL is distributive if and only ifL ∼= (I(P),⊆) for a posetP.
Moreover,P ∼= J (L).

Proof. Let AQ be the singleton-partition ofP, i.e., all antichains consist of a single element.
Thus we may identifyQ andP. Hence we identifyfingAQ

(I) with I and(P, AQ) with P.
Note that the singleton-partition is good and we can apply Theorem 1.2.3. We show that
(I(P),⊆) is distributive and that ifL is distributive, then(J (L),AM(L)) is a singleton-
partitioned poset.

For (I(P),⊆) we know by Observation 1.1.2 that meet and join of this lattice are in-
tersection and union. It is straight forward to check that∩ and∪ satisfy the distributive
laws.

On the other hand, letL be distributive. We know that(J (L),AM(L)) is an ACP by
Proposition 1.2.15, so if it is no singleton-partitioned poset there arej, k ∈ J (L) and a
meet-irreduciblem ∈ (↑j−\↑j) ∩ (↑k−\↑k), i.e., an antchainAm of size at least2. If k > j,
thenk− ≥ j so m ≥ k− ≥ j, i.e., m cannot lie in(↑j−\↑j) ∩ (↑k−\↑k). Thusj and
k are incomparable. Hencej ∧ k = j− ∧ k−. Sincej−, k− ≤ m by assumption we
calculate(j ∧ k) ∨ m = (j− ∧ k−) ∨ m = m. On the other hand sincej, k ‖ m we have
(j ∨ m), (k ∨ m) 6= m and sincem is meet-irreducible we havem 6= (j ∨ m) ∧ (k ∨ m).
This contradicts distributivity.
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Question 1.2.25.It would be interesting to characterize other lattice classes in terms of their
representation as antichain-covered posets. One reason for this interest is that these repre-
sentations are more economical. One example where no such characterization is known,
are upper semi-modular lattices. Another class of particular interest to us are lattices whose
Hasse-diagram admits an arc-coloring, such that all maximal chains between two elements
have the same multiset of colors. Moreover, the outgoing arcs of an element are colored
mutually different. We call these properties together thecolored Jordan-Dedekind chain
condition. Both lattice classes are natural generalizations of ULDs.

Question 1.2.26.There is a generalization of Birkhoff’s Theorem due to Dilworth [32],
called Dilworth’s Embedding Theorem. It establishes a correspondence between cover-
preserving sublattice embeddings of finite distributive lattices intoNd and chain-partitions
of posets. It would be interesting to generalize this resultto more general lattice classes. One
such generalization to cover-preserving join-sublatticeembeddings of finite ULDs intoNd

and chain-partitions of antichain-partitioned posets is obtained at the end of the next section,
see Theorem 1.3.18.

1.2.2 Duality

Before we continue with a new type of results in the next section, in this subsection we
will remark, that there is a “dual” way of characterizing finite lattices by antichain-covered
posets. These results will not be used further on and we mention them just because, they
somehow complete the picture presented so far in this section. We sketch this different way
of representing finite lattices in the following. The basic idea is to switch the role ofP and
the index-posetQ.

Given a good ACP(P,AQ) we defineAx := Max{y ∈ Q | x ∈ ↑Ay} for everyx ∈ P.
SettingAP := {Ax | x ∈ P}, we obtain an antichain-covered poset(Q,AP) called the
dual ACPof (P,AQ). See Figure 1.5 for an example.dual ACP

1

1 2

2

3

3

aa b bc

c

Figure 1.5: Primal and dual ACP. Magenta numbers are elements ofP and blue letters are
elements ofQ. Both represent the lattice in Figure 1.4

Proposition 1.2.27.We have(fingAP
(F(Q)),⊇) ∼= (fingAQ

(I(P)),⊆).
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Proof. First observe thatfingAP
(y) = ↑Ay\

⋃
Az⊆↑Ay

Az. Hence

(fingAP
(F(Q)),⊇)

= ({↑∪y∈F Ay | F ∈ F(Q)},⊇)
∼= ({↑∪y∈F Ay | F ∈ F(Q)},⊆)

= ({
⋂

y∈F

↑Ay | F ∈ F(Q)},⊆)

= (⌈I(P)⌉AQ
,⊆)

The last equality comes from Lemma 1.2.7 Finally, Proposition 1.2.5 says that the
(⌈I(P)⌉AQ

,⊆) ∼= (fingAQ
(I(P)),⊆).

Dual to Definition 1.2.14 one defines an ACP(Q,AP) to becogoodif

1. y ‖ y′ =⇒ fingAP
(↑y) ‖ fingAP

(↑y′),

2. ∀x ∈ P ∃y ∈ Ax : fingAP
(↓Ax ∪ {y}) = fingAP

(↓Ax) ∪ {x}.

Indeed, an ACP(Q,AP) is cogood if and only if it is the dual of a good ACP. Given
a finite latticeL we defineAj := {m ∈ M(L) | j ∈ ↓m+\↓m} for all j ∈ J (L) and
let AJ (L) be their collection. One can then prove that(M(L),AJ (L)) is the dual ACP of
(J (L),AM(L)).

a

b c1 2

3 4 {1, 2, 4} {1, 2, 3}

{1, 2}

{1, 3}
{2, 4}

∅

{1, 2, 3, 4}

Figure 1.6: Representation of a ULD by its cogood ACP. Compare Figure 1.2 for a repre-
sentation by its good ACP

Question 1.2.28.An example for the representation of a ULD by a cogood ACP is shown
in Figure 1.6. Is there a nice characterization of cogood ACPs representing ULDs? It would
be enough to characterize the duals of reduced antichain-partitions. By Theorem 1.2.24 this
would yield a new characterization of ULDs.
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1.3 Hasse Diagrams of Upper Locally Distributive Lattices

In this section we prove a new characterization of ULD lattices in terms of arc-colorings of
Hasse diagrams. In many instances where a set of combinatorial objects carries the order
structure of a lattice this characterization yields a slickproof of distributivity or upper local
distributivity. We have mentioned examples for this in the beginning of this chapter and we
will provide a new major application in Section 1.4.

In the proof of our characterization we will establish the equivalence to the original defi-
nition of ULD given by Dilworth [31], see Definition 1.1.6. Atthe end we add a new proof
of the known fact that a lattice which is both ULD and LLD is distributive. Graphs, posets
and lattices in this section are generally assumed to befiniteunless specified differently. The
following is the class of arc-colorings, which will play thecentral role in this section:

Definition 1.3.1. Let D = (V, A) be a directed graph andd ∈ N. An arc-coloring
c : A → [d] of D is aU-coloring if it satisfies the following two rules. For everyx, y, z ∈ VU-coloring

with y 6= z and(x, y), (x, z) ∈ A one has:

• (U1) c(x, y) 6= c(x, z), (up-proper)up-proper

• (U2) There is aw ∈ V and arcs(y, w), (z, w) such thatc(x, y) = c(z, w) and
c(x, w) = c(y, w), see Figure 1.7. (up-complete)up-complete

x x

y y

w

z z

Figure 1.7: The up-completion of U-colorings.

In order to motivate this definition and to present the flavor of its applications think of
the vertex setV of D as a set of combinatorial objects and of
the arcs as local transformations. We have seen one example
of this in the introduction in terms of domino tilings. Even
if we will not treat concrete application until the next section,
as an example letV be the set ofEulerian orientationsof aEulerian

orientation
planar graphG, i.e., orientations such that every vertex has
equal in- and outdegree. It is easy to see, that reversing the
orientation of a directed cycle in such an orientation preserves
the property of being Eulerian. Now choose the local trans-

formations as reversals of directed facial cycles. More precisely, an arc ofD corresponds
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to a pair(D1, D2) of Eulerian orientations ofG such thatD2 may be obtained fromD1 by
reversing the orientation of acounter-clockwise (ccw)forward directed facial cycleC. Thecounter-clockwise

(ccw)
natural colorof the arc(D1, D2) then isC and it is easy to see that the natural coloring is anatural color

U-coloring. In many applications certain natural local transformations lead to such a natural
coloring.

For our applications we want that the U-colored digraphD yields the cover-relations
of a poset. This way, we obtain order-structure on many kindsof sets of combinatorial
objects. So we define a posetP to be aU-posetif the arcs of its Hasse diagramDP admit U-poset

a U-coloring. The first main result of this section is that actually everyacyclic digraph with
a U-coloring is the Hasse diagram of a U-poset. Moreover, we prove some properties of
U-posets. Therefore define theJordan-Dedekind chain conditionof a posetP as: given any Jordan-Dedekind

chain condition
pair of elements all maximal chains between them are of the same length. Even stronger,
theP together with an up-proper coloring of its cover-relations(e.g. with a U-coloring) is
said to satisfy thecolored Jordan-Dedekind chain conditionif given any pair of elements the colored

Jordan-Dedekind
chain conditionmaximal chains between them all use the same multiset of colors. The first main results of

the present section then reads:

Theorem 1.3.2.An acyclic digraphD admits a U-coloring if and only ifDP is the Hasse
diagram of a U-posetP. Moreover, each connected component of a U-poset has a unique
maximum and satisfies the colored Jordan-Dedekind chain condition.

The second main result of this section is that under relatively weak conditions U-posets
are ULDs and equivalently isomorphic to cover-preserving join-sublattice of the dominance
order. We will indeed be in this case for all our main applications later on.

We define thedominance orderon Nd asx ≤ y :⇐⇒ xi ≤ yi for all i ∈ [d]. With dominance order

this orderNd forms an infinite distributive lattice with componentwise maximummax and
minimummin as join and meet. We will only consider finite subposets ofNd. A subposetP
of Q is cover-preservingif x ≺P y =⇒ x ≺Q y. These definitions allow to state the secondcover-preserving

main result of this section.

Theorem 1.3.3.For a finite posetL the following are equivalent:

(i) There is an acyclic digraphD with U-coloringc and unique source such thatL ∼= PD,
wherePD is the transitive hull ofD,

(ii) there is d ∈ N and an order-embeddingγ : L → Nd such thatγ(L) is a cover-
preserving join-sublattice ofNd,

(iii) L is an upper locally distributive lattice.

Moreover, given suchL its U-colorings, the cover-preserving join-sublattice embeddings,
and chain-partitions ofM(L) translate into each other via the equivalence.

The following lemma describes the iterated application of the rules of U-colorings. It is
the main tool for the proof of Theorem 1.3.2 and the(i) =⇒ (ii) part of Theorem 1.3.3.
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PSfrag

(a) (b)

P ′P ′

P P

x0 = x x0 = x

y0 = y y0 = y

yℓ−1

xℓ−1

xℓ

xℓ+1

yk

xk = z

xk = z

Figure 1.8: Iterated application of U1 and U2 in Lemma 1.3.4.

Lemma 1.3.4. Let D = (V, A) be a digraph with a U-coloringc and x, y, z ∈ V . If
(x, y) is an arc andP = (x = x0, . . . , xk = z) a directed path, then there is a path
P ′ = (y = y0, . . . , yℓ) with ℓ ≤ k such that(xi, yi) ∈ A and c(xi, yi) = c(x, y) for
i = 1, .., ℓ. We either have(a): ℓ = k or (b): yℓ = xℓ+1, see Figure 1.8. Moreover, case (b)
happens if and only if there is an arc(xℓ, xℓ+1) onP with c(xℓ, xℓ+1) = c(x, y).

Proof. We apply rule U2 recursively to arcs(xi, yi) and (xi, xi+1) to define a ver-
tex yi+1 ∈ P ′ with arcs (yi, yi+1) and (xi+1, yi+1) such thatc(xi, yi) = c(xi+1, yi+1).
The iteration either ends ifi = k (case (a)), or if the two arcs needed for the
next application of the rule are the same, i.e.,yi = xi+1 (case (b)). In this case
c(xi, xi+1) = c(xi−1, yi−1) = c(x, y), i.e., there is an arc on the pathP whose color equals
the color of arc(x, y). Rule U1 implies that case (b) occurs whenever there is an arc onP
whose color equals the color of arc(x, y).

Remark 1.3.5. The proof does not imply thatyi 6= xj in all cases, as it is suggested by
Figure 1.8. An example is given Figure 1.9. From the analysisbelow it follows that in all
badcasesD is not acyclic (or infinite).

x = y = w

z

x0 = x

x1

x2 = y
x3

x4

x5

Figure 1.9: Two bad things that can happen in U-colored digraphs with directed cycles.
The one on the left visualizes that the up-completion of a U-coloring might look differ-
ent from the one in Figure 1.7. The digraph on the right shows,that the application of
Lemma 1.3.4 does not always look as in Figure 1.8. ChooseP = x0, .., x5 andy = x2. We
getP ′ = (yi)0≤i≤6, whereyi = xi+2 (mod 6).
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If D = (V, A) is a connected, acyclic digraph with a U-coloringc, then the transitive
closure ofD is a finite posetPD. From the next two propositions it will follow that in this
caseD is indeed transitively reduced, i.e., it is the Hasse diagram of PD. Hence,PD is a
U-poset.

Proposition 1.3.6. Let D = (V, A) be a connected digraph with a U-coloringc. For every
pair s, t ∈ V there exists a vertexr ∈ V , such thats lies on a directed(s, r)-path andt on
a directed(t, r)-path. In particular ifD is acyclic, then it has a unique sink⊤, i.e., a vertex sink

without outgoing arcs.

Proof. Let D = (V, A) be a connected digraph with a U-coloringc. Let s, t ∈ V . We show
that there is a shortest(s, t)-pathS that does not traverse a triple of vertices(y, x, z) of the
form sink-source-sink. By a sink-source-sink triple(y, x, z) we refer to thaty, z have no
outgoing arcs inS andx has no incoming arcs inS. If we have a pathS without such a
triple, thenS has a unique sink, i.e., a vertex without outgoing arcs inS. This would ber.

The proof is constructive. LetS be any shortest(s, t)-path with sink-source-sink-triple
(y, x, z). Let y0 be the vertex before arriving atx and denote the restriction ofS between
x an z asP = (x = x0, . . . , xk = z). We apply Lemma 1.3.4 to the arc(x, y0) andP .
SinceP was a shortest path we are in case (a) of the lemma. The lemma gives us a pathP ′

from y0 to yk and assures that(z, yk) ∈ A. We have a new shortest pathS′. It consists ofS
until y0, thenP ′, then the arc(z, yk) and then the part ofS from z to t. Our new path has
the sink-source-sink-triple(y, y0, yk). The number of arcs connecting the triple(y, y0, yk)
is less than in(y, x, z). We can continue like that until the sink-source-sink-triple lies on
a 2-path as in the precondition for U2 and we transform it into a single sink. This way we
reduceS until we obtain a path with a unique sink.

If D is acyclic, then it has at least one sink. Suppose it has two sinks⊤1 and⊤2. By what
we have proved there is a vertexr such that⊤1 lies on a directed(⊤1, r)-path and⊤2 on a
directed(⊤2, r)-path. Thus at least one of⊤1 and⊤2 was no sink – a contradiction.

Let P be a directed path inD = (V, A) with U-coloring c. We define the
colorsetc(P ) of P as the multi-set of colors used on the arcs ofP . colorset of a path

Proposition 1.3.7. Let D = (V, A) be an acyclic digraph with U-coloringc andx, z ∈ V .
If P, Q are directed(x, z)-paths inD, thenc(P ) = c(Q).

Proof. AssumeD to be connected otherwise we prove the claim component by component.
By Proposition 1.3.6 there is a unique sink⊤ in D. Denote for anyx ∈ V by S(x) the
set of vertices that lie on directed(x,⊤)-paths. SinceD is acyclic if (x, y) ∈ A, then
S(x) ) S(y).

Suppose there is a pair of verticesx, z contradicting the statement of the proposition. Take
a counterexample that minimizesS(x). Let P, Q be directed(x, z)-paths andc(P ) 6= c(Q).
Let y be the successor ofx on Q. The arc(x, y) and the pathP fulfill the conditions of
Lemma 1.3.4.
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If we are in case (a) of Lemma 1.3.4, then the pathP ′ = (y = y0, . . . , yk) has the colorset
c(P ). The pathQ′ defined by starting aty, then followingQ until z and then taking the
arc toyk has the same colorset asQ. This contradicts the minimality in the choice ofx, z,
because we have constructed(y, yk)-pathsP ′ andQ′ with c(P ′) 6= c(Q′) andS(y) ( S(x).

If we are in case (b) of Lemma 1.3.4, then the path
P ′ = (y = y0, . . . , yℓ = xℓ+1, . . . , xk = z) has the colorsetc(P )\{c(x, y)}. The path
Q′ starting aty, and then followingQ until z has the colorsetc(Q)\{c(x, y)}. This
contradicts minimality ofx, z, because we have constructed(y, z)-pathsP ′ andQ′ with
c(P ′) 6= c(Q′) andS(y) ( S(x).

Since the colorset of a directed(x, z)-path in an acyclicD with U-coloring only depends
on the end-verticesx, z we also know that all(x, z)-paths have the same length. This implies
thatD is transitively reduced and means thatPD fulfills the colored Jordan-Dedekind chain
condition. Proposition 1.3.6 yields the existence of a unique maximum per component. We
have thus shown Theorem 1.3.2.

Question 1.3.8. Is it true that in every connected U-colored digraphD, there is a set of
colorsI ⊆ [d], such thatD\c−1(I) is connected and directed paths with coinciding start and
end vertices have same colorsets? To obtain anacyclicconnected digraph with that property
would be even better, but this is not generally possible, seethe example in Figure 1.9.

We will now proceed to prove Theorem 1.3.3 in the form (i)=⇒(ii)=⇒(iii) =⇒(i). At
the end of every part of the proof we emphasize how U-colorings, cover-preserving join-
sublattice embeddings, and chain-partitons of the poset ofmeet-irreducible translate into
each other (Remark 1.3.10, Remark 1.3.13, Remark 1.3.16).

For the first part of the proof we will show that every U-colored acyclic digraphD with
uniquesource, i.e., a vertex with indegree0, leads to an order-embeddingγ of PD intosource

the dominance order onNd such thatγ(PD) a cover-preserving join-sublattice ofNd. By
Theorem 1.3.2PD =: L is a U-poset with Hasse diagramD = DL. So letL be a finite
U-poset with U-coloringc of DL and minimum0L. In particular,DL is connected thus
L has a unique maximum1L by Proposition 1.3.6. A consequence of Proposition 1.3.7 is
that thecolorsetc(x) of a vertexx, i.e., the colorset of any directed(0L, x)-path inDL iscolorset of a

vertex
well-defined. Define a mappingγ : L → Nd, whered is the number of colors ofc, as
γ(x) := χ(c(x)). Hereχ ∈ Nd is thecharacteristic vector of a multisetS, i.e., the entrycharacteristic

vector of a
multiset χ(S)i counts how often elementi appears inS. In our particular case this means thatγ(x)i

records how many arcs of colori appear in a(0L, x)-path.

Proposition 1.3.9. The mappingγ is an order-isomorphism fromL to a cover-preserving
join-sublattice of the dominance order onNd.

Proof. We have to show thaty ≤ z ⇐⇒ γ(y) ≤ γ(z), that there is aw ∈ L such that
γ(w) = max(γ(y), γ(z)), and thatγ(y) ≺ γ(z) =⇒ γ(z) − γ(y) = ei, whereei is theith
unit-vector for somei ∈ [d],
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The implication fromy ≤ z to γ(y) ≤ γ(z) follows from the fact that extending a path
requires more colors.

Now we prove that for allz, y ∈ L there is az, y ≤ w ∈ L with γ(w) = max(γ(y), γ(z)).

For any fixedy we proceed by top-down induction. If a givenz is comparable toy,
thenw := Max(z, y) and we are done by the first part of the proof. Consider otherwise a
maximalx with the propertyx ≤ z andx ≤ y. By Observation 1.1.1, this exists because
L has a unique minimum. Let(x, y′) be the first arc on a(x, y)-path inDL and letP be
an (x, z)-path. Case (b) of Lemma 1.3.4 is impossible becausey′ would have prevented
us from choosingx, we would obtainx < y′ ≤ z, y in that case. Hence, we are in case
(a) and there is az′ coveringz such that the arcs(z, z′) and(x, y′) have the same colori
and moreover,P has no arc of colori. Induction implies that there is aw′ ≥ z′, y such
that γ(w′) = max(γ(z′), γ(y)). Sinceγ(z′) = γ(z) + ei and for thei-th component
γi(z) = γi(x) < γi(y) holds we can concludemax(γ(z′), γ(y)) = max(γ(z), γ(y)), i.e.,
w′ may also serve asw. Note that in the case thaty ‖ z we havew > y, z.

This already impliesγ(y) ≤ γ(z) =⇒ y ≤ z. If otherwisey ‖ z andγ(y) ≤ γ(z) by the
above there would be aw > y, z with γ(w) = γ(z) contradicting the first part of the proof.

Since an arc(y, z) of the Hasse diagram ofL is colored by precisely one color, sayi, we
havey ≺ z =⇒ γ(z) − γ(y) = ei =⇒ γ(y) ≺ γ(z).

Sinceγ(L) is a join-closed subposet ofNd and has a unique minimumγ(0L) it is a join-
sublattice ofNd by Observation 1.1.4.

Remark 1.3.10. We have shown, that every U-coloring of an acyclicD with unique source
yields an order embeddingγ of PD as a cover-preserving join-sublattice ofNd.

The next part of the proof of Theorem 1.3.3 is to show that every element of a finite
cover-preserving join-sublatticeL of Nd has a unique minimal representation as a meet of
meet-irreducibles.

For everyx ∈ L ⊆ Nd let I(x) := {i ∈ [d] | x + ei ∈ L} be the set of directions of
the arcs emanating fromx in the embedding of the Hasse diagram intoNd. With the next
lemma we associate a meet-irreducible element with everyi ∈ I(x).

Lemma 1.3.11.LetL be a cover-preserving join-sublattice ofNd. For everyi ∈ I(x) there
is a unique maximal elementy(i) ∈ L such that

y(i) ≥ x andy(i)i = xi.

The elementy(i) is meet-irreducible andy(i)j > xj for all j ∈ I(x)\{i}.

Proof. Let i ∈ I(x) and consider the setSi(x) of all y ≥ x with yi = xi. The (finite) set
Si(x) containsx, and is closed with respect to componentwise maximum hence it contains
a unique maximal elementy(i). The elementy(i) is meet-irreducible, otherwise we could
find a successor ofyi in Si(x).

Sincex + ej ∈ Si(x) for j ∈ I(x)\{i} we conclude thaty(i)j > xj .
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Proposition 1.3.12.A cover-preserving join-sublatticeL of Nd is an upper locally distribu-
tive lattice.

Proof. We claim thatMx = {yi : i ∈ I(x)} is the unique minimal set of meet-irreducibles
with x =

∧
Mx. If x = 1L the statement is clear since

∧
∅ := 1L.

First we showx =
∧

Mx. SinceL is a subposet ofNd we have
∧

Mx ≤ min(Mx),
where the latter is the componentwise minimum of all elements ofMx. Since Lemma 1.3.11
tells usx ≤ Mx we moreover knowx ≤

∧
Mx. By Lemma 1.3.11 we know that for each

i ∈ I(x) there is ax ≤ y(i) ∈ Mx with y(i)i = xi. We concludex = min(Mx) and
consequentlyx =

∧
Mx. In particular the meet ofL andNd coincide onMx.

It remains to show that the representationx =
∧

Mx is the unique minimal representation
of x as meet of meet-irreducibles. Leti ∈ I(x) and consider a setM of meet-irreducibles
with y(i) 6∈ M . It is enough to show thatx 6=

∧
M . If M contains ay with x 6< y, then

x 6=
∧

M is obvious. Consider the setSi(x) from the proof of Lemma 1.3.11, every element
y 6= y(i) in this set is contained in a(x, y(i))-pathP that contains no arc with directioni.
On the other handy ≺ y+ei is an arc emanating fromy with directioni. This implies thaty
is not meet-irreducible. HenceM ∩Si(x) = ∅. All y > x with y 6∈ Si(x) satisfyy ≥ x+ei.
This implies thatx + ei is a lower bound onM , i.e.,x 6=

∧
M .

C1

C2

C3

x1

x2

x3

Figure 1.10: An embedded ULDL and the corresponding chain-partition{C1, C2, C3} of
M(L).

Remark 1.3.13.Note that every cover-preserving join-sublatticeL of Nd yields ad-element
chain-partitionC of M(L) consisting of chainsCi := {y ∈ M(L) | y + ei ∈ L}, see
Figure 1.10.

To complete the proof of Theorem 1.3.3 it remains to show thatevery ULD has a repre-
sentation as a U-poset, i.e., we have to present a U-coloringof its Hasse diagram. Indeed,
we provide a U-coloring of the Hasse-diagram depending on a chain-partition ofM(L).

So let L be a ULD with chain-partitionC of its poset of meet-irreduciblesM(L).
Consider the map↑xM := ↑x ∩ M(L). The definition of meet-irreducible implies that
x =

∧
(↑xM ) for all x, i.e., the set↑xM uniquely determinesx, by Observation 1.1.5. More-

over,x ≤ y if and only if ↑xM ⊇ ↑yM , by Lemma 1.2.8.



CHAPTER 1. LATTICES 35

On the basis of the mappingsMx and ↑xM we will define a U-coloring of the cover
relations ofL. As colors we use the elements ofC.

Lemma 1.3.14.LetL be a ULD andx, y ∈ L. We havex ≺ y if and only if|↑xM\↑yM | = 1.

Proof. By Lemma 1.2.8 for general finite lattices, an elementz with x < z < y satisfies
↑yM ( ↑zM ( ↑xM which implies|↑xM \ ↑yM | ≥ 2.

Let x < y and suppose that|↑xM \↑yM | ≥ 2. Since
∧

Mx <
∧

↑yM there has to be some
m ∈ Mx \ ↑yM . Let z =

∧
(↑xM −m). By Definition 1.1.6 we havez =

∧
(Mx − m) > x.

Since(↑xM−m) ⊇ ↑yM we havez ≤ y. Letm′ be an element withm 6= m′ ∈ ↑xM \↑yM , it
follows thatm′ ∈ ↑zM andm′ 6∈ ↑yM . Thereforez 6= y and we have shown thatx < z < y,
i.e., the pairx, y is not in a cover relation.

Proposition 1.3.15. Let L be a ULD with Hasse diagramDL and C a chain-partition of
M(L). The mappingc : A → C with c(x, y) being theC ∈ C which contains↑xM \ ↑yM is
a U-coloring ofDP .

Proof. To verify thatc is a U-coloring we have to check the two properties U1 and U2. First
note that↑xM \ ↑yM ∈ Mx for ax ≺ y.

We start with U1: Let x ≺ y(1), y(2) be two cover relations. Sincex = y(1)∧y(2) we have
the representationx =

∧
(↑y(1)M ∪ ↑y(2)M ) of x as the meet of meet-irreducibles, hence,

Mx ⊆ ↑y(1)M∪↑y(2)M . Suppose both covers have the same color. SinceMx is an antichain
and the colors correspond to chains both covers must correspond to the same element ofMx,
i.e.,↑xM \ ↑y(1)M = ↑xM \ ↑y(2)M = m. Thus,m ∈ Mx but m 6∈ ↑y(1)M ∪ ↑y(2)M – a
contradiction.

It remains to show that the coloring satisfies U2: Let x ≺ y(1), y(2) be two cover relations
such thatx ≺ y(i) has colorci, i.e., there ismi ∈ Ci such that↑y(i)M = ↑xM − mi.
Considerz =

∧
(↑xM − m1 − m2). Sincez is representable as the meet of elements from

↑y(i)M we knowz ≥ y(i) for i = 1, 2. Sincey(1), y(2) both coverx and are incomparable
it follows thatz > y(1), y(2). From↑xM − m1 − m2 ⊆ ↑zM ⊂ ↑y(i)M = ↑xM − mi it
follows that|↑y(i)M \ ↑zM | = 1. Lemma 1.3.14 implies thatz covers eachy and the labels
of these covers are as required.

Remark 1.3.16. We have shown that every chain-partitionC of M(L) determines a
U-coloring ofL.

We have now shown the equivalence of the three parts of Theorem 1.3.3. As noted in
Remark 1.3.10, Remark 1.3.13, and Remark 1.3.16, U-colorings, cover-preserving join-
sublattice embeddings and chain-partitions of the poset ofmeet-irreducibles translate to each
other via the equivalence.

Remark 1.3.17. In order to establish a one-to-one correspondence of U-colorings, cover-
preserving join-sublattice embeddings and chain-partitions of the poset of meet-irreducibles
along the lines of the proof of Theorem 1.3.3 it is necessary to define adequate isomorphism-
classes of these objects. This can be done but we will not go into that detail here.
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C1 C2

C3
x1

x2

x3

Figure 1.11: On the left: an antichain-partitoned poset with a chain-partition{C1, C2, C3}
of the index-poset on the antichains (A ≤ A′ :⇔ ↑A ≥ ↑A′, see Section 1.2). On the right:
the corresponding embedded ULD inN3.

In the light of the representation of ULDs as antichain-partitioned posets (Theo-
rem 1.2.24), Theorem 1.3.3 enables us to state the followinggeneralization of Dilworth’s
Embedding Theorem for distributive lattices, see Figure 1.11.

Theorem 1.3.18.Every order-embedding of a finite ULDL as a cover-preserving join-
sublattice of the dominance order onNd corresponds to a reduced antichain-partitioned
(P,AQ) with a chain-partition ofQ into d chains and viceversa.

Remark 1.3.19.Since finding a minimum chain-partition of a poset is equivalent to finding
a maximum matching in a bipartite graph by [47], Theorem 1.3.18 particularly yields that a
join-sublattice embedding of a ULD of minimal dimension maybe computed in polynomial
time in |M(L)|. This result may be deduced from a result of David Eppstein about the lattice
dimension of a graph [35].

Before proving a special case of Theorem 1.3.3 for distributive lattices, we con-
tinue with some comments about possible generalizations ofthis section’s results.

u v

w

s t

Let D be a digraph with a U-coloring. We need acyclicity, connectivity and
the unique source to conclude thatD corresponds to a finite ULD. We feel
that among these conditions theunique sourcehas a somewhat artificial
flavor. Abstaining on this condition it can be shown (along the lines of
our proof) that the corresponding posetPD has a unique maximum and the
property that for allx ∈ PD there is a unique minimal setMx of meet-
irreducibles such thatx is a maximal lower bound forMx. The figure on

the right shows a small example, in this caseMs = Mt = {u, v}. As exemplified by the
figure such a poset does not need to have unique joins nor meetsat all.

Question 1.3.20.The meet-representability in general U-posets is quite weak. Instead it
would be of interest to characterize join-semilatticesP, where for allx ∈ P there is a
unique minimal setMx of meet-irreducibles such thatx is theuniquemaximal lower bound
for Mx. Note that this still does not turnP into a lattice.

Question 1.3.21.Another question arises, when dropping the restriction to finite lattices. A
first class of interest would be ULDs with the property that every two elements are connected



CHAPTER 1. LATTICES 37

by afinitepath in the Hasse diagram. How can their Hasse diagrams be characterized as class
of arc-colored digraphs.

Instead of generalizing Theorem 1.3.3, it is very be useful when specializing it. In many
applications of the characterization of ULDs the lattice inquestion is actually distributive.
Such a situation is the topic of the next section.

Theorem 1.3.22. If an acyclic and connected digraphD admits a U- and an L-coloring
thenD is a Hasse diagram andLD is isomorphic to a cover-preserving sublattice ofNd. In
particular,LD is a distributive lattice.

Proof. Let cU andcL be a U- and an L-coloring ofD, respectively. Consider the coloring
c = cU × cL. The claim is thatc is both a U- and an L-coloring ofD. The rule U1 and its
dual L1 are immediately inherited from the corresponding rules forcU andcL.

Consider a subposetx ≺ y(1), x ≺ y(2), y(1) ≺ z, y(2) ≺ z. Proposi-
tion 1.3.7 guarantees the colored Jordan-Dedekind chain condition for c. We have that
{c(x, y(1)), c(y(1), z)} = {c(x, y(2)), c(y(2), z)}. Together withU1 andL1 for c we con-
clude thatc(x, y(i)) = c(y(j), z) for i 6= j. This implies rules U2 and L2 for c.

SinceD is connected, Proposition 1.3.6 applied toPD andc yields thatPD has unique
0PD

and a unique1PD
.

With Proposition 1.3.9 we have thatc yields an order-embeddingγ : PD → Nd which is
cover-, meet-, and join-preserving. HencePD is a sublattice of the dominance order onNd.
Since the latter is distributive, so isPD.

In the following we will show one of our main application of U-colorings. We will use
Theorem 1.3.22 to show distributivity. For an application of the criterion to ULDs that are
not distributive see Section 1.5, where chip-firing games and vector-addition languages will
be introduced.
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1.4 The Lattice of Tensions

The concept of∆-tensionsis a unifying generalization of many known distributive lattices
coming from digraphs. The most important special cases willbe explained in the subsections
at the end of this section. In this section we prove that the∆-tensions of any digraph carry a
distributive lattice structure twice. First we show that∆-tensions may be seen as a sublattice
of the dominance order and thus inherit the distributive lattice structure. Second we will
provide local transformations on∆-tensions, which yield an acyclic and connected digraph
with a U- and an L-coloring on the set of∆-tensions. Applying Theorem 1.3.22 we will
then obtain the result again, but with the additional information of how to generate the lattice
combinatorially.

Our proof starts with the observation that∆-tensions are actually affinely equivalent to
ordinary tensions. Those form the orthogonal space to the integer flows of a digraph. In the
literature the space of integer tensions is also referred toascut space. Tensions are a classical
research topic of algebraic graph theory, see [52]. A secondstep is to reduce ordinary
tensions to feasible vertex potentials. Vertex potentialsare also referred to asheight functions
in many contexts, e.g., Propp [92]. We will introduce a (classical) bijection between tensions
and vertex potentials. It may be seen asthe coboundary operator of a graph, see [78]. The
structural results we obtain for∆-tensions in this section, will all first be proved on vertex-
potentials and then be translated back to∆-tensions.

For the definition∆-tensions we need to introduce some standard vocabulary: Directed
graphs lead tooriented arc-sets. An oriented cycleC of a digraphD = (V, A) correspondsoriented arc-set

oriented cycle
to a cycle of the underlying undirected graph together with adirection of traversal. This way
C is partitioned in a set offorward arcsC+ andbackward arcsC−. We collect the orientedforward arcs

backward arcs
cycles ofD in C(D). Similarly we will view walks and paths as oriented arc-sets. Now we
come to the main definition of this section.

Definition 1.4.1. . Let D = (V, A) be a directed multi-graph with upper and lower integral
arc capacitiescu, cl : A → Z ∪ {±∞}, i.e., some arcs might have unbounded capacities.
Given a number∆C for each oriented cycleC ∈ C of D we define the setT∆(D, cl, cu) of
∆-tensionsas the set of vectorsx ∈ ZA such that∆-tension

(D1) cl(a) ≤ x(a) ≤ cu(a) for all a ∈ A, (capacity constraints)
(D2) ∆C =

∑
a∈C+ x(a) −

∑
a∈C− x(a) for all C. (circular balance conditions)

We abbreviate thecircular balance
∑

a∈C+ x(a) −
∑

a∈C− x(a) of a tensionx with re-circular balance

spect to a cycleC by δ(C, x).

Remark 1.4.2. In previous work on the subject [41, 42, 43] we have referred to ∆-tensions
as∆-bonds. Also, in [39, 41, 42, 92] instead ofcircular balancethe termcircular flow-
differencewas used. Since tensions are not flows but orthogonal to flows that name may
cause confusion.
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Remark 1.4.3. Note that prescribing∆ on a basis of the cycle spaceC of D already suffices
to determine∆ everywhere.

We will prove a distributive lattice structure onT∆(D, cl, cu). The proof of our result
relies on a reduction toordinary tensions and then tovertex potentials. For this in the
following two lemmas we will reduce the variety of data(D, cl, cu, ∆) we need to look
at. First note that restricting our attention to connected digraphs does not cause a loss of
generality. Given data(D1, c1

l , c
1
u, ∆1) and(D2, c2

l , c
2
u, ∆2) there is an obvious extension

to a union structure(D, cl, cu, ∆) whereD is the union of graphs and thecl, cu, ∆ are
concatenations of vectors. Since∆-tensions factor into a∆1- and a∆2-tension we have:

Lemma 1.4.4.T∆(D, cl, cu) ∼= T∆1(D1, c1
l , c

1
u) × T∆2(D2, c2

l , c
2
u).

The most important case of∆-tensions is if∆ =0 is the all-zeroes-vector. In this case
we refer to∆-tensions astensions. For convenience, we will denote the set of tensions astension

T (D, cℓ, cu). By the circular balance condition tensions without capacity constraints form
the orthogonal space to the integer flows of a digraph, also known ascut space. Indeed, we
can restrict our attention to the case of tensions:

Lemma 1.4.5. Let D be any digraph with arc-capacitiescℓ, cu. Given some
x ∈ T∆(D, cℓ, cu) we have

T∆(D, cℓ, cu) ∼= T (D, cℓ − x, cu − x).

Proof. The mapϕ : T∆(D, cℓ, cu) → T (D, cℓ − x, cu − x) is defined byϕ(y) := y − x.
The image clearly satisfies the capacity constraints and also the circular balance conditions
by

δ(C, ϕ(y)) =
∑

a∈C+

(y(a) − x(a)) −
∑

a∈C−

(y(a) − x(a)) = δ(C, y) − δ(C, x) = 0.

Indeed, the translationϕ is a bijection with inversez 7→ z + x.

Given a connectedD with capacitiescℓ, cu fix an arbitrary vertexv0 ∈ V . Call a vector
π ∈ ZV a feasible vertex potentialif π(v0) = 0 andcℓ(a) ≤ π(w) − π(v) ≤ cu(a) for all feasible potential

a = (v, w) ∈ A. We collect the set of feasible vertex potentials inΠv0(D, cℓ, cu).

Lemma 1.4.6. Let D be a connected digraph with arc-capacitiescℓ, cu and v0 ∈ V . We
haveT (D, cℓ, cu) ∼= Πv0(D, cℓ, cu)

Proof. To every x ∈ T (D, cℓ, cu) we can associate a feasible vertex potential
πx ∈ Πv0(D, cℓ, cu) by settingπx(v) :=

∑
a∈P+ x(a) −

∑
a∈P− x(a), for a (v0, v)-path

P . HereP+ andP− are forward and backward arcs ofP , respectively. To see thatπx is
well-defined, i.e., independent of the choice ofP , take two(v0, v)-pathsP andQ. Their
symmetric difference is a union of oriented cyclesC1, . . . , Ck: traverse arcs ofCi∩P in the
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order they appear alongP and those inCi∩Q in the reverse order ofQ. It is straight-forward
to get(

∑
a∈P+ x(a)−

∑
a∈P− x(a))−(

∑
a∈Q+ x(a)−

∑
a∈Q− x(a)) = δ(C1)+. . .+δ(Ck).

Since the circular balance ofx is 0 on all cycles ofD this difference is0 and the map
π : T (D, cℓ, cu) → Πv0(D, cℓ, cu) is well-defined, i.e., independent of the choice ofP .

On the other hand forπ ∈ Πv0(D, cℓ, cu) definexπ as xπ(a) := π(w) − π(v) for
a = (v, w) ∈ A. It is straight-forward to calculate that for every directed walkW with start
vertexu and end vertexu′ we have

∑
a∈W+ xπ(a) −

∑
a∈W− xπ(a) = π(u′) − π(u). In

particular ifW is a cycle the sum is0, i.e.,xπ ∈ T (D, cℓ, cu).

To seeπxπ = π we computeπxπ(v) =
∑

a∈p+ xπ(a) −
∑

a∈p− xπ(a) = π(v) − π(v0).
Since π(v0) = 0 by default, this equalsπ(v). On the other hand leta′ = (v, w)
then xπx(a′) = πx(w) − πx(v). Let P be a (v0, w)-path takinga′ as last arc and
Q the path withouta′. (If this is not possible takeP as a(v0, v)-path.) We compute∑

a∈P+ x(a) −
∑

a∈P− x(a) − (
∑

a∈Q+ x(a) −
∑

a∈Q− x(a)) = x(a′).

We have shownT (D, cℓ, cu) ∼= Πv0(D, cℓ, cu). Moreover, the bijectionsπ 7→ xπ and
x 7→ πx are inverses of each other.

We can summarize the last lemmas as:

Lemma 1.4.7. For every set of data(D, cℓ, cu, ∆) there are c′ℓ, c
′
u such that

T∆(D, cℓ, cu) ∼= Πv0(D, c′ℓ, c
′
u) for everyv0 ∈ V (D).

This lemma is so useful for finding a distributive lattice on the ∆-tensions of a digraph
because we can prove:

Theorem 1.4.8.Let D be a digraph with capacitiescℓ, cu. For everyv0 ∈ V (D) the set
Πv0(D, cℓ, cu) induces a sublattice of the dominance order onZV , i.e., carries the structure
of a distributive lattice.

Proof. We only have to show thatΠv0(D, cℓ, cu) is closed with respect to componentwise
max andmin. These are meet and join of the dominance order.

Let π1, π2 ∈ Πv0(D, cℓ, cu), i.e.,cℓ(a) ≤ πi(w) − πi(v) ≤ cu(a) for all a = (v, w) ∈ A
andi = 1, 2. Sayπ1(w) ≤ π2(w) andπ1(v) ≥ π2(v), then

π2(w) − π2(v) ≤ π2(w) − π1(v) ≤ π1(w) − π1(v).

Hence the maximum is feasible ona. The caseπ1(w) ≥ π2(w) andπ1(v) ≤ π2(v) works
similar. ThusΠv0(D, cℓ, cu) is max-closed. By an analogous argument it can be shown
thatΠv0(D, cℓ, cu) is min-closed. As a sublattice of a distributive latticeΠv0(D, cℓ, cu) then
carries a distributive structure.

The following is now an easy consequence:

Theorem 1.4.9.LetD be a digraph with capacitiescℓ, cu. The setT∆(D, cl, cu) carries the
structure of a distributive lattice.
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Proof. By Lemma 1.4.7 the setT∆(D, cl, cu) is isomorphic toΠv0(D, c′ℓ, c
′
u) for v0 ∈ V (D)

and some capacitiesc′ℓ, c
′
u. By Theorem 1.4.8 the dominance order onΠv0(D, c′ℓ, c

′
u) is a

distributive lattice. The setT∆(D, cl, cu) inherits this structure fromΠv0(D, c′ℓ, c
′
u).

The rest of the section consists of having a closer look at theHasse diagram of the distribu-
tive lattice on the∆-tensions. Reducing the input-data we can find a U- and an L-coloring
of the Hasse diagram of the lattice, where colorsnaturallycorrespond to vertices ofD. The
whole lattice then will be generated bylocal vertex pushes. This is important, because it will
in fact unify thelocal transformationsthat come up in many special cases of tensions.

From now on we shall assume that the data(D, cl, cu, ∆) are such that the set of corre-
sponding∆-tensions is non-empty and finite. Moreover, we want to simplify matters by
concentrating on connected graphs and getting rid ofrigid arcs. These are arcsa ∈ A with rigid arc

x(a) = y(a) for all pairsx, y of ∆-tensions.

Let a be a rigid arc ofD. If a is a loop we delete it from the graph. Sincea was rigid,
restricting all the data toD\a yields a bijection between∆-tensions. Ifa is not a loop, then
contracta obtainingD/a. The cycles inD/a and the cycles inD are in bijection. Let
C/a be the cycle inD/a corresponding toC in D. Define∆′

C/a = ∆C if a 6∈ C and
∆′

C/a = ∆C − x(a) if a ∈ C+ and∆′
C/a = ∆C + x(a) if a ∈ C−. These settings yield the

bijection that proves

Lemma 1.4.10.T∆(D, cl, cu) ∼= T∆′(D/a, cl, cu).

The data(D, cl, cu, ∆) are reduced if D is connected, there is no rigid arc, andreduced data

T∆(D, cl, cu) is neither empty nor infinite. Henceforth we will assume thatany given set
of data is reduced.

As for the proof of Theorem 1.4.9 in the first part of this section, we will reduce
∆-tensions to vertex-potentials. Lemma 1.4.7 establish a one-ton-one-correspondence be-
tween reduced data for∆-tensions and reduced data for vertex potentials, i.e., we are given
a finite non-empty setΠv0(D, cℓ, cu), without rigid arcs. This is, for everya ∈ A(D) there
are potentialsπ1, π2 with xπ1(a) 6= xπ2(a).

We will now introduce the local tansfromations of vertex potentials, called push and pop,
and show that they yield a connected acyclic digraph with U- and L-coloring on the set of
vertex-potentials. We then apply Theorem 1.3.22 and obtaina distributive lattice on that set.

Givenπ ∈ Πv0(D, cℓ, cu) andv ∈ V \{v0} pushingv in π is to move fromπ to π + ev. vertex push

Here ev denotes the vector, which has a1 in the vth entry and is0 elsewhere. Pushing
v in π is only allowed ifπ + ev is feasible. The inverse operation of vertex pushing is
vertex popping. DefineDΠ as the directed graph with vertex setΠv0(D, cℓ, cu) and arcs of vertex pop

the form(π, π + ev). Thenatural colorc(π, π + ev) of an arc(π, π + ev) of DΠ is v. natural color
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Note that DΠ is a subgraph of the Hasse diagram of the dominance order on
Πv0(D, cℓ, cu). The latter is a distributive lattice by Theorem 1.4.8. Thisyields thatDΠ

is acyclic. SinceΠv0(D, cℓ, cu) is closed with respect tomin andmax, it follows that the
natural coloring ofDΠ is a U- and an L-coloring. In order to apply Theorem 1.3.22 it only
remains to show thatDΠ is connected, in other words:

Lemma 1.4.11. Let (D, cl, cu) be reduced data andπ1, π2 ∈ Πv0(D, cℓ, cu). There is a
sequence of pushes and pops that transformsπ1 into π2.

Proof. We proceed by induction on theℓ1-distance
∑

v∈V |π1(v) − π2(v)| of π1 andπ2. If
this sum is0 the statement is clearly true.

Otherwise, partitionV into the the setS− := {v ∈ V | π1(v) − π2(v) < 0} and its
complementS+. If we can push one vertexv ∈ S− in π1, then we can apply induction
on π1 + ev andπ2. First, observeS− 6= ∅, otherwise interchange the roles ofπ1 andπ2.
Second, notev0 /∈ S−. Suppose no vertex inS− can be pushed inπ1. This means every
v ∈ S− has asaturatedincoming arc(w, v), i.e., π1(v) − π1(w) = cu, or acosaturatedsaturated arc

cosaturated arc outgoing arc(v, w), i.e.,cℓ = π1(w) − π1(v). No such arca can have its other endpointw
in S+. Otherwise withπ2(w) ≤ π1(w) andπ2(v) > π1(v) we obtain thatπ2 is not feasible
with respect toa.

Hence the digraph induced byS− contains a cycleC with saturated backward arcs and
cosaturated forward arcs, i.e.,

∑
a∈C+ cℓ(a) −

∑
a∈C− cu(a) = 0. Changing any of the

values on the arcs would force some others to violate their capacity constraints. HenceC is
rigid – a contradiction to(D, cl, cu) being reduced.

We have proved thatDΠ is a connected, acyclic digraph on the set of feasible vertex
potentials. Moreover pushes and pops yield a U- and L-coloring of DΠ. Since the data
(D, cℓ, cu) are reduced in particularΠv0(D, cℓ, cu) is finite. We can apply Theorem 1.3.22
and get:

Theorem 1.4.12. For reduced data(D, cℓ, cu) the setΠv0(D, cℓ, cu) carries the struc-
ture of a distributive lattice. The local transformations of vertex pushing and popping in
Πv0(D, cℓ, cu) correspond to moving upwards and downwards on the arcs of theHasse dia-
gram of that lattice, respectively.

In order to translate our result to the language of∆-tensions we choose aforbidden vertexforbidden vertex

v0 ∈ V and definepushing a vertexv ∈ V \{v0} in a ∆-tensionx as moving fromvertex push

x to x + xv, wherex(v) is:

xv(a) :=





+1 if a = (w, v)

−1 if a = (v, w)

0 otherwise

Analogously definepopping a vertexv in a ∆-tensionx as moving fromx to x− xv. Push-vertex pop

ing and popping in tension just is defined in the way that enables us to prove the very analo-
gous theorem to Theorem 1.4.12 in terms of∆-tensions:
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Theorem 1.4.13.For reduced data(D, cℓ, cu, ∆) the setT∆(D, cl, cu) carries the struc-
ture of a distributive lattice. The local transformations of vertex pushing and popping in
T∆(D, cl, cu) correspond to moving upwards and downwards on the arcs of theHasse dia-
gram of that lattice, respectively.

Proof. Given the setT∆(D, cl, cu) we apply Lemma 1.4.7 to obtain an isomorphic set
Πv0(D, c′ℓ, c

′
u), which by Theorem 1.4.12 is a distributive lattice with cover-relations cor-

responding to pushes and pops. In order to prove out theorem we only have to convince
ourselves that pushing a vertex in a potential inΠv0(D, c′ℓ, c

′
u) corresponds to pushing a

vertex in the corresponding∆-tension inT∆(D, cl, cu)

We want to understand a push(x, x + xv) of ∆-tensions. Lemma 1.4.5 transfers
x + xv to a tensionz + xv of (D, c′ℓ, c

′
u). Lemma 1.4.6 maps this toπz+xv . Let P be

a (v0, u)-path in D, then by definition ofπz+xv in the proof of Lemma 1.4.6 we have
πz+xv(u) :=

∑
a∈P+(z + xv)(a) −

∑
a∈P−(z + xv)(a), which equalsπz(u)+πxv(u). By

the definition ofxv it is straight-forward to see thatπxv(u) =
∑

a∈P+ xv(a)−
∑

a∈P− xv(a)
is 1 if u = v and0 otherwise. This, isπz+xv = πz + ev. We have computed that the push
(x, x + xv) of ∆-tensions corresponds to a push(πz, πz + ev) of potentials. This concludes
the proof.

Remark 1.4.14. In order to prove the push-connectivity of the distributivelattice of
∆-tensions we reduced the data. Instead of contracting rigidarcs one could push poten-
tials on connected subgraphs induced by rigid arcs. This would then generate the same
distributive lattice by local transformations. A special case of this is the generation of the
distributive lattice onα-orientations by reversingessential cyclesin [39].

Remark 1.4.15. It is possible to get rid of all lower arc-capacities. For an arc a = (v, w)
add an antiparallel copya− := (w, v) with upper arc-capacitycu(a−) := −cℓ(a). The new
cycle (a, a−) gets the∆ value0. Even if more new cycles emerge from this operation,∆
keeps being defined on a cycle basis, i.e., there is no problemby Remark 1.4.3. Applying
this to all arcs one obtains a description with only upper arc-capacities. The most reduced
description of tensions would then be of the formT (D, c), whereD is a digraph andc upper
arc-capacities.

Question 1.4.16.Lattices of∆-tensions depend on the choice of a vertexv0 ∈ V . Choos-
ing another vertexv1 yields a different lattice on the same set of objects. Is there an easy
description of the transformation fromΠv0(D, cℓ, cu) to Πv1(D, cℓ, cu)? Understanding this
transformation might help when looking for a distributive lattice on∆-tensions with partic-
ular properties.

Question 1.4.17.The generation of a random element from a distributive lattice is a nice
application forcoupling from the past(c.f. Propp and Wilson [94]). The challenge is to find
good estimates for the mixing time, see Propp [93]. What if the lattice is a∆-tension lattice?

We will now continue with several applications of∆-tensions.



44

1.4.1 Applications

In the following three subsections we deal with the three most important special cases of
∆-tensions. We show, how they may be interpreted as∆-tensions. Thus, as a corollary of
Theorem 1.4.13 they carry a distributive lattice structure. Figure 1.12 illustrates this at an
example.

Thm. 1.4.18

Thm. 1.4.20

Thm. 1.4.23 Thm. 1.4.23
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Figure 1.12: The different special cases of∆-tensions represented by the combinatorial
information that encodes them. All the four in the picture are equivalent as we will see
in the following subsections. On the right we depict the distributive lattice they carry by
Theorem 1.4.13.

1.4.2 The lattice ofc-orientations (Propp [92])

Given an orientationD = (V, A) and an oriented cycleC of an undirected graphG = (V, E)

we denote bycD(C):= |C+
D | − |C−

D| thecircular flow-differenceof D aroundC, whereC+
Dcircular

flow-difference
is the set of forward arcs ofC in D andC−

D is the set of backward arcs. Given a vector
c ∈ ZC , which assigns to every oriented cycleC of G an integerc(C), we call an orientation
D of G with c(C) = cD(C) a c-orientation. We denote the set ofc-orientations ofG byc-orientation

c-or(G). The main result in Propp’s article [92] is:

Theorem 1.4.18.LetG = (V, E) be a graph andc ∈ ZC . The setc-or(G) of c-orientations
of G carries the structure of a distributive lattice.

Proof. Let D = (V, A) be any orientation ofG. Define∆ := 1
2(cD − c). We interpret

x ∈ T∆(D,0,1) as the orientationD(x) of G which arises fromD by changing the orien-
tation ofa ∈ A if x(a) = 1. For an arc setA′ ⊆ A we writex(A′) for

∑
a∈A′ x(a). We

calculate:
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cD(x)(C) = |C+
D(x)| − |C−

D(x)|

= |C+
D | − x(C+

D) + x(C−
D) − (|C−

D| − x(C−
D) + x(C+

D))

= |C+
D | − |C−

D | − 2(x(C+
D) − x(C−

D))

= cD(C) − 2δ(x, C) = cD(C) − 2∆C

= c

This shows thatc-orientations ofG correspond bijectively to∆-tensions inT∆(D,0,1).
By Theorem 1.4.9 we obtain a distributive lattice structureon the set ofc-orientations ofG.
For an example, see Figure 1.12.

Remark 1.4.19. The reducedness for Theorem 1.4.13 corresponds to considering c such
that allc-orientations are acyclic. The local transformations thencorrespond to reversals of
directed vertex cuts.

For planar graphsc-orientations dualize toα-orientations. Hence Theorem 1.4.18 implies
Theorem 1.4.23 of Subsection 1.4.4. This special case has many applications which are
collected in Subsection 1.4.4.

Figure 1.13: Modeling lozenge tilings byc-orientations. Flipping tiles corresponds to re-
versing directed vertex-cuts.

One application of Theorem 1.4.18 that cannot be obtained using planarα-orientations
is a distributive lattice structure onhigher dimensional rhombic tilings. These objects were higher

dimensional
rhombic tilingsintroduced and proven to carry a distributive lattice structure in [77]. Since usual lozenge

tilings may be seen as sets of piles of cubes inZ3 (just look at Figure 1.13 and try to give
some spacial perspective to what you see), the generalization of higher dimensions are piles
of hypercubes inZd. We will not prove this here, neither that they carry a distributive lattice
structure, nor that they may be modelled asc-orientations of a (generally non-planar) graph.
Instead in Figure 1.13 we suggest how to interpret ordinary lozenge tilings asc-orientations.
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Since this generalizes to non-planar graphs it is essentially different then just dualizing the
interpretation asα-orientations in Figure 1.14.

In [67, 68] and independently by Latapy and Magnien in [75] itwas proven that
c-orientations are indeed universal for the class of distributive lattices, i.e., every distributive
lattice may be represented as thec-orientations of a graph. In [67, 68] the set of graphs
representing a given lattice was characterized.

1.4.3 The lattice of flows in planar graphs (Khuller, Naor andKlein [66])

Consider a planar digraphD = (V, A), with each arca having an integerlower andup-
per bound on its capacity, denotedcℓ(a) and cu(a). For a functionf : A → Z call
ω(v, f):=

∑
a∈in(v) f(a) −

∑
a∈out(v) f(a) theexcessat v. The setsin(v) andout(v) de-excess

note the incoming and outgoing arcs ofv, respectively. Given a vectorΩ ∈ NV call f an
Ω-flow if cℓ(a) ≤ f(a) ≤ cu(a) for all a andΩv = ω(v, f) for all v ∈ V . Denote byΩ-flow

FΩ(D, cℓ, cu) the set ofΩ-flows.

For the proof we need to discuss briefly duality of planardigraphs.
Given a crossing-free plane embedding ofD we look at the
planardual digraphD∗. It is an orientation of the planar dualdual digraph

G∗ of the underlying undirected graphG of D. Let v be a
vertex ofG∗ corresponding to a facial cycleCv of the embed-
ding of D. Orient an edge incident tov as outgoing arc of
v if the primal arc is forward when traversingCv in counter-
clockwise direction. Given values on the arcs ofD, e.g. a flow
or a tension, we simply transfer them to the corresponding arcs
of D∗. Duality translates concepts as displayed in the table be-

low. Note that duality of planar digraphs is not an involution as for undirected graphs, but a
map of degree four. This may be seen looking at the last four lines of the table.

D  D∗

vertices  faces
faces  vertices
arcs  arcs
ccw forward arcs of facial cycle outgoing arcs
outgoing arcs arcs  ccw backward arcs of facial cycle
excess  circular balance
circular balance  -excess

Theorem 1.4.20. If D is a planar digraph thenFΩ(D, cℓ, cu) carries the structure of a
distributive lattice.



CHAPTER 1. LATTICES 47

Proof. So, we consider the dualD∗ of D. Since the excessω at a vertex ofD dualizes to the
circular balanceδ around the corresponding facial cycle ofD∗, we have a correspondence
betweenFΩ(D, cℓ, cu) andTΩ(D∗, cℓ, cu). This yields the distributive lattice structure on
Ω-flows of planar graphs via Theorem 1.4.9. For an example, seeFigure 1.12.

Remark 1.4.21. Analogously to the case of∆-tensions we can assume the data
(D, cℓ, cu, Ω) to be reduced. Now the dual operation to vertex pushes is to augment the
flow around facial cycles. Instead of choosing a forbidden vertex v0, which is not allowed
to be pushed this time we choose aforbidden face. Usually one takes the unbounded faceforbidden face

of the plane embedding. Theorem 1.4.13 yields that by flow-augmentation at the remaining
facial cycles we can construct the Hasse diagram of a distributive lattice onFΩ(D, cℓ, cu).

An application of Theorem 1.4.20, which may not be obtained using c-orientations or
α-orientations is the distributive lattice structure onk-fractional orientations of planar k-fractional

orientation
graphs with prescribed outdegreej

k (Bernardi and Fusy [11]). For the definition of pla-
nar k-fractional orientation take a planar graphG = (V, E), where every ordinary edge
e = {v, w} is replaced by two directed half-edgeshv(e), hw(e) pointing from their vertex
to the middle ofe. Additionally we have a mapO mapping every half-edges to a value in
{0, 1

k , 2
k , . . . , 1} such thatO(hv(e)) + O(hw(e)) = 1 for all edgese = {v, w}. The out-

degree of a vertexv is just the sum
∑

e∋v O(hv(e)). We modelk-fractional orientations of
G with prescribed outdegreejk , as planarΩ-flows of an orientation ofG. Let D = (V, A)

be any orientation ofG. Let a = (v, w) ∈ A ande = {v, w} ∈ E . Given ak-fractional
orientationO define a flow byf(a) := kO(hv(e)). We have a correspondence between
k-fractional orientations and integer valued maps fromA to {0, . . . , k}. The outdegree of
O at v is j

k = (kindeg(v) − f(in(v)))/k + f(out(v))/k. Equivalently the excess off at v
is ω(v, f) = kindeg(v) − j. Hence we may model thek-fractional orientations ofG with
prescribed outdegreejk asΩ-flows and Theorem 1.4.20 yields a distributive lattice structure
on them.

In [12] Bernardi and Fusy show that for certain parametersk-fractional orientations with
prescribed outdegree correspond toSchnyder decompositionsof planed-angulations of girth
d and several equivalent concepts related to planar graphs. All these thus carry a distributive
lattice structure, as well.

Khuller, Naor and Klein [66] only consider the special case of Theorem 1.4.20 where
Ω = 0. SuchΩ-flows without excess are simply calledflowsor circulations. We restate their flow

circulation
result as clear corollary of Theorem 1.4.20:

Theorem 1.4.22.LetD be a planar digraph with upper and lower arc capacitiescl andcu.
The set of flows ofD within cl andcu carries the structure of a distributive lattice.
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1.4.4 Planar orientations with prescribed outdegree (Felsner [39], Ossona de
Mendez [88])

Consider a plane graphG = (V, E). Given a mapα : V → N an orientation
D = (V, A) of G is called anα-orientation if α records the outdegrees of all vertices, i.e.,α-orientation

outdegD(v) = α(v) for all v ∈ V . We denote the set ofα-orientations ofG by α-or(G).
The main result in [39] also obtained in [88] is:

Theorem 1.4.23.Given a planar graph and a mappingα : V → N the setα-or(G) of
α-orientations ofG carries the structure of a distributive lattice.

Proof. This may be proven analogously to Theorem 1.4.18, where c-orientations were
interpreted as elements ofT∆(C,0,1). Let D be some orientation ofG. We look at
FΩ(D,0,1), wheref(a) = 1 means reorientinga andf(a) = 0, leaving it unchanged.
If we setω(v) := α(v) − outdegD(v) for all v, thenFΩ(D,0,1) corresponds to the set of
α-orientationsG. Application of Theorem 1.4.20 yields the distributive lattice structure.

Another way to prove the theorem is to look at the planar dual of G. For a
counter-clockwise facial cycleCv of G∗ corresponding to a vertexv of G define
c(Cv) := deg(v) − 2α(v). Now thec-orientations ofG∗ correspond to theα-orientations
of G and we may apply Theorem 1.4.18.

For examples of both constructions, see Figure 1.12.

In view of Section 1.4α-orientations appear as a special case of both, planar flows and
c-orientations. Nevertheless they already capture a big part of the applications. In the intro-
duction of the thesis, we explained, how domino-tilings maybe modelled asα-orientations.
Similarly, this can be done for lozenge-tilings, see Figure1.14

Figure 1.14: Local transformations and generalizations: from lozenge tilings via planar
bipartite perfect matchings toα-orientations.
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We list some objects which may be modelled asα-orientations on plane graphs and thus
carry a distributive lattice structure:

• domino and lozenge tilings of plane regions (Rémila [97] and others based on
Thurston [105])

• planar bipartite perfect matchings (Lam and Zhang [73])

• planar bipartited-factors (Felsner [39], Propp [92])

• planar spanning trees (Gilmer and Litherland [48])

• Schnyder woods of planar triangulations (Brehm [25])

• Eulerian orientations of planar graphs (Felsner [39])

Because of their rich applications in the planar caseα-orientations of non-planar graphs
are very interesting. Propp [92] comments that to move between thed-factors intoroidal
graphsit is necessary to operate on non-contractible cycles. Thisis made more explicit in
terms of homology of orientable surfaces in [67], where generalizations ofα-orientations to
non-planar graphs and oriented matroids are investigated.It remains the difficult:

Question 1.4.24.What is the structure ofα-orientations of graphs embedded on an ori-
entable surface different from the plane?

For some application there might be a way “around” non-planar α-orientations. Consider
for example of lozenge-tilings, whose lattice structure may be proven without the use of
planarα-orientations. They may be modelled directly asc-orientations, as a special case of
higher-dimensional rhombic tilings, see Figure 1.13. It would be interesting to find a way
around non-planarα-orientations in other special cases ofα-orientations. A good candidate
may be the set of spanning trees of a graph or bases of a matroid.
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1.5 Chip-Firing Games, Vector Addition Languages, and Upper
Locally Distributive Lattices

Chip-firing games (CFG) on directed graphs were introduced by Björner and Lov́asz in [20].
They are a generalization of CFGs on undirected graphs, introduced by Bj̈orner, Lov́asz, and
Shor [21]. CFGs have gained a big amount of attention, because of their relations to many
areas of mathematics such as algebra, physics, combinatorics, dynamical systems, statistics,
algorithms, and computational complexity, see Merino [83]and Goles, Latapy, Magnien,
Morvan, and Phan [53] for surveys. The connection to rotor routing and the concept of
sandpile groupare made explicit by Holroyd, Levine, Ḿesźaros, Peres, Propp, and Wilson
in [58]. A connection from CFGs to subgraphs, orientations,Tutte polynomial, and embed-
dings into orientable surfaces is drawn by Bernardi [10]. Moreover, there are connections
to tropical geometry, see Baker [8] and Haase, Musiker, and Yu [56]. Here we deal with
the fundamental role of CFGs as examples of ULDs or equivalently antimatroids(Korte
and Lov́asz [70]),antimatroids with repetition(Björner and Ziegler [22]), orleft-hereditary,
permutable, locally free languages(Björner and Lov́asz [21]). So CFGs are important and
popular instances of ULDs but not every ULD arises as a CFG. Inthe present section we
show how CFGs may be interpreted as vector-addition languages. We then characterize
those vector-addition languages which yield a ULD in the same way CFGs do. These lan-
guages are then calledgeneralized chip-firing games(Theorem1.5.9). The main result of
this section is that every ULD may be represented as ageneralized CFG(Theorem 1.5.10)
and that these in turn correspond to finiteintersectionsof CFGs (Theorem 1.5.14).

For the definition of CFG letD = (V, A) be a loop-free directed graph without isolated
vertices andσ ∈ NV a vector called achip-configuration. The numberσ(v) records thechip-configuration

number of chipson vertexv in σ. Given a chip-configurationσ a vertexv can befired if itvertex firing

contains at least as many chips as its outdegree and is no sink, i.e.,σ(v) ≥ outdeg(v) > 0.
Firing v consists of sending a chip along each of the outgoing arcs ofv to their respective
end-vertices. The chip-configuration resulting from firingv in a chip-configurationτ is
denoted byτv. We call a sequences = (v1, . . . , vk) of vertices ofD a firing-sequenceif vifiring-sequence

can be fired in((σv1)...)vi−1), for all i ∈ [k]. (Setσv0 := σ.) We define a directed graph
CFG(D, σ) on the set of those chip-configurationsτ onD which arereachableby a firing-reachable

sequence fromσ, i.e., τ = σs := ((σv1)...)vk) for a firing sequences = (v1, . . . , vk). For
two such reachable chip-configurationsτ, τ ′ we define(τ, τ ′) to be an arc of CFG(D, σ)

if τv = τ ′ for some vertexv ∈ V . In this case thenatural color of the arc(τ, τ ′) is v.natural color

Hence, the arcs of CFG(D, σ) are naturally colored withV . We call the digraph CFG(D, σ)

together with its natural arc-colring achip-firing games (CFG).chip-firing game
(CFG)

Remark 1.5.1. Since sinks are not allowed to be fired in aCFG(D, σ) we may actually
identify all sinks of a givenD to a single super-sink without changingCFG(D, σ). From
now on we assume that our digraphs have either no sink or a unique sink.
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Figure 1.15: A chip-firing game on a sinky digraph representing the ULD on the right.

It is possible, that a digraphD admits a starting configurationσ, such that there are firing-
sequences of infinite length. Take for example a directed cycle, with any positive number
of chips distributed arbitrarily on the graph. Here we want to discuss only the finite case.
We say that a digraphD is globally finite if there is no starting configurationσ that allows globally finite

firing-sequences of infinite length.

Later on, as a special case we obtain the following well knownresult. It was our original
motivation for looking at chip-firing games.

Theorem 1.5.2. If D = (V, A) is globally finite, then for everyσ ∈ NV the digraph
CFG(D, σ) is the Hasse diagram of a ULD.

In particular we will get that the natural arc-coloring of CFG(D, σ) is a U-coloring and
that CFG(D, σ) is finite and acyclic. Since CFG(D, σ) has a unique sourceσ, Theorem 1.5.2
then can be proven as a direct application of Theorem 1.3.3.

We say that the resulting ULD isrepresentedby the CFG. The ULD-properties imply
that for a globally finiteD in CFG(D, σ) there is a uniquestable chip-configurationσ⊤, stable

chip-configuration
i.e., in σ⊤ no vertex can be fired. All maximal firing sequences from the starting config-
urationσ end atσ⊤. Moreover, by the colored Jordan-Dedekind chain conditionall firing
sequences between any two configurations fire the same multiset of vertices. Eriksson calls
this behavior of a solitary gamestrongly convergent[37].
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Figure 1.16: A ULD which cannot be represented by a CFG.

In [79] Magnien, Phan, and Vuillon show that every distributive lattice can be represented
as a CFG (actually of an undirected graph). Moreover they show that every ULD repre-
sentable by a CFG is representable by asimple CFG, i.e., no vertex appears twice in anysimple CFG

firing-sequence. On the other hand not every ULD can be represented as CFG. An example
for that (also due to the same group of people) is shown in Figure 1.16. There are two natural
question arising here:

Question 1.5.3. Is there a lattice theoretical characterization of ULDs representable by
CFGs?

Question 1.5.4.Is there a generalization of CFGs representing the whole class of ULDs?

While we leave Question 1.5.3 unanswered the remaining partof this section presents and
analyzes an answer to Question 1.5.4. In the following we will introduce a generalization of
CFGs powerful enough to represent the class of ULDs, in other(still undefined) words: every
generalized CFG yields a ULD for every starting configuration and conversely every ULD
may be represented as a generalized CFG (Theorem 1.5.10). This generalization is still quite
close to usual CFGs. More precisely every generalized CFG and therefore every ULD may
be represented as anintersectionof CFGs (Theorem 1.5.14 and Corollary 1.5.15). Moreover
our construction still allows important algebraic constructions related to CFGs such as the
sandpile group[58] and thesandpile monoid[6].

To the end of capturing generalized CFGs we define vector-addition languages. Vector
addition languages were introduced by Karp and Miller [65].They are also known asgeneral
Petri nets(Reisig [96]) and are one of the most popular formal methods for analysis and
representation of parallel processes [38]. We will only usethem for the very specific reason
to define generalized CFGs.



CHAPTER 1. LATTICES 53

A vector-addition languageis a languageL(M, σ) given by analphabetM ⊂ Rd and a vector-addition
language

starting configurationσ ∈ Rd
≥0. A word s = (x1, . . . , xk) is in L(M, σ) if xi ∈ M and

σ + x1 + . . . + xi ≥ 0 for all 1 ≤ i ≤ k.

For a words ∈ L(M, σ) denote byscr(s) its score, i.e., the multiset of its letters and score of word

by cnf(s):= σ +
∑

x∈scr(s) x its configuration. We define a digraphD(M, σ) on the ver- configuration of
word

tex setcnf(L(M, σ)). Two configurationscnf(s), cnf(t) of words inL(M, σ) form an arc
(cnf(s), cnf(t)) of D(M, σ) if there is anx ∈ M such thatcnf(s) + x = cnf(t). In this
case thenatural colorof the arc(cnf(s), cnf(t)) is definedx. natural color

We will later on define generalized CFGs in terms of vector-addition languages. So in
order togeneralizeCFGs it would be good if CFGs could be encoded as vector-addition
languages themselves. And indeed, one important feature ofCFGs is, that theycan be
interpreted as vector-addition languages:

Let D be a loopless digraph without isolated vertices. TheLaplacianof D is a setM of Laplacian

|V | vectors inZV , where for everyv ∈ V there is a vectorx(v) ∈ M with:

x(v)w :=

{
|{a ∈ A | a = (v, w)}| if v 6= w,

−outdeg(v) otherwise.

If D has a sink, (by Remark 1.5.1D has either one or none), then we delete the corre-
sponding element ofM and corresponding components of the remaining element ofM . We
obtain thereduced LaplacianM ′ of D. The pairM ′, σ encodes the same information asreduced Laplacian

D, σ. It is a classical and easy result thatD(L(M ′, σ)) models CFG(D, σ), see [20]. More
precisely one has correspondences:

D, σ ! M ′, σ

chip-configurationτ ! x ∈ Zd

fire v in σs ! addx(v) to cnf(s)

firing-sequences ! words inL(M ′, σ)

reachable chip-configurations! elements ofcnf(L(M ′, σ))

CFG(D, σ) ! D(M ′, σ)

We want to generalize reduced Laplacians of digraphs, in order to characterize the class
of vector-addition languages which represent a ULD for every starting configuration, i.e.,
the class of alphabetsM such thatD(M, σ) is the Hasse diagram of a ULD for everyσ.
As mentioned in the beginning we only want to consider globally finite digraphs, i.e., no
starting configuration allows firing sequences of infinite length. So this is another property
which we want to generalize to vector-addition languages. In the graph case there is an easy
necessary condition fro global finiteness. A digraphD is sinkyif there is a sink⊤ ∈ V , i.e., sinky

outdeg(⊤) = 0, such that everyv ∈ V lies on a directed(v,⊤)-path.
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Lemma 1.5.5. Every globally finite digraph is sinky.

Proof. SupposeD is not sinky, i.e., there is a vertexv in D which does not lie on a directed
path to a sink ofD. ThenD has a non-trivial strong componentS, such that no arcs point
from S into D\S. Let d+ be the maximal outdegree of the induced subgraphD[S]. Define
a chip-configurationσ by puttingd+ chips on every vertex ofS and0 elsewhere. Every
reachable configuration fromσ has at least one vertex with at least as many chips on it than
d+, i.e.,σ(v) ≥ outdeg(v). Thus, there are infinite firing-sequences andD is not globally
finite.

It will turn out soon in the more general context of vector-addition languages (Proposi-
tion 1.5.7), that the converse of Lemma 1.5.5 is true, as well.

In order to find a generalization ofglobally finite to vector-addition languages define a
language to befinite if it consists of words of finite lengths only. In analogy to the digraphfinite language

case call an alphabetM ⊆ Rd globally finite if L(M, σ) is finite for all σ. An alphabetglobally finite

M ⊆ Rd is said to besinkyif all x ∈ M satisfy
∑

i∈[d] xi ≤ 0 and there arespecial vectorssinky
special vector x∗ ∈ M , satisfying

∑
i∈[d] x

∗
i < 0 or x∗ has a private negative coordinatei ∈ [d], i.e.,

x∗
i < 0 = yi for all y ∈ M\{x∗}. Now for all x ∈ M we require adirected path

from x to some specialx∗ ∈ M . By directed path fromx to x∗ we refer to a sequence
(x = x(0), x(1), . . . , x(k) = x∗) in M with the property: for allj ∈ [k] there is ai ∈ [d]

such thatx(j − 1)i > 0 > x(j)i.

Lemma 1.5.6.An alphabetM ⊆ Zd is the reduced Laplacian of a sinky digraph if and only
if M is sinky, everyx ∈ M has exactly one negative entry, and for everyi ∈ [d] there is
exactly onex ∈ M with xi < 0.

Proof. “=⇒”: Let D be a sinky digraph with sink⊤ and reduced LaplacianM ′. Clearly,
M ′ is for every i ∈ [d] there is exactly onex ∈ M with xi < 0 and every
x(v) ∈ M ′ has exactly one negative entry,x(v)v. Moreover, for everyv ∈ V we have∑

i x(v)i = outdeg(v) − {a ∈ A | a = (v,⊤)} ≤ 0. The special vectorsx∗ of the defini-
tion of sinky then correspond to neighbors of⊤. For any vertexv there is a directed
(v,⊤)-pathP in D. Let P ′ be the(v, x∗)-path obtained fromP by deleting⊤. By defi-
nition of the reducd LaplacianP ′ corresponds to a directed(v, x∗)-path in the sense of the
definition of a sinky set of vectors.

“⇐=”: For everyi ∈ [d] there is exactly onex ∈ M with xi < 0, i.e., no twox, x′ ∈ M
share a negative entry. Since on the other hand everyx ∈ M has exactly one negative entry
M has exactlyd elements. Refer to the element ofM with xi < 0 asx(i). Construct a
digraphD with vertex setM ∪{⊤}. Introducex(i)j arcs fromx(i) to x(j) for i 6= j. Since
M is sinky

∑
j x(i)j ≤ 0 for all i. In case for somex∗(i) we have

∑
j x∗(i)j < 0, introduce

−
∑

j x∗(i)j arcs fromx∗(i) to ⊤. ClearlyM is the reduced Laplacian ofD. The vertices
x∗(i) are special vectors in the sense of the definition of a sinky set of vectors. A directed
(x(i), x∗(j))-path in the sense of the that definition corresponds to directed(x(i),⊤)-path
of D.
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Another class which by Lemma 1.5.6 clearly generalizes the class of reduced Laplacians
is the following: We call a finite setM ⊂ Rd Laplaciousif for every i ∈ [d] there is at most Laplacious

onex ∈ M with xi < 0.

So a Laplacious sinky alphabetM ⊆ Zd differs from the reduced Laplacian of a sinky
digraphD only by the fact that vectors inM may have more than one negative entry (sinky
implies that they have at least one), and that there might bei ∈ [d] with xi ≥ 0 for all
x ∈ M . Indeed, as in the graphic case (Lemma 1.5.6) sinky is enoughto ensure global
finiteness for a Laplacious alphabetM .

Proposition 1.5.7. If M ⊆ Rd is sinky and Laplacious, thenM is globally finite.

Proof. Let σ ∈ Rd be any starting configuration. Suppose there is a words ∈ L(M.σ) with
infinite scorescr(s). Let Y be the set of vectors appearing infinitely many times inscr(s)
andI := {i ∈ [d] | yi < 0 for somey ∈ Y }. Sinky together implies, that everyx ∈ M
has at least one negative entry, i.e.,I 6= ∅. Clearly, there are no special vectors inY and all
y ∈ Y have

∑
i∈I yi = 0. Now lety be aneighborof somex /∈ Y , i.e., there is aj ∈ [d]

with yj > 0 > xj . Sincex is not inY andM is Laplacious we havej /∈ I. SinceM is
sinky we have

∑
i∈I yi ≤

∑
i∈[d] yi − yj < 0. But for y ∈ Y we clearly need

∑
i∈I yi = 0

in order to apply it infinitely many times – a contradiction.

As promised, with Lemma 1.5.6 Proposition 1.5.7 proves the backward direction of
Lemma 1.5.5, i.e., a sinky digraph is globally finite. The converse of Propostion 1.5.7 is

not true, e.g., the alphabetM = {




4

−1

−3


 ,



−4

3

1


} is globally finite and Laplacious but

not sinky. As a first theorem we can now characterize the classof vector-addition languages
which represent finite ULDs for every starting configurationand therefore keep one of the
properties of CFGs being of major interest to us. Therefore we make the following

Definition 1.5.8. Let M ⊆ Rd andσ ∈ Rd. If M is globally finite and Laplacious, then
we call the digraphD(M, σ) together with its natural arc-coloring ageneralized CFGand generalized CFG

denote it byCFG(M, σ).

Theorem 1.5.9.LetM ⊆ Rd andσ ∈ Rd. The digraphD(M, σ) is the Hasse diagram of a
ULD for all σ if and onlyD(M, σ) is a generalized CFG. Moreover, in that case the natural
arc-coloring ofD(M, σ) is a U-coloring.

Proof. “=⇒”: If M is not globally finite, then there isσ such thatL(M, σ) has in-
finitely many elements. For us ULDs are finite, i.e., this cannot happen. So supposeM
is not Laplacious. Then there arex, y ∈ M with xi, yi < 0 for somei ∈ [d]. Define
σ := max(|x|, |y|). ThenD(M, σ) contains the arcs(σ, x), (σ, y) with colorsx andy. But
sincemax(|xi|, |yi|) + xi + yi < 0 there is no vertex corresponding to the configuration
σ + x + y. Hence, the natural coloring is not a U-coloring. It violates rule U2. Indeed,
D(M, σ) admits no U-coloring at all.
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“⇐=”: We start by showing, that the natural coloring ofD(M, σ) is a U-coloring. Whenever
there are two outgoing arcs(cnf(s), cnf(s) + x), (cnf(s), cnf(s) + y) of the same vertex
cnf(s) they clearly are of different colorsx andy, i.e., the coloring obeys to rule U1.

Moreover, since no x, y ∈ M share negative entries we conclude that
σ +

∑
z∈s z + x, σ +

∑
z∈s z + y ≥ 0 implies σ +

∑
z∈s z + x + y ≥ 0. This is, if

cnf(s), cnf(s) + x, cnf(s) + y are configurations of words inL(Mσ), thencnf(s) + x + y
is, as well. Hence the natural arc-coloring ofD(M, σ) is a U-coloring.

If there was a directed cycle inD(M, σ), then traversing it forever would correspond to a
word of infinite score, contradicting global finiteness.

Suppose there is an infinite number of words inL(M, σ), i.e., D(M, σ) has infinitely
many vertices. We show thatD(M, σ) has no sinks. Letcnf(s) a vertex of distancek to
σ. If cnf(s) was the only vertex with that distance toσ, thencnf(s) cannot be a sink, since
by U1 the set of vertices of distance at mostk is finite. So say there is a differentcnf(t)
of distancek to σ. Take a directed(σ, cnf(s))-pathP and a directed(σ, cnf(t))-pathQ
which stay together as long as possible. Letcnf(x) be the last element they have in common
andcnf(y) be the first element only onQ. We can apply Lemma 1.3.4 to the restriction of
P from cnf(x) to cnf(s) and the arc(cnf(x), cnf(y)). We have to be in case (a), because
otherwise there would be a pathP ′ staying longer withQ. Hence Lemma 1.3.4 yields that
cnf(s) has an outgoing arc and was no sink. SinceD(M, σ) has no sinks but is acyclic it
must have paths of infinite lengths, i.e,L(M, σ) was not globally finite.

We have proven thatD(M, σ) is a finite acyclic digraph with unique sourceσ and its
natural coloring is a U-coloring. Theorem 1.3.3 gives thatD(M, σ) is the Hasse diagram of
a ULD.

Since by Lemma 1.5.6 the reduced LaplacianM ′ of a sinky directed graphD is sinky
and Laplacious and thus globally finite by Proposition 1.5.7, we can apply Theorem 1.5.9 to
obtain Theorem 1.5.2, i.e., every CFG represents a ULD.

As mentioned above, in [79] it is shown that every ULD representable by a CFG can be
represented by a simple CFG. To generalize this result we call a vector-addition language
simpleif no word contains twice the same letter. A generalized chip-firing game CFG(M, σ)simple language

is called simple ifL(M, σ) is simple. We prove

Theorem 1.5.10.Every ULD can be represented by a simple generalized CFG.

Proof. LetL be a ULD. We look at the representation ofL as a reduced antichain-partitoned
poset(J (L),AM(L)), whereAm := {j ∈ J (L) | m ∈ ↑j−\↑j}. By Theorem 1.2.24 we
have thatL ∼= (fingAM(L)

(I(J (L))),⊆).

For everym ∈ M(L) we define a vectorx(m). These will form our alphabetM . In order
to prove our theorem we prove that given a words = (x(m1), . . . , x(mk)) ∈ L(M, σ) in
our simple language and a letterx(m) ∈ M we have(s, x(m)) ∈ L(M, σ) if and only
if {m1, . . . , mk, m} is the fingerprint of an ideal ofJ (L) andm 6= mi for i ∈ [k]. This



CHAPTER 1. LATTICES 57

is, there is aj ∈ Am such that the fingerprintfingAM(L)
(↓j\{j}) ⊆ {m1, . . . , mk} and

m 6= mi for i ∈ [k].

DenoteP (j) := fingAM(L)
(↓j\{j}) for everyj ∈ J (L). The set of coordinates[d] of the

vectors of our alphabetM will correspond to elements of

⋃

m∈M(L)

((Xj∈AmP (j)) × {m}) ∪M(L).

For all i = m′ ∈ M(L) define σi = 1 and x(m)i = −1 if m = m′ and
x(m)i = 0, otherwise. This guarantees thatM is sinky andL(M, σ) simple. Let
i ∈ P (j1) × . . . × P (jk) × {m} for someAm = {j1, . . . , jk} ∈ AM(L) ∈ AM(L). We
setx(m)i := −1 andσi := 0. If i ∈ P (j1)× . . .×{m′}× . . .×P (jk)×{m}, then we set
x(m′)i := 1 and otherwisex(m′)i := 0.

We have already argued thatM is sinky, i.e., by Proposition 1.5.7 it is globally fi-
nite. In particular we constructedσ such thatL(M, σ) is simple. For everyi ∈ [d]
there is a uniquex(m) with x(m) < 0, if i = m ∈ M(L), then this isx(m). If
i ∈ P (j1) × . . . × P (jk) × {m}, then it is alsox(m). ThusM is Laplacious and globally
finite, i.e.,D(M, σ) is a simple generalized CFG.

We show thatD(M, σ) is the Hasse diagram ofL.

Let x(m) ∈ M , jℓ ∈ Am and s = (x(m1), . . . , x(mk)) ∈ L(M, σ) such that
P (jℓ) ⊆ {m1, . . . , mk} andx(m) /∈ s for i ∈ [k]. Sincex(m) /∈ s we havecnf(s)m = 1.
For every negative entryx(m)i < 0 with i = (m′

1, . . . , m
′
k, m) ∈ P (j1)×. . .×P (jk)×{m}

we know thatx(m′
ℓ) ∈ s andAm′

ℓ
∩ P (jℓ) 6= ∅. Thus by definitionx(m′

ℓ)i = 1. We have
thats + x(m) ∈ cnf(L(M, σ)).

On the other hand ifx(m) ∈ s thens + x(m) /∈ cnf(L(M, σ)) by simplicity ofL(M, σ).
Suppose for everyjℓ ∈ Am there is anm′

ℓ ∈ P (jℓ) but x(m′
ℓ) /∈ s. For i = (m′

1, . . . , m
′
k)

there is nox(m′) ∈ s with x(m′)i > 0, but x(m)i = −1. Thus,x(m) cannot be added
to s.

Remark 1.5.11. Note that the simple generalized CFG constructed in the proof of Theo-
rem 1.5.10 has a very special property. Given a sequences = (x(m1), . . . , x(mk)) in M we
have:

σ + x(m1) + . . . + x(mi) ≥ 0 for all i ∈ [k] ⇐⇒ σ + x(m1) + . . . + x(mk) ≥ 0.

This is, scr(L(M, σ)) ∼= {z ∈ {0, 1}M | Mz ≥ −σ}. The fact thatL(M, σ) has a de-
scription by a system of linear inequalities, i.e., may be seen as the set of integer points
of a polyhedron, will be used in the context of feasible polytopes of antimatroids (Subsec-
tion 2.3.1 of the next Chapter).

Remark 1.5.12.The dimensiond of the space containingM in Theorem 1.5.10 is desired to
be small. Clearly, smallerd just yields a more compact representation. In Subsection 2.3.1
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of the next Chapter we will relate that parameter indeed to anoptimization-problem of Korte
and Lov́asz [71].

If the size of the antichainsAm := {j ∈ J (L) | m ∈ ↑j−\↑j} ∈ AM(L) is bounded by
k, then the construction in the proof of Theorem 1.5.10 yieldsa representation of the ULD
by M ⊂ Zd, whered ∈ O(|M(L)|k+1).

The size of the vectors inM may be reduced further. Even if it does not cause a
change of the asymptotical behavior, we present a method, which is helpful for special
ULD-classes: Define the set of antichainsB(j) as Max{Am ∈ AM(L) | Am ⊆ ↓j\{j}}
andC(j) := {j′ ∈ J (L) | j′′ ≤ j′ < j for somej′′ ∈ Am ∈ B(j)}. In the proof of Theo-
rem 1.5.10 we can setP (j) := fingAM(L)

(C(j)). This suffices and reduces the size ofd
in the construction. In the case of the singleton chain partiton, i.e., distributive lattices by
Theorem 1.2.1,C(j) would just be the set of cocovers ofj.

Question 1.5.13.Theorem 1.5.10 shows representability of ULDs by simple languages.
It would be interesting to see whether every Hasse diagram ofa ULD together with a
U-coloring may arise as a generalized CFG with its natural coloring.

In the following we will present a method to represent a generalized CFG by a finite set
of ordinary CFGs. This then yields that every ULD may be represented as an intersection of
CFGs. But first let us mention a similar result already in the literature:

In [79] Magnien, Phan, and Vuillon prove that every ULD can berepresented as acoloredcolored CFG

or extended CFG. This game is played on a set of loop-free digraphsD1, . . . , Dk on the
same vertex set each having arcs only of its private colori ∈ [k] but all sinky with respect
to the same vertex⊤. Every digraph has a chip-configurationσ(i) of chips in its private
color. Firing a vertexv in the colored CFG means to firev in all Di where it has more chips
of color i than outgoing arcs in that color. This is, fire it in the sense of a classical CFG in
all Di where it is allowed to be fired. This representation of ULDs does not carry over to
vector-addition languages.

Based on the theory of generalized CFGs we will develop a new way to present a ULD
by a finite set of CFGs: Also this game is played on a set of loop-free digraphsD1, . . . , Dk

on the same vertex set each having arcs of its private colori ∈ [k] and all being sinky with
respect to the same vertex⊤. Given respective chip-configurationsτ(1), . . . , τ(k) firing a
vertexv ∈ V is allowed ifv can be fired in all the(Di, τ(i)) (viewed as ordinary CFGs).
Firing v then consists in actually doing so. Given starting configurations σ(1), . . . , σ(k)

the intersection of the CFGsis denoted by
⋂

CFG(Di, σ(i)). It is the digraph on the setintersection of
CFGs

of reachable chip-configurations and there is an arc fromτ(1), . . . , τ(k) to τ ′(1), . . . , τ ′(k)

if τ(i)v = τ ′(i) for all i ∈ [k] and somev ∈ V . Thus, as in ordinary CFGs the arcs of⋂
CFG(Di, σ(i)) are naturally colored byV .

Examples for both of the above constructions can be found in Figure 1.17. We can prove
the very analogue result to the one of [79].
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Figure 1.17: The ULD of Figure 1.16 can be represented as bicolored CFG following [79]
and as intersection of two CFGs with the depicted starting configurations, respectively.

Theorem 1.5.14.For every Laplacious, globally finiteM ⊆ Zd andσ ∈ Zd there are sinky
(Di, σ(i))i∈[k] such that the digraphsCFG(M, σ) and

⋂
CFG(Di, σ(i)) are isomorphic

and have identical natural colorings, and viceversa.

Proof. For “⇐=” just take the reduced LaplaciansM ′(D1), . . . , M
′(Dk) and write them

vertically one above the other. We obtain a sinky, Laplacious M and firing a vertex in the
intersection ofD1, . . . , Dk in a chip-configurationσ(1), . . . , σ(k) corresponds to adding the
corresponding vector inM ′ to the vector concatenation(σ(1), . . . , σ(k)).

For “=⇒” Let M ⊆ Zd be globally finite and Laplacious. ConsiderCFG(M, σ) with
starting configurationσ. We obtain a representation as intersection of CFGs as in the
“⇐=”-direction by partitioning[d] and possibly adding few extra components to such that
all alphabets induced by the partition are sinky and have exactly one negative entry per row
and per column. By Lemma 1.5.6 they are reduced Laplacians.

So partition[d] = V1 ∪ . . . ∪ Vk such that the set of entries{xi | i ∈ Vj} has at most
one negative element for everyj ∈ [k] and x ∈ M and if for somex and j we have∑

i∈Vj
xi ≥ 0, then{xi | i ∈ Vj} has no negative entries.

Now if for somex andj we have
∑

i∈Vj
xi ≥ 0 or {xi | i ∈ Vj} has no negative entries,

then we add a componentℓ to Vj . Setxℓ = −
∑

i∈Vj
xi − 1 andσℓ =

∑
i∈Vj

xi + r and
x′

ℓ = 0 for all x′ 6= x. Herer is the number of timesx appears in a directed path fromσ to
σ⊤ in CFG(M, σ). The numberr exists becauseM is globally finite. We have not changed
CFG(M, σ) nor its U-coloring. For the new setV ′

j we have
∑

i∈V ′
j
xi < 0, i.e., for everyx.

That is, it is sinky. Also{xi | i ∈ V ′
j } has exactly one negative entry for allx. If there was

a coordinatei ∈ V ′
j with xi ≥ 0 for all x ∈ M we can clearly delete it without changing the

vector-addition language. So becauseM was Laplacious for everyi ∈ V ′
j there is exactly

onex with xi < 0 and by Lemma 1.5.6 the alphabetV ′
j is a reduced Laplacian.
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Applying this to the whole alphabetM we call the new alphabet and starting configu-
ration M̃ and σ̃, respectively. The restrictioñM to anyV ′

i is the reduced Laplacian of a
digraphDi. Denote bỹσ(i) the restriction of the starting configuratioñσ to V ′

i . We have
CFG(M, σ) ∼= CFG(M̃, σ̃) ∼=

⋂
i∈[k] CFG(Di, σ̃(i)).

Theorem 1.5.10 and Theorem 1.5.14 together yield

Corollary 1.5.15. Every ULD is the intersection of finitely many CFGs and viceversa.

Question 1.5.16.One interesting question arising from Corollary 1.5.15 is to determine
the CFG-dimensionof a given ULD, i.e., the minimum number of CFGs that are neededCFG-dimension

to represent a given ULD as their intersection. For example the ULD of Figure 1.16 is
not representable by a CFG, but by the intersection of two CFGs (shown in the right of
Figure 1.17). Hence it has CFG-dimension2.

Question 1.5.17.The proof of Theorem 1.5.10 relies on the representation of ULDs as
antichain-partitoned posets (Theorem 1.2.24). In the light of Theorem 1.2.3, where gen-
eral lattices are represented by antichain-covered posetsit would be an interesting question
whether every latticeL can be represented as a certain type of vector-addition language.

In [67] it has been shown that even every acyclic digraph can be represented as a type of
vector-addition language withM ⊆ {0,±1}d, but for this representation every arc would
is represented by an individual vector. In the case of Hasse diagrams of lattices it would be
sensible to ask for a correspondence betweenM andM(L).
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1.6 Conclusions

In this chapter we have characterized ULDs in terms of colored Hasse diagrams, (multi)set-
systems, antichain-covered posets, vector-addition-languages, intersections of chip-firing
games, and embeddings intoNd. There are many possible directions of further study. In
the following we discuss some of them.

Classes of combinatorial objects

We have provided (upper locally) distributive lattices arising from local transformations
on given sets of combinatorial objects. Indeed, the combinatorics encoded in these lattices
correspond to chain-partitions of meet-irreducible posets of ULDs or to join-sublattices of
Nd (Theorem 1.3.18).

generalized CFGs

CFGs∆-tensions

planar flows
c-orientations

planarα-orientations

planar spanning trees

domino tilings
lozenge tilings

planar bipartite perfect matchings

rhombic tilings

Figure 1.18: What happened in Chapter 1?

In Figure 1.18 we give a retrospective overview. The≤-relation induced by the Hasse
diagram in Figure 1.18 stands for the inclusions of the classof embeddings intoNd induced



62

by the combinatorial objects in the bubbles. All bubbles in the pink area yield embeddings
of distributive lattices. The bubbles in the blue area yieldembeddings of upper locally dis-
tributive lattices. Alreadyc-orientations suffice to represent all distributive lattices, but even
∆-tensions are not general enough to represent all distributive lattice embeddings. General-
ized CFGs represent all upper locally distributive lattices, but may every embedded ULD be
represented by a generalized chip-firing game?

Tension Lattices

The generation of a random element from a distributive lattice is a nice application for
coupling from the past(c.f. Propp and Wilson [94]). The challenge is to find good esti-
mates for the mixing time, see Propp [93]. What if the latticeis a∆-tension lattice or more
restrictively the set ofα-orientations of a planar graph? For the latter it would be ofpartic-
ular interest to obtain a lattice theoretic characterization of distributive lattices arising from
planarα-orientations.

Lattices of∆-tensions depend on the choice of a vertexv0 ∈ V . Choosing another
vertexv1 yields a different lattice on the same set of objects. Is there an easy description
of the transformationΠv0(D, cℓ, cu) to Πv1(D, cℓ, cu)? Or is there a natural candidate for
choosingv0 in order to guarantee certain properties of the lattice?

Because of their diverse applications it would be very useful to obtain structural results
for α-orientations of graphs embedded on an orientable (or non-orientable) surface different
from the plane – or more generally for nonplanar graphs. Thisseems to be a hard problem.
We feel that it is better to start with particular instances of planarα-orientations, such as
perfect bipartite matchings or spanning trees. In these cases, it might be possible to general-
ize their distributive lattice structure to the non-planarcase without making the step through
α-orientations.

U-Posets Without Global Minimum

The characterization of ULDs in terms of U-posets with global minimum leads to ques-
tions about U-posets without global minimum.

We have shown that in U-posets every elementx has a unique minimal set of meet-
irreducibles havingx as lower bound. Butx might not be the only lower bound of that
set. It would be of interest to characterize join-semilatticesL, where for allx ∈ L there ex-
ists a unique minimal setMx of meet-irreducibles such thatx is the unique maximal lower
bound forMx. Note that this still does not turnL into a lattice. Also it would be interesting
to describe those U-posets, which correspond to join-subsemilattices ofNd. Another point
would be to characterize infinite ULDs which arise as join-sublattices ofNd.

In the context of chip-firing games it is natural to allow tocofire vertices, i.e., a vertex
receives a chip from all its out-neighbors. Versions of thisgame where negative numbers
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of chips are allowed, have been considered under the name ofdollar gameby Baker and
Norine [8]. They are related to tropical geometry [56]. Sticking to the non-negative case, i.e.,
insisting on the non-negativity constraint, it would be interesting to investigate the resulting
class of U-posets. This relates to Question 1.3.20. A resulting topic to analyze would be
vector-addition subtraction languages.

Note that the distributive lattice of∆-tensions corresponds to finite vector-addition sub-
traction language. The alphabet consisits of the rows of thevertex by arc network matrix of
a digraph.

More Questions Related to Chip-Firing Games

In the last section we put a certain emphasis on generalizingCFGs while “staying close”
to them. So Question 1.5.16 asks for the minimum number of CFGs necessary to repre-
sent a ULD as their intersection. And in particular we are interested in a lattice theoretical
characterization of ULDs representable by CFGs.

Here comes a description of several concepts, which generalize from CFGs to generalized
CFGs and possible research topics related to them. Thesandpile monoidof a sinky digraph sandpile monoid

consists of all stable configurations, i.e., such that no vertex can be fired. The “sum” of
two configurations is defined by adding chips of both configurations on corresponding ver-
tices and afterwards fire, until the maximum configuration isreached. Our generalization to
globally finite Laplacious matrices now allows to define the same structure for such matri-
ces. There is a remarkable theory about sandpile monoids [6]. What can we say about the
generalization to vector-addition languages?

In particular thesandpile groupis an Abelian subgroup of the sandpile monoid, whichsandpile group

has been of vivid interest again quite recently [58, 76]. Itsrelations to thecritical group of
a digraph form a strong connection to algebraic graph theory. Now, also this concept may
be generalized to generalized CFGs and we would like to have generalizations of the known
results for the sandpile group in this broader setting.

A last question relates to famousFrankl’s Conjecturealso known asunion-closed sets
conjecture. It states that every latticeL contains a join-irreduciblej, such that|↑j| ≤ |L|/2.
The maximal lattice class for which the conjecture is known to be true is the class oflower
semi-modular lattices[95] – a class containing distributive, but not upper locally distributive
lattices. We feel that ULDs are the next class to tackle. In particular it would be a challenge
to prove Frankl’s Conjecture for chip-firing games.

Similar Results for Other Classes of Lattices

We have characterized ULDs in terms of antichain-partitioned posets. In Theorem 1.2.3
we show that every finite lattice corresponds to an antichain-covered poset. In view of duality
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we ask for a characterization of dual ACPs of good antichain-partitioned posets. This would
yield a new characterization of ULDs.

Also, what other lattice classes have nice characterizations in terms of their antichain-
covered posets? We have characterized cover-preserving join-sublattice embeddings of
ULDs into Nd in terms of chain-partitions of the poset of meet-irreducibles in Theo-
rem 1.3.18. Can this generalization of Dilworth’s Embedding Theorem be taken further
to other lattice classes? The proof of Theorem 1.5.10 relieson the representation of ULDs
as antichain-partitoned posets. In the light of Theorem 1.2.3 it would be an interesting ques-
tion whether every latticeL can be represented as a certain type of vector-addition language.
Natural-seeming candidates for such generalizations would on the one hand be upper semi-
modular lattices and other hand lattices which satisfy the colored Jordan-Dedekind chain
condition.



Chapter 2

Polyhedra

In the previous chapter we dealt with different types of lattices and their representations,
e.g. colored Hasse diagrams, (multi)set-systems, antichain-covered posets, vector-addition-
languages, chip-firing games and embeddings intoNd. In the present chapter we will develop
geometric representations of lattices combined with Euclidean convexity. Or turned the other
way around we will look at polyhedra inRd combined with the dominance order. Looking
back, one result of this chapter is that all the (upper locally) distributive lattices arising in the
previous chapter may be seen as integral points or even vertex sets of polyhedra which form
(join-)sublattices ofRd. Therefore they carry an (upper locally) distributive lattice structure
in a natural way. Indeed, this was the starting point for the the study of polyhedra having
order-theoretical properties as subsets of the dominance order.

So the classes of polyhedra we look at form (upper locally) distributive lattices inRd.
Thus, they are called(upper locally) distributive polyhedra. We will provide characteri-
zations of upper locally distributive polyhedra (ULD-polyhedra) and distributive polyhe-
dra (D-polyhedra) in terms of their representation as intersection of bounded halfspaces
(H-description). Figure 2.1 suggests how such polyhedra might look like. H-description

Figure 2.1: A3-dimensional ULD-polytope and a2-dimensional D-polytope.

Generally, the polyhedral point of view allows links to discrete geometry such as lin-
ear programming or the theory of face lattices of polytopes.Our characterization of
ULD-polyhedra in termsH-descriptions yields a combinatorial model for these polyhedra
in terms of chip-firing games. Moreover, we obtain a connection to feasible polytopes of

65
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antimatroids. A corollary of our characterization is a short new proof fora characterization
of distributive polyhedra.

Aside from being an interesting combination of geometric and order theoretic concepts,
distributive polyhedra are a unifying generalization of several distributive lattices which arise
from graphs. In fact a distributive polyhedron correspondsto a directed graph with arc-
parameters, such that every point in the polyhedron corresponds to a vertex potential on the
graph. Alternatively, an edge-based description of the point set can be given. The objects in
this model are dual to generalized flows, i.e., dual to flows with gains and losses. Moreover
we obtain a connection to oriented bicircular matroids – a class of graph-related matroids of
recent interest in combinatorics.

A particular specialization are tensions of digraphs, discussed in Section 1.4. These mod-
els can be specialized to yield some cases of distributive lattices that have been studied
previously. The contribution here is, that they additionally may be seen as the integer points
of a distributive polyhedron.

As another new application of the theory of D-polyhedra we exhibit a distributive lattice
structure on generalized flows ofbreakevenplanar digraphs.

So this chapter is about polytopes and polyhedra. It relatesto the second parts of the
paper [69] and presents the content of [43]. It is structuredas follows:

In Section 2.1 we introduce those notions of order which we want to combine with con-
vexity. We discuss polyhedra which are join-closed with respect to the dominance order and
polyhedra that have meets for every pair of elements. Combining both notions we define
upper locally distributive polyhedra and distributive polyhedra. We will not provide a real
introduction into the theory of polyhedra, but define new terms “on the fly” whenever we
need them. For the basics we refer to [110].

In Section 2.2 we study distributivity and upper local distributivity for affine spaces in
Rd. We find that both classes coincide and provide a full characterization. We associate
graph-model to distributive affine spaces and characterizetheir bases. This characterization
is a main ingredient for the characterizations of ULD-polyhedra and D-polyhedra.

In Section 2.3 we give a characterization of upper locally distributive polyhedra in terms
of their H-description. As main ingredients we characterize polyhedra which are closed
under taking the componentwise maximum and polyhedra whichhave lower bounds for all
pairs of points. Moreover, it is shown that ULD-polyhedra can be modelled by chip-firing
games. Based on theH-description of ULD-polyhedra we also contribute new insights
to a membership problem for feasible polytopes of antimatroids discussed by Korte and
Lovász [71].

In Section 2.4 we discuss the important subclass of D-polyhedra and prove a character-
ization of D-polyhedra in terms of theirH-description. This is a corollary of the main the
characterization of ULD-polyhedra.
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The characterization of D-polyhedra leads to a wide range ofcombinatorial interpreta-
tions. In Subsection 2.4.1 we use the geometric characterization of D-polyhedra to give a
combinatorial description in terms of vertex-potentials of arc-parameterized digraphs. More-
over, we provide a family of objects in the arc-space of an arc-parameterized digraph – called
generalized tensions. They correspond to the points of a distributive polyhedron. Hence they
carry a distributive lattice structure and turn out to be themost general distributive lattice ob-
tainable by the “potential approach”.

In Subsection 2.4.2 we consider the special case of distributive polyhedra coming from or-
dinary digraphs (without arc-parameters) as an example which is of fundamental importance.
We prove that in this case even theintegral generalized tensions carry a distributive lattice
structure. These integral generalized tensions correspond to the∆-tensions of a directed
graph. Hence we endow those with a polyhedral structure. As was shown in Section 1.4, the
distributive lattice on∆-tensions generalizes an extensive list of distributive lattices related
to graphs. Our results imply that these objects correspond to the integral points of integral
distributive polyhedra. In particular we obtain that knownclasses of polytopes, e.g.order-
polytopes[102] and more generallypolytropes[63], also calledalcoved polytopes[74], are
distributive and may be modeled by∆-tensions.

In Subsection 2.4.3 we consider the case of general arc-parameterized digraphs. We give a
combinatorial description of the generalized tensions of aparameterized digraph. We show
that they are dual to generalized flows – important objects ofcombinatorial optimization.
Moreover, our theory opens a new perspective onbicircular oriented matroids. Our main
theorem may be seen as a characterization of arc-space objects which carry a distributive
lattice structure coming from a D-polyhedron.

Subsection 2.4.4 contains a new application of the theory. We prove a distributive lat-
tice structure on the class ofbreakevengeneralized flows of planar digraphs. This can be
understood as a generalization of the distributive latticeon integral planar flow obtained in
Subsection 1.4.3.

Section 2.5 concludes with final remarks and open problems.
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2.1 Polyhedra and Poset Properties

In this section we will introduce those poset properties which, viewed in the domi-
nance order, will be combined with convexity in order to characterize ULD-polyhedra and
D-polyhedra. Besides proving the first few lemmas and provide a couple of observations, the
idea is to give a first impression of how the combination of order and geometry feels like.
As a kind of “preliminaries section” some things might seem unmotivated. The main idea
here is to carry over properties and intuitions from the purely combinatorial setting in the
first chapter to Euclidean space. We will from now on always regardRd together with the
dominance order on it, i.e., forx, y ∈ Rd we havex ≤ y ⇐⇒ xi ≤ yi for all i ∈ [d]. One
of the most important definitions for this chapter is the following:

Definition 2.1.1. We define aULD-polyhedronas a polyhedronP ⊆ Rd such that for allULD-polyhedron

x, y ∈ P

1. the componentwise maximummax(x, y) is in P, (U-polyhedron)U-polyhedron

2. there is somez ∈ P with z ≤ x, y. (meet-polyhedron)meet-polyhedron

max(x, y)

min(x, y)

x

y

z

Figure 2.2: A3-dimensional ULD-polytope.

A polyhedron which is closed undermin is called anL-polyhedron. Since for everyx, yL-polyhedron

in an L-polyhedronP alsomin(x, y) ∈ P andmin(x, y) ≤ x, y L-polyhedra are meet-
polyhedra.

Observation 2.1.2.The property of being a U-polyhedron is invariant underscaling, trans-
lation, cartesian productand intersection. The same holds for meet-polyhedra with the
exception ofintersection, see Remark 2.3.10 for an example.

Observation 2.1.3.An important observation about the interplay of order and geometry is
that the set of elements belowx, i.e., ↓x := {y ∈ Rd | y ≤ x} and dually↑x are convex
polyhedral cones inRd. Theirapexis x and they aregeneratedby the vectors−e1, . . . ,−edapex

ande1, . . . , ed, respectively. Generally thecone with apexx generated by a finite set ofcone

vectorsV is
cone(V, x) := x + {

∑

y∈V

λyy | λy ≥ 0}.
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This already serves to prove the following basic analogue tothe fact that a finite join-
semilattice has a unique maximum, see Observation 1.1.1.

Lemma 2.1.4. LetP be a U-polyhedron andx ≤ y for all x ∈ P and somey ∈ Rd. ThenP

has a unique vertex1P, such thatx ≤ 1P for all x ∈ P.

Proof. Denote by↓y the cone{x ∈ Rd | x ≤ y}. Translatey such that every bounding
hyperplane of↓y touchesP, i.e., for alli ∈ [d] there isx ∈ P such thatxi = yi. Themax of
all thosex is y and it is inP. Thusy = 1P ∈ P. Since1P ∈ P is the apex of the cone↓1P

which containsP, 1P is a vertex.

So one page ago we defined ULD-polyhedra. We want that the point set of a ULD-
polyhedron forms a ULD with respect to the dominance order onRd. The first prob-
lem here is that ULDs were defined only onfinite ground sets (Definition 1.1.6).

?

ℓ m

The figure suggests that in particular for unbounded polyhedra a direct trans-
lation of Definition 1.1.6 is difficult. We need to find for every elementℓ a
set of meet-irreduciblesMℓ representing it as its meet, but there is no such
element inx2-direction. On the other hand the example in the figure even
is a D-polyhedron (see Definition 2.1.8). Thus it should count as a ULD-
polyhedron. This problem can be overcome if we endow the dominance or-
der with points at infinity, i.e., we have to look at(R∪ {∞})d and again we
take the componentwise ordering whereR∪{∞} is ordered as usual but en-
dowed with a global maximum∞. This allows to interpret unboundedness
in a way which is compatible with the idea of ULDs. In our example the meet-irreducible
representation ofℓ would then be{m, (ℓ1,∞)}.

Therefore make the following definition. LetS ⊆ Rd andx ∈ S. We callI ⊆ [d] a set
of unbounded directionsof x if for everyv ∈ RI there is aw ≥ v such thatx + w ∈ S and
denote byI(x) their collection. Define

φ(x) := {y ∈ (R ∪ {∞})d | yi = ∞ if i ∈ I andyi = xi otherwise, for someI ∈ I(x)}.

One can then show the following

Theorem 2.1.5.A setS ⊆ Rd is a join-sublattice of the dominance order if and only ifφ(S)
forms a ULD with respect to the dominance order on(R ∪ {∞})d, i.e., for everyy ∈ φ(S)
there is a unique inclusion-minimal set of meet-irreducible My ⊆ (R ∪ {∞})d such that
y =

∧
My.

Note that this makes sense in view of the finite case, where a correspondence between
ULDs and join-sublattices ofNd was established (Theorem 1.3.3). Since here we will deal
with polyhedra and points at infinity is something we want to avoid we take the above theo-
rem as a definition, i.e.:
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Definition 2.1.6. A subsetS ⊆ Rd is calledEuclidean ULDif S forms a join-sublattice of Euclidean ULD

the dominance order.

Now we prove a proposition justifying the name ULD-polyhedra. It can be understood as
a Euclidean generalization of the fact that a finite join-semilattice which has meets for all
pairs of elements is a lattice (Observation 1.1.4).

Proposition 2.1.7. A polyhedronP is a ULD-polyhedron if and only ifP endowed with
the dominance order forms a join-sublattice ofRd. This is, ULD-polyhedra are Euclidean
ULDs.

Proof. By Definition 2.1.6 the “⇐=”-direction is trivial. Let us prove “=⇒”:

A U-polytopeP forms a join-subsemilattice of the dominance order onRd. The property
of being a meet-polyhedron, i.e., for allx, y ∈ P there is somez ∈ P with z ≤ x, y, means
that every pair of elements has a meet. In order to show that both properties together imply
thatP forms a lattice it remains to prove that every pairx, y ∈ P has a unique meet. The
setZ := {z ∈ P | z ≤ x, y} equals↓x ∩ ↓y ∩ P, where all the three are U-polyhedra.
Hence by Observation 2.1.2 alsoZ is a U-polyhedron. Now sincemin(x, y) ≥ z for z ∈ Z
Lemma 2.1.4 tells us thatZ has a unique maximum1Z – the meet ofx andy. HenceP is a
join-sublattice ofRd.

As in the case of ordinary ULDs and distributive lattices, a very important subclass of
ULD-polyhedra with plenty of nice combinatorial interpretations is the following:

Definition 2.1.8. A polyhedronP ⊆ Rd is calleddistributiveif it is a U-polyhedron and andistributive
polyhedron
(D-polyhedron) L-polyhedron. Distributive polyhedra are abbreviated D-polyhedra.

In other words, a polyhedronP is distributive if and only if

x, y ∈ P =⇒ min(x, y), max(x, y) ∈ P.

max(x, y)

min(x, y)

x

y

Figure 2.3: A2-dimensional D-polytope.

Since L-polyhedra are meet-polyhedra D-polyhedra are indeed ULD-polyhedra.
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Remark 2.1.9. The dominance order is a distributive lattice onRd. Join and meet in the
lattice are given by the componentwisemax andmin. Sublattices of distributive lattices are
distributive. Since D-polyhedra are exactly those polyhedra, which form sublattices ofRd,
they are distributive lattices. This justifies the namedistributive polyhedra.

Remark 2.1.10. By Birkhoff’s Fundamental Theorem of Finite Distributive Lattices [14]
everyfinite distributive lattice is isomorphic to a union- and intersection-closed set of finite
sets. The characteristic vectors of these sets form the vertices of a distributive polytope – the
order polytope, see [102] or the figure in the introduction of the thesis for an example. We
will explain in Section 2.4.2 that the order polytope is indeed a D-polytope. In this sense,
every finite distributive lattice may be represented as the vertex set of an integral distributive
polyhedron.

An analogue statement for ULDs is not known, but as we will seein Subsection 2.3.1 ev-
ery finite ULD may be represented as the set of integer-pointsof a (not necessarily integral)
ULD-polytope.

2.2 Affine Space

In this section we will characterize distributive and upperlocally distributive affine space.
The proof will take the whole section. Indeed, one of the firstthings to note will be that
both properties are equivalent for affine spaces. The characterization will be an important
ingredient for the characterization of distributive and upper locally distributive polyhedra.
We will see the first link to the theory of arc-parameterized digraphs and an interesting
description of distributive space in terms of basis.

An affine spaceS ⊆ Rn is the translation of a linear spaceS′ by some vectorx, i.e., affine space

S := {y ∈ Rn | y = s + x for somes ∈ S′}.

Remark 2.2.1. Since by Observation 2.1.2 the class of U-polyhedra is closed under trans-
lation, we actually will only consider linear spaces in thissection. At the end we resume the
results of this section in terms of general affine spaces, seeTheorem 2.2.11.

As announced, the first easy and basic result of this section is

Proposition 2.2.2. A linear space is a U-polyhedron if and only if it is an L-polyhedron if
and only if it is a D-polyhedron.

Proof. Sincemin(x, y) = x + y − max(x, y) the result follows.

So in the following we will characterize linear distributive space. We display this charac-
terization already, even if several terms in the statement will be defined only in the course of
the proof.

Theorem 2.2.3.For a linear subspaceS ⊆ Rn the following are equivalent:
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(i) S is distributive.
(ii) S has a non-negative disjoint basisB.

(iii) S = {p ∈ Rn | NT
Λ p = 0}, whereNΛ is the generalized network-matrix of an

arc-parameterized digraphDΛ.

The structure of the proof is to show “(i)=⇒(ii)=⇒(iii) =⇒(i)”. So we start by showing
the “(i)=⇒(ii)”-part of Theorem 2.2.3. Therefore we need to define NND basis. For a
vectorx ∈ Rn we callx := {i ∈ [n] | xi 6= 0} thesupportof x. Setp(x) := max(0, x)support

andn(x) := −min(0, x). Call a set of vectorsB ⊆ Rn non-negative disjoint (NND)ifnon-negative
disjoint (NND)

the elements ofB are componentwise non-negative and have pairwise disjointsupports.
Note that an NND set of non-zero vectors is linearly independent. Moreover, we have the
following useful extension-property.

Lemma 2.2.4.LetI ∪{x} ⊂ Rn be linearly independent, thenI ∪{p(x)} or I ∪{n(x)} is
linearly independent.

Proof. Suppose there are linear combinationsp(x) =
∑

b∈I µbb andn(x) =
∑

b∈I νbb, then
x =

∑
b∈I(µb−νb)xb, which proves thatI∪{x} is linearly dependent – a contradiction.

And indeed:

Proposition 2.2.5. Every linear distributiveS ⊆ Rn has a non-negative disjoint basisB.

Proof. Let S be distributive andI ⊂ S an NND set of support-minimal non-zero vectors. If
I is not a basis ofS, then there isx ∈ S such that:

(1) I ∪ {x} is linearly independent,
(2) ∃i∈[n] : xi > 0,
(3) x is minimal among the vectors with (1) and (2).

Claim: I ∪ {x} is NND.

If x is not non-negative, thenp(x) andn(x) are non-negative. Also sinceS is distributive
both are contained inS and have smaller support thanx. By Lemma 2.2.4 one ofI ∪{p(x)}
andI ∪ {n(x)} is linearly independent – a contradiction to the support-minimality of x.

If there isb ∈ I such thatx ∩ b 6= ∅, then chooseµ ∈ R such that for some coordinate
j ∈ x ∩ b we havexj = µbj . We distinguish two cases.

If x ⊆ b, then∅ 6= µb − x ( b contradicts the support-minimality in the choice ofb ∈ I.

If x * b, then sinceI ∪ {µb − x} is linearly independent one ofI ∪ {p(µb − x)} and
I ∪ {n(µb − x)} is linearly independent by Lemma 2.2.4. By the choice ofµ we have
p(µb − x) ( b andn(µb − x) ( x and obtain a contradiction to the support-minimality in
the choice ofb or x, respectively.
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We have proven the part “(i)=⇒(ii)” of Theorem 2.2.3. But the NND basis of a distributive
space even basically unique:

Proposition 2.2.6. An NND basis is unique up to scaling.

Proof. SupposeS ⊆ Rn has NND basesB andB′. Suppose there areb ∈ B andb′ ∈ B′

such that∅ 6= b ∩ b′ 6= b′, b. By Proposition 2.2.5 we havemin(b, b′) ∈ S but min(b, b′) is
strictly contained in the supports ofb andb′. SinceB andB′ are NND the vectormin(b, b′)
can neither be linearly combined byB nor byB′.

Suppose that there areb ∈ B andb′ ∈ B′ such thatb ( b′. By the above we then know,
thatb′ is a disjoint union of supports of several vectors inB. But this contradicts thatB and
B′ generate the same space.

By the same reason we have
⋃

b∈B b =
⋃

b′∈B′ b′. Together we know that the supports
of vectors inB andB′ induce the same partition of that set. SinceB andB′ are NND, the
vectorsb ∈ B andb′ ∈ B′ with b = b′ must be scalar multiples of each other.

The next step is to prove part “(ii)=⇒(iii)” of Theorem 2.2.3. We want to define a class of
network matrices of arc-parameterized digraphs such that for every linear spaceS which has
a NND basis there is a network matrixNΛ in the class such thatS = {p ∈ Rn | NT

Λ p = 0}.

An arc-parameterized digraphis a tripleDΛ= (V, A, Λ), whereD = (V, A) is a di- arc-parameterized
digraph

rected multi-graph, i.e.,D may have loops, parallel, and anti-parallel arcs. We callD the
underlying digraphof DΛ. Moreover, for convenience we setV = [n] and|A| = m. Now underlying

digraph
Λ is a non-negative vector inRm

≥0
with and entryλa for everya ∈ A. It has the property

that λa = 0 implies thata is a loop. For emphasis we repeat: All arc-parametersλa are
non-negative.

Given an arc-parameterized digraphDΛ we define itsgeneralized network-matrixto be the generalized
network-matrix

matrixNΛ∈ Rn×m with a columnza := ej−λaei for every arca = (i, j) with parameterλa.
Hereek denotes thekth unit-vectorin Rn, i.e,ek has a1 in thekth entry and is0 elsewhere. unit-vector

Note that ifa is a loop, then this produces a columnza with at most one non-zero entry,
which can be negative or positive depending onλa. The columnza has only zero-entries if
and only ifa is a loop andλa = 1.

Observation 2.2.7. A matrix is a generalized network matrix if and only if each column
contains at most one positive entry and at most one negative entry. Positive entries sharing a
column with a negative entry are1.

Proposition 2.2.8. Let S ⊆ Rn be a linear subspace which has a NND basisB. There is a
generalized network-matrixNΛ such thatS = {p ∈ Rn | NT

Λ p = 0}. Moreover,NΛ can
be chosen, such that the underlying digraphD of DΛ is a union of a forest and loops with
arc-parameter0 at isolated vertices.
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Proof. We construct an arc-parameterized digraphDΛ, such that the columns of its gener-
alized network-matrixNΛ form a basis of the orthogonal complement ofS (with respect to
the standard scalar product).

For everyb ∈ B choose some directed spanning tree onb. For everyi /∈
⋃

b∈B b in-
sert a loopa = (i, i). To an arca = (i, j) with i, j ∈ b we associate the arc parame-
ter λa := bj/bi > 0. For loops we setλa := 0. Collect theλa of all the arcs in a vector
Λ ∈ Rm

≥0
. The resulting arc-parameterized digraphDΛ is a disjoint union of loops and a

forest – as claimed in the proposition’s statement.

Denote bycol(NΛ) the set of column-vectors ofNΛ. If b ∈ B andza ∈ col(NΛ), then
eitherb ∩ za = ∅ or 〈b, za〉 = bj − λabi = bj − (bj/bi)bi = 0 for a = (i, j). Therefore,
col(NΛ) is orthogonal toS. The underlying digraph ofDΛ consists of trees and loops only,
andλa 6= 1 for loopsa. Thus,col(NΛ) is linearly independent. To conclude thatcol(NΛ)
generatesS⊥ in Rn we calculate:

|B| + |col(Nλ)|
= |B| +

∑
b∈B(|b| − 1) + |[n]\

⋃
b∈B b|

=
∑

b∈B |b| + n − |
⋃

b∈B b|.

Since the supports inB are mutually disjoint this equalsn. Thus the dimension of the span
of col(NΛ) is n−|B|, the dimension ofS⊥. Sincecol(NΛ) ⊆ S⊥ both spaces coincide.

For the proof of Theorem 2.2.3 it remains to show “(iii)=⇒(i)”.

Proposition 2.2.9. Let NΛ be a generalized network-matrix. The linear space
S = {p ∈ Rn | NT

Λ p = 0} is distributive.

Proof. Note that {p ∈ Rn | NT
Λ p = 0} is the intersection ofhyperplaneshyperplane

Hz:= {x ∈ Rn | 〈z, x〉 = 0}, where thez ∈col(NΛ).

We want to prove thatHz is distributive. By Proposition 2.2.2 it is enough to show, thatHz

is max-closed. By Observation 2.2.7z has at most one positive entryzj and one negative
entry zi. Let x, y ∈ Hz. If xj ≤ yj andxi ≤ yi or xj ≥ yj andxi ≥ yi, then clearly
max(x, y) ∈ Hz.

So sayxj < yj andxi > yi. We have0 = xjzj + xizi ≥ yjzj + xizi ≥ yjzj + yizi = 0.
But yjzj + xizi = 〈z, max(x, y)〉, i.e.,max(x, y) ∈ Hz. The casexj > yj andxi < yi is
symmetric.

Thus, S is the intersection of distributive spaces and is itself distributive by Observa-
tion 2.1.2.

We have proved Theorem 2.2.3. Note that together with Proposition 2.2.8 we actually
showed that the generalized network matrix representing a distributive linear space, may be
assumed to come from a union of a forest and loops. We restate:
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Theorem 2.2.10. Every linear distributive spaceS ⊆ Rn may be represented as
{p ∈ Rn | NT

Λ p = 0}, where the underlying digraphD of DΛ is the union of a forest and
loops at isolated vertices with arc-parameter0.

As remarked at the beginning of the section all the involved properties in the above results
are invariant under translations. In particular we define a basis of an affine space as a basis of
the linear space obtained by translation onto the origin. Weresume the results of the section
in terms of affine spaces.

Theorem 2.2.11.For an affine subspaceS ⊆ Rn the following are equivalent:

(i) S is distributive.
(ii) S has a non-negative disjoint basisB.

(iii) S = {p ∈ Rn | NT
Λ p = c}, whereNΛ is the generalized network-matrix of an arc-

parameterized digraphDΛ. Moreover, the underlying digraphD may be assumed to
be the union of a forest and loops with arc parameter0 at isolated vertices.

We close this section with a lemma, which will prove usefull in the upcoming sections.
We show how the representation by equalities in Theorem 2.2.11 may be replaced by an
inequality-description, while maintaining a generalizednetwork matrix.

Lemma 2.2.12. A distributive affine spaceS ⊆ Rn may be represented as
{p ∈ Rn | NT

Λ p ≤ c} and {p ∈ Rn | ÑT
eΛ
p ≥ c̃}, whereNΛ and ÑeΛ

are generalized
network-matrices.

Proof. It is standard to replace a description by linear equalitiesby inequalities. In order
to obtain again a generalized network matrix, we have to scale such that all positive entries
equal1, by Observation 2.2.7. More precisely:

Let S = {p ∈ Rn | N ′T
Λ′ p = c′} be the representation ofS guaranteed by Theorem 2.2.11.

We scale the rows of negative copies−N ′T
Λ′ and−c′ such that all positive entries of−N ′T

Λ′ be-
come1. Denote the new generalized network matrix asN ′′

Λ′′ and the new capacity-vector as
c′′. We obtain a generalized network matrixNΛ = (N ′

Λ′ , N ′′
Λ′′) and a vectorc = (c′T , c′′T )T

such thatS = {p ∈ Rn | NT
Λ p ≤ c}.

To obtain a description as{p ∈ Rn | ÑT
eΛ
p ≥ c̃}, just scale every columnma of NΛ and

the corresponding entryca of c by a negative numberµ such that the positive entry ofµma

is 1.

2.3 Upper Locally Distributive Polyhedra

In the following we will characterize U-polyhedra and meet-polyhedra. By Definition 2.1.1
we can then combine both characterizations to obtain a characterization of ULD-polyhedra.
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We start with U-polyhedra not yet ULD-polyhedra, c.f. Definition 2.1.1. We will use the
Representation Theorem for Polyhedra [110], which says, that every polyhedron is repre-
sentable as the intersection of its affine hull with all facet-defining halfspaces. Hence the
following lemmas will describe properties of the single ingredients of the Representation
Theorem for Polyhedra in the case of U-polyhedra.

Define theaffine hullof a point setS ⊆ Rd as the minimal affine space containingS. Theaffine hull

affine hull may as well be defined as:

aff(S) := {
∑

p∈S′

λpp | S′ ⊆ S is finite and
∑

p∈S′

λp = 1}.

Lemma 2.3.1. The affine hullaff(P) of a U-polyhedronP is a U-polyhedron.

Proof. Let x, y ∈ aff(P). ScaleP to P′ such thatx, y ∈ P′ ⊆ aff(P). Since by Observa-
tion 2.1.2 scaling preservesmax-closedness we havemax(x, y) ∈ P′ ⊆ aff(P).

Lemma 2.3.2. The orthogonal projectionP′ ⊆ RI of a U-polyhedronP ⊆ Rd to a subset
of I ⊆ [d] of coordinates is a U-polyhedron.

Proof. Let x′, y′ ∈ P′ be projections of pointsx, y ∈ P with xi = x′
i andyi = y′i for all

i ∈ I. Now max(x, y) ∈ P and its projection equalsmax(x′, y′).

Given an affine hyperplane H = {x ∈ Rd | 〈x, z〉 = c} we denote byaffine hyperplane

H≥= {x ∈ Rd | 〈x, z〉 ≥ c} andH≤= {x ∈ Rd | 〈x, z〉 ≤ c} thehalfspaces inducedby H.induced halfspace

Lemma 2.3.3. A halfspaceH≥ = {x ∈ Rd | 〈z, x〉 ≥ c} is a U-polyhedron if and only ifz
has a most one negative entry. Moreover,H≥ is max-closed if and only if for allx, y on the
hyperplaneH we havemax(x, y) ∈ H≥.

Proof. By translation invariance we may assumec := 0.

“⇐=”: Let z be a vector with unique negative entryzi and letx, y ∈ H≥. If xi ≤ yi, then∑
zj max(xj, yj) ≥

∑
zjyj ≥ 0. Hencemax(x, y) ∈ H≥. If z ≥ 0, then the statement

follows directly.

“=⇒”: Suppose on the other hand there are two entrieszi, zj < 0. Thenx := ei/zi − ej/zj

andy := ej/zj − ei/zi are inH≥. But max(x, y) = −ei/xi − ej/xj is certainly not inH≥.
HenceH≥ is not a U-polyhedron.

To see the last part of the statement, suppose there werex, y ∈ H≥ andmax(x, y) /∈ H≥.
Consider the line segments[x, max(x, y)] and[y, max(x, y)]. For everyx′ ∈ [x, max(x, y)]
andy′ ∈ [y, max(x, y)] we havemax(x′, y′) = max(x, y). Both line segments intersectH,
i.e., in particular there arex′, y′ ∈ H with max(x′, y′) /∈ H≥.
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For a polyhedronP we defineF ⊆ P to be aface if there is a hyperplaneHF such thatface of polyhedron

P is contained in the induced halfspaceH
≥
F

andF = P ∩ HF. The halfspaceH≥
F

is called
face-defining. In particular, a face of a polyhedron is a polyhedron.face-defining

halfspace

The dimensionof a polyhedronP is defined as the dimension ofaff(P). A face F ofdimension

P is called facet if F has dimension one less thanP. A polyhedronP ⊆ Rd is calledfacet of
polyhedron

full-dimensionalif aff(P) = Rd. Facets of full-dimensional polyhedra have unique facet-full-dimensional

defining halfspaces.

Lemma 2.3.4. Let P be a U-polyhedron. Every facet ofP has a facet-defining halfspace
which is a U-polyhedron.

Proof. Let S := aff(P), which by Lemma 2.3.1 is also a U-polyhedron. By Theorem 2.2.11
there is an NND basisB = {b1, . . . , bk} for S. Choose coordinatesI = {i1, . . . , ik} with
ij ∈ bj for all j ∈ [k]. Every point inS and therefore every point inP is determined by
its I-coordinates. So in order to describeP we projectP onto itsI-coordinates. The new
polyhedronP′ ∈ RI is a U-polyhedron by Lemma 2.3.2 and it is full-dimensional.

Now let H′≥
F′ be the unique facet-defining halfspace of a facetF′ of P′. SupposeH′≥

F′ is
not max-closed, i.e., by Lemma 2.3.3 there arex, y ∈ H′

F′ andmax(x, y) /∈ H′≥
F′ . We can

scaleP′ to P′′ such that the scaled facetF′′ containsx, y. Thenmax(x, y) /∈ P′′. Hence
by Observation 2.1.2 alsoP′ was not a U-polyhedron – a contradiction. Thus, all the facet-
defining halfspaces ofP′ are U-polyhedra.

Taking the cartesian product of the facet-defining halfspacesH′≥
F′ of P′ with R[d]\I one ob-

tains a complete set of facet-defining halfspaces forP. SinceR[d]\I andH′≥
F′ aremax-closed

also their cartesian product is, by Observation 2.1.2. We have obtained a complete set of
max-closed facet-defining halfspaces forP.

Remark 2.3.5. Considering the middle paragraph of the proof of Lemma 2.3.4for min-
andmax-closedness simultaneously, one obtains, that every facetof a D-polyhedron has a
defining halfspace which is distributive. But we will see that for D-polyhedra we actually
have that the faces are D-polyhedra themselves, see Lemma 2.4.1.

We now have all the ingredients to characterize U-polyhedrain terms of theirH descrip-
tion. Analogously to alphabets in Section 1.5 a matrixM is calledLaplaciousif and only if Laplacious

M has at most one negative entry per row.

Theorem 2.3.6.A polyhedronP ⊆ Rd is a U-polyhedron if and only if there is Laplacious
matrixM such thatP = {x ∈ Rd | Mx ≥ c}, for somec.

Proof. “⇐=”: If M is of the claimed form, thenP is the intersection of halfspaces, which
are U-polyhedra by Lemma 2.3.3. Since by Observation 2.1.2 intersection preserves the
property of being a U-polyhedron, alsoP is a U-polyhedron.

“=⇒”: By the Representation Theorem for Polyhedra [110] we can write

P = (
⋂

F facet

H
≥
F
) ∩ aff(P).
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By Lemma 2.3.1 alsoaff(P) a U-polyhedron. Sinceaff(P) is an affine space by
Lemma 2.2.12 we may represent it asaff(P) = {p ∈ Rn | N(P)T

Λ(P)p ≥ c(P)}, where
N(P)Λ(P) is a generalized network-matrix.

By Lemma 2.3.4 the facet-defining halfspacesH
≥
F

of P may be chosen as U-polyhedra.
Hence, by Lemma 2.3.3 each of them may be represented by a (single-row) Laplacious
matrix z(F), i.e.,H≥

F
= {x ∈ Rd | 〈x, z(F)〉 ≥ c(F)}. Putting all of the row-vectorsz(F)

vertically onN(P)T
Λ(P) and thec(F) on c(P), we obtain a description ofP of the desired

form.

Remark 2.3.7. Equivalently one proves, that a polyhedronP is a L-polyhedron if
and only if there is matrixM with at most onepositive entry per row such that
P = {x ∈ Rd | Mx ≥ c}, for somec. This is,−M is Laplacious.

Remark 2.3.8. Full-dimensional polyhedra have a unique irredundant description as inter-
section of bounded halfspaces. Thus, if we insist that the inequalities are of the form≥, then
any irredundantM describing a full-dimensional U-polyhedron must be Laplacious.

We have characterized U-polyhedra. ULD-polyhedra were defined as being U-polyhedra
and meet-polyhedra at the same time. Thus, in order to characterize ULD-polyhedra, we are
left with the task to characterize meet-polyhedra. So letP ⊆ Rd be a polyhedron. We call
a translated coordinate hyperplaneHi(c):= {x ∈ Rd | 〈ei, x〉 = c} a lower boundof P iflower bound of

polyhedron
P ⊆ H

≥
i (c) andP ∩ Hi(c) 6= ∅. The polyhedronQ(P):=

⋂
H lower bound ofP H ∩ P arising as

the intersection of all lower bounds ofP with P is called themin-polyhedronof P.min-polyhedron

P P PP Q(P)

Q(P)

Q(P)

Figure 2.4: Some polyhedra and their min-polyhedra. The lower bounds are dotted. The
polyhedron on the left has an empty min-polyhedron. Only thetwo right-most polyhedra are
meet-polyhedra.

Proposition 2.3.9. A polyhedronP is a meet-polyhedron if and only if its min-polyhedron
Q(P) is not empty and has the same lower bounds asP. In particular for the bounded case
we have that a polytopeP is a meet-polytope if and only if it has an elementz such that
P ⊂ ↑z.

Proof. “=⇒”: Let P be a meet-polyhedron, i.e., for allx, y ∈ P there is az′ ∈ P with
z′ ≤ min(x, y). Choose onex(i) ∈ Hi(c) from each lower bound ofP. Let z′ be an element
of P belowmin(x(1), . . . , x(k)). Clearly,z′ is in Q(P), i.e., the latter is not empty. Letj be
such thatHj(c) is not a lower bound ofP for anyc, i.e., thej-coordinates of points inP are
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not bounded from below. For everyy ∈ P there is a pointz ≤ min(z′, y) in P. Sincez′ is in
the intersection of all lower bounds andz ≤ z′, alsoz is. Thusz ∈ Q(P) andHj(c) is not a
lower bound forQ(P) either.

“⇐=”: Let x, y ∈ P. SinceQ(P) 6= ∅ there is az′ ∈ Q(P), which is a less or equal thanx
andy on all entries which have a lower bound. SinceQ(P) has not more lower bounds than
P, there is az ∈ Q(P) with z ≤ z′ which is also less or equalx, y on all other entries, i.e.,
z ≤ x, y.

Remark 2.3.10. As noted in Observation 2.1.2 the class of meet-polyhedra isnot closed
under intersection. This particularly explains, why we cannot expect a characterization of
theirH-descriptions only in terms of the describing matrix. The following example, shows
that this problem occurs even for U-polytopes. ConsiderP1 = {x ∈ R3 | 0 ≤ x ≤
1; x1 − x2 + x3 ≥ 0} and P2 = {x ∈ R3 | 0 ≤ x ≤ 1; x1 − x2 + x3 ≥ ε} for
some smallε > 0. Both are defined by the same Laplacious matrix, i.e., are U-polytopes
by Theorem 2.3.6. Moreover,0 ∈ P1 and↑0 ⊃ P1. Hence,P1 is a meet-polytope by
Proposition 2.3.9, i.e., it is a ULD-polytope. Indeed,P1 is the ULD-polytope depicted in
Figure 2.2. On the other hand(ε, 0, 0), (0, 0, ε) ∈ P2 but neither their minimum0 nor any
point below it is contained inP2. HenceP2 is no meet-polytope. Since both are intersections
of up to translation the same meet-closed halfspaces the property of meet-closedness is not
intersection-closed.

Plugging Proposition 2.3.9 and Theorem 2.3.6 together we can finally characterize
ULD-polyhedra.

Theorem 2.3.11.A polyhedronP is a ULD-polyhedron if and only if

1. P is representable as

{x ∈ Rd |

(
I 0

M1 M2

)
x ≥

(
c1

c2

)
},

whereI is the identity matrix and(M1, M2) is Laplacious.
2. There isy < 0 such thatM2y ≥ max(0, c2 − M1c1).

Proof. “⇐=”: The matrix in the statement clearly is Laplacious, henceP is a U-polyhedron
by Theorem 2.3.6. Takey < 0 such thatM2y ≥ max(0, c2 − M1c1). Let (I0) be the
“upper half” of the matrix in the statement of the theorem. Since (I0)(c1, y) = c1 and
M2y ≥ c2 − M1c1, the vector(c1, y) is in P. SinceM2y ≥ 0 also(c1, λy) ∈ P for all
λ > 1. Sincey < 0 andλy gets arbitrary large negative entries the lower bounds ofP are
exactlyHi(c) wherei is a column-index ofM1 andc the ith entry ofc1. Since(c1, λy)
is in their intersection we have(c1, λy) ∈ Q(P). Since this is true for allλ > 1 the min-
polyhedronQ(P) does not have more lower bounds thanP. By Proposition 2.3.9P is a
meet-polyhedron.

“=⇒”: Since P is a U-polyhedron it may be represented by a Laplacious matrix M and
a vectorc2. To obtain the special representation claimed in the theorem we partition the
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column-indeces ofM into C1, C2 – those corresponding to lower bounds and those who
do not. This is, there is ac(i) such thatHi(c(i)) is a lower bound ofP if and only if
i ∈ C1. By M1 andM2 we denote the submatrices ofM induced by the partition. We may
lay a rowei on top of(M1, M2) and add a top-entryc(i) to c for every i ∈ C1, without
changingP. We end up with an identityI matrix on top ofM1 and a vectorc1 on c2 as
desired. NowQ(P) consists of those elements ofP with (I0)x = c1. SinceP is a meet-
polyhedron by Proposition 2.3.9Q(P) has no more lower bounds thanP. So there is a
(x, y) ∈ Q(P) with (x, y) ∈ RC1×C2 , y < 0 and(x, λy) ∈ Q(P) for all λ > 0. Clearly,
M2y ≥ c2 −M1x ≥ c2 −M1c1. Sincec2 −M1c1 ≤ M2λy = λM2y for all λ > 0 we have
M2y ≥ 0.

Note that the min-polyhedron of a meet-polytopeP consists of a single point. Since the
case of polytopes is of most interest to us, we restate this special case of Theorem 2.3.11 as
an individual theorem:

Theorem 2.3.12.A polytopeP is a ULD-polytop if and only if it is representable as

P = {x ∈ Rd | Mx ≥ c, x ≥ z}

whereM is Laplacious andMz ≥ c. In particular,z is a vertex ofP.

Remark 2.3.13. In Section 1.5 we prove that every generalized CFG may be represented
by the intersection of ordinary CFGs. We replace the Laplacious alphabetM in the de-
scription of a generalized CFG by a set of vertically attached reduced LaplaciansM ′

i of
digraphsDi. Everyx in such a reduced LaplacianM ′

i has exactly one negative entry. This
change of representation does not affect the particular generalized chip-firing game (Theo-
rem 1.5.14). Analogously to that, one can prove that a Laplacious matrixM̃ representing
a ULD-polyhedron may be replaced by a set of vertically attached Laplacious matrices̃Mi

each of which has exactly one negative entry percolumn, and the sum of the entries of
any column is less or equal to0. In contrast to the situation of Section 1.5 the matrices
M̃i may have non-integer-entries. In order to interpret such aM̃i combinatorially we can
define chip-firing games on digraphsDi with arcs of real, positivevolumeinstead of arc-
multiplicity. This is, every arca ∈ A(Di) has a volumeνa > 0. Now, firing a vertexv
of Di consits in sendingνa chips fromv along each outgoing arca to the corresponding
neighbor. Now,M̃i is the reduced Laplacian ofDi. In this sense, every ULD-polyhedron
may be represented as the intersection of CFG-polyhedra.

2.3.1 Feasible Polytopes of Antimatroids

In the following we will discuss a link to a problem of Korte and Lovász [71].

Definition 2.3.14. An antimatroidN = (E,F) is a pair of a finite ground setE and a setantimatroid

F ⊆ 2E of feasiblesubsets ofE, which satisfy the following three properties:feasible set

1. The empty set is inF .
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2. The systemF is union-closed.
3. EveryF ∈ F\∅ contains an elemente such thatF\{e} ∈ F .

Antimatroids were introduced by Edelman [34] and Jamison-Waldner [61]. The axioms
defining antimatroids as set systems have some similarity tothose of matroids. Matroids
can be defined by an exchange axiom (e.g., the basis exchange,or independent set exchange
axioms). Korte [70] proved the following theorem, whose proof we will sketch as an appli-
cation of some of the ULD-characterizations of Chapter 1.

Theorem 2.3.15.Antimatroids correspond to ULDs.

Proof. The orderLN := (F ,⊆) on the feasible sets of an antimatroid is a ULD. Indeed we
can color the arcs of its Hasse diagram of the form(F, F ∪{e}) by e and obtain a U-coloring
by property 2. in Definition 2.3.14. The first together with the third property yield that the
Hasse diagram has a unique source∅. Since the diagram is clearly acyclic Theorem 1.3.3
yields the claim.

On the other hand it is easy to see, that every ULDL may be represented as the in-
clusion order on the feasible sets of an antimatroid. We use the ACP-construction from
Section 1.2. The ground set for our antimatroid consists of the meet-irreduciblesM(L)
of L. For everym ∈ M(L) set Am := {j ∈ J (L) | m ∈ ↑j−\↑j} and denote by
AM(L) := {Am | m ∈ M(L)} their collection. The feasible sets of the antimatroid are
now given byfingAM(L)

(I(J (L))). We havefingAM(L)
(∅) = ∅ and by Proposition 1.2.5

the systemfingAM(L)
(I(J (L))) is union-closed. By Theorem 1.2.24 we have thatAM(L)

is an antichain-partition. This implies the third part of Definition 2.3.14.

The feasible polytopePN of an antimatroidN = (E,F) is defined as theconvex hullof feasible polytope
convex hullthe characteristic vectors of its feasible sets, i.e., conv({χ(F ) ∈ {0, 1}E | F ∈ F}). The

convex hull of a finite set of vectorsV is:

conv(V ) := {
∑

y∈V

λyy |
∑

y∈V

λy = 1 andλy ≥ 0}.

In [71] themembership-problemfor feasible polytopes is discussed, i.e., givenx ∈ RE

decide whetherx ∈ PN . The input-size is|E| and the difficulty is, that the number of
vertices ofPN is generally exponential in|E|. In [71] it is shown that for some classes of
antimatroids the membership-problem is inP, whereas for other classes it isNP-hard.

In the following we describe an attempt to find anH-description ofPN , the size of the
description and the time to construct it are certainly an upper bound for the time-complexity
of the membership-problem ofPN . Since an antimatroidN corresponds to a ULDLN we
may apply Theorem 1.5.10 and representLN as a vector-addition language. This is, we
produce a Laplacious matrixM ∈ Zd×E and a vectorσ ∈ Zd

≥0
such thatF ∈ F if and

only if there is an ordering ofF = {e(1), . . . , e(k)} with σ + x(e(1)) + . . . + x(e(i)) ≥ 0
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for all i ∈ [k]. If the representation of the antimatroid as antichain-partitioned poset may
be obtained in polynomial time the proof of Theorem 1.5.10 constructiveM in polynomial
time in d. Now, by Remark 1.5.11 the producedM has actually a stronger property which
in terms of antimatroids reads{χ(F ) | F ∈ F} = {z ∈ {0, 1}E | Mz ≥ −σ} =: PL.

Hence the polytopePL containsPN andPL ∩ {0, 1}E = PN ∩ {0, 1}E . Since both
polytopes lie inside the(0, 1)-hypercube andPN is a(0/1)-polytope all vertices ofPN are
vertices ofPL. The other vertices ofPL are no(0, 1)-vectors. The obvious question is:

Question 2.3.16.Under which circumstances isPL = PN?

In advance: this is not always the case. But for a moment supposePL = PN . If the num-
ber d of rows of the matrixM is polynomial in|E|, then we can answer the membership
problem in polynomial time. In particular, if the size of theantichains in the representation
of LN is bounded by a constant, thend is polynomial in|E| by Remark 1.5.12. We will
now discuss a certain class of antimatroidsN , for which the membership-problem has been
shown to beNP-hard in [71]. We will show, that the size of the antichains inthe representa-
tion of LN is bounded by2. Hence, membership testing forPL works in polynomial time.
Thus, for this class of antimatroids we havePL 6= PN , unlessP=NP.

The point-line search antimatroidN (G) of an undirected graphG = (V, E) is definedpoint-line search
antimatroid

as follows. The groundset consists ofV ∪ E and a subsetF is feasible if and only if for
every edge{u, v} ∈ F at least one of its ends is also inF . In [71] it was shown that the
membership-problem forPN (G) is NP-hard. On the other hand there is a representation as
antichain-partitioned poset(P,AQ) of LN with antichain size bounded by2:

The bipartite posetP has a lower halfV1 with an elementv1 for every vertexv of G. The
upper halfV2 contains degree many copies{v2(1), . . . , v2(deg(v))} of every vertexv of
G. The order relation is defined byv1 ≤ w2(i) if and only if v = w. To define the
antichain-partitionAQ take the singleton-partition onV1 and for every edge{v, w} ∈ E lay
an antichainA(v, w) over still uncovered copies ofv andw, respectively, inV2. It is easy
to check that the feasible sets ofN coincide withfingAQ

(I(P)) and thatAQ is a reduced
antichain-partition, see Theorem 1.2.24.

Despite the fact, that the constructed polytopePL containing a given feasible polytope
PN , does not generally coincide with the latter, we have enriched the knowledge concering
the membership-problem. The inequalities derived from Theorem 1.2.24 are new ingredients
to the study of feasible polytopes of antimatroids.

SinceM is Laplacious,M0 ≥ −σ and PL ≥ 0 by Theorem 2.3.12PL is a ULD-
polytope. So, we have constructed a ULD-polytope containing a feasible polytope of an
antimatroid, but this might not be the smallest one. Order-polytopes are exactly those full-
dimensional(0/1)-polytopes which are distributive one might hope for a generalization of
that statement. It is easy to see, that(0/1)-polytopes which are ULD-polytopes are feasible
polytopes of antimatroids but the converse is not clear.
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A(v, w)

A(u, v)

u v w
u1 v1 w1

u2(1) v2(1)

v2(2)

w2(1)

Figure 2.5: A graph and the antichain-partitioned poset corresponding to its point-line search
antimatroid. We have marked afeasible seton the left and the correspondingmaximal ideal
of the ACP on the right.

Question 2.3.17.Are feasible polytopes of antimatroids ULD-polytopes?

For polytopes which are not(0/1)-polytopes it is easy to find examplesP where the
vertices ofP form a ULD with respect to the dominance-order, but the wholepolytope
is not a ULD-polytope. Cyclic polytopes even give a class of examples for this in terms
of distributive lattices and D-polytopes. In contrast toH-description byV-descriptionof a V-description

polyhedronP we refer to a set of pointsV = U∪W ⊆ Rd such thatP = conv(U)+cone(V ).
The “+” denotes theMinkowski sum, which consists of the pointwise sums of both objects.Minkowski sum

We are far away from any answer to the following generalization of Question 2.3.17.

Question 2.3.18. Is there a characterization of ULD-polyhedra in terms of their
V-description?
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2.4 Distributive Polyhedra

For the rest of the chapter we will fully concentrate on the class of distributive polyhedra.
D-polyhedra will turn out to have very nice connections to several combinatorial objects
such as arc-parameterized digraphs, generalized flows, andbicircular oriented matroids. In
particular we will see, how the discrete distributive lattices discussed in the previous chapter
turn out to be the sets of integer points of particularly niceintegral distributive polytopes.

For a start, as we did for ULD-polyhedra we want to find a geometric characterization
of distributive polyhedra. D-polyhedra are exactly those polyhedra, which are U-polyhedra
and L-polyhedra at the same time, see Definition 2.1.8. Hencein principal we obtain an
H-description as a consequence of Theorem 2.3.6 and its dual counterpart in terms of L-
polyhedra. But in order to promote a special property which D-polyhedra have and ULD-
polyhedra do not share, we use a little different approach: faces of D-polyhedra are D-
polyhedra. We use this to obtain a new proof of the characterization of D-polyhedra.

Lemma 2.4.1. Faces of D-polyhedra are D-polyhedra.

Proof. Let P be a D-polyhedron such thatP ⊆ H≤ = {x ∈ Rn | 〈z, x〉 ≤
c} and let F = P ∩ H be a face. Suppose that there arex, y ∈ F such that
max(x, y) 6∈ F. Since max(x, y) ∈ P this means〈z, max(x, y)〉 < c. Since
2c = 〈z, x + y〉 = 〈z, max(x, y)〉 + 〈z, min(x, y)〉 this impliesmin(x, y) 6∈ P – a contra-
diction.

We have gathered enough instruments to characterize:

Theorem 2.4.2.A polyhedronP ⊆ Rn is a D-polyhedron if and only if

P = {x ∈ Rn | NT
Λ x ≤ c}

for some generalized network-matrixNΛ andc ∈ Rm.

Proof. “⇐=”: If P may be represented as claimed, then it is a U-polyhedron by Theo-
rem 2.3.6 and an L-polyhedron by Remark 2.3.7.

“=⇒”: By Lemma 2.4.1 every faceF of P is distributive. Lemma 2.3.1 ensures thataff(F)
is distributive. Theorem 2.2.11 yieldsaff(F) = {x ∈ Rn | N(F)T

Λ(F)x = c(F)} for a gener-
alized network-matrixN(F)Λ(F). In particular this holds foraff(P), which we will actually
represent as{x ∈ Rn | N(P)T

Λ(P)x ≤ c(P)}, using Lemma 2.2.12. For a facetF choose

a columnzF of N(F)Λ(F) such thatH≤
F

:= {x ∈ Rn | 〈zF, x〉 ≤ cF} is a facet-defining
halfspace forF. SincezF is a column of a generalized network matrix it is a generalized
network matrix itself and by Lemma 2.3.3 we have thatH

≤
F

is distributive.

By the above chain of arguments we can transform the representation given by the Repre-
sentation Theorem for Polyhedra [110]:

P = (
⋂

F facet

H
≤
F
)∩aff(P) = (

⋂

F facet

{x ∈ Rn | 〈zF, x〉 ≤ cF})∩{x ∈ Rn | N(P)T
Λ(P)x ≤ c(P)}.
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Here the single matrices involved are generalized network-matrices. Glueing all these matri-
ces horizontally together one obtains a single generalizednetwork-matrixNΛ and a vectorc
such thatP = {x ∈ Rn | NT

Λ x ≤ c}.

Remark 2.4.3. By Proposition 2.2.8 it follows that the systemNT
Λ x ≦ c with equality-

and inequality-constraints defines a D-polyhedron wheneverNΛ is a generalized network-
matrix.

Remark 2.4.4. Generalized network matrices are not the only matrices thatcan be used to
represent D-polyhedra. Scaling columns ofNλ and entries ofc simultaneously preserves the
polyhedron but may destroy the property of the matrix being ageneralized network matrix. If
the polyhedron is full-dimensional, theH-description is unique up to that scaling-operation.
Hence, for full-dimensional D-polyhedra there is no more ambiguity than scaling in our
characterization.

There may, however, be representations of different type ifthe polyhedron is not full-
dimensional. Consider e.g., the D-polyhedron consisting of all scalar multiples of(1, 1, 1, 1)
in R4, it can be described by the six inequalities

∑
i∈X xi −

∑
i6∈X xi ≤ 0, for X a 2-subset

of {1, 2, 3, 4}.

2.4.1 Towards a Combinatorial Model

After the geometrical characterization of D-polyhedra therest of this section is devoted
to understand the combinatorial meaning of distributive polyhedra. We have shown that a
D-polyhedronP is completely described by an arc-parameterized digraphDΛ and an arc-
capacity vectorc ∈ Rm. This characterization suggests to consider the points ofP as ‘graph
objects’. Apotential for DΛ is a vectorp ∈ Rn, which assigns a real numberpi to each potential

vertexi of DΛ, such that the inequalitypj −λapi ≤ ca holds for every arca = (i, j) of DΛ.
The points of the D-polyhedronP(DΛ, c):= {p ∈ Rn | NT

Λ p ≤ c} are exactly the potentials
of DΛ.

u

u
1

1 2

2

v

v

(1, 0)

(1
2 , 1)

(2, 0)




1 −1
2

−1 1
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
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


1
0
2




Figure 2.6: D-polytope represented by an arc parameterizedDΛ and transposed generalized
network-matrixNT

Λ with capacitiesc. The arcs correspond to the defining inequalities. A
tuple at arca stands for(ca, λa).

Theorem 2.4.2 then can be rewritten in terms of vertex potentials
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Theorem 2.4.5. A polyhedron is distributive if and only if it is the set of potentials of an
arc-parameterized digraphDΛ.

Interestingly there is a second class of graph objects associated with the points of a
D-polyhedron. While potentials are weights on vertices, this second class consists of el-
ements of the arc-space ofDΛ. We defineT(DΛ) to be the space Im(NT

Λ ). In the
spirit of the terminology ofgeneralized flows, c.f. [3], we call the elements ofT(DΛ) the
generalized tensionsof DΛ. Given a D-polyhedronP(DΛ, c) with capacity constraintsc wegeneralized

tensions
look at

T(DΛ, c) := {x ∈ Rm | x ≤ c andx ∈ Im(NT
Λ )} = NT

Λ P(DΛ, c).

The elements ofT(DΛ, c) are then called generalized tensionswithin the capacity con-
straintsc.

Theorem 2.4.6. Let DΛ be an arc-parameterized digraph with capacitiesc ∈ Rm. The
set T(DΛ, c) is a polyhedron and affinely isomorphic to a D-polyhedronP′. Here P′

can be obtained fromP = P(DΛ, c) by intersectingP with some hyperplanes of type
Hi = {x | xi = 0}. In particular T(DΛ, c) inherits the structure of a distributive lattice by
the bijection toP′.

Proof. SinceT(DΛ, c) = NT
Λ P for the D-polyhedronP of feasible vertex-potentials ofDΛ,

andNT
Λ is a linear map, the set of generalized tensions is a polyhedron.

If NT
Λ is bijective onP, then the setT(DΛ, c) inherits the distributive lattice structure

from P. This is not always the case. In the rest of the proof we show that we always find a
D-polyhedronP′ ⊆ P such thatNT

Λ is a bijection fromP′ to T(DΛ, c).

From Theorem 2.2.11 we know that Ker(NT
Λ ) is a distributive space and that there is an

NND basisB of Ker(NT
Λ ). For everyb ∈ B fix an arbitrary elementi(b) ∈ b. Denote the

set of these elements byI(B). DefineS := span({ei ∈ Rn | i ∈ [n]\I(B)}).

1. S is distributive:
By definitionS has an NND basis, i.e., is distributive by Proposition 2.2.11.

2. T(DΛ) = NT
Λ S:

SinceT(DΛ) = Im(NT
Λ ) ⊇ NT

Λ S it suffices to show “⊆”. So letNT
Λ p = x ∈ T(DΛ).

Definep′ := p−
∑

b∈B(
pi(b)

bi
b). Since

∑
b∈B(pi(b)b) ∈ Ker(NT

Λ ) we haveNT
Λ p′ = x.

Moreoverp′i = 0 for all i ∈ I(B), i.e.,p′ ∈ S.
3. NT

Λ : S →֒ T(DΛ) is injective:
Suppose there arep, p′ ∈ S such thatNT

Λ p = NT
Λ p′. Thenp−p′ ∈ Ker(NT

Λ )∩S. But
by the definition ofS this intersection is trivial, i.e.,p = p′.

We have shown thatNT
Λ is an isomorphism fromS to T(DΛ) and thatS is distributive. Thus

P′ := P ∩ S is a D-polyhedron such that the linear map defined by the matrix NT
Λ is a

bijection fromP′ to T(DΛ, c).
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The intersection ofP with Hi can be modeled by adding a loopa = (i, i) with capacity
ca = 0 to the digraph. Hence, with Remark 2.4.3 the preceding theorem says that for every
T(DΛ, c) we can add some loops to yield a graphD′

Λ′ and capacitiesc′ such that

T(DΛ, c) = T(D′
Λ′ , c′) ∼= P(D′

Λ′ , c′) = P′.

In the following we will always assume that generalized tensionsT(DΛ, c) have the property
thatT(DΛ, c) ∼= P(DΛ, c). In this case we call(DΛ, c) reduced. reduced

Note thatT(DΛ, c) can be far from being a D-polyhedron, but it inherits the distributive
lattice structure via an isomorphism from a D-polyhedron. In the following we investi-
gate generalized tensions, i.e., the elements ofT(DΛ), as objects in their own right. Since
T(DΛ) = Im(NT

Λ ) = Ker(NΛ)⊥ we can make the following fundamental:

Observation 2.4.7. A vector x ∈ Rm is a generalized tensions of(DΛ) if and only if
〈x, f〉 = 0 for all f ∈ Ker(NΛ).

Thus, understanding the elements of Ker(NΛ) as objects in the arc space ofDΛ is vital to
our analysis. This will provide the link to flows and generalized flows of directed graphs. In
Section 2.4.2 we review the case ofordinary tensions, which leads to a description closely
related to the definition of∆-tensions. In Section 2.4.3 we then are able to describe the
generalized tensions ofDΛ as capacity-respecting arc values, which satisfy ageneralized
circular balance conditionaround elements of Ker(NΛ), see Theorem 2.4.18.

2.4.2 Tensions and Alcoved Polytopes

In this section we present a special case of distributive polytopes with particularly nice prop-
erties with respect to integrality constraints and many applications in graph theory. In fact,
the results presented here are those which gave first rise to the idea of considering distribu-
tive polyhedra in general. In a sense the results of this subsection are a very special version
of what we will obtain as a generalization in the subsectionsafterwards.One particular prop-
erty of the polytopes in this section is their behavior with respect to integrality constraints.
This is something which will not carry over to the general case.

We look at the case whereDΛ = (V, A) is an arc-parameterized digraph with
Λ ∈ {0, 1}m,. More preciselyλa = 0 if and only if a is a loop andλa = 1 otherwise.
In this caseNΛ is thenetwork-matrixN of the underlying digraphD, i.e., N ∈ Rn×m network-matrix

consists of columnsej − ei for every non-loop arca = (i, j) andei for a loopa = (i, i).
Thus, we identifyDΛ with D and forget aboutΛ.

By Observation 2.4.7 in order to understand the generalizedtensions ofD we have to
analyze Ker(N). This is a classical subject of algebraic graph theory [52]:The elements
of Ker(N) =:F(D) are theflows of D, i.e., those real arc valuesf ∈ Rm which respect flow
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flow-conservationat every vertex ofD. Each support-minimal elementf ∈ F(D) is a scalar
multiple of thesigned characteristic vector−→χ (C) of an oriented cycleC ∈ C(D) of D. We signed

characteristic
vectordefine−→χ (C) as thesign vector−→χ (C) ∈ {+1,−1, 0}A associated toC, where−→χ (C)a = 1sign vector

if a ∈ C+, −→χ (C)a = −1 if a ∈ C− and−→χ (C)a = 0 otherwise.

The setT(D) of generalized tensions ofD consists of thosex ∈ Rm with 〈x, f〉 = 0 for
all flows f . This is equivalent to〈x,−→χ (C)〉 = 0 for all C ∈ C – the circular balance condi-
tions for tensions. So in this particular case ofΛ ∈ {0, 1}m we may define the generalized
tensionsT(D)≤c very analogously to ordinary tensions (Definition 1.4.1) asthosex ∈ Rm

such that

(D’1) x(a) ≤ c(a) for all a ∈ A. (capacity constraints)

(D’2) 0 =
∑

a∈C+ x(a) −
∑

a∈C− x(a) for all C. (circular balance conditions)

The only difference here is, that we have no lower arc-capacities and that we do not restrict
to the set tointeger vectors. We refer to the generalized tensions in this special case as
real tensionsof D within c.real tension

Theorem 2.4.6 yields a distributive lattice structure on the set of real tensionsT(D, c) by
identifying it via affine equivalence with a distributive polytopeP(D, c).

The particular form ofΛ allows us to show a distributive lattice structure on the
integral tensionsT (D, c):= T0(D,−∞, c) = T(D, c) ∩ Zm with upper arc-capacitiesctension

of D, as originally defined in Definition 1.4.1. Just set∆ to the all-zeroes vector and let all
arcs have unbounded lower capacity. To the end of proving a distributive lattice structure on
integral tensions we first make the following:

Observation 2.4.8.The intersection of a D-polytopeP ⊆ Rn and any other (particularly
finite) distributive sublatticeL of Rn yields a distributive latticeP ∩ L.

So if P ⊆ Rn is a D-polyhedron, thenP ∩ Zn is a distributive lattice. Since by The-
orem 2.4.6 we can assumeNT to be bijective onP(D, c) we obtain a distributive lattice
structure onNT (P(D, c) ∩ Zn). However, what we want is a distributive lattice on integral
tensions, i.e., onT (D, c) = T(D, c) ∩ Zm = (NT P(D, c)) ∩ Zm. Luckily, N is a totally
unimodular matrix, which yields(NT P(D, c)) ∩ Zm = NT (P(D, c) ∩ Zn), see [99]. We
obtain:

Theorem 2.4.9.The set of integral tensionsT (D, c) is affinely isomorphic toP(D, c)∩Zn.
Thus,T (D, c) carries a distributive lattice structure and is the set of integer points of a
polyhedron.

Indeed, the result obtained is even more general. In Section1.4 we have shown that the
set of∆-tensions of a digraph with lower and upper arc-capacities is isomorphic to the set of
integral tensions (Lemma 1.4.5) of a digraph with only upperarc-capacities (Remark 1.4.15),
the isomorphism is just a translation inRm. We obtain a version of the first main result of
Section 1.4 (Theorem 1.4.9) enhanced with a statement aboutconvexity.
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Theorem 2.4.10.Let D be a digraph with capacitiescℓ, cu. The setT∆(D, cl, cu) carries
the structure of a distributive lattice and is the set of integer points of a polyhedron.

As a reminder we restate a list of formerly constructed distributive lattices, which may be
modelled as∆-tensions and by Theorem 2.4.10 form sets of integer points of polyhedra:

• domino and lozenge tilings of a plane region (Rémila [97] and others based on
Thurston [105])

• planar spanning trees (Gilmer and Litherland [48])

• planar bipartite perfect matchings (Lam and Zhang [73])

• planar bipartited-factors (Felsner [39], Propp [92])

• Schnyder woods of a planar triangulations (Brehm [25])

• Eulerian orientations of a planar graph (Felsner [39])

• α-orientations of a planar graph (Felsner [39], Ossona de Mendez [88])

• k-fractional orientations with prescribed outdegree of a planar graph (Bernardi and
Fusy [11])

• Schnyder decompositions of a planed-angulations of girthd (Bernardi and Fusy [12])

• circular integer flows of a planar graph (Khuller, Naor and Klein [66])

• higher dimensional rhombic tilings (Linde, Moore, and Nordahl [77])

• c-orientations of a graph (Propp [92])

From a polytopal point of view, the distributive polyhedra corresponding to tensions of
digraphs form pretty nice and special classes:

Given a posetP its order polytopeis defined as the convex hull of the characteristic vec-order polytope

tors of the idealsI ∈ I(P) of a the poset. Order polytopes encode many poset properties
and enhance them with a notion of geometry. In [102] Stanley provides a characterization of
order polytopes in terms of theirH-description. It is easy to see, that theH-description
in fact coincides with the one of those distributive polytopes P(DΛ, c) with parameters
Λ, c ∈ {0, 1}m. The underlying digraphD is the isomorphic to the Hasse diagram ofP and
the tensions ofD correspond to the ideals ofP. Indeed, one can prove that a(0/1)-polytope (0/1)-polytope

P (all vertices ofP are(0/1)-vectors) is a D-polytope if and only if it is an order-polytope.
Is an analogue statement true for(0/1)-polytopes that are ULD-polytopes and feasible poly-
topes of antimatroids? This relates to Question 2.3.17.

If we broaden the set of parameters from order polytopes slightly to Λ ∈ {0, 1}m and
c ∈ Zm we obtain the more general class ofalcoved polytopes. Alcoved polytopes have
proven to model a big variety of combinatorial objects [74].We just contributed∆-tensions
and all their special instances to it. Moreover, it has been shown in [63] that alcoved poly-
topes coincide withpolytropes, which are of importance in the study oftropical convexity.
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Theorem 2.4.2 tells us that alcoved polytopes are distributive. Moreover, their integer
points correspond to vertex potentials of digraphs within some capacity constraints. Theo-
rem 2.4.9 characterizes the integer point sets of alcoved polytopes in terms of the arc-space,
i.e.,P is an alcoved polytope if and only ifNT P ∩ Zm corresponds to the integral tensions
of directed graph.

In the next section we characterize those real-valued subsets of the arc space of parame-
terized digraphs, which can be proven to carry a distributive lattice structure by the above
method asgeneralized∆-tensions. The generalization of Theorem 2.4.10 to generalized
∆-tensions is stated in Theorem 2.4.20.

2.4.3 General Parameters

In this subsection we will develop a full characterization of generalized tensions. We will
make connections to generalized flows and to bicircular oriented matroids. So we look at
the case of general tensions of an arc-parameterized digraph DΛ. The aim of this section is
to describeT(DΛ, c) as the orthogonal complement of Ker(NΛ) within the capacity bounds
given byc. Forf ∈ Rm andj ∈ V we define theexcessof f at j asexcess

ω(j, f) := (
∑

a=(i,j)

fa) − (
∑

a=(j,k)

λafa).

Since f ∈ Ker(NΛ) meansω(j, f)= 0 for all j ∈ V we think of f as an edge-
valuation satisfying ageneralized flow-conservation. We call the elements of Ker(NΛ) the
generalized flowsof DΛ.generalized flows

Generalized flows were introduced by Dantzig [29] in the sixties and there has been much
interest in related algorithmic problems. For surveys on the work, see [3, 106]. The most
efficient algorithms known today have been proposed in [44].

We will denoteF(DΛ) := Ker(NΛ) and call it thegeneralized flow space. Let C(DΛ)generalized flow
space

be the set of support-minimal vectors ofF(DΛ)\{0}, i.e., f ∈ C(DΛ) if and only if
g ⊆ f implies g = f for all g ∈ F(DΛ)\{0}. The elements ofC(DΛ) will be called
generalized cycles. Since the support-minimal vectorsC(DΛ) span the entire spaceF(DΛ)generalized cycles

the generalized tensions ofDΛ are already determined by being orthogonal toC(DΛ), i.e.,
to all generalized cycles.

In the following we answer the question what generalized cycles look like as subgraphs of
DΛ. After some definitions and technical lemmas we give a combinatorial characterization
of generalized cycles, see Theorem 2.4.17, which makes a link to bicircular oriented ma-
troids. Later this leads to a description of generalized tensions in the spirit of the definition
of ordinary tensions in Section 1.4

For anoriented arc-setS of DΛ define itsmultiplier asoriented arc-set
multiplier
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λ(S) :=
∏

a∈S

λ
−→χ (S)a
a ,

where−→χ (S)a = ±1 depending on the orientation ofa in S.

An oriented cycleC in the underlying digraphD will be called lossy if λ(C)< 1, and lossy

gainy if λ(C) > 1, andbreakevenif λ(C) = 1. A bicycleis an oriented arc set that can begainy
breakeven
bicyclewritten asC ∪ P ∪ C ′ with a gainy cycleC, a lossy cycleC ′ and a (possibly trivial) simple

oriented pathP from C to C ′; moreover, the intersection ofC andC ′ is a (possibly empty)
interval of both. Moreover,C andC ′ are equally oriented on this interval. See Figure 2.7
for the three typical examples. More precisely, every bicycle is isomorphic to a subdivison
of one the graphs in the figure. We denote the set of bicycles and breakeven cycles ofDΛ by
B(DΛ).

P

C

CC

C ′

C ′ C ′

Figure 2.7: Bicycles withP = ∅ andP 6= ∅.

Recall that forx ∈ Rm the support was defined asx:= {i ∈ [m] | xi 6= 0}. Generally,
a signed setX = (X+, X−) is a pair of disjoint sets of positive and negative elementsX+ signed set

andX−, respectively. Thesupportof X is X:= X+ ∪ X−. For i ∈ X we writeXi = ±1 support

if i ∈ X±, respectively. Ifi /∈ X, then we denoteXi = 0.

Note that this is a direct generalization of oriented arc-sets and their forward and backward
arcs and their signed characteristic vector. We define thesigned supportof a vectorx as the signed support

signed set with supportx and x−→
+ := {i ∈ x | xi > 0} and x−→

− := {i ∈ x | xi < 0}.

Remark 2.4.11. Note thatC−→(DΛ) is exactly the set of signed circuits of theoriented ma-
troid induced by the matrixNΛ, see [19]. In Theorem 2.4.17 we proveB(DΛ) = C−→(DΛ).
Hence we provide a description of the circuits of the matroidbased only on the arc-
parameterized digraphDΛ. It turns out that oriented matroids arising asB(DΛ) are ori-
ented versions of a combination of a classicalcycle matroidand abicircular matroid. The
latter were introduced in the seventies [81, 101]. Active research in the field can be found
in [49, 50, 82]. We feel that oriented matroids of generalized network matrices are worth
further investigation.

In order to understand generalized flows, in the following lemmas we will determine
how flow is transformed when transported trough an arc-parameterized digraph. Let
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W = (a(0), . . . , a(k)) be a walk inD, i.e., W may repeat vertices and arcs. We abuse
notation and identifyW with its signed supportW−→, which is defined as the signed supportsigned support

of the signed characteristic vector ofW , i.e.,W−→ := −→χ (W )
−−−−→

. Even more, we writeWi and

Wa(i) for the same sign, namely the orientation of the arca(i) in W . Note that cycles and
bicycles can be regarded to be walks; these will turn out to bethe most interesting cases
in our context. A vectorf ⊆ Rm is an inner flow of W if f

−→
= ±W−→ andf satisfies theinner flow

generalized flow conservation law between consecutive arcsof W .

Lemma 2.4.12.LetW = (a(0), . . . , a(k)) be a walk inDΛ andf an inner flow ofW . Then

fa(k) = Kλ(W )−1fa(0)

where the ‘correction term’K is given byK = W0Wkλ
max(0,W0)
a(0) λ

min(0,Wk)
a(k) . In particular

the space of inner flows ofW is one-dimensional.

Proof. We proceed by induction onk. If k = 0, then

W0W0λ
max(0,W0)
a(0) λ

min(0,W0)
a(0) λ(W )−1fa(0)

= λW0

a(0)λ(W )−1fa(0)

= λW0

a(0)λ
−W0

a(0) fa(0)

= fa(0).

If k = 1, then our walk consisting of two arcs has a middle vertex, sayi. Sincef is an inner
flow ω(i, f) = 0. This can be rewritten asW0λ

−min(0,W0)
a(0) fa(0) = W1λ

max(0,W1)
a(1) fa(1). Now

we can transform

W0W1λ
max(0,W0)
a(0) λ

min(0,W1)
a(1) λ(W )−1fa(0)

= W0λ
max(0,W0)
a(0) λ−W0

a(0) fa(0)W1λ
min(0,W1)
a(1) λ−W1

a(1)

= W1λ
max(0,W1)
a(1) fa(1)W1λ

min(0,W1)
a(1) λ−W1

a(1)

= fa(1).

If k > 1, then we can look at two overlapping walksW ′ = (a(0), . . . , a(ℓ)) and
W ′′ = (a(ℓ), . . . , a(k)). Clearlyf restricted toW ′ andW ′′ respectively satisfies the pre-
conditions for the induction hypothesis. By applying the induction hypothesis toW ′′ and
W ′ we obtain

fa(k) = WℓWkλ
max(0,Wℓ)
a(ℓ) λ

min(0,Wk)
a(k) λ(W ′′)−1fa(ℓ) and

fa(ℓ) = W0Wℓλ
max(0,W0)
a(0)

λ
min(0,Wℓ)
a(ℓ)

λ(W ′)−1fa(ℓ).

Substitute the second formula into the first and observe thatWℓWℓ = 1, and that from the
product of four termsλa(ℓ) with different exponents the singleλ−Wℓ

a(ℓ) needed forλ(W )−1

remains. This proves the claimed formula forfa(k).
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Lemma 2.4.13.Let P = (a(0), . . . , a(k)) be a simple path fromv to v′ in DΛ. If f is an
inner flow ofP with f

−→
= P−→, thenω(v, f) < 0 andω(v′, f) > 0.

Proof. By definitionω(v, f) = −P0λ
max(0,P0)
a(0) fa(0). Sinceλa(0) > 0 andfa(0)

−−→
= P0 we

concludeω(v, f) < 0. For the second inequality we use Lemma 2.4.12:

ω(v′, f) = Pkλ
−min(0,Pk)
a(k) fa(k)

= Pkλ
−min(0,Pk)
a(k) P0Pkλ

max(0,P0)
a(0) λ

min(0,Pk)
a(k) λ(P )−1fa(0)

= P0λ
max(0,P0)
a(0) λ(P )−1fa(0).

Sinceλa(0), λ(P )−1 > 0 andfa(0)
−−→

= Pa(0)
−−→

= P0 we concludeω(v′, f) > 0.

Lemma 2.4.14.Let C = (a(0), . . . , a(k)) be a cycle inDΛ andf an inner flow ofC with
f
−→

= C−→. Then the excessω(v, f) at the initial vertexv satisfiesω(v, f)
−−−−→

= 1 − λ(C)
−−−−−−→

.

Proof. Reusing the computations from Lemma 2.4.12 we obtain

ω(v, f) = Ckλ
−min(0,Ck)
a(k) fa(k) − C0λ

max(0,C0)
a(0) fa(0)

= C0λ
max(0,C0)
a(0) λ(C)−1fa(0) − C0λ

max(0,C0)
a(0) fa(0)

= C0λ
max(0,C0)
a(0)

fa(0)(λ(C)−1 − 1).

Sinceλa(0) > 0 andfa(0)
−−→

= C0 we concludeω(v, f)
−−−−→

= λ(C)−1 − 1
−−−−−−−−→

. Finally observe that

λ(C)−1 − 1
−−−−−−−−→

= 1 − λ(C)
−−−−−−→

.

Theorem 2.4.15.Given a bicycle or breakeven cycleH of DΛ, the set of flowsf with
f
−→

= ±H−→ is a 1-dimensional subspace ofF(DΛ).

Proof. Given H ∈ B(DΛ) we want to characterize thosef ∈ F(DΛ) with f
−→

= ±H−→.

Lemma 2.4.12 implies that the dimension of the inner flows ofH is at most one. Hence, it
is enough to identify a single nontrivial flow onH.

If H = C ∈ B(DΛ) is a breakeven cycle, which traverses the arcs(a(0), . . . , a(k)) start-
ing and ending at vertexv, then by Lemma 2.4.14 we haveω(v, f)

−−−−→
= 1 − λ(C)

−−−−−−→
. SinceC

is breakevenλ(C) = 1, this implies generalized flow-conservation inv. Since by defini-
tion generalized flow-conservation holds for all other vertices we may conclude thatf is a
generalized flow, i.e., a nontrivial flow onH.

Let H ∈ B(DΛ) be a bicycle which traverses the arcs(a(0), . . . , a(k)) such that
C = (a(0), . . . , a(i)), P = (a(i + 1), . . . , a(j − 1)) andC ′ = (a(j), . . . , a(k)). Let v
andv′ be the initial vertices ofC andC ′, respectively.

Consider the case whereP is non-trivial. We constructf ∈ F(DΛ) with f
−→

= H−→. First

take any inner flowfC of C with fC
−→

= C−→. SinceC is gainy Lemma 2.4.14 implies a
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positive excess atv. Let fP be an inner flow ofP with fP
−→

= P−→. Lemma 2.4.13 ensures

ω(v, fP ) < 0. By scalingfP with a positive scalar we can achieveω(v, fC +fP ) = 0. From
Lemma 2.4.13 we know thatfC + fP has positive excess atv′. SinceC ′ is lossy any inner
flow fC′ of C ′ has negative excess atv′ (Lemma 2.4.14). Hence we can scalefC′ to achieve
ω(v′, fC′ + fP ) = 0. Together we have obtained a generalized flowf := fC + fP + fC′ ,
i.e., a nontrivial flow onH.

If P is empty, thenv andv′ coincide. As in the above construction we can scale flows on
C andC ′ such thatω(v, f) = 0 holds forf := fC + fC′ , i.e.,f is a generalized flow. IfC
andC ′ share an interval, then the sign vectors ofC andC ′ coincide on this interval. From
fC
−→

= C−→ andf ′
C−→

= C ′
−→ it follows that f

−→
= C ∪ C ′

−−−−→ = H−→. Hencef is a flow onH.

As a last lemma for the description of generalized cycles we need:

Lemma 2.4.16.A bicycle does not contain a breakeven cycle.

Proof. The cyclesC andC ′ of a bicycleH = C ∪ P ∪C ′ are not breakeven. IfH contains
an additional cyclẽC, then the support of̃C must equal the symmetric difference of supports
of C andC ′. Let x := λ(C\C ′), y := λ(C ∩ C ′), andz := λ(C ′\C), where orientations
are taken according toC andC ′, respectively. We havexy = λ(C) > 1 > λ(C ′) = zy.
Henceλ(C̃) = (zx−1)±1, butzx−1 = zy(xy)−1 < 1. That is,C̃ cannot be breakeven.

Theorem 2.4.17.For an arc-parameterized digraphDΛ the set of the supports of general-
ized cycles, i.e., of support-minimal flows, coincides withthe set of bicycles and breakeven
cycles. Stated more formally:C−→(DΛ) = B(DΛ).

Proof. By Theorem 2.4.15 everyH ∈ B(DΛ) admits a generalized flowf . To see support-
minimality of f , assume thatH ∈ B(DΛ) has a strict subsetS which is support-minimal
admitting a generalized flow. ClearlyS cannot have vertices of degree1 to admit a flow and
must be connected to be support-minimal. SinceS ⊂ H ∈ B(DΛ) this implies thatS is a
cycle. Lemma 2.4.14 ensures thatS must be a breakeven cycle. IfH was a breakeven cycle
itself, then it cannot strictly containS. Otherwise ifH = C ∪ P ∪ C ′ is a bicycle then by
Lemma 2.4.16 it contains no breakeven cycle.

For the converse consider anyS ∈ C−→(DΛ), i.e., the signed support of some flowf . We
claim thatS := f contains a breakeven cycle or a bicycle. If it contains a breakeven cycle,
then we are done. So we assume that it does not. Under this assumption it follows that there
are two cyclesC1, C2 in a connected component ofS. If C1 andC2 intersect in at most
one vertex, then, since reorientation corresponds to inverting the multiplier, we can choose
the orientations for these cycles such thatλ(C1) > 1 andλ(C2) < 1. If C1 ∩ C2 = ∅,
then letP be an oriented path fromC1 to C2. Now C1 ∪ P ∪ C2 is a bicycle contained in
S. The final case is thatC1 andC2 share several vertices. LetB be an interval ofC2 over
C1, i.e., a consecutive piece ofC2 that intersectsC1 in its two endpointsv andw only. The
union ofC1 andB is a theta-graph, i.e., it consists of three disjoint pathB1, B2, B3 joining
v andw, see Figure 2.8. Let the three paths be oriented as shown in the figure, i.e., not all
in the same direction, and letC = B1 ∪ B2 andC ′ = B2 ∪ B3. If C ∪ C ′ is not a bicycle,
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then the cycles are either both gainy or both lossy. Assume that they are both gainy, i.e.,
λ(C) > 1 andλ(C ′) > 1. Consider the cyclesE = B1 ∪ B−1

3 andE′ = B−1
1 ∪ B3, since

λ(E) = λ(B1)λ(B3)
−1 = λ(E′)−1 it follows that eitherE or E′ is a lossy cycle. The

orientation ofE is consistent withC and the orientation ofE′ is consistent withC ′. Hence
eitherC ∪E or C ′ ∪E′ is a bicycle contained inS. This contradicts the support-minimality
of f .

B1

v w
B2

B3

Figure 2.8: A theta graph and an orientation of the three paths.

We are now ready to obtain a characterization of generalizedtensions which clearly gen-
eralizes the one of tensions in Section 1.4. ForH ∈ B(DΛ) we definef(H) as the unique
f ∈ C(D) with f(H)

−−−→
= H−→ and‖f(H)‖ = 1. Let x ∈ Rm andH ∈ B(DΛ). Denote by

δ(H, x):= 〈x, f(H)〉 thebicircular balanceof x onH. bicircular balance

Theorem 2.4.18. Let DΛ be an arc-parameterized digraph andx, c ∈ Rm. Then
x ∈ T(DΛ)≤c if and only if

(1) xa ≤ ca for all a ∈ A. (capacity constraints)
(2) δ(H, x) = 0 for all H ∈ B(DΛ). (bicircular balance conditions)

The theorem helps to explain the namegeneralized tensions: usually a tension is a vector
x ∈ ZA such that for every cycleC its signed characteristic vectors is orthogonal tox, i.e.,
〈x,−→χ (C)〉 = 0. In our context the role of cycles is played by generalized cycles, i.e., by
generalized flowsf with f

−→
= H−→ for someH ∈ B(DΛ).

Remark 2.4.19. The appearance of Theorem 2.4.18 is based on the analysis of the set
B(DΛ). The combinatorial description ofB(DΛ) in terms of oriented matroids (see Re-
mark 2.4.11) is what sheds a particularly interesting lighton generalized tensions. While
we have already characterized and understood the circuits of our oriented matroids, finding
a combinatorial characterization of the signed supports ofsupport-minimal tensions corre-
sponds to a characterization of the cocircuits of the oriented matroid and enrich the theory.

We want to make the statement of the Theorem 2.4.18 more general and for aesthetical
reasons we want to make it resemble the first main theorem about ∆-tensions in Section 1.4
(Theorem 1.4.9). For the case of making the analogy more apparent we will use Theo-
rem 2.4.18 as a definition and the definition of generalized tensions as a theorem. So let
DΛ be an arc-parameterized digraph with upper and lower arc capacitiescu, cℓ ∈ Rm,
respectively, and a number∆H for eachH ∈ B(DΛ). A vector x ∈ Rm is called a
generalized∆-tensionif generalized

∆-tension
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(B1) cℓ(a) ≤ x(a) ≤ cu(a) for all a ∈ A. (capacity constraints)

(B2) δ(H, x) = ∆H for all H ∈ B(DΛ). (bicircular∆-balance conditions)

Denote byT∆(DΛ, c) the set of generalized∆-tensions ofDΛ, note the similarity to the def-
inition of ∆-tensions (Definition 1.4.1). Arguments as in Section 1.4 yield thatT∆(DΛ, c)

is just a translation in the arc-space of someT(D′
Λ′ , c′). Thus we obtain the real-valued

generalization of Theorem 2.4.9 as a corollary of Theorem 2.4.6.

Theorem 2.4.20.Let DΛ be an arc-parameterized digraph with capacitiesc ∈ Rm and
∆ ∈ RB(DΛ). The setT∆(DΛ, c) of generalized∆-tensions carries the structure of a dis-
tributive lattice and forms a polyhedron.

2.4.4 Planar Generalized Flow

As an application of the theory of generalized tensions in this subsection we prove a dis-
tributive lattice structure on certain classes of generalized flows of planar digraphs. This can
be understood as a generalization of the results in Subsection 1.4.3. Thedual digraphD∗ ofdual digraph

a crossing-free embedding of a2-connected planar digraphD in the sphere is an orientation
of the planar dualG∗ of the underlying graphG of D: Orient an edge{v, w} of G∗ from
v to w if it appears as a forward arc in the clockwise facial cycle ofD dual tow. Call an
arc-parameterized digraphDΛ breakevenif all its cycles are breakeven.breakeven

Theorem 2.4.21.LetDΛ be a planar breakeven digraph. There is an arc parameterization
Λ∗ of the dualD∗ of D such thatF(DΛ) ∼= T(D∗

Λ∗). More precisely, there is a vector
σ ∈ Rm with positive components such thatf is a generalized flow ofDΛ if and only if
x = S(σ)f is a generalized tension ofD∗

Λ∗ , whereS(σ) denotes the diagonal matrix with
entries fromσ.

Proof. Let C1, . . . , Cn∗ be the list of clockwise oriented facial cycles ofD. For eachCi

let fi be a generalized flow withfi
−→

= Ci−→
; sinceCi is breakeven such anfi exists by

Lemma 2.4.14. Collect the flowsfi as rows of a matrixM . Columns ofM correspond to
edges ofD and due to our selection of cycles each column contains exactly two non-zero
entries. The orientation of the facial cycles and the sign condition implies that each column
has a positive and a negative entry. For the column of arca let µa > 0 andνa < 0 be the
positive and negative entry. Defineσa := µ−1

a > 0 and note that scaling the column ofa
with σa yields entries1 and−λ∗a = νaµ

−1
a < 0 in this column. Therefore,NΛ∗ := MS(σ)

is a generalized network matrix. The construction implies that the underlying digraph of
NΛ∗ is just the dualD∗ of D.

Let f ∈ F(DΛ) be a flow. Thenf can be expressed as linear combination of generalized
cycles. SinceDΛ is breakeven we know that the support of every generalized cycle is a
simple cycle. The facial cycles generate the cycle space ofD. Moreover, ifC is a simple
cycle andfC is a flow withfC

−→
= C−→, thenfC can be expressed as a linear combination of
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the flowsfi, i = 1, . . . , n∗. This implies that the rows ofM are spanning forF(DΛ), i.e.,
for everyf there is aq ∈ Rn∗

such thatf = MT q. In other wordsF(DΛ) = MT Rn∗

.

A vectorx is a tension forNΛ∗ if and only if x is in the row space ofNΛ∗ , i.e., there is a
potentialp ∈ Rn∗

with x = NT
Λ∗p. In other words

T(D∗
Λ∗) = NT

Λ∗Rn∗

= (MS(σ))T Rn∗

= S(σ)MT Rn∗

= S(σ)F(DΛ).

Corollary 2.4.22. Let DΛ be a planar breakeven digraph andc ∈ Rm. The setF(DΛ)≤c

carries the structure of a distributive lattice.

Proof. The matrixS(σ) is an isomorphism betweenF(DΛ) andT(D∗
Λ∗). Sinceσ is positive

we obtainF(DΛ)≤c = S(σ)T(D∗
Λ∗ ,≤ S(σ)c. Theorem 2.4.20 implies a distributive lattice

structure onT(D∗
Λ∗)≤S(σ)c which can be pushed toF(DΛ)≤c.

In fact Theorem 2.4.20 even allows us to obtain a distributive lattice structure for planar
generalized flows of breakeven digraphs with an arbitrarilyprescribed excess at every vertex.

The reader may worry about the existence of non-trivial arc-parameterizationsΛ
of a digraph D such thatDΛ is breakeven. Here is a nice construction for such
parameterizations. LetD be arbitrary andx ∈ Rm be a 0-tension of D, i.e.,
δ(C, x) :=

∑
a∈C+ xa −

∑
a∈C− xa = 0 for all oriented cyclesC. Considerλ = exp(x)

and note thatλa ≥ 0 for all arcsa and thatλ(C) =
(∏

a∈C+ λa

)(∏
a∈C− λa

)−1
=

exp(δ(C, x)) = 1 for all oriented cyclesC. Hence weighting the arcs ofD with λ yields a
breakeven arc-parameterization ofD. This construction is universal in the sense that appli-
cation of the logarithm to a breakeven parameterization yields a0-tension.
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2.5 Conclusions

Old and New

In the present chapter we have obtained a distributive lattice representation for the set of
real-valued generalized∆-tensions of an arc-parameterized digraph. The proof is based on
the bijection between generalized tensions and vertex-potentials. This way the tensions in-
herit the lattice structure based on componentwisemax andmin from the vertex-potentials.
Consequently we obtain a distributive lattice on the generalized tensions.

In Section 1.4 of the previous chapter we obtained the distributive lattice structure on
integral∆-tensions, by showing that we can build the cover-graph of a distributive lattice by
local vertex-push-operations and reach every∆-tension this way. This qualitatively different
distributive lattice representation was possible becausewe could assume the digraph to be
reducedin a certain way.

Question 2.5.1.Is there a way to reduce an arc-parameterized digraph such that the distribu-
tive lattice on its generalized tensions can be constructedlocally by pushingvertices?

A reduction toDΛ such thatP(DΛ, c) is full-dimensional, seem to be sufficient,
when we ask for pure push-connectivity of the space of generalized tensions. If
we additionally require that every pair of generalized tensions is connected via
a finite sequence of vertex-pushes, we will have to seriously restrict the set of
arc-parameterized digraphs. See the figure for a bad example. An interesting
class of D-polyhedra which if push-connected is also finitely push-connected
are D-polyhedra coming from breakeven arc-parameterized digraphs.

Order Theory

There is a naturalfinite (upper locally) distributive lattice associated to a (upper locally)
distributive polytopeP. Start from the vertices ofP and consider the closure of this set
under join and in the distributive case also meet. LetL(P) be the resulting (upper locally)
distributivevertex latticeof P. It would be interesting to know what information regarding
P is already contained inL(P).

Question 2.5.2.What do the generalized tensions associated to the elementsof L(P) look
like for a distributiveP? In particular some special generalized tensions ofL(P) including
join-irreducible, minimal and maximal elements are of interest.

Another question arises, when viewing the results of this section as generalizations of
results related to the order polytope. Feasible polytopes of antimatroids may be seen as order
polytopes of antichain-partitioned posets. In [102] Stanley describes thechain-polytopeas a
polytope closely related to the order polytope.
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Figure 2.9: The vertex lattice of a distributive polytope.

Question 2.5.3. Is there a generalization of the chain-polytope to antichain-partitioned
posets?

An answer to this question may contribute new insights to thestudy of feasible polytopes
of antimatroids. Similarly, the integer points of alcoved polytopes form a distributive lat-
tice as shown in Section 2.4.2. By Dilworth’s Embedding Theorem for Distributive Lattices
such embedded lattices correspond to chain-partitions of posets. In the case of alcoved poly-
topes the corresponding chain-partitons may actually be characterized as so-calledplisśee
partitions.

Question 2.5.4.Is there a generalization of the chain-polytope to chain-partitioned posets?

An affirmative result into this direction would enrich the theory of alcoved polytopes.

Geometry

We have derived anH-description of D-polyhedra and ULD-polyhedra. The fact that the
set of vertices is closed undermin andmax does not imply that the polytope is distributive.
The vertices of acyclic polytopeform a chain in the dominance order. It can be checked that
already the3-dimensional cyclic polytope on4 verticesC3(4) ⊆ R3 is no D-polytope. More
explicitely, aH-description ofC4(8) violating Theorem 2.4.2 may be found in [110].

Question 2.5.5.What does aV-description of (upper locally) distributive polytopes look
like? (This again asks for a special set of elements of the vertex latticeL(P).)

On the other hand if a full-dimensional0/1-polytopehasmin- andmax-closed vertex-set,
then it is anorder-polytopeand consequently distributive. If a full-dimensional0/1-polytope
has onlymax-closed vertex-set, then it is the feasible polytope of an antimatroid.

Question 2.5.6.Are feasible polytopes of an antimatroids ULD-polytopes?
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We have been working with sublattices of the dominance orderon Rd. More generally
one could look at aRiesz space, lattice-ordered vector spaceor vector latticeon Rd. A
Riesz space is always a distributive lattice and (in the finite dimensional case) it may be
characterized by the full-dimensional cone↑x of any element of the space [107], see Obser-
vation 2.1.3.

Question 2.5.7.What generalizations of ULD- and D-polytopes can be obtained, when
looking at general Riesz spaces instead of the dominance order?

Matroid Theory

In Section 2.4.3 we have related arc-parameterized digraphs to bicircular oriented ma-
troids, see Remark 2.4.11 and Remark 2.4.19. We have characterizedthe circuits of the
mixed bicircular oriented matroids, we are dealing with. Still we miss a combinatorial de-
scription of the signed supports of minimal generalized tensions.

Question 2.5.8.What does the cocircuit of the mixed bicircular oriented matroids related to
generalized tensions look like?

Apart from these bicircular oriented matroids the face lattice of a D-polyhedron is a geo-
metric lattice, hence it encodes a simple matroid, see [89].Moreover faces of D-polyhedra
are D-polyhedra (Lemma 2.4.1). In the spirit of [109] it would be interesting to determine
the subgraphs ofDΛ, which correspond to faces ofP(DΛ, c).

Question 2.5.9.What is the relation between these two matroids? What do facelattices of
D-polyhedra look like?

Optimization

There has been a considerable amount of research concerned with algorithms for gener-
alized flows, see [3] for references. As far as we know it has never been taken into account
that the LP-dual problem of a min-cost generalized flow is an optimization problem on a
D-polyhedron. We feel that it might be fruitful to look at this connection. A special case
is given by generalized flows of planar breakeven digraphs, where the flow-polyhedron is
affinely isomorphic to a distributive polyhedron (Corollary 2.4.22).

In particular, it would be interesting to understand the integral points of a D-polyhedron,
which by Observation 2.4.8 form a distributive lattice. Related to this and to [42] is the
following:

Question 2.5.10.Find conditions onΛ andc such that the set of integral generalized tensions
for these parameters forms a distributive lattice.
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Another question related to optimization issues, is the membership-problem discussed in
Subsection 2.3.1.

Question 2.5.11.Our methods enriched the set of inequalities known of theH-description
of the feasible polytope of an antimatroid. Does this help tofind more antimatroids for which
the membership-problem may be efficiently solved?
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Chapter 3

Cocircuit Graphs of Uniform
Oriented Matroids

The notion of oriented matroids (OMs) is a combinatorial abstraction of linear subspaces of
the Euclidean spaceRd. The theory of OMs has applications and connections to many areas,
including combinatorics, discrete and computational geometry, optimization, and graph the-
ory; see e.g. Bj̈orner et al. [19]. OMs have several different representations. The translation
from one into another representation are of practical interest; the present chapter discusses
graph representations of OMs, focussing on algorithms and their complexity, and extends the
work of Cordovil, Fukuda, and Guedes de Oliveira [28], Babson, Finschi, and Fukuda [7],
and Montellano-Ballesteros and Strausz [85].

X1

X1

X2

X2

X3

X3

X4

X4

X5

X5

X6

X6

Figure 3.1: A simple spherical pseudoline-arrangement andits cocircuit graph.

OMs may be represented by systems of signed sets (see Definition 3.1.1 for the uniform
case). The Topological Representation Theorem of Folkman and Lawrence [45] says that
every oriented matroid can be represented as a finitearrangement of pseudospheresin Rd.
The signed set representation then is derived from the cellsof the resulting cell complex.
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The cocircuit graph is the1-skeleton of such an arrangement of pseudospheres. In the case
of spherical pseudoline-arrangements inR3, i.e., rank3 oriented matroids, its vertices are
the intersection points of the lines and two points share an edge if they are adjacent on a line.
See Figure 3.1 for an example.

Compared to the set of signed sets of a cell complex, the cocircuit graph is a compact and
simple structure. It is a natural question, whether the cocircuit graph of an OM determines
the cell complex.

Cordovil, Fukuda and Guedes de Oliveira [28] show that this is not true for general OMs.
Nevertheless they show that auniformoriented matroid is determined by its cocircuit graph
together with anantipodal labeling. Babson, Finschi and Fukuda [7] provide a polynomial
time recognition algorithm for cocircuit graphs of uniformoriented matroids, which recon-
structs a uniform oriented matroid from its cocircuit graphup to isomorphism.

In [85], Montellano-Ballesteros and Strausz provide a characterization of cocircuit graphs
of uniform oriented matroids in terms of a certain connectivity of sign-labeled graphs by
signed paths.

After introducing basic notions of oriented matroids, we prove a stronger version of the
characterization of [85], i.e., a new characterization of cocircuit graphs of uniform oriented
matroids (Theorem 3.1.4). Afterwards, we describe an algorithm which, given a graphG,
decides in cubic time ifG is the cocircuit We obtain an essentially better runtime than Bab-
son, Finschi and Fukuda [7]. This in particular answers a question of Babson et al. However,
some parts of our algorithm are identical to parts of the one in [7].

At the end we will look at another question posed in [7] concerning antipodality in co-
circuit graphs, which is essential for reducing the runtimeof the algorithm furthermore. We
support the feeling that the antipodality problem is deep and hard by showing that a quite
natural-seeming assumption about cocircuit graphs of uniform oriented matroids implies the
Hirsch conjecture. Since the latter was recently disprovedby Santos [98] the assumption
is false and without it it is not clear how to progress on some of the problems related to
antipodality.

The present work is also related toPerles’s conjecturewhich says that the 1-skeleton of
a simpled-dimensional polytope determines its face lattice; this conjecture was first proved
by Blind and Mani-Levitska [23] and then constructively by Kalai [64]. The present work
extends the discussion of Perles’s conjecture to a class of non-simple polytopes. Joswig [62]
conjectured that every cubical polytope can be reconstructed from its dual graph; our result
proves this conjecture for the special case of cubical zonotopes up to graph isomorphism.
In other words, the face lattice of every cubical zonotope isuniquely determined by its dual
graph up to isomorphism.
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3.1 Properties of Cocircuit Graphs

In this section we will define the basic concepts needed for the discussion of uniform oriented
matroids. The notions introduced here are specialized to uniform oriented matroids, for a
more general introduction see [19]. After proving some basic lemmas we will reprove and
generalize a characterization of cocircuit graphs of uniform oriented matroids due to [85].

We recall the definition of signed set from the last chapter. Asigned setX = (X+, X−) signed set

is a pair of disjoint subsetsX+, X− ⊆ E of a ground setE. The support ofX support

is X := X+ ∪ X−. For e ∈ X we write Xe = ±1 if e ∈ X±, respectively. If
e /∈ X, then we writeXe = 0. By X0 we denote thezero-support E\X. The zero-support

separator of two signed setsX, Y is defined asS(X, Y ):= {e ∈ E | {Xe, Ye} = {+,−}}. separator

For a signed setX the signed set−X is the one where all signs are reversed, i.e.,
−X = (X+, X−).

Definition 3.1.1. We define auniform oriented matroidof rank r as a pairM = (E, C∗) uniform oriented
matroid (UOM)
rankwhereC∗ is a system of signed sets with ground setE. The elements ofC∗ are thecocircuits
cocircuitof M. Denote byn the size ofE. ThenC∗ must satisfy the following axioms:

(C1) EveryX ∈ C∗ has support of sizen − r + 1.
(C2) For everyI ⊆ E of sizen − r + 1 there are exactly two cocircuitsX, Y with support

I. Moreover−X = Y .
(C3) For everyX, Y ∈ C∗ and e ∈ S(X, Y ) there is aZ ∈ C∗ with Ze = 0 and

Zf ∈ {Xf , Yf , 0}, for everyf ∈ E\{e}.

In the rest of this chapter we will abbreviate a uniform oriented matroid by UOM. On the
setC∗ of cocircuits of a UOMM one defines thecocircuit graphGM by makingX andY cocircuit graph

adjacent if they differ only a “little bit”, i.e.,|X0∆Y 0| = 2 andS(X, Y ) = ∅.

A more general notion is the following. Given a graphG = (V, E) with verticesV and
edgesE let ℓ : V → S be a bijection to a set of signed setsS on a ground setE, which
satisfies axioms (C1) and (C2). We callℓ a sign labelingof G if we have{v, w} ∈ E if and sign labeling

only if |ℓ(v)0∆ℓ(w)0| = 2 andS(ℓ(v), ℓ(w)) = ∅. Every sign labelingℓ of G comes with
the two parametersr andn.

If G has a sign labeling withS satisfying also axiom (C3), i.e.,C∗ := S is the set of
cocircuits of a UOMM, thenG is a cocircuit graphGM. We then callℓ a UOM-labeling. UOM-labeling

In [7] it is shown thatGM
∼= GM′ if and only ifM ∼= M′.

By (C1) and (C2)GM clearly has exactly2
(

n
n−r+1

)
vertices. In this section, such as the

following, all the lemmas are well-known.

Lemma 3.1.2. Let GM = (V, E) be a cocircuit graph with UOM-labelingℓ and v ∈ V .
Then for everyf ∈ ℓ(v)0 there are exactly two neighborsu, w of v with ℓ(u)f = − and
ℓ(w)f = +. In particularGM is 2(r − 1)-regular.
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Proof. Let ℓ be a UOM-labelingv a vertex andf ∈ ℓ(v)0. Let w be a vertex with
ℓ(w)f = + and ℓ(w)\{f} ⊆ ℓ(v), such thatS(ℓ(v), ℓ(w)) is minimal. If there is an
e ∈ S(ℓ(v), ℓ(w)) then we apply (C3) toℓ(v), ℓ(w) with respect toe. We obtainℓ(u) with
ℓ(u)\{f} ⊆ ℓ(v)\{e} andℓ(u)f = +. Sinceℓ(u)e = 0 andℓ(u)g ∈ {ℓ(v)g, ℓ(w)g, 0}
for g 6= e we haveS(ℓ(v), ℓ(u)) ⊂ S(ℓ(v), ℓ(w)), a contradiction. Thus,w is adjacent to
v. If there was another neighborw′ of v with ℓ(w′)f = + then (C3) applied toℓ(w′) and
−ℓ(w) with respect tof would yield a cocircuitℓ(u) with ℓ(u) = ℓ(v). It is easy to see that
ℓ(u) 6= ±ℓ(v), a contradiction to (C2).

A contraction minor of a UOM M = (E, C∗) is a UOM of the formcontraction minor

M/E′ = (E\E′, C∗/E′) whereE′ ⊆ E andC∗/E′ := {XE\E′ | X ∈ C∗, E′ ⊆ X0}.
HereXE\E′ denotes the restriction ofX to the ground setE\E′. GenerallyGM/E′ is an
induced subgraph ofGM. The rank ofM/E′ is r − |E′|. If M/E′ has rank2 we call it a
colineof M.coline

Lemma 3.1.3. Let GM be a cocircuit graph with UOM-labeling ℓ and
v, w ∈ V with ℓ(v) 6= −ℓ(w). If ℓ(v) and ℓ(w) lie in a coline M′ then
d(v, w) = |S(ℓ(v), ℓ(w))| + 1

2 |ℓ(v)0∆ℓ(w)0| and the unique(v, w)-path of this length lies
in GM′ .

Proof. First note that|S(ℓ(v), ℓ(w))| + 1
2 |ℓ(v)0∆ℓ(w)0| is a lower bound for the distance

in any sign labeled graph. These are just the necessary changes to transform one signed set
into the other. To see that in a coline there exists a path of this length we use induction on
|S(ℓ(v), ℓ(w))|+ 1

2 |ℓ(v)0∆ℓ(w)0|. The induction base is clear per definition of sign labeling.
So we proceed with the induction step.

Sincev, w lie in a coline we haveℓ(v)0\ℓ(w)0 = {e} for somee ∈ E. By Lemma 3.1.2
vertex v has a unique neighboru with ℓ(u)e = ℓ(w)e. If S(ℓ(u), ℓ(w)) = ∅ we have
u = w, because otherwisev would have two neighbors withℓ(u)e = ℓ(w)e, a contradiction
to Lemma 3.1.2. Ifℓ(u)f = 0 but ℓ(v)f = ℓ(w)f 6= 0 for somef ∈ E then we can apply
(C3) toℓ(w) and−ℓ(u) with respect toe. Any resulting signed set has supportℓ(v). Since
S(ℓ(u), ℓ(w)) 6= ∅ it cannot have sign labeling−ℓ(v). On the other hand itsf -entry equals
−ℓ(v)f , i.e., it cannot have sign labelingℓ(v) either, a contradiction to (C2). This yields
|S(ℓ(u), ℓ(w))| = |S(ℓ(v), ℓ(w))| − 1. Moreover|ℓ(v)0∆ℓ(w)0| is not decreased, since
v, w are not adjacent. Applying the induction hypothesis gives the result.

For a neighboru′ of v not in a coline with v, w it is easy to check that
|S(ℓ(u′), ℓ(w))| + 1

2 |ℓ(u
′)0∆ℓ(w)0| ≥ |S(ℓ(v), ℓ(w))| + 1

2 |ℓ(v)0∆ℓ(w)0|. Henceu′ cannot
lie on a shortest(v, w)-path.

Let G be a graph with sign labelingℓ : V → S. Let X, Y ∈ S. We say that a path
P in G is (X, Y )-crabbedif for every vertexw ∈ P we haveℓ(w)+ ⊆ X+ ∪ Y + and
ℓ(w)− ⊆ X− ∪ Y −. We call a(u, v)-path justcrabbedif it is (ℓ(u), ℓ(v))-crabbed. Thecrabbed path

following theorem is a strengthening of the main result of [85] :

Theorem 3.1.4.Let ℓ be a sign labeling ofG. Then the following are equivalent:
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(i) ℓ is a UOM-labeling.
(ii) For all v, w ∈ V there are exactly|ℓ(v)0\ℓ(w)0| vertex-disjoint crabbedv, w-paths.

(iii) For all v, w ∈ V with ℓ(v)0 6= ℓ(w)0 there exists a crabbedv, w-path.

Proof. (i)⇒(ii): Let G = GM a cocircuit graph. First by Lemma 3.1.2 it is clear that
between any two verticesv, w there can be at most|ℓ(v)0\ℓ(w)0| vertex-disjoint crabbed
v, w-paths. For the other inequality we proceed by induction on the size of the ground set
E of M. The induction base is skipped. For the inductive step we have to distinguish three
cases.

If there is somee ∈ ℓ(v)0 ∩ ℓ(w)0 then consider the contraction minorM/{e}. By
induction hypothesis there are at least|(ℓ(v)0\{e})\(ℓ(w)0\{e})| = |ℓ(v)0\ℓ(w)0| vertex-
disjoint crabbedv, w-paths inGM/{e}. Since the latter is an induced subgraph ofGM we
are done.

Otherwise, ifS(ℓ(v), ℓ(w)) = ∅ thenℓ(v), ℓ(w) lie in a tope of M. This is the set of tope

signed setsX with X+ ⊆ ℓ(v)+ ∪ ℓ(w)+ andX− ⊆ ℓ(v)− ∪ ℓ(w)−. Topes of a rankr
UOM are(r − 1)-dimensional PL-spheres and hence their graph is(r − 1)-connected [19].
A less topological argument for the same fact can be found in [27].

Otherwise, if there is somee ∈ S(ℓ(v), ℓ(w)) we consider thedeletion minor deletion minor

M\{e}. It is the oriented matroid on the ground setE\{e} with cocircuit set
C∗\{e} := {XE\{e} | X ∈ C∗, Xe 6= 0}. By induction hypothesis there are|ℓ(v)0\ℓ(w)0|
vertex-disjoint crabbedv, w-paths inGM\{e}. If on such a pathP in GM\{e} two consecu-
tive verticesx, y havee = S(ℓ(x), ℓ(y)) then we apply (C3) with respect toe. We obtain a
unique vertexz with ℓ(z)e = 0 andℓ(z)f = ℓ(x)f if ℓ(x)f 6= 0 andℓ(z)f = ℓ(y)f other-
wise. The new vertexz is adjacent tox, y in GM. In this way we can extendP to a crabbed
(v, w)-pathP ′ in GM.

Now suppose two different extended pathsP ′
1 and P ′

2 share a vertexz. Thus
there are mutually differentx1, y1, x2, y2 yielding z. This implies that their labels
ℓ(x1)E\{e}, ℓ(y1)E\{e}, ℓ(x2)E\{e}, ℓ(y2)E\{e} in M\{e} have mutually empty separa-
tor. Moreover the zero-supports of these labels have mutually symmetrical difference
two. Hence inGM\{e} the verticesx1, y1, x2, y2 induce aK4. On the other hand
ℓ(x1)E\{e}, ℓ(y1)E\{e}, ℓ(x2)E\{e}, ℓ(y2)E\{e} in M\{e} lie together in a rank2 contrac-
tion minor ofM\{e}. Thus by Lemma 3.1.3, the verticesx1, y1, x2, y2 should induce a
subgraph of a cycle, a contradiction.
(ii)⇒(ii): Obvious.
(iii)⇒(i): We only have to check (C3). So letℓ(v) 6= ±ℓ(w) be two labels and
e ∈ S(ℓ(v), ℓ(w)). On any(v, w)-pathP there must be a vertexu with ℓ(u)e = 0. If P
is crabbedℓ(u) satisfies (C3) forℓ(v), ℓ(w) with respect toe.

Cocircuit graphs of general oriented matroids are2(r − 1)-connected [27]. Here we have
shown a crabbed analogue for uniform oriented matroids.

Question 3.1.5.An interesting question would be if there is a result similarto Theorem 3.1.4
for non-uniform oriented matroids.
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Let us now turn to another basic concept for the recognition of cocircuit graphs. A sign la-
belingℓ of GM induces the mapAℓ which takesv to the unique vertexw with ℓ(w) = −ℓ(v).
We callAℓ theAP-labelinginduced byℓ.AP-labeling

Lemma 3.1.6. If ℓ is a UOM-labeling thenAℓ is an involution inAut(GM) which satisfies
d(v, Aℓ(v)) = n − r + 2 for everyv ∈ V .

Proof. Let ℓ be the UOM-labeling inducing the AP-labelingAℓ. By the definition of sign
labeling it is clear thatAℓ is an automorphism of order2. Since any neighboru of v lies in
a coline withAℓ(v) and|S(ℓ(u),−ℓ(v))| + 1

2 |ℓ(u)0∆ℓ(v)0| = n − r + 1, by Lemma 3.1.3
we haved(v, Aℓ(v)) = n − r + 2.

More generally, in a context where the parametersr, n are given anantipodal labelingantipodal labeling

of a graphG is an involution A ∈ Aut(G) such that the graph distance satisfies
d(v, A(v)) = n − r + 2 for everyv ∈ V .

3.2 The Algorithm

The input is an undirected simple connected graphG = (V, E). The algorithm decides if
G = GM for some UOMM = (E, C∗). In the affirmative case it returnsM. Otherwise
one of the steps of the algorithm fails.

1. Check ifG is 2(r − 1)-regular for somer.

2. Check if|V | = 2
(

n
n−r+1

)
for somen.

3. Calculate theV × V distance matrix ofG.

4. Fix v ∈ V and defineD(v) := {w ∈ V | d(v, w) = n − r + 2}.

5. For allw ∈ D(v) do

A. Construct an antipodal labelingA with A(v) = w.

B. Construct a sign labelingℓ of G with A = Aℓ.

C. Check ifℓ is a UOM-labeling. If so, defineC∗ := ℓ(V ), return(E, C∗) and stop.

6. Return thatG is no cocircuit graph.

Parts 1 and 2 run in time|E| = (r−1)|V | and are necessary to determine the parametersr

andn of M. The distance matrix is computed to avoid repeated application of shortest path
algorithms during the main part of the algorithm. SinceG is unweighted and undirected we
can obtain its distance matrix inO(|V ||E|), see for instance Chapter 6.2 of [100]. Hence we
can do the first three parts inO(r|V |2).

For the rest of the algorithm we have to execute steps A to C at most|D(v)| times. These
will be explained in the following.
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A. Construct an antipodal labeling.

Lemma 3.2.1. Let GM be a cocircuit graph with AP-labelingAℓ. If A(v) = w andu is a
neighbor ofv thenA(u) is the unique neighboru′ of w with d(u, u′) = n − r + 2.

Proof. Suppose that, besidesu′ = A(u), there is another neighboru′′ of w with
d(u, u′′) = n − r + 2. Sinced(u′, u′′) ≤ 2, we have|ℓ(u′)0∆ℓ(u′′)0| ≤ 4. Sinceℓ is a
UOM-labeling,ℓ(u), ℓ(u′), ℓ(u′′) lie in a rankr′ = 3 contraction minor onn′ elements.
Contraction inM just means deletion of vertices inGM. This implies that we haved ≤ d′

for the distance functions of the cocircuit graphs ofM and the contraction minorM′, re-
spectively. On the other handn′ − r′ + 2 = n − (r − 3) − 3 + 2 = n − r + 2. This yields
d′(u, u′) = d′(u, u′′) = n− r +2 in a UOM of rank3, which contradicts Lemma 3.3.1.

We obtain a simple breadth-first search algorithm that givenA(v) = w determinesA in
time O(r2|V |). Just walk from the rootv through a breadth-first search tree. For vertex
u with fatherf(u) the vertexA(f(u)) is known. Look through the2(r − 1) neighbors of
A(f(u)). For the unique neighboru′ havingd(u, u′) = n− r +2 setA(u) = u′. If u′ is not
unique or does not exist, then no AP-labelingA of G with A(v) = w exists.

B. Construct a sign labeling ofG.

We use the algorithm presented in [7], which given an antipodal labelingA tries to construct
a sign labelingℓ such thatA = Aℓ. We will not go into detail here. Just to have a vague
idea how to do this: Based on Lemma 3.1.3 and Lemma 3.1.6 the algorithm constructs an
edge-partition ofG into the subgraphs induced by the colines. Every coline may be defined
by anr-set as the set of vertices with zero-support contained in that set. Using this and two
intersection-lemmas for colines one assigns zero-supports to the vertices ofG. This is done
in a way unique up to isomorphism. In a last step one assigns signed-sets to the vertices,
which then is unique up to isomorphism again. The algorithm either encounters a problem,
i.e., a contradiction to some of the properties of cocircuitgraphs, and returns thatG is not
a cocircuit graph or it returns a sign labelingℓ with A = Aℓ. If A is an AP-labeling for
some UOM-labelingℓ, then the algorithm finds such anℓ. If A is not the AP-labeling for a
UOM-labeling the algorithm might return a non UOM-labelingwith A = Aℓ. The algorithm
runs in timeO(rn|V |).

C. Check if a sign labeling is a UOM-labeling.

We check for everyu ∈ V (G) if there is a crabbed path to every vertexw ∈ V (G)\{Aℓ(u)}.
By Theorem 3.1.4 this is equivalent toℓ being a UOM-labeling. To improve running time
we need the following simple lemma.
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Lemma 3.2.2. If a (u, v)-path P and a (v, w)-path P ′ are (ℓ(u), Y )-crabbed and
(ℓ(v), Y )-crabbed, respectively, then their concatenation(P, P ′) is (ℓ(u), Y )-crabbed.

Proof. The vertices in P – in particular v – satisfy the conditions for being
(ℓ(u), Y )-crabbed. Hence for everyw ∈ P ′ we haveℓ(w)+ ⊆ ℓ(v)+ ∪ Y + ⊆ ℓ(u)+ ∪ Y +.
The analogue statement holds forℓ(w)+.

We are ready to describe the algorithm:

• For everyu ∈ V (G) do

1. For every edge{v, w} do

– Delete the undirected edge{v, w}.

– If (v, w) is (ℓ(v), ℓ(u))-crabbed insert that directed edge.

– If (w, v) is (ℓ(w), ℓ(u))-crabbed insert that directed edge.

2. Start a breadth-first search on the resulting directed graphG′ atu such that only
backward arcs are traversed.

3. If not every vertex is reached by the search, return thatℓ is no UOM-labeling
and stop.

• Return thatℓ is a UOM-labeling ofG

Lemma 3.2.2 tells us that for checking if there is a crabbed(u, v)-path for everyv ∈ V (G)

it is enough to check that if the directed graphG′ has a directed path from every vertex to
u. Step 2 does exactly this. Loop 1 will be executed(r − 1)|V | times and each round costs
O(n−r) many comparisons. Step 2 runs in time linear in the edges. Since the whole process
has to be repeated|V | times, we needO(r(n − r)|V |2) many operations.

Overall Runtime

We add the runtimes of the single parts of the algorithm. We see that part C dominates all
other parts of the algorithm, thus we obtain an overall runtime ofO(|D(v)|r(n − r)|V |2).
So far the best known upper bounds for the size ofD(v) are inO(|V |), hence our runtime is
O(r(n − r)|V |3). For comparison, the runtime of the algorithm in [7] isO(rn2|V |4). The
improvement of runtime comes from approaching step C in a newway. Already in [7] it was
asked if in that part some better algorithm was possible.

3.3 Antipodality

The problem of bounding the size ofD(v) is hard. In the present section we will point out
some open problems concerning this value. The following lemma is well-known.
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Lemma 3.3.1. If the rank of M is at most 3 then for v, w ∈ V (GM) we have
d(v, w) = n − r + 2 if and only if−ℓ(v) = ℓ(w). Moreovern − r + 2 is the diameter
of GM.

Proof. Let ℓ be a UOM-labeling ofGM with induced AP-labelingAℓ. Let v, w be vertices
with Aℓ(v) 6= w. We observe the following:

For any shortest(v, w)-pathP in GM we haveP ∩ Aℓ(P ) = ∅. On a shortest path there
cannot occur anything like(u′, u, . . . , Aℓ(u)), because by Lemma 3.1.3, for every neighbor
u′ of u, we haved(u′, Aℓ(u)) = n − r + 1 sinceu′ andAℓ(u) lie in a coline. Hence,u′ lies
on a shortest(u, Aℓ(u))-path.

Every shortest pathP = (v = v0, . . . , vk = w) satisfiesℓ(vi)e = 0 andℓ(vi+1)e 6= 0,
implying ℓ(w)e = ℓ(vi+1)e. Otherwise there would bevi, vj in P lying in a colineM/e,
but the part ofP connectingvi, vj would leaveM/e. Sinceℓ(vi) 6= −ℓ(vj), this contradicts
Lemma 3.1.3.

This yields that, on a shortest(v, w)-path, we will haveℓ(vi)e = 0 andℓ(vi+1)e 6= 0
at most once pere /∈ ℓ(v)0 ∩ ℓ(w)0 and never ife ∈ ℓ(v)0 ∩ ℓ(w)0. This yields
d(v, w) ≤ |ℓ(v)| = n − r + 1.

The proof actually shows that in a UOM of rank3 every shortest path is crabbed. In [7] it
was asked if the statement of Lemma 3.3.1 holds for every rank:

Question 3.3.2.Given a UOM of rankr on n elements, doesd(X, Y ) = n − r + 2 imply
−X = Y ? Isn − r + 2 the diameter ofGM?

One could hope that the signed sets of two verticesu, v give some crucial information
about how to connect them by a path. As in the case of rank3 matroids one would like to
use crabbed paths to prove something about the distance function of GM. More precisely,
a tope in M is a maximal setT ⊆ C∗ such thatS(X, Y ) = ∅ for everyX, Y ∈ T . In tope

particular cocircuitsX, Y with −X = Y are not contained in a common tope. So if the
answers to the questions posed in Question 3.3.2 are both “yes”, then cocircuitsX, Y being
contained in a common topeT must have distance less or equal ton − r + 1. In order to
prove such thing one might hope, that even stronger there exists a crabbed(X, Y )-path of
length at mostn − r + 1 for all X, Y ∈ T . But unfortunately this is not generally true:

Proposition 3.3.3. The assumption that for a fixed topeT of M everyX, Y ∈ T are con-
nected by a crabbed path of lengthn − r + 1 implies the Hirsch conjecture. Hence the
assumption is false [98].

Proof. The Hirsch conjecture says that the graph of ad-dimensional simple polytope with
f facets has diameter at mostf − d. Take ad-dimensional simple polytopeP with f facets
in Rd. Thef facet-defining hyperplanes ofP form an affine hyperplane arrangementH in
Rd. PutH into the(xd+1 = 1)-hyperplane ofRd+1 and extendH to a central hyperplane
arrangementH′ in Rd+1. The arrangementH′ encodes a rankd+1 uniform oriented matroid
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M onf elements. We obtain cone(P) as a maximal cell ofH′. This means that the vertices
of P correspond to the cocircuits of a topeTP. The graph ofP is the subgraph ofGM

induced byTP. Now for two cocircuits inTP a path connecting them is crabbed if and only
if it is contained inTP. The parameters ofM are just so that the existence of a crabbed path
of the desired length inTP is equivalent to the existence of a path of lengthf − d in the
graph ofP.

The Hirsch conjecture is true in dimension3 and topes of UOMs of rank4 are combi-
natorially equivalent to simple polytopes of dimension3. Thus, for UOMs of rank4 the
assumption of the above proposition is true for every tope. Still this does not immediately
yield a positive answer to Question 3.3.2 forr = 4. Actuallyr = 4 is the first rank for which
Question 3.3.2 is open.

Another question, which already seems to be hard and is similar to one posed in [7] is the
following :

Question 3.3.4.How many different antipodal labelings that pass through steps A and B of
the algorithm does a cocircuit graph admit?

Every answer to Question 3.3.4 better thanO(|V |) would improve the runtime of our
algorithm.
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[60] , Copoints in antimatröıds, Congr. Num.29 (1980), 534–544.

[61] R. E. Jamison-Waldner,A perspective on abstract convexity: classifying alignments
by varieties, Convexity and related combinatorial geometry (Norman, Okla., 1980),
Lecture Notes in Pure and Appl. Math., vol. 76, pp. 113–150.

[62] M. Joswig, Reconstructing a non-simple polytope from its graph, Polytopes—
combinatorics and computation (Oberwolfach, 1997), DMV Sem., vol. 29, pp. 167–
176.

[63] M. Joswig and K. Kulas,Tropical and ordinary convexity combined, Advances in
Geometry10 (2010), 333–352.

[64] G. Kalai, A simple way to tell a simple polytope from its graph, J. Combin. Theory
Ser. A49 (1988), no. 2, 381–383.

[65] R. M. Karp and R. E. Miller,Parallel program schemata, J. Comput. System Sci.3
(1969), 147–195.

[66] S. Khuller, J. Naor, and P. Klein,The lattice structure of flow in planar graphs, SIAM
J. Discrete Math.6 (1993), no. 3, 477–490.

[67] K. Knauer,Partial orders on orientations via cycle flips, Diploma Thesis, 85 pages;
http://www.math.tu-berlin.de/˜knauer/diplom.pdf , 2007.

[68] , Distributive lattices on graph orientations, Semigroups, acts and categories
with applications to graphs, Math. Stud. (Tartu), vol. 3, Est. Math. Soc., Tartu, 2008,
pp. 79–91.



118

[69] , Chip-firing, antimatroids, and polyhedra, Proceedings of European Confer-
ence on Combinatorics, Graph Theory and Applications, Electronic Notes in Discrete
Mathematics, vol. 34, Elsevier Sci. B. V., Amsterdam, 2009,pp. 9–13.

[70] B. Korte and L. Lov́asz,Shelling structures, convexity and a happy end, Graph theory
and combinatorics (Cambridge, 1983), Academic Press, London, 1984, pp. 219–232.

[71] , Polyhedral results for antimatroids, Combinatorial Mathematics: Proceed-
ings of the Third International Conference (New York, 1985), Ann. New York Acad.
Sci., vol. 555, New York Acad. Sci., New York, 1989, pp. 283–295.

[72] B. Korte, L. Lov́asz, and R. Schrader,Greedoids, Algorithms and Combinatorics,
vol. 4, Springer-Verlag, Berlin, 1991.

[73] P. C. B. Lam and H. Zhang,A distributive lattice on the set of perfect matchings of a
plane bipartite graph, Order20 (2003), no. 1, 13–29.

[74] T. Lam and A. Postnikov,Alcoved polytopes. I, Discrete Comput. Geom.38 (2007),
no. 3, 453–478.

[75] M. Latapy and C. Magnien,Coding distributive lattices with edge firing games., Inf.
Process. Lett.83(3)(2002), 125–128.

[76] L. Levine,The sandpile group of a tree, European J. Combin.30 (2009), no. 4, 1026–
1035.

[77] J. Linde, C. Moore, and M. G. Nordahl,Ann-dimensional generalization of the rhom-
bus tiling, Discrete models: combinatorics, computation, and geometry (Paris, 2001),
Discrete Math. Theor. Comput. Sci. Proc., 2001, pp. 023–042(electronic).

[78] L. Lovász,Discrete analytic functions: an exposition, Surveys in differential geome-
try. Vol. IX, Surv. Differ. Geom., IX, Int. Press, Somerville, MA, 2004, pp. 241–273.

[79] C. Magnien, H. D. Phan, and L. Vuillon,Characterization of lattices induced by (ex-
tended) chip firing games, Discr Math. Theor. Comp. Sci.DM-CCG (2001), 229–
244.

[80] G. Markowsky,The representation of posets and lattices by sets, Algebra Universalis
11 (1980), no. 2, 173–192.

[81] L. R. Matthews,Bicircular matroids, Quart. J. Math. Oxford Ser. (2)28 (1977),
no. 110, 213–227.

[82] J. McNulty and N. A. Neudauer,On cocircuit covers of bicircular matroids, Discrete
Math.308(2008), no. 17, 4008–4013.



BIBLIOGRAHY 119

[83] C. Merino,The chip-firing game, Discrete Math.302(2005), no. 1-3, 188–210.

[84] B. Monjardet,The consequences of Dilworth’s work on lattices with uniqueirre-
ductible decompositions, The Dilworth Theorems, Birkḧauser, 1990, pp. 192–201.
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Notation Index

Aℓ, 108
C+, 38
C−, 38
D(M, σ), 53
D∗, 46
DΛ, 73
DΠ, 41
DP , 10
GM, 105
L(M, σ), 53
Mℓ, 12
NΛ, 73
S(X, Y ), 105
X0, 105
[k], 11
Πv0(D, cℓ, cu), 39
aff(S), 75
α-or(G), 48
δ(C, x), 38
δ(H, x), 95
↓S, 9
fingAQ

(S), 13
Max(S), 9
Min(S), 9
λ(C), 91
AM(L), 17
C(D), 38
C∗, 105
F(P), 9
FΩ(D, cℓ, cu), 46
I(P), 9
T (D, c), 43, 88
T (D, cℓ, cu), 39
T∆(D, cl, cu), 38
ω(j, f), 90
ω(v, f), 46
1P , 10
↑AQ, 21

S, 16
P(DΛ, c), 85
F(D), 87
Hz, 74
Q(P), 78
T(DΛ), 86
T(DΛ, c), 86
PN , 81
J (L), 11
LN , 80
M(L), 11
P∗, 9
PD, 10
max, 29
min, 29
−→χ (C), 88
x−→, 91
x, 72
CFG(D, σ), 50
cone(V, x), 68
conv(Y ), 81
⌈I⌉AQ

, 15
⌈I(P)⌉AQ

, 15
↑S, 9
0, 39
0P , 10
c(P ), 31
c(x), 32
c-or(G), 44
cD(C), 44
ek, 73
f(H), 95
j−, 11
m+, 11
x ∧L y, 11
x ‖ y, 9
x ≺ y, 9
x ∨L y, 11
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C(DΛ), 90
H≥, 76
H≤, 76
Hi(c), 78
in(v), 46
out(v), 46
CFG(M, σ), 55
cnf(s), 53
col(NΛ), 74
scr(s), 53
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Index

(0/1)-polytope, 89
∆-tension, 38
Ω-flow, 46
α-orientation, 48
H-description, 65
V-description, 83
c-orientation, 44
k-fractional orientation, 47

ACP-isomorphism, 21
acyclic, 10
affine hull, 76
affine hyperplane, 76
affine space, 71
antichain, 9
antichain-covered poset (ACP), 14
antimatroid, 80
antipodal labeling, 108
antisymmetry, 9
AP-labeling, 108
apex, 68
arc-parameterized digraph, 73
associative , 11

backward arcs, 38
bicircular balance, 95
bicycle, 91
breakeven, 91, 96

CFG-dimension, 60
chain, 9
characteristic vector of a multiset, 32
chip-configuration, 50
chip-firing game (CFG), 50
circular balance, 38
circular flow-difference, 44
circulation, 47
cocircuit, 105
cocircuit graph, 105

coline, 106
colored CFG, 58
colored Jordan-Dedekind chain condition,

29
colorset of a path, 31
colorset of a vertex, 32
commutative, 11
comparability, 9
cone, 68
configuration of word, 53
contraction minor, 106
convex hull, 81
cosaturated arc, 42
counter-clockwise (ccw), 29
cover relation, 10
cover-preserving, 29
crabbed path, 106

deletion minor, 107
dimension, 77
distinguished ideal, 15
distributive lattice, 12
distributive polyhedron (D-polyhedron),

70
dominance order, 29
dual ACP, 26
dual digraph, 46, 96
dual poset, 9

Euclidean ULD, 70
Eulerian orientation, 28
excess, 46, 90

face of polyhedron, 77
face-defining halfspace, 77
facet of polyhedron, 77
feasible polytope, 81
feasible potential, 39
feasible set, 80
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filter, 9
fingerprint, 13
finite language, 54
firing-sequence, 50
flow, 47, 87
forbidden face, 47
forbidden vertex, 42
forward arcs, 38
full-dimensional, 77

gainy, 91
generalized∆-tension, 95
generalized CFG, 55
generalized cycles, 90
generalized flow space, 90
generalized flows, 90
generalized network-matrix, 73
generalized tensions, 86
globally finite, 51, 54
good ACP, 20

Hasse diagram, 10
height, 9
higher dimensional rhombic tilings, 45
hyperplane, 74

ideal, 9
idempotent, 11
inclusion-order, 9
incomparability, 9
index-poset, 16
induced halfspace, 76
induced subposet, 10
inner flow, 92
intersection of CFGs, 58
intersection-closed, 10

join, 10
join-irreducible, 11
Jordan-Dedekind chain condition, 29

L-polyhedron, 68

Laplacian, 53
Laplacious, 55, 77
lattice, 11
lossy, 91
lower bound of polyhedron, 78
lower locally distributive lattice (LLD),

12

maximal element, 9
meet, 10
meet-irreducible, 12
meet-polyhedron, 68
min-polyhedron, 78
minimal element, 9
Minkowski sum, 83
multiplier, 90

natural color, 29, 41, 50, 53
network-matrix, 87
non-negative disjoint (NND), 72

order polytope, 89
order-embedding, 10
order-ismorphism, 10
order-preserving, 10
oriented arc-set, 38, 90
oriented cycle, 38

point-line search antimatroid, 82
poset, 9
potential, 85

rank, 105
reachable, 50
real tension, 88
reduced, 87
reduced antichain-partition, 24
reduced data, 41
reduced Laplacian, 53
reflexivity, 9
rigid arc, 41

sandpile group, 63
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sandpile monoid, 63
saturated arc, 42
score of word, 53
semigroup, 11
semilattice, 10
separator, 105
set-system, 9
sign labeling, 105
sign vector, 88
signed characteristic vector, 88
signed set, 91, 105
signed support, 91, 92
simple CFG, 52
simple language, 56
sink, 31
sinky, 53, 54
source, 32
special vector, 54
stable chip-configuration, 51
sublattice, 11
subposet, 10
support, 72, 91, 105

tension, 39, 88
tope, 107, 111
transitive hull, 10
transitively reduced, 10
transitivity, 9

U-coloring, 28
U-polyhedron, 68
U-poset, 29
ULD-polyhedron, 68
underlying digraph, 73
uniform oriented matroid (UOM), 105
union-closed, 10
unit-vector, 73
UOM-labeling, 105
up-complete, 28
up-proper, 28

upper locally distributive lattice (ULD),
12

vector-addition language, 53
vertex firing, 50
vertex pop, 41, 42
vertex push, 41, 42

zero-support, 105


