Completely positive semidefinite matrices: conic approximations and matrix factorization ranks

Monique Laurent

FOCM 2017, Barcelona

Objective

- New matrix cone \mathcal{CS}_+^n : completely positive semidefinite matrices Noncommutative analogue of \mathcal{CP}^n : completely positive matrices
- ▶ Motivation: conic optimization approach for quantum information
 - quantum graph coloring
 - quantum correlations
- (Noncommutative) polynomial optimization: common approach for (quantum) graph coloring and for matrix factorization ranks:
 - ▶ symmetric rks: $\operatorname{cpsd-rank}(A)$ for $A \in \mathcal{CS}_+^n$, $\operatorname{cp-rank}(A)$ for $A \in \mathcal{CP}^n$
 - ▶ asymmetric analogues: psd-rank(A), $rank_+(A)$ for A nonnegative
- Based on joint works with
 Sabine Burgdorf, Sander Gribling, David de Laat, Teresa Piovesan

Completely positive semidefinite matrices

Completely positive semidefinite matrices

▶ A matrix $A \in \mathcal{S}^n$ is completely positive semidefinite (cpsd) if A has a Gram factorization by **positive semidefinite matrices** $X_1, \ldots, X_n \in \mathcal{S}^d_+$ of **arbitrary size** $d \ge 1$:

$$A_{ij} = \langle X_i, X_j \rangle$$
 $(= Tr(X_i X_j)) \forall i, j \in [n]$

The smallest such d is cpsd-rank(A)

[back to it later]

The cpsd matrices form a convex cone

 \leadsto the completely positive semidefinite cone \mathcal{CS}^n_+

▶ If X_i are diagonal psd matrices (equivalently, replace X_i by nonnegative vectors $x_i \in \mathbb{R}^d_+$), then A is completely positive

 \rightsquigarrow the completely positive cone \mathcal{CP}^n

The smallest such d is $\operatorname{cp-rank}(A)$

[back to it later]

► Clearly: $\mathcal{CP}^n \subseteq \mathcal{CS}_+^n \subseteq \mathrm{cl}(\mathcal{CS}_+^n) \subseteq \mathcal{S}_+^n \cap \mathbb{R}_+^{n \times n} =: \mathcal{DNN}^n$ Is the cone \mathcal{CS}_+^n closed?

Strict inclusions $\mathcal{CP}^n \subseteq \mathcal{CS}^n_+ \subseteq \mathcal{DNN}^n$

- ▶ $\mathcal{CP}^n = \mathcal{CS}^n_+ = \mathcal{DNN}^n$ if $n \leq 4$; but strict inclusions if $n \geq 5$
- ▶ [Fawzi-Gouveia-Parrilo-Robinson-Thomas'15] $A \in \mathcal{CS}^{5}_{+} \setminus \mathcal{CP}^{5}$ for

$$A = \begin{pmatrix} 1 & a & b & b & a \\ a & 1 & a & b & b \\ b & a & 1 & a & b \\ b & b & a & 1 & a \\ a & b & b & a & 1 \end{pmatrix} \quad \text{with } a = \cos^2\left(\frac{2\pi}{5}\right), \ b = \cos^2\left(\frac{4\pi}{5}\right)$$

$$A \in \mathcal{CS}^{5}_{\perp}$$
 because $\sqrt{A} \succeq 0$:

$$\sqrt{A} = \mathsf{Gram}(u_1, \dots, u_5) \implies A = \mathsf{Gram}(u_1 u_1^T, \dots, u_5 u_5^T)$$

$$[L-Piovesan 2015] A = \begin{pmatrix} 4 & 2 & 0 & 0 & 2 \\ 2 & 4 & 2 & 0 & 0 \\ 0 & 2 & 4 & 3 & 0 \\ 0 & 0 & 3 & 4 & 2 \\ 2 & 0 & 0 & 2 & 4 \end{pmatrix} \in \mathcal{DNN}^5 \setminus \mathcal{CS}_+^5$$

because A is supported by a cycle: $A \in \mathcal{CS}_+^n \iff A \in \mathcal{CP}^n$

On the closure $\operatorname{cl}(\mathcal{CS}_{+}^{n})$

Moreover,
$$A = \begin{pmatrix} 4 & 2 & 0 & 0 & 2 \\ 2 & 4 & 2 & 0 & 0 \\ 0 & 2 & 4 & 3 & 0 \\ 0 & 0 & 3 & 4 & 2 \\ 2 & 0 & 0 & 2 & 4 \end{pmatrix} \notin \operatorname{cl}(\mathcal{CS}_{+}^{5}) !$$

Because [Frenkel-Weiner 2014] show that A does not have a Gram representation by **positive elements in any** C^* -algebra A with trace ...

... while [Burgdorf-L-Piovesan 2015] construct a C^* -algebra with trace $\mathcal{M}_{\mathcal{U}}$ such that $\operatorname{cl}(\mathcal{CS}_+^n)$ consists of all matrices A having a Gram factorization by positive elements in $\mathcal{M}_{\mathcal{U}}$

(using tracial ultraproducts of matrix algebras)

New cone $\mathcal{CS}^n_{+C^*}$: all matrices having a Gram representation by positive elements in some C^* -algebra with trace. Then $A \notin \mathcal{CS}^n_{+C^*}$, $\mathcal{CS}^n_{+C^*}$ is closed, and

$$\mathcal{CS}_{+}^{n} \subseteq \operatorname{cl}(\mathcal{CS}_{+}^{n}) \subseteq \mathcal{CS}_{+C^{*}}^{n} \subsetneq \mathcal{DNN}^{n}$$

Equality $cl(\mathcal{CS}_{+}^{n}) = \mathcal{CS}_{+C^{*}}^{n}$ under Connes' embedding conjecture

SDP outer approximations of CS_{+}^{n}

Assume
$$A \in \mathcal{CS}^n_{+}$$
: $A = (\text{Tr}(X_i X_i))$ for some $X_1, \dots, X_n \in \mathcal{S}^d_{+}$

Define the **trace evaluation** at $\mathbf{X} = (X_1, \dots, X_n)$:

$$L: \mathbb{R}\langle x_1, \ldots, x_n \rangle \to \mathbb{R}$$
 $p \mapsto L(p) = \operatorname{Tr}(p(X_1, \ldots, X_n))$

(1) L is tracial:
$$L(pq) = L(qp) \quad \forall p, q \in \mathbb{R}\langle \mathbf{x} \rangle$$

(2)
$$L$$
 is symmetric: $L(p^*) = L(p) \quad \forall p \in \mathbb{R}\langle \mathbf{x} \rangle$

(3) L is positive:
$$L(p^*p) \ge 0 \qquad \forall p \in \mathbb{R}\langle \mathbf{x} \rangle$$

(4) localizing constraint:
$$L(p^*x_ip) \ge 0$$
 $\forall p \in \mathbb{R}\langle \mathbf{x} \rangle$

(5)
$$A = (L(x_i x_j))$$

 $\mathcal{F}_t = \text{matrices } A \in \mathcal{S}^n \text{ for which there exists } L \in \mathbb{R}\langle \mathbf{x} \rangle_{2t}^* \text{ satisfying (1)-(5)}$

$$\mathcal{CS}^n_+ \subseteq \mathcal{F}_{t+1} \subseteq \mathcal{F}_t, \qquad \mathcal{CS}^n_+ \subseteq \mathrm{cl}(\mathcal{CS}^n_+) \subseteq \mathcal{CS}^n_{+C^*} \subseteq \bigcap_{t \ge 1} \mathcal{F}_t$$

 \mathcal{F}_t is the solution set of a **semidefinite program**:

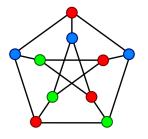
(3)
$$M_t(L) = (L(u^*v))_{u,v \in \langle \mathbf{x} \rangle_t} \succeq 0$$
, (4) $(L(u^*x_iv))_{u,v \in \langle \mathbf{x} \rangle_{t-1}} \succeq 0$

Noncommutative analogue of outer approximations of \mathbb{CP}^n [Nie'14]

Quantum graph coloring

Classical coloring number

 $\chi(G)$ = minimum number of colors needed for a proper coloring of V(G)



$$\begin{split} \chi(\mathsf{G}) &= \mathsf{min} \ \, \mathsf{k} \in \mathbb{N} \; \mathsf{s.t.} \quad \exists \; \mathsf{x}_\mathsf{u}^\mathsf{i} \in \{0,1\} \quad \mathsf{for} \; \; \mathsf{u} \in \mathsf{V}(\mathsf{G}), \; \mathsf{i} \in [\mathsf{k}] \\ &\qquad \qquad \sum_{i \in [\mathsf{k}]} \mathsf{x}_\mathsf{u}^\mathsf{i} = 1 \quad \forall \mathsf{u} \in \mathsf{V}(\mathsf{G}) \\ &\qquad \qquad \mathsf{x}_\mathsf{u}^\mathsf{i} \mathsf{x}_\mathsf{v}^\mathsf{i} = 0 \quad \forall i \in [\mathsf{k}] \; \forall \, \mathsf{u} \mathsf{v} \in \mathsf{E}(\mathsf{G}) \\ &\qquad \qquad \mathsf{x}_\mathsf{u}^\mathsf{i} \mathsf{x}_\mathsf{u}^\mathsf{j} = 0 \quad \forall \, \mathsf{i} \neq \mathsf{j} \in [\mathsf{k}], \; \forall \mathsf{u} \in \mathsf{V}(\mathsf{G}) \end{split}$$

Quantum coloring number

$$\begin{split} \chi(\mathsf{G}) &= \mathsf{min} \ \ \mathsf{k} \in \mathbb{N} \ \mathsf{s.t.} \quad \exists \ x_u^i \in \{0,1\} \ \mathsf{for} \ \mathsf{u} \in \mathsf{V}(\mathsf{G}), \ \mathsf{i} \in [\mathsf{k}] \\ & \sum_{i \in [\mathsf{k}]} x_u^i = 1 \quad \forall \ \mathsf{u} \in \mathsf{V}(\mathsf{G}) \\ & x_u^i x_v^i = 0 \quad \forall \ \mathsf{i} \in [\mathsf{k}], \ \forall \ \mathsf{uv} \in \mathsf{E}(\mathsf{G}) \\ & x_u^i x_u^j = 0 \quad \forall \ \mathsf{i} \neq \mathsf{j} \in [\mathsf{k}], \ \forall \ \mathsf{u} \in \mathsf{V}(\mathsf{G}) \end{split}$$

$$\chi_{\mathsf{q}}(\mathsf{G}) &= \mathsf{min} \ \ \mathsf{k} \in \mathbb{N} \ \mathsf{s.t.} \quad \exists \ d \in \mathbb{N} \ \exists \ X_u^i \in \mathcal{S}_+^d \ \mathsf{for} \ \mathsf{u} \in \mathsf{V}(\mathsf{G}), \ \mathsf{i} \in [\mathsf{k}] \\ & \sum_{i \in [\mathsf{k}]} X_u^i = I \quad \forall \ \mathsf{u} \in \mathsf{V}(\mathsf{G}) \\ & X_u^i X_v^i = 0 \quad \forall \ \mathsf{i} \in [\mathsf{k}], \ \forall \ \mathsf{uv} \in \mathsf{E}(\mathsf{G}) \\ & X_u^i X_u^j = 0 \quad \forall \ \mathsf{i} \neq \mathsf{j} \in [\mathsf{k}], \ \forall \ \mathsf{u} \in \mathsf{V}(\mathsf{G}) \end{split}$$

[Cameron, Newman, Montanaro, Severini, Winter: On the quantum chromatic number of a graph, Electronic J. Combinatorics, 2007]

 $\chi_{a}(G) < \chi(G)$

Motivation: non-local coloring game

Two players: Alice and Bob, want to convince a referee that they can color a given graph G=(V,E) with k colors

Agree on strategy before the start, no communication during the game

- ▶ The referee chooses a pair of vertices $(u, v) \in V^2$ with prob. $\pi(u, v)$
- ▶ The referee sends vertex u to Alice and vertex v to Bob
- ▶ Alice answers color $i \in [k]$, Bob answers color $j \in [k]$, using some strategy they have chosen before the start of the game
- ► Alice & Bob win the game when $\begin{cases} i = j & \text{if } u = v \\ i \neq j & \text{if } uv \in E \end{cases}$

When using a **classical strategy**, the minimum number of colors needed to always win the game is the **classical coloring number** $\chi(G)$

Quantum strategy for the coloring game

▶
$$\forall u \in V$$
 Alice has POVM $\{A_u^i\}_{i \in [k]}$: $A_u^i \in \mathcal{H}_+^d$, $\sum_{i \in [k]} A_u^i = I$

▶
$$\forall v \in V$$
 Bob has POVM $\{B_v^j\}_{j \in [k]}$: $B_v^j \in \mathcal{H}_+^d$, $\sum_{i \in [k]} B_v^j = I$

- ▶ Alice and Bob share an **entangled state** $\Psi \in \mathbb{C}^d \otimes \mathbb{C}^d$ (unit vector)
- ▶ Probability of answer (i,j): $p(i,j|u,v) := \langle \Psi, A_u^i \otimes B_v^j | \Psi \rangle$
- Alice and Bob win the game if they never give a wrong answer: p(i,j|u,v) = 0 if $(u = v \& i \neq j)$ or $(uv \in E \& i = j)$
- **Theorem:** [Cameron et al. 2007] The minimum number of colors for which there is a quantum winning strategy is equal to $\chi_q(G)$

Classical and quantum coloring numbers

- $\blacktriangleright \chi_q(G) \leq \chi(G)$
- ▶ \exists G for which $\chi_q(G) = 3 < \chi(G) = 4$ [Fukawa et al. 2011]
- The separation $\chi_q < \chi$ is **exponential** for Hadamard graphs G_n : n = 4k, with vertices $x \in \{0, 1\}^n$, edges (x, y) if $d_H(x, y) = n/2$ $\chi(G_n) \geq (1 + \epsilon)^n$ [Frankl-Rödl'87] $\chi_q(G_n) = n$ [Avis et al.'06][Mancinska-Roberson'16]
- ▶ Deciding whether $\chi_q(G) \le 3$ is NP-hard [Ji 2013]
- ▶ **Approach:** Model $\chi_q(G)$ as conic optimization problem using the cone of completely positive semidefinite matrices

Conic formulation for quantum graph coloring

$$\chi_q(G) = \min k \text{ s.t. } \exists X_u^i \succeq 0 \text{ } (u \in V, i \in [k]) \text{ satisfying:}$$

$$\sum_{i \in [k]} X_u^i = \sum_{i \in [k]} X_v^j \ (\neq 0) \qquad (u, v \in V)$$
 (Q1)

$$X_u^i X_u^j = 0 \ (i \neq j \in [k], u \in V), \ X_u^i X_v^i = 0 \ (i \in [k], uv \in E)$$
 (Q2)

Set
$$A := \operatorname{Gram}(X_u^i)$$
. Then: $X_u^i X_v^j = 0 \iff \operatorname{Tr}(X_u^i X_v^j) = 0 = A_{ui,vj}$

Then: $\chi_q(G) = \min k$ s.t. $\exists A \in \mathcal{CS}_+^{nk}$ satisfying:

$$\sum_{i,j \in [k]} A_{ui,vj} = 1 \ (u, v \in V), \tag{C1}$$

$$A_{ui,uj} = 0 \ (i \neq j \in [k], u \in V), \quad A_{ui,vi} = 0 \ (i \in [k], uv \in E).$$
 (C2)

Theorem (L-Piovesan 2015)

- ▶ Replacing \mathcal{CS}_+ by the cone \mathcal{CP} , we get $\chi(G)$
- ▶ Replacing \mathcal{CS}_+ by the cone \mathcal{DNN} , get the **theta number** $\vartheta^+(\overline{G})$
- ▶ Hence: $\vartheta_+(\overline{G}) \le \chi_q(G)$ [Mancinska-Roberson 2015]

SDP relaxations for coloring

If (X_u^i) is solution to $\chi_q(G) = k$, its normalized trace evaluation satisfies

- (1) L(1) = 1
- (2) L is symmetric, tracial, positive (on Hermitian squares)
- (3) L = 0 on the ideal generated by

$$1 - \sum_{i=1}^{k} x_{u}^{i} \ (u \in V), \ \ x_{u}^{i} x_{u}^{j} \ (i \neq j, u \in V), \ \ x_{u}^{i} x_{v}^{i} \ (uv \in E, i \in [k])$$

Restricting to the truncated polynomial space $\mathbb{R}\langle \mathbf{x}\rangle_{2t}$, get the parameters:

$$\xi_t^{nc}(G) = \min k \text{ such that } \exists L \in \mathbb{R} \langle \mathbf{x} \rangle_{2t}^* \text{ satisfying (1)-(3)}$$

$$\xi_t^c(G) = \min k \text{ such that } \exists L \in \mathbb{R}[\mathbf{x}]_{2t}^* \text{ satisfying (1)-(3)}$$

$$\xi_t^{nc}(G) \leq \chi_q(G) \qquad \xi_t^c(G) \leq \chi(G)$$

- ▶ For t = 1 get the theta number: $\xi_1^{nc}(G) = \xi_1^c(G) = \vartheta^+(\overline{G})$
- $\xi_t^c(G) = \chi(G) \ \forall t \ge n$ [Gvozdenović-L 2008]
- $\xi_{t_0}^{nc}(G) = \chi_{C^*}(G) \leq \chi_q(G) \quad \forall t \geq t_0$ [Gribling-de Laat-L 2017] $\chi_{C^*}(G) = \text{allow solutions } X_u^i \in \mathcal{A} \text{ for any } C^*\text{-algebra } \mathcal{A} \text{ with trace}$

 $\chi_{u} \in \mathcal{A}$ for any c -algebra \mathcal{A} with trace [Ortiz-Paulsen 2016]

Quantum correlations

$$C_q(n, k) =$$
quantum correlations $p = (p(i, j|u, v)) := (\langle \Psi, A_u^i \otimes B_v^j \Psi \rangle),$ with $d \in \mathbb{N}$, $A_u^i, B_v^j \in \mathcal{H}^d_+$ with $\sum_i A_u^i = \sum_j B_v^j = I, \ \Psi \in \mathbb{C}^d \otimes \mathbb{C}^d$ unit

Theorem (Sikora-Varvitsiotis 2015)

 $C_q(n,k)$ is the projection of an affine section of \mathcal{CS}_+^{2nk} :

$$p = (p(i,j|u,v)) \rightsquigarrow A_p = (p(i,j|u,v))_{(i,u),(j,v) \in [k] \times V}$$

$$p \in C_q(n,k) \iff \exists M = \begin{pmatrix} ? & A_p \\ A_p^T & ? \end{pmatrix} \in \mathcal{CS}_+^{2nk}$$
 satisfying additional affine conditions

Theorem (Gribling-de Laat-L 2017)

For synchronous correlations: p(i,j|u,u) = 0 whenever $i \neq j$

 $p \in C_q(n,k) \iff A_p \in \mathcal{CS}_+^{nk}$

The smallest dimension d realizing p is equal to cpsd-rank(A_p)

Theorem (Slofstra 2017)

$$C_q(n,k)$$
 is not closed \implies CS_+^N is not closed for large N (\geq 1942)

Matrix factorization ranks

Four matrix factorization ranks

Symmetric factorizations:

- ▶ $A \in \mathcal{CP}^n$ if $A = (x_i^\mathsf{T} x_j)$ for nonnegative $x_i \in \mathbb{R}_+^d$ Smallest such d = cp-rank(A)
- ▶ $A \in \mathcal{CS}_+^n$ if $A = (\operatorname{Tr}(X_i X_j))$ for $X_i \in \mathcal{H}_+^d$ or \mathcal{S}_+^d Smallest such $d = \operatorname{cpsd-rank}_{\mathbb{K}}(A)$ with $\mathbb{K} = \mathbb{C}$ or \mathbb{R}

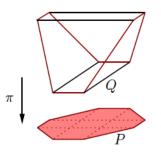
Applications: probability, entanglement dimension in quantum information

Asymmetric factorizations for $A \in \mathbb{R}^{m \times n}_+$:

- ▶ $A = (x_i^\mathsf{T} y_j)$ for nonnegative $x_i, y_j \in \mathbb{R}_+^d$ Smallest such $d = \operatorname{rank}_+(A)$: nonnegative rank
- ▶ $A = (\operatorname{Tr}(X_i Y_j))$ for $X_i, Y_j \in \mathcal{H}_+^d$ or \mathcal{S}_+^d Smallest such $d = \operatorname{psd-rank}_{\mathbb{K}}(A)$ with $\mathbb{K} = \mathbb{C}$ or \mathbb{R}

Applications: (quantum) communication complexity, extended formulations of polytopes

$rank_{+}$, psd- $rank_{\mathbb{R}}$ and extended formulations



[Yannakakis 1991]

Slack matrix: $S = (b_i - a_i^\mathsf{T} v)_{v,i}$ if $P = \operatorname{conv}(V) = \{x : a_i^\mathsf{T} x \le b_i \ \forall i\}$

Smallest k s.t. P is projection of affine section of \mathbb{R}_+^k is $\operatorname{rank}_+(S)$ Smallest k s.t. P is projection of affine section of \mathcal{S}_+^k is $\operatorname{psd-rank}_{\mathbb{R}}(S)$

[Rothvoss'14] The matching polytope of K_n has **no polynomial size LP** extended formulation: smallest $k = 2^{\Omega(n)}$

Basic upper bounds

- ► For $A \in \mathbb{R}_+^{m \times n}$: $\operatorname{psd-rank}(A) \leq \operatorname{rank}_+(A) \leq \min\{m, n\}$
- ▶ For $A \in \mathcal{CP}^n$: cp-rank $(A) \leq {n+1 \choose 2}$
- ▶ For $A \in \mathcal{CS}_+^n$: cpsd-rank_{\mathbb{C}} $(A) \leq \text{cpsd-rank}_{\mathbb{R}}(A) \leq ?$

No upper bound on ${\rm cpsd\text{-}rank}$ exists in terms of matrix size! ${\rm rank}_+,~{\rm psd\text{-}rank},~{\rm cp\text{-}rank}$ are computable; is ${\rm cpsd\text{-}rank}$ computable? [Vavasis 2009] ${\rm rank}_+$ is NP-complete

Theorem (G-dL-L 2016, Prakash-Sikora-Varvitsiotis-Wei 2016) Construct
$$A_n \in \mathcal{CS}^n_+$$
 with exponential $\operatorname{cpsd-rank}_{\mathbb{C}}(A_n) = 2^{\Omega(\sqrt{n})}$

Example (G-dL-L 2016)

$$A_n = \begin{pmatrix} nI_n & J_n \\ J_n & nI_n \end{pmatrix} \in \mathcal{CP}^{2n}$$
 has quadratic separation for cp and cpsd rks:

- ightharpoonup cp-rank $(A_n) = n^2$, cpsd-rank $_{\mathbb{C}}(A_n) = n$
- ▶ $\operatorname{cpsd-rank}_{\mathbb{R}}(A_n) = n \iff \exists \text{ real Hadamard matrix of order } n$

What about lower bounds?

• [Fawzi-Parrilo 2016] defines lower bounds $\tau_+(\cdot)$ for rank_+ , and $\tau_{cp}(\cdot)$ for cp-rank, based on their **atomic definition**:

$$\begin{aligned} \operatorname{rank}_+(A) &= \min \ d \ \text{ s.t. } A = u_1 v_1^\mathsf{T} + \ldots + u_d v_d^\mathsf{T} \ \text{ with } u_i, v_i \in \mathbb{R}_+^n \\ & \operatorname{cp-rank}(A) = \min \ d \ \text{ s.t. } A = u_1 u_1^\mathsf{T} + \ldots + u_d u_d^\mathsf{T} \ \text{ with } u_i \in \mathbb{R}_+^n \\ & \tau_+(A) = \min \alpha \ \text{ s.t. } A \in \alpha \cdot \operatorname{conv}(R \in \mathbb{R}^{m \times n} : 0 \leq R \leq A, \operatorname{rank}(R) \leq 1) \\ & \tau_{cp}(A) = \min \alpha \ \text{ s.t. } A \in \alpha \cdot \operatorname{conv}(R \in \mathcal{S}^n : 0 \leq R \leq A, \operatorname{rank}(R) \leq 1, R \leq A) \end{aligned}$$

• [FP 2016] also defines tractable SDP relaxations $\tau_{+}^{sos}(\cdot)$ and $\tau_{cp}^{sos}(\cdot)$:

$$\tau_+^{sos}(A) \leq \tau_+(A) \leq \operatorname{rank}_+(A), \quad \operatorname{rank}(A) \leq \tau_{cp}^{sos}(A) \leq \tau_{cp}(A) \leq \operatorname{cp-rank}(A)$$

• Combinatorial lower bound: **Boolean rank** $\operatorname{rank}_B(A) \leq \operatorname{rank}_+(A)$ $\operatorname{rank}_B(A) = \chi(RG(A))$: coloring number of the 'rectangle graph' RG(A)

$$\tau_+(A) \ge \chi_f(RG(A)), \quad \tau_+^{sos}(A) \ge \vartheta(\overline{RG(A)})$$

[Fiorini & al. 2015] shows **no polynomial LP extended formulations** exist for TSP, correlation, cut, stable set polytopes

No atomic definition exists for psd-rank and cpsd-rank ...

... using **(nc) polynomial optimization** we get a common framework which applies to *all four* factorization ranks [G-dL-L 2017]

Commutative polynomial optimization [Lasserre, Parrilo 2000–] Noncommutative: eigenvalue opt. [Pironio, Navascués, Acín 2010–] Noncommutative: tracial opt. [Burgdorf, Cafuta, Klep, Povh 2012–]

$$f_*^c = \inf f(x) \text{ s.t. } x \in \mathbb{R}^n, g(x) \ge 0 \text{ } (g \in S)$$

$$f_*^{nc} = \inf \text{Tr}(f(\mathbf{X})) \text{ s.t. } d \in \mathbb{N}, \mathbf{X} \in (S^d)^n, \mathbf{g}(\mathbf{X}) \succeq 0 \text{ } (g \in S)$$

$$f_{C^*}^{nc} = \inf \tau(f(\mathbf{X})) \text{ s.t. } \mathcal{A} C^* - \text{algebra}, \mathbf{X} \in \mathcal{A}^n, \mathbf{g}(\mathbf{X}) \succeq 0 \text{ } (g \in S)$$

$$f_{C^*}^{nc} \le f_*^{nc} \le f_*^{nc}$$

- SDP lower bounds: $\min L(f)$ s.t. $L \in \mathbb{R}\langle \mathbf{x} \rangle_{2t}$ or $L \in \mathbb{R}[\mathbf{x}]_{2t}$ s.t. Asymptotic convergence: $f_t^{nc} \longrightarrow f_{C^*}^{nc}$, $f_t^c \longrightarrow f_*^c$ as $t \to \infty$
- Equality: $f_t^{nc} = f_*^{nc}$, $f_t^{c} = f_*^{c}$ if order t bound has **flat** optimal solution

For matrix factorization ranks: same framework, but now minimizing $\mathcal{L}(1)$

Polynomial optimization approach for cpsd-rank

Assume $\mathbf{X} = (X_1, \dots, X_n) \in (\mathcal{H}_+^d)^n$ is a Gram factorization of $A \in \mathcal{CS}_+^n$. The (real part of the) trace evaluation L at \mathbf{X} satisfies:

- (0) L(1) = d
- (1) $A = (L(x_i x_i))$
- (2) L is symmetric, tracial, positive
- (3) $L(p^*(\sqrt{A_{ii}}x_i x_i^2)p) \ge 0 \ \forall p$ [localizing constraints]
- (3) holds: $A_{ii} = \text{Tr}(X_i^2) \Longrightarrow \sqrt{A_{ii}}X_i X_i^2 \succeq 0$

Define the parameters for
$$t \in \mathbb{N} \cup \{\infty\}$$

$$\xi_t^{cpsd}(A) = \min \ L(1) \ \text{ s.t. } L \in \mathbb{R}\langle \mathbf{x} \rangle_{2t}^* \ \text{satisfies (1)-(3)}$$

$$\xi_*^{cpsd}(A)$$
 : add to ξ_∞^{cpsd} the constraint $\operatorname{rank}\ M(L)<\infty$

moment matrix:
$$M(L) = (L(u^*v))_{u,v \in \langle \mathbf{x} \rangle}$$

$$\xi_1^{cpsd}(A) \leq \ldots \leq \xi_t^{cpsd}(A) \leq \ldots \leq \xi_{\infty}^{cpsd}(A) \leq \xi_*^{cpsd}(A) \leq \operatorname{cpsd-rank}_{\mathbb{C}}(A)$$

Properties of the bounds ξ_t^{cpsd}

$$\xi_1^{cpsd}(A) \leq \ldots \leq \xi_t^{cpsd}(A) \leq \ldots \leq \xi_{\infty}^{cpsd}(A) \leq \xi_*^{cpsd}(A) \leq \operatorname{cpsd-rank}_{\mathbb{C}}(A)$$

- ▶ Asymptotic convergence: $\xi_t^{cpsd}(A) \to \xi_\infty^{cpsd}(A)$ as $t \to \infty$ $\xi_\infty^{cpsd}(A) = \min \ \alpha \text{ s.t. } A = \frac{\alpha}{\alpha} \left(\tau(X_i X_j) \right) \text{ for some } C^*\text{-algebra } (A, \tau)$ and $\mathbf{X} \in \mathcal{A}^n \text{ with } \sqrt{A_{ii}}X_i - X_i^2 \succeq 0 \ \forall i$
- $\xi_*^{cpsd}(A) = \min \alpha$ s.t. ... \mathcal{A} finite dimensional ... = $\min L(1)$ s.t. L conic combination of trace evaluations at \mathbf{X} ...
- ▶ Finite convergence: $\xi_t^{cpsd}(A) = \xi_*^{cpsd}(A)$ if $\xi_t^{cpsd}(A)$ has an optimal solution L which is **flat**: $\operatorname{rank} M_t(L) = \operatorname{rank} M_{t-1}(L)$
- $\blacktriangleright \xi_1^{cpsd}(A) \ge \frac{(\sum_i \sqrt{A_{ii}})^2}{\sum_{i:i} A_{ii}}$ [analytic bound of Prakash et al.'16]
- ▶ Can **strengthen the bounds** by adding constraints on *L*:
 - 1. $L(p^*(v^TAv (\sum_i v_i x_i)^2)p) \ge 0$ for all $v \in \mathbb{R}^n$ [v-constraints]
 - 2. $L(pgp^*g') \ge 0$ for g, g' are localizing for A [Berta et al.'16]
 - 3. $L(px_ix_j) = 0$ if $A_{ij} = 0$ [zeros propagate]
 - 4. $L(p(\sum_i v_i x_i)) = 0$ for all $v \in \ker A$

Small example

Consider
$$A = \begin{pmatrix} 1 & 1/2 & 0 & 0 & 1/2 \\ 1/2 & 1 & 1/2 & 0 & 0 \\ 0 & 1/2 & 1 & 1/2 & 0 \\ 0 & 0 & 1/2 & 1 & 1/2 \\ 1/2 & 0 & 0 & 1/2 & 1 \end{pmatrix}$$

- ▶ cpsd-rank(A) ≤ 5 because if X = Diag(1, 1, 0, 0, 0) and its cyclic shifts then $X/\sqrt{2}$ is a factorization of A
- ▶ $L = \frac{1}{2}L_X$ is feasible for $\xi_*^{cpsd}(A)$, with value L(1) = 5/2Hence $\xi_*^{cpsd}(A) \le 5/2$, in fact $\xi_2^{cpsd}(A) = \xi_*^{cpsd}(A) = 5/2$
- ▶ But $\xi_{2,V}^{cpsd}(A) = 5 \implies \text{cpsd-rank}(A) = 5$ with the *v*-constraints for v = (1, -1, 1, -1, 1) and its cyclic shifts

Lower bounds for cp-rank

Same approach: Minimize L(1) for $L \in \mathbb{R}[\mathbf{x}]_{2t}$ (commutative) satisfying (1)-(3): $L(p^2) \geq 0$, $L(p^2(\sqrt{A_{ii}}x_i - x_i^2)) \geq 0$, $A = (L(x_ix_j))$ and

- (4) $L(p^2(A_{ij} x_i x_i)) \ge 0$
- (5) $L(u) \ge 0$, $L(u(A_{ij} x_i x_i)) \ge 0$ for u monomial
- (6) $A^{\otimes l} (L(u^*v))_{u,v \in \langle \mathbf{x} \rangle_{=l}} \succeq 0$ for $2 \le l \le t$

Comparison to the bounds τ_{cp}^{sos} and τ_{cp} of [Fawzi-Parrilo'16]:

- $\blacktriangleright \xi_2^{cp}(A) \geq \tau_{cp}^{sos}(A)$
- $\qquad \qquad \tau_{cp}(A) = \xi^{cp}_*(A)$
- ▶ $\tau_{cp}(A)$ is reached as asymptotic limit when using v-constraints for a dense subset of \mathbb{S}^{n-1} instead of constraints (5)-(6)

Example:
$$A = \begin{pmatrix} (q+a)I_p & J_{p,q} \\ J_{q,p} & (p+b)I_q \end{pmatrix}$$
 for $a, b \ge 0$

- $\blacktriangleright \xi_2^{cp}(A) \geq pq$
- ▶ $\xi_2^{cp}(A) = 6$ is tight for (p, q) = (2, 3), since cp-rank(A) = 6 but $\tau_{cp}^{sos} < 6$ for nonzero $(a, b) \in [0, 1]^2$, equal to 5 on large region

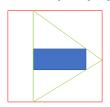
Lower bounds for $rank_+$ and psd-rank

Same approach: as **no a priori bound** on the eigenvalues of the factors ... **rescale** the factors to get such bounds and thus localizing constraints Get now $\tau_+(A) = \xi_\infty^+(A)$ directly as asymptotic limit of the SDP bounds

Example for rank₊: [Fawzi-Parrilo'16]

$$S_{a,b} = \begin{pmatrix} 1-a & 1+a & 1+a & 1-a \\ 1+a & 1-a & 1-a & 1+a \\ 1-b & 1-b & 1+b & 1+b \\ 1+b & 1+b & 1-b & 1-b \end{pmatrix} \quad \text{for } a,b \in [0,1]$$

slack matrix of nested rectangles: $R = [-a, a] \times [-b, b] \subseteq P = [-1, 1]^2$



 \exists triangle T s.t. $R \subseteq T \subseteq P \iff \operatorname{rank}_+(S_{a,b}) = 3$

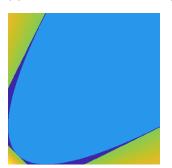
 $\operatorname{rank}_+(S_{a,b}) = 3 \iff (1+a)(1+b) \le 2$ (in dark blue region)

$${
m rank}_+(S_{a,b})=4$$
: outside dark blue region $au_+^{sos}(S_{a,b})>3$: in yellow region $\xi_2^+(S_{a,b})>3$: in green & yellow regions

Small example for psd-rank

[Fawzi et al.'15] For
$$M_{b,c} = \begin{pmatrix} 1 & b & c \\ c & 1 & b \\ b & c & 1 \end{pmatrix}$$

$$\operatorname{psd-rank}_{\mathbb{R}}(M_{b,c}) \leq 2 \iff b^2 + c^2 + 1 \leq 2(b+c+bc)$$



 $psd-rank(M_{b,c}) = 3$: outside light blue region

$$\xi_2^{psd}(M_{b,c}) > 2$$
: in yellow region

Concluding remarks

Polynomial optimization approach:

commutative	(tracial) noncommutative
copositive cone	completely positive semidefinite cone
\mathcal{CP}^n	\mathcal{CS}^n_+
classical coloring	quantum coloring
$\chi(G)$	$\chi_q(G)$
cp-rank, rank ₊	$\operatorname{cpsd-rank}_{\mathbb{C}}$, $\operatorname{psd-rank}_{\mathbb{C}}$

- ▶ The approach extends to other quantum graph parameters
- Extension to nonnegative tensor rank [Fawzi-Parrilo 2016], nuclear norm of symmetric tensors [Nie 2016]
- ▶ How to tailor the bounds for **real** ranks: $cpsd-rank_{\mathbb{R}}$, $psd-rank_{\mathbb{R}}$?
- ▶ Structure of the cone CS_+^n ? little known already for small $n \ge 5...$