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Abstract

In this note we determine the set of expansions such that a partial
cube is planar if and only if it arises by a sequence of such expansions
from a single vertex. This corrects a result of Peterin.

1 Introduction

A graph is a partial cube if it is isomorphic to an isometric subgraph G of a
hypercube graph Qd, i.e., distG(v, w) = distQn(v, w) for all v, w ∈ G. Any iso-
metric embedding of a partial cube into a hypercube leads to the same partition
of edges into so-called Θ-classes, where two edges are equivalent, if they corre-
spond to a change in the same coordinate of the hypercube. This can be shown
using the Djoković-Winkler-relation Θ which is defined in the graph without
reference to an embedding, see [5, 6].

Let G1 and G2 be two isometric subgraphs of a graph G that (edge-)cover
G and such that their intersection G′ := G1 ∩G2 is non-empty. The expansion
H of G with respect to G1 and G2 is obtained by considering G1 and G2 as
two disjoint graphs and connecting them by a matching between corresponding
vertices in the two resulting copies of G′. A result of Chepoi [3] says that a
graph is a partial cube if and only if it can be obtained from a single vertex
by a sequence of expansions. An equivalence class of edges with resepct to Θ
in a partial cube is an inclusion minimal edge cut. The inverse operation of an
expansion in partial cubes is called contraction and consists in taking a Θ-class
of edges Ef and contracting it. The two disjoint copies of the corresponding G1

and G2 are just the two components of the graph where Ef is deleted.

2 The flaw and the result

Let H be an expansion of a planar graph G with respect to G1 and G2. Then
H is a 2-face expansion of G if G1 and G2 have plane embeddings such that
G′ := G1 ∩ G2 lies on a face in both the respective embeddings. Peterin [4]
proposes a theorem stating that a graph is a planar partial cube if and only
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if it can be obtained from a single vertex by a sequence of 2-face expansions.
However, his argument has a flaw, since G′ lying on a face of G1 and G2 does not
guarantee that the expansion H be planar. Indeed, Figure 1 shows an example
of such a 2-face expansion H of a planar graph G that is non-planar.

G H H

Figure 1: Left: A 2-face expansion H of a planar partial cube G, where G1 and
G2 are drawn as crosses and circles, respectively. Right: A subdivision of K3,3

(bold) in H, certifying that H is not planar.

The correct concept are non-crossing 2-face expansions: We call an expansion
H of a planar graph G with respect to subgraphs G1 and G2 a non-crossing
2-face expansion if G1 and G2 have plane embeddings such that G′ := G1 ∩G2

lies on the outer face of both the respective embeddings, such that the orderings
on G′ obtained from traversing the outer faces of G1 and G2 in the clockwise
order, respectively, are opposite.

Lemma 1. For a partial cube H 6∼= K1 the following are equivalent:

(i) H is planar,

(ii) H is a non-crossing 2-face expansion of a planar partial cube G,

(iii) if H is an expansion of G, then G is planar and H is a non-crossing 2-face
expansion of G.

Proof.
(ii)=⇒(i): Let G be a planar partial cube and G1 and G2 two subgraphs sat-
isfying the preconditions for doing a non-crossing 2-face expansion. We can
thus embed G1 and G2 disjointly into the plane such that the two copies of
G′ := G1 ∩ G2 appear in opposite order around their outer face, respectively.
Connecting corresponding vertices of the two copies of G′ by a matching Ef does
not create crossings, because the 2-face expansion is non-crossing, see Figure 2.
Thus, if H is a non-crossing 2-face expansion of G, then H is planar.

(i)=⇒(iii): Let H be a planar partial cube, that is an expansion of G. Thus,
there is a Θ-class Ef of H such that G = H/Ef . In particular, since contraction
preserves planarity, G is planar.

Consider now H with some planar embedding. Since H is a partial cube,
Ef is an inclusion-minimal edge cut of H. Thus, H \ Ef has precisely two
components corresponding to G1 and G2, respectively. Since Ef is a minimal
cut its planar dual is a simple cycle Cf . It is well-known, that any face of a
planar embedded graph can be chosen to be the outer face without changing
the combinatorics of the embedding. We change the embedding of H, such
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Figure 2: Two disjoint copies of subgraphs G1 and G2 in a planar partial cube H.

that some vertex v of Cf corresponds to the outer face of the embedding, see
Figure 2.

Now, without loss of generality Cf has G1 and G2 in its interior and exterior,
respectively. Since Cf is connected and disjoint from G1 and G2 it lies in a face
of both. By the choice of the embedding of H it is their outer face. Moreover,
since every vertex from a copy of G′ in G1 can be connected by an edge of Ef

to its partner in G2 crossing an edge of Cf but without introducing a crossing
in H, the copies of G′ in G1 and G2 lie on this face, respectively.

Furthermore, following Ef in the sense of clockwise traversal of Cf gives the
same order on the two copies of G′, corresponding to a clockwise traversal on
the outer face of G1 and a counter-clockwise traversal on the outer face of G2.
Thus, traversing both outer faces in clockwise order the obtained orders on the
copies of G′ are opposite. Hence H is a non-crossing 2-face expansion of G.

(iii)=⇒(ii): Since H 6∼= K1, it is an expansion of some partial cube G. The rest
is trivial.

Lemma 1 yields our characterization.

Theorem 2. A graph H is a planar partial cube if and only if H arises from a
sequence of non-crossing 2-face expansions from K1.

Proof.
=⇒: Since H is a partial cube by the result of Chepoi [3] it arises from a
sequence of expansions from K1. Moreover, all these sequences have the same
length correspodning to the number of Θ-classes of H. We proceed by induction
on the length ` of such a sequence. If ` = 0 the sequence is empty and there is
nothing to show. Otherwise, since H 6∼= K1 is planar we can apply Lemma 1 to
get that H arises by a non-crossing 2-face expansions from a planar partial cube
G. The latter has a sequence of expansions from K1 of length ` − 1 which by
induction can be chosen to consist of non-crossing 2-face expansions. Together
with the expansion from G to H this gives the claimed sequence from H.
⇐=: Again we induct on the length ` of the sequence. If ` = 0 we are fine since
K1 is planar. Otherwise, consider the graph G in the sequence such that H
is its non-crossing 2-face expansion. Then G is planar by induction and H is
planar by Lemma 1, since it is a non-crossing 2-face expansion of G.
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3 Remarks

We have characterized planar partial cubes graphs by expansions. Planar partial
cubes have also been characterized in a topological way as dual graphs of non-
separating pseudodisc arrangements [1]. There is a third interesting way of
characterizing them. The class of planar partial cubes is closed under partial
cube minors, see [2], i.e., contraction of G to G/Ef where Ef is a Θ-class
and restriction to a component of G \ Ef . What is the family of minimal
obstructions for a partial cube to being planar, with respect to this notion of
minor? The answer will be an infinite list, since a subfamily is given by the set
{Gn�K2 | n ≥ 3}, where Gn denotes the gear graph (also known as cogwheel)
on 2n + 1 vertices and � is the Cartesian product of graphs. See Figure 3 for
the first three members of the family.

G3�K2 G4�K2 G5�K2

Figure 3: The first three members of an infinite family of minimal obstructions
for planar partial cubes.
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