Variational Discretizations of Gauge Field Theories using Group-equivariant Interpolation

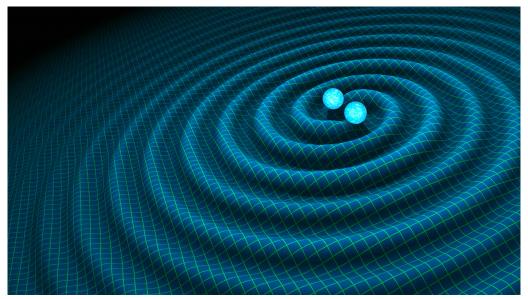
Melvin Leok

Mathematics, University of California, San Diego

Joint work with Evan Gawlik, James Hall, and Joris Vankerschaver.

Foundations of Computational Mathematics Barcelona, Spain, July 2017.

Gravitational Waves, LIGO, and Numerical Relativity



- Gravitational waves are ripples in the fabric of spacetime that were predicted by Einstein in 1916.
- Gravitational waves were directly observed on September 14, 2015 by the **Advanced LIGO project**.
- Numerical relativity is necessary to compute the black hole mergers that generate gravitational waves.

General Relativity and Gauge Field Theories

• The Einstein equations arise from the **Einstein**—**Hilbert action** defined on **Lorentzian metrics**,

$$S_G(g_{\mu\nu}) = \int \left[\frac{1}{16\pi G} g^{\mu\nu} R_{\mu\nu} + \mathcal{L}_M \right] \sqrt{-g} d^4x,$$

where $g = \det g_{\mu\nu}$ and $R_{\mu\nu} = R^{\alpha}_{\mu\alpha\nu}$ is the Ricci tensor.

• This yields the **Einstein field equations**,

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}g^{\alpha\beta}R_{\alpha\beta} = 8\pi G T_{\mu\nu},$$

where $T_{\mu\nu} = -2\frac{\delta \mathcal{L}_M}{\delta g^{\mu\nu}} + g_{\mu\nu}\mathcal{L}_M$ is the stress-energy tensor.

• This is a **second-order gauge field theory**, with the spacetime diffeomorphisms as the gauge symmetry group.

Gauge Field Theories

- A **gauge symmetry** is a continuous local transformation on the field variables that leaves the system physically indistinguishable.
- A consequence of this is that the Euler–Lagrange equations are **underdetermined**, i.e., the evolution equations are insufficient to propagate all the fields.
- The **kinematic fields** have no physical significance, but the **dy-namic fields** and their conjugate momenta have physical significance.
- The Euler-Lagrange equations are **overdetermined**, and the initial data on a Cauchy surface satisfies a constraint (usually elliptic).
- These degenerate systems are naturally described using **multi- Dirac** mechanics and geometry.

Example: Electromagnetism

- Let **E** and **B** be the electric and magnetic vector fields respectively.
- We can write Maxwell's equations in terms of the scalar and vector potentials ϕ and \mathbf{A} by,

$$\mathbf{E} = -\nabla \phi - \frac{\partial \mathbf{A}}{\partial t}, \qquad \nabla^2 \phi + \frac{\partial}{\partial t} (\nabla \cdot \mathbf{A}) = 0,$$

$$\mathbf{B} = \nabla \times \mathbf{A}, \qquad \Box \mathbf{A} + \nabla \left(\nabla \cdot \mathbf{A} + \frac{\partial \phi}{\partial t} \right) = 0.$$

• The following transformation leaves the equations invariant,

$$\phi \to \phi - \frac{\partial f}{\partial t},$$
 $\mathbf{A} \to \mathbf{A} + \nabla f.$

• The associated Cauchy initial data constraints are,

$$\nabla \cdot \mathbf{B}^{(0)} = 0, \qquad \nabla \cdot \mathbf{E}^{(0)} = 0.$$

Example: Gauge conditions in EM

- One often addresses the indeterminacy due to gauge freedom in a field theory through the choice of a **gauge condition**.
- The **Lorenz gauge** is $\nabla \cdot \mathbf{A} = -\frac{\partial \phi}{\partial t}$, which yields,

$$\Box \phi = 0, \qquad \Box \mathbf{A} = 0.$$

• The Coulomb gauge is $\nabla \cdot \mathbf{A} = 0$, which yields,

$$\nabla^2 \phi = 0, \qquad \Box \mathbf{A} + \nabla \frac{\partial \phi}{\partial t} = 0.$$

• Given different initial and boundary conditions, some problems may be easier to solve in certain gauges than others. There is no systematic way of deciding which gauge to use for a given problem.

Noether's Theorem

■ Theorem (Noether's Theorem)

• For every continuous symmetry of an action, there exists a quantity that is conserved in time.

Example

- The simplest illustration of the principle comes from classical mechanics: a time-invariant action implies a conservation of the Hamiltonian, which is usually identified with energy.
- More precisely, if $S = \int_{t_a}^{t_b} L(q, \dot{q}) dt$ is invariant under the transformation $t \to t + \epsilon$, then

$$\frac{d}{dt}\left(\dot{q}\frac{\partial L}{\partial \dot{q}} - L\right) = \frac{dH}{dt} = 0$$

Noether's Theorem

Theorem (Noether's Theorem for Gauge Field Theories)

• For every differentiable, local symmetry of an action, there exists a **Noether current** obeying a continuity equation. Integrating this current over a spacelike surface yields a conserved quantity called a **Noether charge**.

Examples

• The Noether currents for electromagnetism are,

$$j_0 = \mathbf{E} \cdot \nabla f$$
 $\mathbf{j} = -\mathbf{E} \frac{\partial f}{\partial t} + (\mathbf{B} \times \nabla) f$

• The Einstein-Hilbert action for GR yields the stress-energy tensor,

$$T_{\mu\nu} = -2\frac{\delta \mathcal{L}_M}{\delta q^{\mu\nu}} + g_{\mu\nu} \mathcal{L}_M$$

as the Noether charge for spacetime diffeomorphism symmetry.

Consequences of Gauge Invariance in GR

- By **Noether's second theorem**, the spacetime diffeomorphism symmetry implies that only 6 of the 10 components of the Einstein equations are independent.
- Typically, this is addressed by imposing **gauge conditions**:
 - maximal slicing gauge, $K = \partial_t K = 0$, where $K = K_{\alpha\beta}K^{\alpha\beta}$ is the trace of the extrinsic curvature.
 - de Donder (or harmonic) gauge, $\Gamma^{\alpha}_{\beta\gamma}g^{\beta\gamma} = 0$, which is Lorentz invariant and useful for gravitational waves.
- When formulated as an initial-value problem, the **Cauchy data** is constrained, and must satisfy the Gauss-Codazzi equations.
- The gauge symmetry implies that we obtain a degenerate variational principle.

Implications for Numerics

- We wish to study discretizations of general relativity that respect the **general covariance** of the system. This leads us to avoid using a tensor product discretization that presupposes a slicing of spacetime, rather we will consider **simplicial spacetime meshes**.
- We will consider **multi-Dirac mechanics** based on a Hamilton–Pontryagin variational principle for field theories that is well adapted to degenerate field theories.
- We will study **gauge-invariant discretizations** based on variational discretizations using gauge-equivariant approximation spaces.
- This is important because gauge-equivariant spacetime finite element spaces lead to gauge-invariant variational discretizations that satisfy a multimomentum conservation law.

Dirac Geometry and Mechanics

Dirac Structures

- Dirac structures can be viewed as simultaneous generalizations of symplectic and Poisson structures.
- Implicit Lagrangian and Hamiltonian systems¹ provide a unified geometric framework for studying degenerate, interconnected, and nonholonomic Lagrangian and Hamiltonian mechanics.

Variational Principles

• The Hamilton-Pontryagin principle² on the Pontryagin bundle $TQ \oplus T^*Q$, unifies Hamilton's principle, Hamilton's phase space principle, and the Lagrange-d'Alembert principle.

¹H. Yoshimura, J.E. Marsden, Dirac structures in Lagrangian mechanics. Part I: Implicit Lagrangian systems, J. of Geometry and Physics, **57**, 133–156, 2006.

²H. Yoshimura, J.E. Marsden, Dirac structures in Lagrangian mechanics. Part II: Variational structures, *J. of Geometry and Physics*, **57**, 209–250, 2006.

Continuous Hamilton-Pontryagin principle

- Pontryagin bundle and Hamilton-Pontryagin principle
 - Consider the **Pontryagin bundle** $TQ \oplus T^*Q$, which has local coordinates (q, v, p).
 - The **Hamilton–Pontryagin principle** is given by

$$\delta \int [L(q,v) - p(v - \dot{q})] = 0,$$

where we impose the second-order curve condition, $v = \dot{q}$ using Lagrange multipliers p.

Continuous Hamilton-Pontryagin principle

■ Implicit Lagrangian systems

• Taking variations in q, v, and p yield

$$\begin{split} \delta \int [L(q,v) - p(v - \dot{q})] dt \\ &= \int \left[\frac{\partial L}{\partial q} \delta q + \left(\frac{\partial L}{\partial v} - p \right) \delta v - (v - \dot{q}) \delta p + p \delta \dot{q} \right] dt \\ &= \int \left[\left(\frac{\partial L}{\partial q} - \dot{p} \right) \delta q + \left(\frac{\partial L}{\partial v} - p \right) \delta v - (v - \dot{q}) \delta p \right] dt, \end{split}$$

where we used integration by parts, and the fact that the variation δq vanishes at the endpoints.

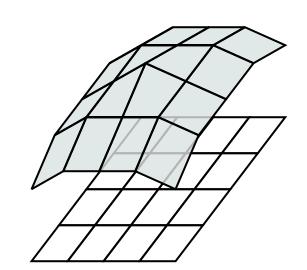
• This recovers the implicit Euler-Lagrange equations,

$$\dot{p} = \frac{\partial L}{\partial q}, \qquad p = \frac{\partial L}{\partial v}, \qquad v = \dot{q}.$$

Multisymplectic Geometry

Ingredients

- Base space \mathcal{X} . (n+1)-spacetime.
- Configuration bundle. Given by π : $Y \to \mathcal{X}$, with the fields as the fiber.
- Configuration $q: \mathcal{X} \to Y$. Gives the field variables over each spacetime point.
- First jet J^1Y . The first partials of the fields with respect to spacetime.



Variational Mechanics

- Lagrangian density $L: J^1Y \to \Omega^{n+1}(\mathcal{X})$.
- Action integral given by, $S(q) = \int_{\mathcal{X}} L(j^1q)$.
- Hamilton's principle states, $\delta S = 0$.

Continuous Multi-Dirac Mechanics

- Hamilton–Pontryagin for Fields³
 - In coordinates, the Hamilton–Pontryagin principle for fields is

$$S(y^A,y_\mu^A,p_A^\mu) = \int_U \left[p_A^\mu \left(\frac{\partial y^A}{\partial x^\mu} - v_\mu^A \right) + L(x^\mu,y^A,v_\mu^A) \right] d^{n+1}x,$$

which yields the implicit Euler-Lagrange equations,

$$\frac{\partial p_A^{\mu}}{\partial x^{\mu}} = \frac{\partial L}{\partial y^A}, \quad p_A^{\mu} = \frac{\partial L}{\partial v_{\mu}^A}, \quad \text{and} \quad \frac{\partial y^A}{\partial x^{\mu}} = v_{\mu}^A.$$

• The Legendre transform involves both the energy and momentum,

$$p_A^{\mu} = \frac{\partial L}{\partial v_{\mu}^A}, \qquad p = L - \frac{\partial L}{\partial v_{\mu}^A} v_{\mu}^A.$$

³J. Vankerschaver, H. Yoshimura, ML, *The Hamilton-Pontryagin Principle and Multi-Dirac Structures for Classical Field Theories*, J. Math. Phys., 53(7), 072903, 2012.

Continuous Multi-Dirac Structure

- Multi-Dirac Structure⁴
 - The **canonical multisymplectic** (n+2)-form on J^1Y^* is $\Omega = dy^A \wedge dp^{\mu}_{\Delta} \wedge d^n x_{\mu} dp \wedge d^{n+1}x.$
 - Consider the contraction of Ω by a (n+1)-multivector field,

$$\mathcal{X}_{n+1} \in \bigwedge^{n+1}(TM) \mapsto \mathbf{i}_{\mathcal{X}_{n+1}}\Omega \in \bigwedge^{1}(T^{*}M),$$

where $M = J^1Y \times_Y J^1Y^*$. The graph of this mapping defines a submanifold D_{n+1} of $\bigwedge^{n+1}(TM) \times_M \bigwedge^1(T^*M)$.

• The implicit Euler–Lagrange equations can be written as,

$$(\mathcal{X}, (-1)^{n+2} \mathbf{d}E) \in D_{n+1},$$

where $E = p + p_A^{\mu} v_{\mu}^A - L(x^{\mu}, y^A, v_{\mu}^A)$ is the generalized energy.

⁴J. Vankerschaver, H. Yoshimura, ML, On the Geometry of Multi-Dirac Structures and Gerstenhaber Algebras,

J. Geom. Phys., 61(8), 1415-1425, 2011.

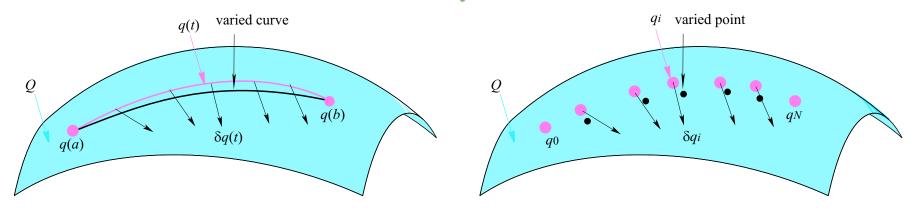
Geometric Discretizations

■ Geometric Integrators

- Given the fundamental role of gauge symmetry and their associated conservation laws in gauge field theories, it is natural to consider discretizations that preserve these properties.
- Geometric Integrators are a class of numerical methods that preserve geometric properties, such as symplecticity, momentum maps, and Lie group or homogeneous space structure of the dynamical system to be simulated.
- This tends to result in numerical simulations with better long-time numerical stability, and qualitative agreement with the exact flow.

The Classical Lagrangian View of Variational Integrators

Discrete Variational Principle



Discrete Lagrangian

$$L_d(q_0, q_1) \approx L_d^{\text{exact}}(q_0, q_1) \equiv \int_0^h L(q_{0,1}(t), \dot{q}_{0,1}(t)) dt,$$

where $q_{0,1}(t)$ satisfies the Euler-Lagrange equations for L and the boundary conditions $q_{0,1}(0) = q_0$, $q_{0,1}(h) = q_1$.

• This is related to **Jacobi's solution** of the **Hamilton–Jacobi** equation.

The Classical Lagrangian View of Variational Integrators

- Discrete Variational Principle
 - Discrete Hamilton's principle

$$\delta \mathbb{S}_d = \delta \sum L_d(q_k, q_{k+1}) = 0,$$

where q_0 , q_N are fixed.

- Discrete Euler-Lagrange Equations
 - Discrete Euler-Lagrange equation

$$D_2L_d(q_{k-1}, q_k) + D_1L_d(q_k, q_{k+1}) = 0.$$

• The associated discrete flow $(q_{k-1}, q_k) \mapsto (q_k, q_{k+1})$ is automatically symplectic, since it is equivalent to,

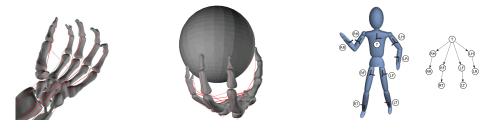
$$p_k = -D_1 L_d(q_k, q_{k+1}), \quad p_{k+1} = D_2 L_d(q_k, q_{k+1}),$$

which is the characterization of a symplectic map in terms of a **Type I generating function** (discrete Lagrangian).

Examples of Variational Integrators

Multibody Systems

Simulations courtesy of Taeyoung Lee, George Washington University.



Simulations courtesy of Todd Murphey, Northwestern University.

Continuum Mechanics

Simulations courtesy of Eitan Grinspun, Columbia University.

Lagrangian Variational Integrators

■ Main Advantages of Variational Integrators

Discrete Noether's Theorem

If the discrete Lagrangian L_d is (infinitesimally) G-invariant under the diagonal group action on $Q \times Q$,

$$L_d(gq_0, gq_1) = L_d(q_0, q_1)$$

then the discrete momentum map $J_d: Q \times Q \to \mathfrak{g}^*$,

$$\langle J_d(q_k, q_{k+1}), \xi \rangle \equiv \langle D_1 L_d(q_k, q_{k+1}), \xi_Q(q_k) \rangle$$

is preserved by the discrete flow.

Lagrangian Variational Integrators

- Main Advantages of Variational Integrators
 - Variational Error Analysis⁵

Since the exact discrete Lagrangian generates the exact solution of the Euler-Lagrange equation, the exact discrete flow map is formally expressible in the setting of variational integrators.

• If a computable discrete Lagrangian L_d is of order r, i.e.,

$$L_d(q_0, q_1) = L_d^{\text{exact}}(q_0, q_1) + \mathcal{O}(h^{r+1}),$$

then it generates an r-order accurate symplectic integrator.

⁵J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numerica 10, 357-514, 2001.

Lagrangian Variational Integrators

- Main Advantages of Variational Integrators
 - Variational Error Analysis (Sketch of Proof)

Consider the discrete Legendre transforms, $\mathbb{F}^{\pm}L_d: Q \times Q \to T^*Q$,

$$\mathbb{F}^+L_d: (q_k, q_{k+1}) \to (q_{k+1}, p_{k+1}) = (q_{k+1}, D_2L_d(q_k, q_{k+1})),$$

$$\mathbb{F}^-L_d: (q_k, q_{k+1}) \to (q_k, p_k) = (q_k, -D_1L_d(q_k, q_{k+1})).$$

• This yields the following commutative diagram,

$$(q_k, p_k) \xrightarrow{\tilde{F}_{L_d}} (q_{k+1}, p_{k+1}) \xrightarrow{\mathbb{F}^-L_d} \mathbb{F}^+L_d \xrightarrow{\mathbb{F}^-L_d} (q_{k+1}, q_{k+1}) \xrightarrow{F_{L_d}} (q_{k+1}, q_{k+2})$$

Since $\tilde{F}_{L_d} = \mathbb{F}^+ L_d \circ (\mathbb{F}^- L_d)^{-1}$, the result easily follows.

Constructing Discrete Lagrangians

Revisiting the Exact Discrete Lagrangian

• Consider an alternative expression for the exact discrete Lagrangian,

$$L_d^{\text{exact}}(q_0, q_1) \equiv \underset{q(0) = q_0, q(h) = q_1}{\text{ext}} \int_0^h L(q(t), \dot{q}(t)) dt,$$

which is more amenable to discretization.

Ritz Discrete Lagrangians

- Replace the infinite-dimensional function space $C^2([0, h], Q)$ with a **finite-dimensional function space**.
- Replace the integral with a **numerical quadrature formula**.

Optimal Rates of Convergence

• A desirable property of a Ritz numerical method based on a finite-dimensional space $F_d \subset F$, is that it should exhibit **optimal** rates of convergence, which is to say that the numerical solution $q_d \in F_d$ and the exact solution $q \in F$ satisfies,

$$||q - q_d|| \le c \inf_{\tilde{q} \in F_d} ||q - \tilde{q}||.$$

• This means that the rate of convergence depends on the best approximation error of the finite-dimensional function space.

Optimality of Ritz Variational Integrators

- Given a sequence of finite-dimensional function spaces $\mathcal{C}_1 \subset \mathcal{C}_2 \subset \ldots \subset C^2([0,h],Q) \equiv \mathcal{C}_{\infty}$.
- For a correspondingly accurate sequence of quadrature formulas,

$$L_d^i(q_0, q_1) \equiv \underset{q \in C_i}{\text{ext}} h \sum_{j=1}^{s_i} b_j^i L(q(c_j^i h), \dot{q}(c_j^i h)),$$

where $L_d^{\infty}(q_0, q_1) = L_d^{\text{exact}}(q_0, q_1)$.

- Proving $L_d^i(q_0, q_1) \to L_d^{\infty}(q_0, q_1)$, corresponds to Γ -convergence.
- For optimality, we require the bound,

$$L_d^i(q_0, q_1) = L_d^{\infty}(q_0, q_1) + c \inf_{\tilde{q} \in \mathcal{C}_i} ||q - \tilde{q}||,$$

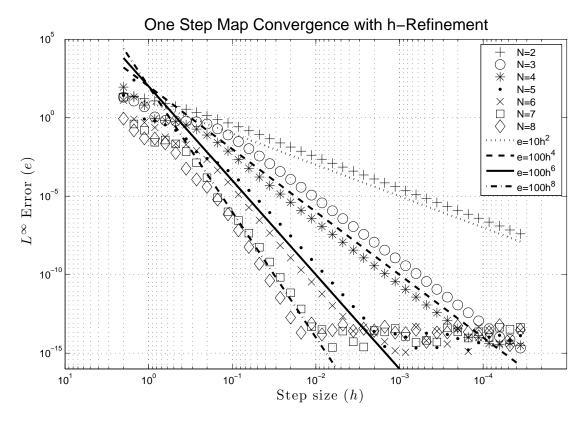
where we need to relate the rate of Γ -convergence with the best approximation properties of the family of approximation spaces.

- Theorem: Optimality of Ritz Variational Integrators⁶ ⁷
 - Under suitable technical hypotheses:
 - \circ Regularity of L in a closed and bounded neighboorhood;
 - The quadrature rule is sufficiently accurate;
 - The discrete and continuous trajectories *minimize* their actions; the Ritz discrete Lagrangian has the same approximation properties as the best approximation error of the approximation space.
 - The critical assumption is action minimization. For Lagrangians $L = \dot{q}^T M \dot{q} V(q)$, and sufficiently small h, this assumption holds.
 - Shows that Ritz variational integrators are **order optimal**; spectral variational integrators are **geometrically convergent**.

⁶J. Hall, ML, Spectral Variational Integrators, Numerische Mathematik, 130(4), 681-740, 2015.

⁷J. Hall, ML, Lie Group Spectral Variational Integrators, Found. Comput. Math., 17(1), 199-257, 2017.

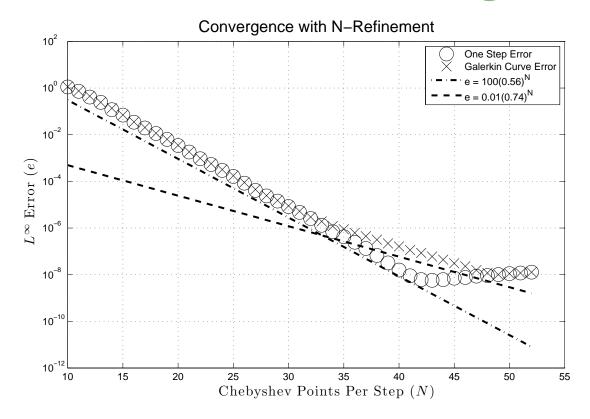
Numerical Results: Order Optimal Convergence



• Order optimal convergence of the Kepler 2-body problem with eccentricity 0.6 over 100 steps of h = 2.0.

Spectral Ritz Variational Integrators

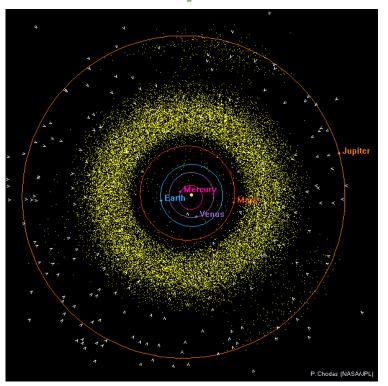
■ Numerical Results: Geometric Convergence

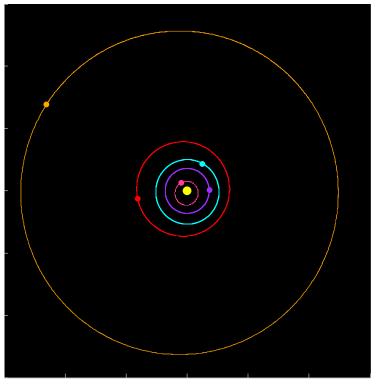


• Geometric convergence of the Kepler 2-body problem with eccentricity 0.6 over 100 steps of h = 2.0.

Spectral Ritz Variational Integrators

Numerical Experiments: Solar System Simulation

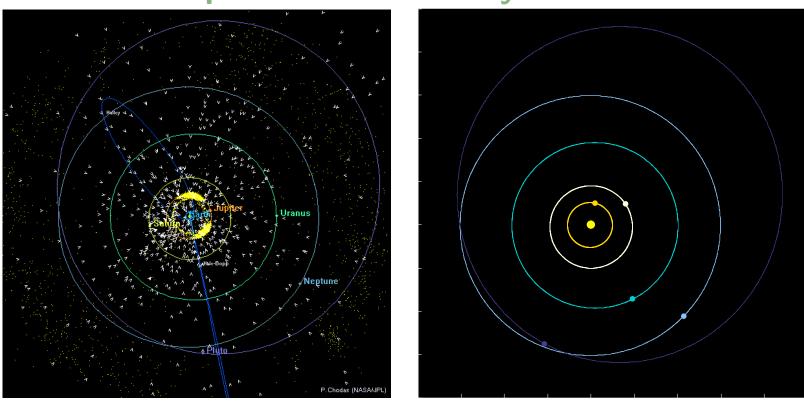




- Comparison of inner solar system orbital diagrams from a spectral variational integrator and the JPL Solar System Dynamics Group.
- h = 100 days, T = 27 years, 25 Chebyshev points per step.

Spectral Ritz Variational Integrators

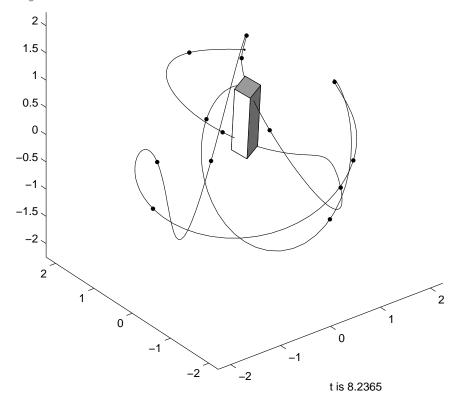
■ Numerical Experiments: Solar System Simulation



• Comparison of outer solar system orbital diagrams from a spectral variational integrator and the JPL Solar System Dynamics Group. Inner solar system was aggregated, and h=1825 days.

Spectral Lie Group Variational Integrators

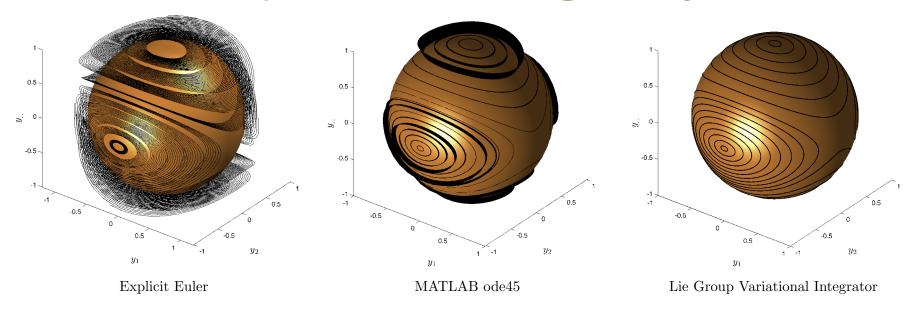
■ Numerical Experiments: 3D Pendulum



• n = 20, h = 0.6. The black dots represent the discrete solution, and the solid lines are the Ritz curves. Some steps involve a rotation angle of almost π , which is close to the chart singularity.

Spectral Lie Group Variational Integrators

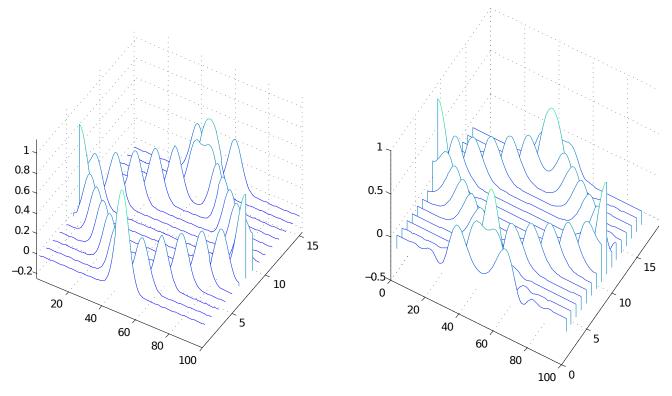
Numerical Experiments: Free Rigid Body



- The conserved quantities are the norm of body angular momentum, and the energy. Trajectories lie on the intersection of the angular momentum sphere and the energy ellipsoid.
- These figures illustrate the extent to the numerical methods preserve the quadratic invariants.

Spectral Variational Integrators

■ Numerical Experiments: Spectral Wave Equation



- The wave equation $u_{tt} = u_{xx}$ on S^1 is described by the Lagrangian density function, $L(\varphi, \dot{\varphi}) = \frac{1}{2} |\dot{\varphi}(x,t)|^2 \frac{1}{2} |\nabla \varphi(x,t)|^2$.
- Discretized using spectral in space, and linear in time.

Multisymplectic Exact Discrete Lagrangian

- What is the PDE analogue of a generating function?
 - Recall the implicit characterization of a symplectic map in terms of generating functions:

$$\begin{cases} p_k = -D_1 L_d(q_k, q_{k+1}) & \begin{cases} p_k = D_1 H_d^+(q_k, p_{k+1}) \\ p_{k+1} = D_2 L_d(q_k, q_{k+1}) \end{cases} \begin{cases} p_k = D_1 H_d^+(q_k, p_{k+1}) \\ q_{k+1} = D_2 H_d^+(q_k, p_{k+1}) \end{cases}$$

• Symplecticity follows as a trivial consequence of these equations, together with $\mathbf{d}^2 = 0$, as the following calculation shows:

$$\mathbf{d}^{2}L_{d}(q_{k}, q_{k+1}) = \mathbf{d}(D_{1}L_{d}(q_{k}, q_{k+1})dq_{k} + D_{2}L_{d}(q_{k}, q_{k+1})dq_{k+1})$$

$$= \mathbf{d}(-p_{k}dq_{k} + p_{k+1}dq_{k+1})$$

$$= -dp_{k} \wedge dq_{k} + dp_{k+1} \wedge dq_{k+1}$$

Multisymplectic Exact Discrete Lagrangian

Analogy with the ODE case

• We consider a multisymplectic analogue of Jacobi's solution:

$$L_d^{\text{exact}}(q_0, q_1) \equiv \int_0^h L(q_{0,1}(t), \dot{q}_{0,1}(t)) dt,$$

where $q_{0,1}(t)$ satisfies the Euler-Lagrange boundary-value problem.

• The **boundary Lagrangian**⁸ is given by

$$L_d^{\text{exact}}(\varphi|_{\partial\Omega}) \equiv \int_{\Omega} L(j^1\tilde{\varphi}),$$

where $\tilde{\varphi}$ satisfies the boundary conditions $\tilde{\varphi}|_{\partial\Omega} = \varphi|_{\partial\Omega}$, and $\tilde{\varphi}$ satisfies the Euler-Lagrange equation in the interior of Ω .

⁸C. Liao, J. Vankerschaver, ML, Generating Functionals and Lagrangian PDEs, J. Math. Phys., 54(8), 082901, 2013.

Multisymplectic Exact Discrete Lagrangian

Multisymplectic Relation

• If one takes variations of the multisymplectic exact discrete Lagrangian with respect to the boundary conditions, we obtain,

$$\partial_{\varphi(x,t)} L_d^{\text{exact}}(\varphi|_{\partial\Omega}) = p_{\perp}(x,t),$$

where $(x,t) \in \partial\Omega$, and p_{\perp} is a codimension-1 differential form, that by Hodge duality can be viewed as the normal component (to the boundary $\partial\Omega$) of the multimomentum at the point (x,t).

• These equations, taken at every point on $\partial\Omega$ constitute a **multi-symplectic relation**, which is the PDE analogue of,

$$\begin{cases} p_k = -D_1 L_d(q_k, q_{k+1}) \\ p_{k+1} = D_2 L_d(q_k, q_{k+1}) \end{cases}$$

where the sign comes from the orientation of the boundary.

Gauge Symmetries and Variational Discretizations

■ Theorem (Discrete Noether's Theorem)

• If the discrete boundary Lagrangian is invariant with respect to the lifted action of a gauge symmetry group on the space of boundary data, then it satisfies a discrete multimomentum conservation law.

■ Theorem (Group-Invariant Ritz Discrete Lagrangians)

• Given a group-equivariant approximation space, and a Lagrangian density that is invariant under the lifted group action, the associated Ritz discrete boundary Lagrangian is group-invariant.

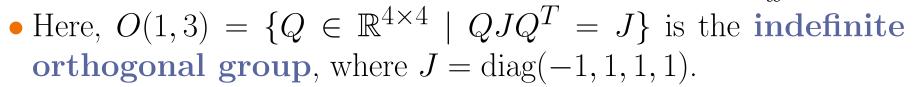
Implications for Geometric Integration

- We need finite elements that take values in the space of Lorentzian metrics that are group-equivariant.
- Two current approaches, geodesic finite elements and groupequivariant interpolation on symmetric spaces.

• Let \mathcal{L} denote the space of Lorentzian metric tensors:

$$\mathcal{L} = \{ L \in \mathbb{R}^{4 \times 4} \mid L = L^T, \det L \neq 0, \operatorname{signature}(L) = (3, 1) \}.$$

- Given $L^{(i)} \in \mathcal{L}$ at the vertices $x^{(i)}$ of a simplex Ω , find a continuous function $\mathcal{I}L: \Omega \to \mathcal{L}$ such that:
 - $\circ \mathcal{I}L(x^{(i)}) = L^{(i)}$ for each i.
 - $\circ \mathcal{I}L(x) \in \mathcal{L}$ for every $x \in \Omega$.
 - If $Q \in O(1,3)$ and $L^{(i)} \leftarrow QL^{(i)}Q^T$, then $\mathcal{I}L(x) \leftarrow Q\mathcal{I}L(x)Q^T$.



 $x^{(3)}$

Componentwise interpolation

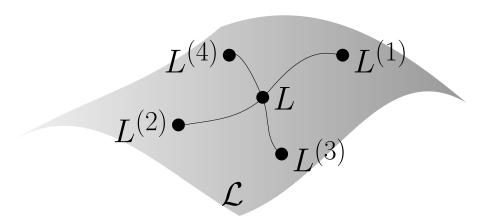
• Not signature-preserving, in general. For instance,

$$\frac{1}{2} \underbrace{\begin{pmatrix} 0 & 4 & 0 & 0 \\ 4 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{\in \mathcal{L} \text{ since } \lambda = -4, 1, 1, 4} + \underbrace{\frac{1}{2} \begin{pmatrix} 2 & -4 & 0 & 0 \\ -4 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{\in \mathcal{L} \text{ since } \lambda = -2, 1, 1, 6} = \underbrace{\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{\notin \mathcal{L} \text{ since } \lambda = 1, 1, 1, 1}$$

- Geodesic finite elements⁹ 10
 - A **geodesic finite element** is given by

$$\mathcal{I}L(x) = \underset{L \in \mathcal{L}}{\operatorname{arg \, min}} \sum_{i=1}^{m} \phi_i(x) \operatorname{dist}(L^{(i)}, L)^2,$$

where $\{\phi_i\}_{i=1}^m$ are scalar-valued shape functions satisfying $\phi_i(x^{(j)}) = \delta_{ij}$. Also known as the **weighted Riemannian mean**.

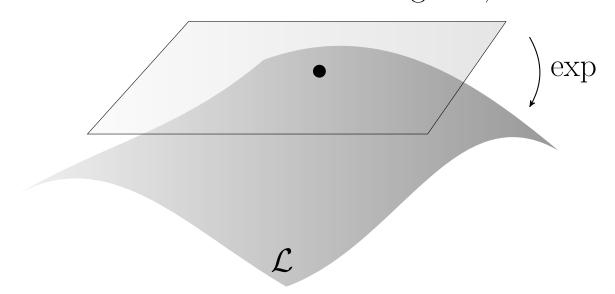


⁹O. Sander, Geodesic finite elements on simplicial grids, Int. J. Numer. Meth. Eng., 92(12), 999–1025, 2012.

¹⁰P. Grohs, Quasi-interpolation in Riemannian manifolds, IMA J. Numer. Anal., 33(3), 849–874, 2013.

Our approach¹¹

• Idea: If \mathcal{L} were a Lie group, one could use the exponential map and perform all calculations on its Lie algebra, a linear space.



• In reality, \mathcal{L} is not a Lie group, it is a **symmetric space**. Nonetheless, a similar construction is available.

¹¹E. Gawlik, ML, Interpolation on Symmetric Spaces via the Generalized Polar Decomposition, Found. Comput. Math., Online First, 2017.

• Notice that \mathcal{L} is diffeomorphic to $GL_4(\mathbb{R})/O(1,3)$: The map

$$\bar{\varphi}: GL_4(\mathbb{R})/O(1,3) \to \mathcal{L}$$

$$[A] \mapsto AJA^T,$$

is a diffeomorphism, where J = diag(-1, 1, 1, 1).

• Every coset [A] has a canonical representative Y by virtue of the **generalized polar decomposition**:

$$A = YQ, Y \in Sym_{J}(4), Q \in O(1,3),$$

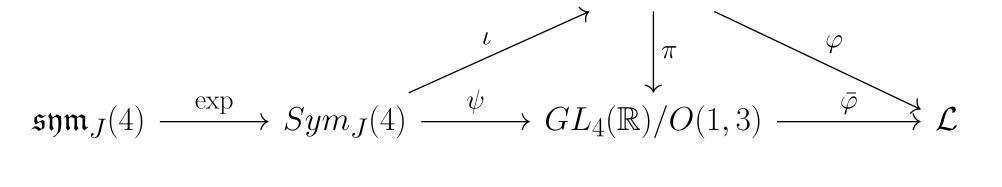
where

$$Sym_J(4) = \{ Y \in GL_4(\mathbb{R}) \mid YJ = JY^T \}.$$

• log(Y) lives in a linear space called a **Lie triple system**:

$$\log(Y) \in \mathfrak{sym}_J(4) = \{ P \in \mathbb{R}^{4 \times 4} \mid PJ = JP^T \}.$$

Summary



 $GL_4(\mathbb{R})$

$$\log(Y) \longmapsto Y \longmapsto [Y] \longmapsto YJY^T$$

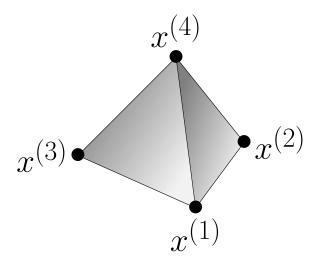
ullet Lie triple system

$$\mathfrak{sym}_J(4) = \{ P \in \mathbb{R}^{4 \times 4} \mid PJ = JP^T \},$$

which is a linear space.

• Interpolation on a linear space is easy.

Interpolation Formula



• The resulting interpolation formula reads

$$\mathcal{I}L(x) = J \exp\left(\sum_{i=1}^{m} \phi_i(x) \log(JL^{(i)})\right),\,$$

where J = diag(-1, 1, 1, 1), and $\{\phi_i\}_{i=1}^m$ are scalar-valued shape functions satisfying the Kronecker delta property $\phi_i(x^{(j)}) = \delta_{ij}$.

Signature preservation

• The interpolant $\mathcal{I}L$ is signature-preserving; that is,

$$\mathcal{I}L(x) \in \mathcal{L}$$

for every $x \in \Omega$.

■ Frame invariance

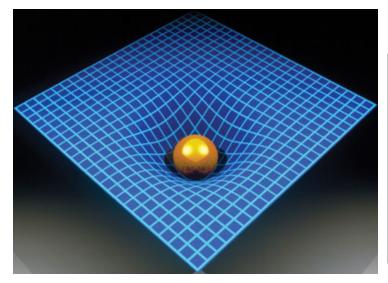
• Let $Q \in O(1,3)$. If $\tilde{L}^{(i)} = QL^{(i)}Q^T$, i = 1, 2, ..., m, and if Q is sufficiently close to the identity matrix, then

$$\mathcal{I}\tilde{L}(x) = Q \mathcal{I}L(x) Q^{T}$$

for every $x \in \Omega$.

- Numerical example (Linear Interpolation)
 - Interpolating the Schwarzschild metric, which is a spherically symmetric, vacuum solution of the Einstein equations.

$$-\left(1 - \frac{1}{r}\right)dt^{2} + \left(1 - \frac{1}{r}\right)^{-1}dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta \, d\varphi^{2}\right)$$

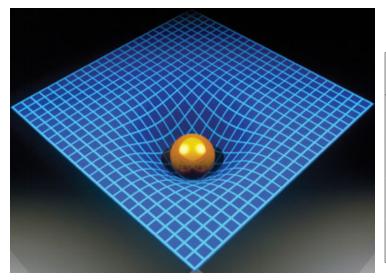


Linear shape functions $\{\phi_i\}_i$

N	L^2 -error	Order	H^1 -error	Order
2	$3.3 \cdot 10^{-3}$		$2.8 \cdot 10^{-2}$	
4	$8.4 \cdot 10^{-4}$	1.975	$1.4 \cdot 10^{-2}$	0.998
8	$2.1 \cdot 10^{-4}$	1.994	$7.1 \cdot 10^{-3}$	0.999
16	$5.3 \cdot 10^{-5}$	1.998	$3.6 \cdot 10^{-3}$	1.000

- Numerical example (Quadratic Interpolation)
 - Interpolating the Schwarzschild metric, which is a spherically symmetric, vacuum solution of the Einstein equations.

$$-\left(1 - \frac{1}{r}\right)dt^{2} + \left(1 - \frac{1}{r}\right)^{-1}dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta \, d\varphi^{2}\right)$$



Quadratic shape functions $\{\phi_i\}_i$

N	L^2 -error	Order	H^1 -error	Order
2	$1.7 \cdot 10^{-4}$		$2.5 \cdot 10^{-3}$	
4	$2.2 \cdot 10^{-5}$	3.001	$6.2 \cdot 10^{-4}$	1.993
8	$2.7 \cdot 10^{-6}$	3.000	$1.6 \cdot 10^{-4}$	1.998
16	$3.4 \cdot 10^{-7}$	3.000	$3.9 \cdot 10^{-5}$	1.999

Relationship with other methods

• The interpolant we constructed has the form,

$$\mathcal{I}L(x) = J \exp\left(\sum_{i=1}^{m} \phi_i(x) \log(JL^{(i)})\right).$$

• An alternative interpolant is defined implicitly via

$$\mathcal{I}L(x) = \mathcal{I}L(x) \exp\left(\sum_{i=1}^{m} \phi_i(x) \log\left(\mathcal{I}L(x)^{-1}L^{(i)}\right)\right).$$

This interpolant is equivalent to the **geodesic finite element**.

• Replacing J = diag(-1, 1, 1, 1) with the identity matrix, one recovers the weighted **Log-Euclidean mean**¹² of symmetric positive-definite matrices,

$$\mathcal{I}L(x) = \exp\left(\sum_{i=1}^{m} \phi_i(x) \log(L^{(i)})\right).$$

¹²V. Arsigny, P. Fillard, X. Pennec, and N. Ayache. Geometric means in a novel vector space structure on symmetric positive-definite matrices. SIAM. J. Matrix Anal. & Appl., 29(1), 328–347, 2007.

■ Lorentzian metrics as a Symmetric Space

- S smooth manifold
- η distinguished element of \mathcal{S}
- G Lie group that acts transitively on $\mathcal S$
- $\sigma: G \to G$ involutive automorphism
- $\bullet \ G^{\sigma} = \{ g \in G \mid \sigma(g) = g \}$
- $G_{\sigma} = \{ g \in G \mid \sigma(g) = g^{-1} \}$

 \mathcal{L} (Lorentzian metrics)

$$J = diag(-1, 1, 1, 1)$$

$$GL_4(\mathbb{R})$$

$$\sigma(A) = JA^{-T}J$$

$$Sym_J(4)$$

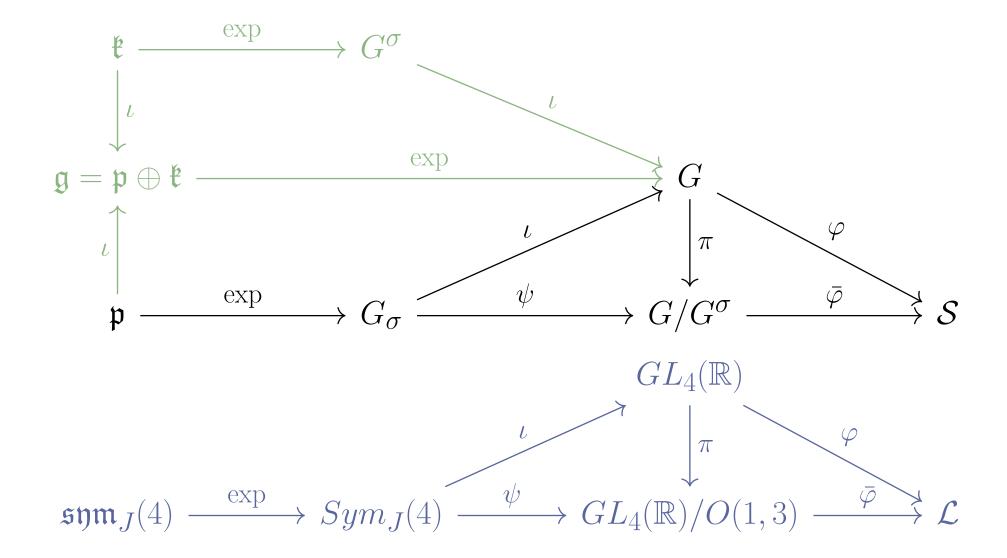
Key Assumption

• Isotropy subgroup of η coincides with the fixed set G^{σ} , i.e.

$$g \cdot \eta = \eta \iff \sigma(g) = g.$$

 $AJA^T = J \iff JA^{-T}J = A$

- Then S is diffeomorphic to G/G^{σ} (a **symmetric space**) and every $[g] \in G/G^{\sigma}$ has a canonical representative $p \in G_{\sigma}$ by the **generalized polar decomposition** $g = pk, p \in G_{\sigma}, k \in G^{\sigma}$.
- This is related to the **Cartan decomposition** of the Lie algebra $\mathfrak{g} = \mathfrak{p} \oplus \mathfrak{k}$, where \mathfrak{k} is the Lie algebra of the subgroup G^{σ} , and $\mathfrak{p} = \{P \in \mathfrak{g} \mid d\sigma(P) = -P\} \subset \mathfrak{g} = \{P \in \mathbb{R}^{4 \times 4} \mid -JP^TJ = -P\}$, which is a **Lie triple system** it is closed under the double commutator $[\cdot, [\cdot, \cdot]]$, but not under $[\cdot, \cdot]$.



Summary

- S is locally diffeomorphic to the Lie triple system \mathfrak{p} , which is a linear space.
- Interpolation on a linear space is easy.
- The resulting formula for interpolating $\{u^{(i)}\}_{i=1}^m \subset \mathcal{S}$ reads

$$\mathcal{I}u(x) = F\left(\sum_{i=1}^{m} \phi_i(x)F^{-1}(u^{(i)})\right),$$

where $\phi_i: \Omega \to \mathbb{R}$, i = 1, 2, ..., m, are scalar-valued shape functions satisfying $\phi_i(x^{(j)}) = \delta_{ij}$, and

$$F: \mathfrak{p} \to \mathcal{S}$$

 $P \mapsto \exp(P) \cdot \eta.$

• The interpolant is G^{σ} -equivariant, and can be used to construct multimomentum preserving variational integrators.

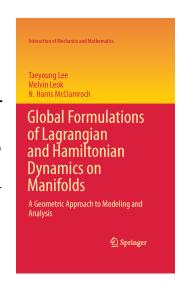
Summary

- Gauge field theories exhibit gauge symmetries that impose Cauchy initial value constraints, and are also underdetermined.
- These result in degenerate field theories that can be described using multi-Dirac mechanics and multi-Dirac structures.
- Described a systematic framework for constructing and analyzing Ritz variational integrators, and the extension to Hamiltonian PDEs.
- Multimomentum conserving variational integrators can be constructed from group-equivariant finite element spaces.
- These spaces can be constructed efficiently for finite elements taking values in symmetric spaces, in particular, Lorentzian metrics, by using a generalized polar decomposition.

Commericals

New Monograph

• Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds, Taeyoung Lee, ML, N. Harris McClamroch, Interactions of Mechanics and Mathematics, Springer, XXVII+539 pages, ISBN: 978-3-319-56951-2. \$89.99 | €79,99 | £59.99



Another talk on interpolation on symmetric spaces

• Interpolation of Manifold-Valued Functions via the Generalized Polar Decomposition, Evan Gawlik, Session A5 – Geometric Integration and Computational Mechanics, 16:00–16:30, Room 111.

References

- 1. E. Gawlik, ML, Interpolation on Symmetric Spaces via the Generalized Polar Decomposition, Found. Comput. Math., Online First, 2017.
- 2. J. Hall, ML, Lie Group Spectral Variational Integrators, Found. Comput. Math., 17(1), 199-257, 2017.
- 3. J. Hall, ML, Spectral Variational Integrators, Numer. Math., 130(4), 681–740, 2015.
- 4. J. Vankerschaver, C. Liao, ML, Generating Functionals and Lagrangian PDEs, J. Math. Phys., 54(8), 082901, 2013.
- 5. J. Vankerschaver, H. Yoshimura, ML, The Hamilton-Pontryagin Principle and Multi-Dirac Structures for Classical Field Theories, J. Math. Phys., 53(7), 072903, 2012.
- 6. J. Vankerschaver, H. Yoshimura, ML, On the Geometry of Multi-Dirac Structures and Gerstenhaber Algebras, J. Geom. Phys., 61(8), 1415-1425, 2011
- 7. ML, T. Ohsawa, Variational and Geometric Structures of Discrete Dirac Mechanics, Found. Comput. Math., 11(5), 529–562, 2011.

http://www.math.ucsd.edu/~mleok/mleok@math.ucsd.edu