Planar digraphs without large acyclic sets
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Abstract

Given a directed graph, an acyclic set is a set of vertices inducing a directed subgraph with
no directed cycle. In this note we show that for all integers n > g > 3, there exist oriented
planar graphs of order n and digirth g for which the size of the maximum acyclic set is at most
(%1. When g = 3 this result disproves a conjecture of Harutyunyan and shows that a
question of Albertson is best possible.

1 Introduction

An oriented graph is a digraph D without loops and multiple arcs. An acyclic set in D is a set of
vertices which induces a directed subgraph without directed cycles. The complement of an acyclic
set of D is a feedback vertex set of D. A question of Albertson, which was the problem of the
month on Mohar’s web page [6] and was listed as a "Research Experience for Graduate Students"
by West [11], asks whether every oriented planar graph on n vertices has an acyclic set of size
at least Z. There are three independent strengthenings of this question in the literature. In the
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following, we discuss them briefly.

Conjecture 1 (Harutyunyan [3] [4]) Every oriented planar graph of order n has an acyclic set
of size at least %”

The digirth of a directed graph is the length of a smallest directed cycle. Golowich and
Rolnick [5] showed that a oriented planar graph of digirth g has an acyclic set of size at least
(g—3)+6 n(29g—3)+6

) 39

max (=~ ), in particular proving Conjecture 1 for oriented planar graphs of di-
girth 8.
A lower bound of § for the size of an acyclic set in an oriented planar graph would immediately

follow from any of the following two conjectures.

Conjecture 2 (Neumann-Lara [7]) Every oriented planar graph can be vertez-partitioned into
two acyclic sets.

Harutyunyan and Mohar [4] proved Conjecture 2 for oriented planar graphs of digirth 5. The
undirected analogue of Conjecture 2 is false. Indeed, it is equivalent to a conjecture of Tait [9],
saying that every 3-connected planar cubic graph has a Hamiltonian cycle, which was disproved
by Tutte [10]. However, the following question remains open:

Conjecture 3 (Albertson and Berman [1]) Every simple undirected planar graph of order n
has an induced forest of order at least .

There are many graphs showing that Conjecture 3, if true, is best-possible, e.g., Ky and the
octahedron. The best-known lower bound for the order of a largest induced forest in a planar graph
is %" and follows from Borodin’s result on acyclic vertex-coloring of undirected planar graphs [2].

We summarize the discussion in Table 1:
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digithg | 3 | 4 | 5 | >6

acyclic set ‘ 2 2] ‘ 546 5] ‘ 2 4] W [5]

Table 1: Lower bounds for acyclic sets in oriented planar graphs.

2 The construction

In this section, we construct oriented planar graphs of a given digirth with no large acyclic sets.
The most important case of this result is the one when the digirth is 3. Here our result implies that,
if true, for odd n the lower bound of % in Albertson’s question is best possible, while it might be
improved by at most 1 in the even case, see Problem 1. In particular, this disproves Conjecture 1.

Theorem 1 For all integers n > g > 3, there exists an n-vertex oriented planar graph with digirth
g in which the maximum acyclic set has size n — L%J = (%].
Proof

Let g > 3 be fixed. We inductively show that for any f > 1 there exists a oriented planar graph
Dy such that: Dy has digirth g, order f(g — 1) + 1, and a minimum vertex feedback set of size f.
Moreover, Dy has two vertices x and y on a common face F', which do not simultaneously appear
in any minimum feedback vertex set. For D; we take a directed cycle of order g. This clearly
satisfies all conditions. If f > 1, take the plane digraph Dy_;, add a directed path si,...,54-1
into its face F' and add arcs xs1, ys1, sq—17, and s4_1y. See Figure 1.

Figure 1: The construction in Theorem 1

Since in Dy_; no minimum feedback vertex set uses both = and y, in order to hit the two newly
created directed cycles, an additional vertex z is needed. Thus, D; has a minimum feedback vertex
set of size at least f. Now, choosing z € {s1,...,s4_1}, indeed gives a feedback vertex set of size f.
Note that in D there is no minimum feedback vertex containing two vertices from {s1,...,s4-1}
and each such pair of vertices lies on a common face. It only remains to check the order of Dy.
Since we added a total of g — 1 new vertices, Dy has f(g—1)+1 =: n vertices, i.e., f = Zf_%. Thus,
the largest acyclic set in Dy is of size n — Zf_i. Therefore, this construction proves the theorem for
the case when g — 1 divides n — 1.

If n—1 is not divisible by g—1 then we do our construction for the largest integer n’ < n such that
n' —1 is divisible by g— 1, that isn’ = (g—1) L%J +1. We add n—n’ independent vertices to this

graph. Now, the largest acyclic set of the obtained graph is of size n’ — % +(n—n')=n-— L%J
O

By Theorem 1, for even n, there exist n-vertex oriented planar graphs in which every acyclic set
has size at most 5 +1. A computer check, using tools from Sage [8], shows that there are ten planar
triangulations with n vertices (n is even and n < 10) that are tight examples for Conjecture 3.
Furthermore, for all orientations of these examples, the largest directed acyclic set is of size at least
5 + 1. We wonder if the following is true:

Problem 1 If a largest induced forest in a simple undirected planar graph G on n wvertices is of
size a < 4, then for every orientation D of G there is an acyclic set of size at least a + 1.
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