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Abstract

Several instances of distributive lattices on graph structures are known. This includes
c-orientations (Propp), α-orientations of planar graphs (Felsner/de Mendez) planar flows
(Khuller, Naor and Klein) as well as some more special instances, e.g., spanning trees of
a planar graph, matchings of planar bipartite graphs and Schnyder woods.

We provide a characterization of upper locally distributive lattices (ULD-lattices) in
terms of edge colorings of their Hasse diagrams. In many instances where a set of combi-
natorial objects carries the order structure of a lattice this characterization yields a slick
proof of distributivity or UL-distributivity. This is exemplified by proving a distribu-
tive lattice structure on the ∆-bonds of a graph. All the previously known instances of
distributive lattices from graphs turn out to be special ∆-bond lattices.

Let a D-polytope be a polytope that is closed under componentwise max and min,
i.e., the points of the polytope are an infinite distributive lattice. A characterization of
D-polytopes reveals that each D-polytope has an underlying graph model. The associated
graph models have two descriptions either edge based or vertex based.

1 Introduction

In the next section we describe the instances of distributive lattices on graph structures that
have been known.

In Section 3 a characterization of upper locally distributive lattices (ULD-lattices) and
distributive lattices in terms of edge colorings of their Hasse diagrams is described.

This theory is applied in Section 4 to the study of ∆-bonds. It is shown that the ∆-
bonds with invariant circular flow-difference ∆ of a graph form a distributive lattice. All
the previously known instances of distributive lattices from graphs are shown to be special
∆-bond lattices.

In Section 5 we turn the attention to potentials as duals structures to bonds. This leads
to the study of D-polytopes, i.e., polytopes that are closed under componentwise max and
min. We provide a characterization of the linear equations and inequalities that define D-
polytopes. This yields a distributive lattice structure on generalized bonds and a proof that
they are the most general structure on graphs that form a distributive lattice.
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2 Distributive Lattices from Graphs – Previous Results

2.1 The lattice of c-orientations – Propp [22]

Given an orientation O of a graph G = (V, E) and a vertex v ∈ V with the property that v is a
sink in O a new orientation O′ is obtained by reverting the orientation of all edges incident to
v while keeping the orientation of all other edges. The operation O → O′ will be called a push push

at vertex v. Pretzel [21] attributes the idea for this operation to Mosesian. If C is a directed
cycle in G and O′ is obtained from O by pushing a vertex, then |C+

O | − |C
−
O | = |C

+
O′ | − |C

−
O′ |,

where C+
O is the set of edges whose orientation in O and C coincide and C−

O consists of the
the other edges of C. The above formula can be cast in the statement that pushing a vertex
leaves the flow-difference around a cycle invariant.

Define the flow-difference of O as the function c = cO that associates to each directed flow-

differencecycle C the flow-difference c(C) of O around C. An orientation O with |C+
O | − |C

−
O | = c(C)

is called a c-orientation. An edge is called rigid if it has the same orientation in all c- rigid

orientations. With any G and c we can associate a G′ and c′ such that there are no rigid
edges in G′ and c-orientations of G and c′-orientations of G′ are in bijection, such a pair G′, c′

is called reduced. reduced

The main result in Propp’s article [22] is:

Theorem 1 Let G, c be reduced and let v0 ∈ V . If we say that one c-orientation O covers another
c-orientation O′ exactly when O is obtained from O′ by pushing a vertex v 6= v0, then the covering
relation makes the set of c-orientations of G into a distributive lattice.

From duality for planar graphs and the above theorem Propp derives the following two
corollaries:

• The set of d-factors of a plane bipartite graph can be enhanced with a distributive lattice
structure.

• The set of spanning trees of a plane graph can be enhanced with a distributive lattice
structure.

2.2 The lattice of flow in planar graphs – Khuller, Naor and Klein [16]

Consider a directed graph D = (V, A), with each arc a having an integer lower and upper
bound on its capacity, denoted ℓ(a) and u(a). A circulation is a function f : A → Z such circulation

that ℓ(a) ≤ f(a) ≤ u(a) for each edge and
∑

a∈in(v) f(a) =
∑

a∈out(v) f(a).

Define f < f ′ if f ′ is obtained from f by pushing a unit of flow around a clockwise cycle
in the residual graph of f . Let PF be the order on flows obtained as the transitive closure of
the < relation. An edge is called rigid if it carries the same flow in all feasible circulations. rigid

Assuming that there are no rigid edges and G is connected the cover relation f ≺ f ′ of PF is
given by the operation of pushing flow in clockwise direction around a bounded facial cycle.

The main result in [16] is:

Theorem 2 The order PF is a distributive lattice.

2.3 The lattice of α-orientations in planar graphs – Felsner [11]

Consider a plane graph G = (V, E) with outer face F ∗. Given a mapping α : V → N an
orientation X of the edges of G is called an α-orientation if α records the out-degrees of all α-orientation
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vertices, i.e.,outdegX(v) = α(v) for all v ∈ V .
Define X < X ′ if X ′ is obtained by reorienting all edges of a clockwise directed cycle in

X. Let Pα be the order on α-orientations obtained as the transitive closure of the < relation.
An edge of G is called rigid if it has the same orientation in all α-orientations. Assuming rigid

that there are no rigid edges and G is connected the cover relation X ≺ X ′ of Pα is given by
clockwise to counterclockwise reorientations of bounded facial cycle.

The main result in [11] is:

Theorem 3 The order Pα is a distributive lattice.

In [6] it is noted that such a result was also obtained in the thesis of de Mendez [7]. Special
instances of α-orientations on plane graphs yield lattice structures on

• Eulerian orientations of a plane graph.

• Spanning trees and d-factors of a plane graph.

• Schnyder woods of a 3-connected plane graph.

3 Upper Locally Distributive Lattices

Upper locally distributive lattices (ULD) and their duals (lower locally distributive lattices
(LLD)) where defined by Dilworth [9]. In the following section we deal with distributive
lattices arising from graphs. To prove distributivity we use the following well known charac-
terization: Distributive lattices are exactly those lattices that are both ULD and LLD.

ULDs have appeared under several different names, e.g. locally distributive lattices (Dil-
worth [9]), meet-distributive lattices (Jamison [13, 14], Edelman [10], Björner and Ziegler [4]),
locally free lattices (Nakamura [19]). Following Avann [2], Monjardet [18], Stern [23] and oth-
ers we call them ULDs. The reason for the frequent reappearance of the concept is that there
are many instances of ULDs, i.e sets of combinatorial objects that can be naturally ordered
to form an ULD.

ULDs have first been investigated by Dilworth [8], many different lattice theoretical char-
acterizations of ULDs are known. For a survey on the work until the nineties we refer to
Monjardet [18]. We use the original definition of Dilworth:

Definition 1 Let (P,≤) be a poset. P is called an upper locally distributive lattice (ULD) upper locally

distributive

lattice

(ULD)

if P is a lattice and each element has a unique minimal representation as meet of meet-irreducibles,
i.e., there is a mapping M : P → P({m ∈ P : m is meet-irreducible}) with the properties
• x =

∧
Mx (representation) • x =

∧
A implies Mx ⊆ A (minimal).

Let D = (V, A) be a directed graph, an arc coloring c of D is an U-coloring if for every U-coloring

u, v, w ∈ V with u 6= w and (v, u), (v, w) ∈ A it holds:

(U1) c(v, u) 6= c(v, w).

(U2) There is a z ∈ V and arcs (u, z), (w, z) such that c(v, u) = c(w, z) and c(v, w) = c(u, z).
(see Figure 1)

Definition 2 A finite poset (P,≤) is called U-poset if the arcs of the cover graph DP of P admit U-poset

a U -coloring.

Our characterization of ULDs has two parts.
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Figure 1: The completion property of U -colorings.

Theorem 4 (a) If D is a finite, acyclic digraph admitting a U -coloring, then D is a cover graph,
hence, the transitive closure of D is a U -poset.
(b) Upper locally distributive lattices are exactly the U -posets with a global minimum.

Dual in the sense of order reversal to U -coloring, U -poset and ULD are L-coloring, L-poset and
LLD. The characterization of LLDs dual to Theorem 4 allows easy proofs that the inclusion
orders on the following combinatorial structures are lower locally distributive lattices:

• Subtrees of a tree (Boulaye [5]).

• Convex subsets of posets (Birkhoff and Bennett [3]).

• Convex subgraphs of acyclic digraphs, here a set C is convex if x, y ∈ C implies that all
directed (x, y)-paths are in C (Pfaltz [20]).

These combinatorial structures can also be seen as convex sets of an abstract convex geometry.
This is no coincidence as in fact every LLD is isomorphic to the inclusion order on the convex
sets of an abstract convex geometry and vice versa (Edelman [10]).

4 The Lattice of ∆-Bonds

Let D = (V, A) be a connected directed graph with upper and lower integral edge capacities
cu, cl : A → Z. We are interested in maps x : A → Z such that cl(a) ≤ x(a) ≤ cu(a) for all
a ∈ A. The circular flow-difference of x on a cycle C with a prescribed direction is circular

flow-

differenceδ(C, x) :=
∑

a∈C+

x(a)−
∑

a∈C−

x(a).

Note that the circular flow-differences δ(C, x) on the cycles of a basis of the cycle space
uniquely determines the flow-difference of x on all cycles of the graph.

For a given ∆ ∈ Z
C we consider the set B∆(D, cl, cu) := {cl ≤ x ≤ cu | δ(C, x) = ∆C},

this is the set of ∆-bonds on (D, cl, cu). We introduce an order on ∆-bonds with prescribed ∆-bonds

circular flow-difference, i.e., on the elements of B∆(D, cl, cu) such that:

Theorem 5 The elements of B∆(D, cl, cu) form a distributive lattice P∆. Moreover, the diagram
of P∆ comes with a natural cover preserving lattice embedding into N

V

In the following we give a sketch of the proof.
With a partition (U, U) of the vertices V of D consider the cut S = S[U ] ⊂ A. The

forward edges S+ of S are those a ∈ A directed from U to U , backward edges S− of
S are directed from U to U . The operation x → x′ described in the next lemma is an
augmentation at S. augmentation
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Lemma 1 If x is in B∆(D, cl, cu) and S = S[U ] is a cut such that x(a) < cu(a) for all a ∈ S+

and x(a) > cl(a) for all a ∈ S−, then the x′ : A → Z defined as x′(a) = x(a) for all a 6∈ S,
x′(a) = x(a) + 1 for all a ∈ S+ and x′(a) = x(a)− 1 for all a ∈ S− is also in B∆(D, cl, cu).

Fix an arbitrary vertex v0 in D as the forbidden vertex. For x, y ∈ B∆(D, cl, cu) define forbidden

vertexx < y if y can be reached from x via a sequence of augmentations at cuts, such that each of
the cuts S = S[U ] has v0 ∈ U . A vertex cut is a cut S[v] with v 6= v0. vertex cut

Lemma 2 If x < y, then y can be obtained from x by a sequence of augmentations at vertex
cuts.

From the lemma it follows that the relation < is acyclic, i.e., an order relation. Otherwise
we could linearly combine vertex cuts S[v], with v 6= v0, to zero. But these vertex cuts are a
basis of the bond space.

Augmentations at vertex cuts correspond to the cover relations, i.e., edges of the Hasse
diagram, of the order defined on B∆(D, cl, cu). This order will be denoted P∆. A coloring of
the edges of the Hasse diagram of P∆ is naturally given as a mapping to V \ {v0}.

Lemma 3 The above coloring of the edges of the Hasse diagram of the order P∆ is a U -coloring.

A completely symmetric argument shows that the coloring is also a U -coloring for the
reversed order, i.e., a L-coloring. Theorem 4 implies that every connected component of P∆

is an ULD and LLD lattice, hence, a distributive lattice. To complete the proof of Theorem 5
it only remains to show that P∆ is connected.

Lemma 4 The order P∆ is connected.

Theorem 6 The lattice structure P∆ on ∆-bonds generalizes the lattices from Section 2.

The idea in all the original proofs for the distributive lattice structures from Section 2 was
to use a potential function. In the case of c-orientations the potential function is a p : V → Z

in the other two cases the domain of p is the planar dual set, i.e., the set V ∗ of faces of the
plane graph. In all cases there is a bijection between feasible potentials and the objects of the
lattice. The distributive lattice structure on the potentials is easily established by showing
that with two feasible potentials their pointwise maximum and minimum are also feasible.

To apply this alternative approach to prove the distributive lattice structure on ∆-bonds
we begin with a normalization. Consider a spanning tree T of D = (V, A) and note that
the circular flow-differences δ(C, x) for all cycles are determined by the values taken at cycles
belonging to the fundamental cycle basis FCB with respect to T . Given a cycle C ∈ FCB(T )
let aC be the unique edge in C \ T . The following simple modification of the data makes
∆C = 0: if aC ∈ C+ redefine the bounds cl(a) ← cl(a) − ∆C and cu(a) ← cu(a) − ∆C , if
aC ∈ C− add ∆C to both bounds. After having done this for all cycles in FCB(T ) we have
new data (D, c′l, c

′
u) such that B∆(D, cl, cu) and B0(D, c′l, c

′
u) are in bijection.

Let v0 ∈ V and let x ∈ B0(D, c′l, c
′
u), with x associate a potential p such that

p(v0) = 0 and (1)

p(w)− p(v) = x(a) for all a = (v, w) ∈ A (2)

Starting from v0 this potential can be computed along a spanning tree. Actually the following
holds:

Proposition 1 Potential functions p : V → Z with p(v0) = 0 and cl ≤ p(w) − p(v) ≤ cu for all
a = (v, w) ∈ A are in bijection with 0-bonds B0(D, cl, cu).
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Lemma 5 If p and q are feasible, then the pointwise maximum and minimum are also feasible.

Proof. We show one of the calculations needed for the proof. Consider a = (v, w) ∈ A and
suppose that p(w) ≥ q(w) and p(v) ≤ q(v). Now cl ≤ q(w) − q(v) ≤ q(w) − q(v) + (p(w) −
q(w)) = p(w) − q(v) = max{p(w), q(w)} −max{p(v), q(v)} = p(w) − p(v) + (p(v) − q(v)) ≤
p(w)− p(v) ≤ cu.

The observation that our potentials could as well be real-valued leads to the notion of
D-polytopes as studied in the next section.

5 Structure of D-Polytopes

A polyhedron P ⊆ R
n is called distributive if distributive

x, y ∈ P =⇒ min(x, y), max(x, y) ∈ P

where max and min are taken componentwise.
We will abbreviate distributive polyhedra as D-polyhedra. The reason for the name D-polyhedra

distributive and the connection to the earlier sections of this paper are given by the following

Observation 7 A polyhedron P ⊆ R
n is a D-polyhedron if and only if it is a distributive lattice

with respect to the dominance order, where x ≤dom y iff xi ≤ yi ∀1≤i≤n

5.1 Geometric Characterization

We want to find a geometric characterization of D-polyhedra. For this we need the basic

Observation 8 The property of being a D-polyhedron is invariant under:
• translation • scaling • intersection

In order to give a neat description of D-polyhedra in terms of bounding halfspaces we will
pursue the following strategy. We start by characterizing distributive affine subspaces of R

n.
Then we provide a characterization of the orthogonal complements of distributive affine
spaces. After proving that the induced halfspaces of distributive affine spaces are distributive,
we characterize D-polyhedra as intersections of distributive halfspaces.

For a vector x ∈ R
n let supp(x) := {i ∈ [d] | xi 6= 0} be its support. Call a set of vectors support

B ⊆ R
n non-negative disjoint (NND) if the elements of B are non-negative and have non-

negative

disjoint

(NND)

pairwise disjoint supports. Note that a NND set of non-zero vectors is automatically linearly
independent. With these definitions we can state the first result.

Proposition 2 An affine subspace A ⊆ R
n is a D-polyhedron if and only if it has a non-negative

disjoint basis B.

The next step will be to provide a class of network matrices NΛ of certain arc-parameterized
digraphs such that an affine space A is distributive if and only if it can be described as
A = {p ∈ R

n | N⊤
Λ p = c}.

Generally we call a tuple DΛ = (V, A, Λ) an arc-parameterized digraph if D = (V, A) arc-

parameterized

digraph

is a digraph – the underlying digraph – with V = [n], |A| = m, and Λ ∈ R
m
≥0

such that

underlying

digraph

λa = 0 iff a is a loop.
Given an arc parameterized digraph DΛ we define its Λ-network-matrix to be the matrix

Λ-network-

matrix

NΛ ∈ R
n×m with a column ej − λaei for every arc a = (i, j) with parameter λa.
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If B is a NND basis of an affine space A, we construct an arc-parameterized digraph,
such that the resulting Λ-network-matrix NΛ satisfies A = {p ∈ R

n | N⊤
Λ p = c}. For every

b ∈ B choose some arbitrary directed spanning tree on supp(b). To an arc a = (i, j) with
i, j ∈ supp(b) we associate the arc parameter λa := bj/bi > 0. For every i /∈

⋃
b∈B supp(b)

insert a loop a = (i, i) with λa := 0. Collect the λa of all the arcs in a vector Λ ∈ R
m
≥0

. The
resulting arc-parameterized digraph is a disjoint union of loops and directed trees.

We can state the following:

Proposition 3 Let A ⊆ R
n be an affine subspace. Then A has a non-negative disjoint basis if

and only if A = {p ∈ R
n | N⊤

Λ p = c}, where NΛ is the Λ-network-matrix of an arc parameterized
disjoint union of directed trees and loops.

Now by an easy geometric argument we obtain

Proposition 4 A halfspace A+ = {p ∈ R
n |Mp ≤ c} is distributive if and only if A = {p ∈ R

n |
Mp = c} is distributive.

Putting the above together we can prove

Theorem 9 A polyhedron P ⊆ R
n is a D-polyhedron if and only if

P = {p ∈ R
n | N⊤

Λ p ≤ c}

for some Λ-network-matrix NΛ and c ∈ R
m.

As an immediate application we obtain that order polytopes (Λ = 1 and c ∈ {0, 1}m) are
D-polytopes. More generally (Λ = 1 and c ∈ Z

m) one obtains distributivity for polytropes [15]
or equivalently alcoved polytopes [17].

6 Combinatorial Characterization

Since a D-polyhedron P is completely described by an arc-parameterized digraph DΛ and
an arc-capacity vector c ∈ R

m, the geometric characterization of D-polyhedra suggests a
combinatorial viewpoint. Denote by D(P ) the tuple (DΛ, c) of the arc parameterized digraph
with arc capacities c given by P . A feasible vertex potential for D(P ) is a vector p ∈ R

n,
which assigns a real number pi to each vertex i of D(P ), such that the inequality pj−λapi ≤ ca

holds for every arc a = (i, j) of D(P ). Note that the points of the D-polyhedron P = {p ∈
R

n | N⊤
Λ p ≤ c} are exactly the feasible vertex potentials of D(P ).

Given a feasible vertex potential p in an arc parameterized digraph with arc capacities
(DΛ, c) and a µ ∈ R denote by pushp,i(µ) := p+µei the µ-push at vertex i, if this still yields µ-push

a feasible vertex potential.

Observation 10 Let P be a D-polytope. Given any feasible vertex potential of D(P ), we can
obtain any other feasible vertex potential D(P ) by a sequence of pushes.

The next model for a D-polyhedron P will live in the arc space of D(P ) but inherit the
distributive lattice structure from the vertex potential model.

This is, given a D-polyhedron P we look at P̂ := {x ∈ R
m | x ≤ c and x ∈ Im(N⊤

Λ )}

instead of P = {p ∈ R
n | N⊤

Λ p ≤ c}. The elements of P̂ will be called generalized bonds; generalized

bondsin the spirit of generalized flow, c.f. [1].
How do generalized bonds look like in the digraph? Clearly a generalized bond x consists of

real values xa ≤ ca for every arc of D(P ). Since x ∈ Im(N⊤
Λ ) = Kern(NΛ)⊥ we have 〈x, f〉 = 0

∀f∈Kern(NΛ). As Kern(NΛ) is a subset of the arc space of D(P ) too, understanding the elements
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of Kern(NΛ) is vital to our analysis. We will then be able to describe the generalized bonds
of D(P ) as capacity-respecting arc values, which satisfy a certain flow-difference-condition
around elements f ∈ Kern(NΛ).

6.1 Bonds

Consider as an example the case where Λ = 1 is the all-ones vector. Now D1
∼= D in the sense

that N1 is nothing else but the network-matrix of D. It is an elementary fact from algebraic
graph theory that Kern(N1) is the flow space F(D) of D, see for instance [12]. Its elements flow space

are the circulations of D, i.e those real arc values f ∈ R
m which respect flow-conservation at

every vertex of D. Moreover each support-minimal element of F(D) is a scalar multiple of
the signed incidence vector sign(C) of a cycle C of D, where sign(C)a is 1 if a is a forward
arc of C, and −1 if a is a backward arc, and 0 otherwise.

Now the set of generalized bonds of D1 consists of these x ∈ R
m such that x ≤ c and

〈x, f〉 = 0 ∀f∈F(D), which after the above comments is equivalent to 〈x, sign(C)〉 = 0 ∀C∈C(D).

In other words P̂ can be seen as the set of real-valued ∆-bonds of D1 within the arc capacities
c and ∆ = 0.

The only difficulty when trying to shift the distributive lattice property from P to P̂
consist in the fact that for network matrices P is generally unbounded, but P̂ is not. By
intersecting P with the appropriate hyperplanes one obtains a bounded D-polytope P ′ with
P̂ ′ ∼= P̂ . This transformation corresponds to prohibiting pushes at the forbidden vertices and
yields the desired distributive lattice structure on the set of real-valued bonds of an arbitrary
digraph D1.

To deduce the full strength of the results of the previous section one remaining difference
is the integrality. Clearly if P ⊆ R

n is a D-polyhedron then also P ∩ Z
n is a distributive

lattice, which yields a distributive lattice structure on the image (N⊤
1

)Zn.
But to obtain a distributive lattice on the integral bonds we need such a structure on

P̂ ∩ Z
m. Luckily Λ = 1 hence N⊤

1
is a totally unimodular matrix, which yields P̂ ∩ Z

m =
(N⊤

1
)Zn, i.e. the integral bonds carry a distributive lattice structure.

Remark This approach does not yield the fact, that these bonds are all connected by vertex
pushes.

6.2 General Parameters

Lets now look at the case of general bonds in an arc-parameterized digraph DΛ, i.e. general
Λ ∈ R

m
≥0

. We want to obtain an analog to cycle and flow spaces for arc-parameterized graphs.

Let D be the underlying digraph of DΛ. For C ∈ C(D) define τ(C) := (Πa∈Cλ
sign(C)a

a ) the
twist of C. Call C weak if it has twist 1 and strong otherwise. Moreover call a triple twist

B = (C, P, C ′) of two cycles C, C ′ ∈ C(D) together with a (possibly trivial) path P connecting
them a barbell. Call a barbell B = (C, P, C ′) strong if both cycles C and C ′ are strong. barbell

Define by F(DΛ) := Kern(NΛ) the generalized flow space of DΛ and let C(DΛ) be the
set of support minimal vectors of F(D). We call C(DΛ) the generalized cycle space of DΛ. generalized

cycle spaceProposition 5 Let DΛ be an arc-parameterized digraph. If f ∈ C(DΛ) then either supp(f) =
supp(C) for some weak cycle C ∈ C(D) or supp(f) = supp(B) for some strong barbell B =
(C, P, C ′).

8



On the other hand given a weak cycle or a strong barbell it is easy to give the family of
f ∈ C(D) with the corresponding support. Given a weak cycle C just assign some non-zero
values fa to its arcs such that

(Σa=(i,j)fa)− (Σa=(j,k)λafa) = 0

for consecutive vertices i, j, k of C. Since C is weak this equation has a one-dimensional
solution space.

Given a strong barbell one can balance the twists of the strong cycles along the connecting
path and obtains a one-dimensional solution space as well.

The preceeding argument justifies to call C(DΛ) the set of weak cycles and strong barbells
of DΛ the combinatorial support of the generalized cycle space of DΛ. Given H ∈ C(DΛ) combinatorial

supportdenote by f(H) the unique f ∈ C(D) with supp(f) = supp(H) and fi = 1 for the minimal
i ∈ supp(f). Let x ∈ R

m and H ∈ C(DΛ). Write δ(H, x) := 〈x, f(H)〉 for the flow-difference flow-

differenceof x around H.
We thus have obtained:

Theorem 11 Let P be a D-polyhedron and D(P ) its arc-parameterized digraph with capacities
c ∈ R

m, then x ∈ R
m
≤c is a generalized bond of D(P ) if and only if δ(H, x) = 0 for every

H ∈ C(DΛ).

Curiously, given an arc-parameterized digraph DΛ, its strong cycles are to a strong one-
tree, what usual cycles are to a tree. For simplicity assume the underlying digraph D to be
connected. A subgraph of D is called a strong one-tree if it consists of a spanning tree T of strong

one-treeD together with an additional arc a such that T ∪ {a} := T̃ contains a strong cycle. Adding
an arc a′ to T̃ yields either a unique strong barbell or a weak cycle. Denote this set of weak
cycles and strong barbells by C(T̃ , DΛ) ⊆ C(DΛ). Then {f(H) | H ∈ C(T̃ , DΛ)} is a basis of
F(D), called the fundamental basis induced by T̃ . fundamental

basis
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