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LIMITED INFORMATION ESTIMATION AND TESTING OF DISCRETIZED
MULTIVARIATE NORMAL STRUCTURAL MODELS
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Discretized multivariate normal structural models are often estimated using multistage estimation
procedures. The asymptotic properties of parameter estimates, standard errors, and tests of structural
restrictions on thresholds and polychoric correlations are well known. It was not clear how to assess the
overall discrepancy between the contingency table and the model for these estimators. It is shown that
the overall discrepancy can be decomposed into a distributional discrepancy and a structural discrepancy.
A test of the overall model specification is proposed, as well as a test of the distributional specification
(i.e., discretized multivariate normality). Also, the small sample performance of overall, distributional,
and structural tests, as well as of parameter estimates and standard errors is investigated under conditions
of correct model specification and also under mild structural and/or distributional misspecification. It is
found that relatively small samples are needed for parameter estimates, standard errors, and structural
tests. Larger samples are needed for the distributional and overall tests. Furthermore, parameter estimates,
standard errors, and structural tests are surprisingly robust to distributional misspecification.

Key words: GLS, WLS estimation, LISREL, categorical data analysis, data sparseness, goodness-of-fit,
limited information estimation, pseudo-maximum likelihood estimation, IRT, polychoric correlations,
structural equation models.

1. Introduction

A popular model for p-way contingency tables assumes that these arise by categorizing
a p-dimensional multivariate standard normal density according to a set of thresholds. The
thresholds and polychoric correlations may in turn be assumed to depend on a smaller set
of structural parameters. Generally speaking, the estimation of such models is not possible
by standard maximum likelihood estimation (e.g., Bock & Aitkin, 1981) due to the difficulty
in evaluating high order multivariate normal integrals. However, these models can be easily
estimated using the following three-stage limited information procedure:

• Stage 1: Estimate by maximum likelihood the thresholds for each variable separately from
the univariate marginals of the contingency table.

• Stage 2: Estimate by maximum likelihood each of the polychoric correlations separately
from the bivariate marginals of the contingency table given the estimated thresholds.

• Stage 3: If restrictions are imposed on the thresholds and polychoric correlations, estimate
the underlying parameters from the estimated thresholds and polychoric correlations by a
weighted least squares procedure.

This estimation method has a long tradition in psychometrics using both grouped and
ungrouped data (i.e., sample proportions vs. individual observations). When the objective is
to estimate the parameters of a discretized structured multivariate normal density, then it is
computationally more efficient to estimate the model parameters using grouped data (Muthén, du
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Toit, & Spisic, 1997). However, when continuous exogenous variables are included in the model
it is more convenient to resort to ungrouped data due to data sparseness (Muthén, 1982). The
use of this estimation method using grouped data has been considered by Muthén (1978, 1993),
Olsson (1979), Christoffersson and Gunsjö (1983, 1996), Gunsjö (1994), Jöreskog (1994), and
Maydeu-Olivares (2001). Using ungrouped data it has been considered by Muthén (1984), Muthén
and Satorra (1995), Muthén et al. (1997), Küsters (1987), and Bermann (1993). Furthermore, this
estimation method is currently available in such popular software as PRELIS/LISREL (Jöreskog
& Sörbom, 2001) and MPLUS (Muthén & Muthén, 2001) and also in the lesser known program
MECOSA (Arminger, Wittenberg, & Schepers, 1996). Alternative sequential limited information
estimators for these models have been proposed by other authors (e.g., Lee, Poon, & Bentler,
1995), but these will not be discussed here.

However, although this estimation method has been in use for several years now no sat-
isfactory solution has been offered as to how to assess the goodness-of-fit of these models to
the contingency table. See Muthén (1993) for a detailed discussion of this issue. Assessing the
goodness-of-fit of discretized multivariate normal structural models involves assessing the over-
all discrepancy between the observed contingency table and the specified model. This overall
discrepancy can be decomposed into a distributional discrepancy (i.e., the extent to which the
data arise from discretizing a multivariate normal density) and a structural discrepancy (i.e., the
extent to which the restrictions imposed on the parameters of the underlying normal density are
appropriate). Tests for assessing the structural restrictions on the parameters of the discretized
multivariate normal model are well known (Muthén, 1978, 1984, 1993) and routinely used in
practice. However, these tests may only be meaningful if the distributional restrictions hold (i.e., if
the data arise by categorizing a multivariate normal density). Yet, tests of the overall restrictions,
or of the distributional restrictions, have not been proposed in the literature. The main aim of the
present research is to fill this gap using asymptotic theory for sample proportions. In so doing,
the literature on the use of this sequential procedure to estimate discretized multivariate normal
structural models will also be reviewed and integrated.

The paper is organized as follows. In section 2 the sequential estimation procedure just
described is presented. In section 3 the asymptotic distribution of the first, second, and third stage
estimates are provided using standard results. In section 4 goodness-of-fit testing is discussed.
In this section, tests of the distributional and of the overall restrictions imposed by the model on
the bivariate marginals of the contingency table are proposed. Computational aspects of these
tests are provided in section 5. In section 6 a small simulation study is reported to illustrate the
small sample behavior of the parameter estimates, standard errors, and tests. Simulations are
performed under correct model specification as well as under distributional and/or structural
misspecification. Finally, section 7 includes two applications. In these applications factor models
are fitted to the five-category items of the LOT (Scheier & Carver, 1985) and to the binary items
of the LSAT 6 data (Bock & Lieberman, 1970). Additional material is provided as appendices. In
one of the appendices it is shown that our expression for the asymptotic covariance matrix of the
sample thresholds and polychoric correlations reduces to the expressions provided by Muthén
(1978) for the binary case, by Olsson (1979) for the bivariate case, and by Christoffersson and
Gunsjö (1983, 1996) and Jöreskog (1994) for the asymptotic covariance matrix of the polychoric
correlations.

2. Sequential Estimation of Discretized Multivariate Normal Structural Models

Let z∗ ∼ N (0, P) where P denotes a correlation matrix with elements ρii ′ . Suppose that
each z∗

i , i = 1, . . . , p, has been categorized as yi = ki if τik < z∗
i < τik+1 , ki = 0, . . . , K − 1,

where τi0 = −∞, τiK = ∞. That is, for ease of exposition and without loss of generality, we
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shall assume that all observed categorical variables yi have the same number of categories, K .

According to the model

Pr

[
n⋂

i=1

(yi = ki)

]
=
∫

· · ·
R

∫
φp(z∗: 0, P) dz∗, (1)

where φp(•) denotes a p-dimensional normal density function, and R is a p-dimensional area of
integration with intervals Ri = (τik , τik+1 ). In particular,

πik = Pr (yi = ki) =
∫ τik+1

τik

φ(z∗
i : 0, 1) dz∗

i , (2)

πikik
′ = Pr [(yi = ki) ∩ (y ′

i = k′
i)] =

∫ τik+1

τik

∫ τi′
k′+1

τi′
k′

φ2(z∗
i , z

∗
i ′ : 0, 0, 1, 1, ρii ′ ) dz∗

i dz∗
i ′ . (3)

We shall first introduce some notation: Let π i = (πi0 , . . . , π iK−1
)′ and let π ii ′ = (πi0i

′
0
,

πi0i
′
1
, . . . , πiK−1i

′
K−1

)′. π i is the set of univariate probabilities for variable i and πii ′ is the set of
bivariate probabilities for variables i and i’. Also, let π

.
1 = (π ′

1, . . . ,π
′
p)′ be a vector containing

all p univariate probability tables, and let π
.
2 = (π21

′,π ′
31 . . . ,π ′

p,p−1)′ be a vector containing all
the p(p − 1)/2 bivariate probability tables. The sample counterparts of π

.
1 and π

.
2 will be denoted

by p. 1 and p. 2. Finally, let τ i = (τi1 , . . . , τiK−1 )′ be a vector containing all thresholds for variable
i, τ = (τ ′

1, . . . , τ
′
p)′, ρ = (ρ21, ρ31, . . . , ρp,p−1)′, and κ = (τ ′, ρ ′)′.

Now, given a random sample of N observations from (1), we can place the observations in
a Kp contingency table. We are interested in the following sequential procedure for estimating
(1) from the contingency table.

First stage: Estimate the thresholds for each variable separately by maximizing

L(τ i) = N

K−1∑
k=0

pik ln πik (τi), (4)

where pik denotes the sample counterpart of πik .

Second stage: Given the first stage estimates, estimate separately each polychoric correlation ρii ′

by maximizing

L(ρii ′ |τ̂ i , τ̂ i ′) = N

K−1∑
k=0

K−1∑
k′=0

piki
′
k′ ln πiki

′
k′ (ρii ′ |τ̂ i , τ̂ i ′ .), (5)

where piki
′
k′ denotes the sample counterpart of πiki

′
k′ .

Suppose now that some parametric structure is assumed on the reduced form parameters κ ,
say κ(θ ), where θ is a vector of q mathematically independent parameters. Then, these parameters
can be estimated in an additional stage.

Third stage: Estimate θ by minimizing the weighted least squares function

F = (κ̂ − κ(θ ))′Ŵ(κ̂ − κ(θ)), (6)

where Ŵ is a matrix converging in probability to W, a positive definite matrix. Denoting
the asymptotic covariance matrix of the sample thresholds and polychoric correlations by �,

obvious choices of Ŵ in (6) are Ŵ = �̂
−1

(weighted least squares (WLS), Muthén, 1978),
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Ŵ = (Diag(�̂))−1 (diagonally weighted least squares (DWLS), Gunsjö, 1994; Muthén et al.,
1997), and Ŵ = I (unweighted least squares (ULS), Muthén, 1993).

3. Asymptotic Distribution of the Estimates

First, we notice that since the univariate probabilities are simply sums of bivariate probabil-
ities, π

.
1 = T π

.
2, for some matrix T of 1’s and 0’s. Therefore, we can write

√
N (p

.
1 − π

.
1) = T

√
N (p

.
2 − π

.
2). (7)

For example, for p = 3, 
π1

π2

π3


 =


T2 T2 0

T1 0 T2

0 T1 T1




︸ ︷︷ ︸
T


π21

π31

π32


 ,

where, letting 1K and 0K denote K-dimensional column vectors of 1’s and 0’s, respectively, we
have that, when K = 4,

T1 =




1′
4 0′

4 0′
4 0′

4

0′
4 1′

4 0′
4 0′

4

0′
4 0′

4 1′
4 0′

4

0′
4 0′

4 0′
4 1′

4


 , T2 = (I4 I4 I4 I4

)
.

We shall now provide the asymptotic properties of the first and second stage estimates.
We first notice that τ̂ i is a maximum likelihood estimate, as (4) is the log-likelihood function
for estimating τ i from a univariate marginal of the contingency table pi . Similarly, (5) is the
log-likelihood function for estimating ρii ′ from a bivariate marginal of the contingency table
pii ′ given the estimated thresholds. That is, ρ̂ii ′ is a pseudo-maximum likelihood estimate in
the terminology of Gong and Samaniego (1981). As a result, the asymptotic properties of these
estimates can readily be obtained using standard results for maximum likelihood estimation for
categorical models. Before proceeding, we shall review some of the relevant theory (see Agresti,
1990; Jöreskog, 1994).

Let π and p be C-dimensional vectors of multinomial probabilities, and sample proportions,
respectively. Then,

√
N (p − π )

d→ N (0,�), � = Diag(π ) − ππ ′, (8)

where
d→ denotes convergence in distribution. Also, consider a parametric structure for π ,

π (ϑ), with Jacobian matrix 	 = ∂π/∂ϑ ′, and suppose we estimate ϑ by maximizing L (ϑ) =
N
∑C−1

c=0 pc ln πc (ϑ). Then, under typical regularity conditions, it follows that ϑ̂ is consistent
and

√
N (ϑ̂ − ϑ)

a= B
√

N (p − π ), (9)

where B = (	′D	)−1	′D, D = Diag(π)−1, and
a= denotes asymptotic equality.

Now, we apply (9) to the first stage estimates obtaining
√

N (τ̂ − τ )
a= B11

√
N (p

.
1 − π

.
1), (10)
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where B11 = (	′
11D1	11)−1	′

11D1, D1 = Diag(π.1)−1, and 	11 = ∂π
.
1/∂τ ′. Furthermore,

from (7),
√

N (τ̂ − τ )
a= B11T

√
N (ṗ 2 − π̇2). (11)

Now, to apply (9) to the second stage estimates the asymptotic distribution of
√

N (ṗ2 − π̇2(ρ, τ̂ ))
is needed. It is shown in Appendix 1 that

√
N (ṗ 2 − π̇2(ρ, τ̂ ))

a=(I − 	21B11T)
√

N (ṗ2 − π̇2), (12)

where 	21 = ∂π̇2/∂τ ′. Then, applying (9) to (12) we obtain
√

N (ρ̂ − ρ)
a= B22(I − 	21B11T)

√
N (p

.
2 − π

.
2), (13)

where B22 = (	′
22D2	22)−1	′

22D2, D2 = Diag(π.2)−1, and 	22 = ∂π
.
2/∂ρ ′. In Appendix 2 we

sketch the derivatives involved in 	11, 	21, and 	22. Further details can be found in Olsson
(1979).

Collecting (11) and (13), the first and second stage estimates can be expressed asymptotically
as a linear function of the bivariate marginal proportions as follows:

√
N

[
τ̂ − τ

ρ̂ − ρ

]
a=
[

B11T
B22 [I − 	21B11T]

]
︸ ︷︷ ︸

G

√
N
(
p
.

2 − π
.
2
)
. (14)

Now, since the marginal proportions ṗ2 are simply sums of multinomial cell proportions
√

N (p
.

2 − π
.
2)

d→ N (0,�
.
), �

. = �̃ − π
.
2π

.
2, (15)

where provided p > 3, the elements of �̃ are four-way marginal probabilities. Thus, by (14) and
(15),

√
N (κ̂ − κ)

d→ N (0,�), � = G�
.

G′, (16)

where G and �
.

are to be evaluated at the true parameter values. Also, partitioning G =
[

G1

G2

]
and

� =
[
�11 �′

21
�21 �22

]
according to the partitioning of κ we have that

�22 = NAcov(ρ̂) = G2�
.

G′
2, (17)

where Acov(•) denotes asymptotic covariance matrix. In Appendix 3 it is shown that (17) equals
the expression given by Jöreskog (1994), and it is also shown that (16) reduces to the expression
given by Muthén, (1978) for the binary case (K = 2) and by Olsson (1979) for the bivariate case
(p = 2).

The asymptotic properties of the third stage estimates can be obtained from (16) using
standard results for weighted least squares estimators (e.g., Browne, 1984; Satorra, 1989; Satorra

& Bentler, 1994). Letting H =
(
	̃′W	̃

)−1
	̃′W, where 	̃ = ∂κ/∂θ ′, θ̂ is consistent and

√
N (θ̂ − θ )

a= H
√

N (κ̂ − κ), (18)

√
N (θ̂ − θ)

d→ N (0, H�H′), (19)

where 	̃ and W are to be evaluated at the true parameter values. Now, when Ŵ = �̂
−1

, (19)
simplifies to

√
N (θ̂ − θ )

d→ N (0, (	̃′�−1	̃)−1) (20)
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and we obtain an estimator that asymptotically has minimum variance among the class of esti-
mators based on the first and second stage estimates.

In closing this section we note that throughout the presentation it is assumed that a mul-
tivariate standard normal density has been categorized according to a set of thresholds, where
some parametric structure is imposed on the thresholds and polychoric correlations. When no
restrictions are imposed on the thresholds, then some simplifications are available in the third
estimation stage (see Muthén 1978, 1993). On the other hand, when a mean and covariance
structure model has been discretized rather than a correlation structure model some complexities
arise. These are discussed in Maydeu-Olivares and Hernández (2000).

4. Goodness-of-Fit Assessment

Within this estimation framework currently one tests the structural restrictions κ (θ ) us-
ing standard results for weighted least squares estimators. However, these tests may only be
meaningful if the distributional restrictions hold (i.e., if the data arise by categorizing a multi-
variate normal density). For a detailed discussion of this issue, see Muthén (1993). Currently,
the distributional restrictions π

.
2(κ) are assessed piecewise by performing tests of bivariate nor-

mality for each pair of variables using the likelihood ratio statistic G2. These tests are im-
plemented, for instance, in PRELIS/LISREL (Jöreskog & Sörbom, 2001). However, it is not
clear what to conclude if the hypothesis of categorized bivariate normality is accepted for
some pairs of variables but rejected for others. To overcome this limitation a test of the joint
distributional restrictions π

.
2 (κ) is proposed here. It is also possible to test the overall restric-

tions imposed by the model directly, π
.
2 (θ ) and we shall propose a test statistic to this pur-

pose.

4.1. Goodness-of-Fit Testing of the Structural Restrictions

Consider the structural residuals es = κ̂ − κ(θ̂). Using standard results for weighted least
squares estimators,

√
Nes

a=(I − 	̃H)
√

N (κ̂ − κ), (21)

√
Nes

d→ N (0, Vs), Vs = (I − 	̃H)�(I − 	̃H)′, (22)

Ts := NF̂ = Ne′
sŴes

a= N (κ̂ − κ)′(W(I − 	̃H))(κ̂ − κ)
d→

rs∑
i=1

αiχ
2
1 , (23)

where rs = p (K − 1) + p (p − 1)/2 − q are the degrees of freedom available for testing the
structural restrictions κ (θ).

In (23) the χ2
1 ’s are independent chi-square variables with one degree of freedom and the

α′
i s are the nonnull eigenvalues of

Ms = W(I − 	̃H)�. (24)

When Ŵ = �̂
−1

, (23) simplifies to Ts

d→ χ2
rs

. On the other hand, when Ŵ = (Diag(�̂))−1 or

Ŵ = I, a goodness-of-fit of the model can be obtained following Satorra and Bentler (1994) by
scaling Ts by its mean or adjusting it by its mean and variance so that it approximates a chi-square
distribution as follows (Muthén, 1993; Muthén et al., 1997)

T̄s = Ts

Tr(Ms)/rs

, ¯̄T s = Ts

Tr
(
M2

s

)
/rs

, (25)
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where T̄s and ¯̄T s denote the scaled (for mean) and adjusted (for mean and variance) test statistics.
The former is referred to a chi-square distribution with rs degrees of freedom, whereas the latter
is referred to a chi-square distribution with ds = Tr(Ms)2/(TrM2

s /rs) degrees of freedom.

4.2. Goodness-of-Fit Testing of the Distributional Restrictions

Consider now the distributional residuals ed = p. 2 − π
.
2 (κ̂). Let 	 = ∂π

.
2/∂κ ′ = (	21|	22),

in Appendix 1 it is shown that
√

Ned

d→(I − 	G)
√

N (p. 2 − π
.
2). (26)

The asymptotic distribution of the distributional residuals then follows from (15) and (26),
√

Ned

d→ N (0, Vd ), Vd = (I − 	G)�
.

(I − 	G)′. (27)

Now, to test the distributional restrictions of the model π
.
2(κ) we propose using the test

statistic

Td := Ne′
ded

d→
rd∑

i=1

αiχ
2
1 , (28)

where, by Theorem 2.1 of Box (1954), the αi’s are now the nonnull eigenvalues of Vd and the
number of degrees of freedom available for testing is rd = (K2 − 2K)[p(p − 1)/2]. Goodness-
of-fit tests of the distributional restrictions imposed by the model can be obtained by scaling Td by
its mean or adjusting it by its mean and variance so that it approximates a chi-square distribution
as follows:

T̄d = Td

Tr(Md )/rd

, ¯̄T d = Td

Tr
(
M2

d

)
/rd

, (29)

where T̄d and ¯̄T d denote the scaled (for mean) and adjusted (for mean and variance) test statis-
tics. The former is referred to a chi-square distribution with rd degrees of freedom, whereas
the latter is referred to a chi-square distribution with dd = Tr(Md )2/(TrM2

d/rd ) degrees of free-
dom.

4.3. Goodness-of-Fit Testing of the Overall Restrictions

Consider now the overall residuals eo = p. 2 − π
.
2(θ̂). In Appendix 1 it is shown that

√
Neo

d→ (I − 		̃HG)
√

N (p. 2 − π
.
2). (30)

From (15) and (30) we immediately have
√

Neo

d→ N (0, Vo), Vo = (I − 		̃HG)�
.
(I − 		̃HG)′. (31)

Akin to (28), to test the overall restrictions of the model, π.2(θ), we propose using the test statistic

To := Ne′
oeo

d→
ro∑

i=1

αiχ
2
1 , (32)

where the αi’s are now the nonnull eigenvalues of Vo and the number of degrees of freedom
available for testing is ro = n(K − 1) + (K − 1)2[p(p − 1)/2] − q. Goodness-of-fit tests of the
overall restrictions imposed by the model can be obtained by scaling To by its mean or adjusting
it by its mean and variance so that it approximates a chi-square distribution as follows:

T̄o = To

Tr (Mo) /ro

, ¯̄T o = To

Tr
(
M2

o

)
/ro

, (33)
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where T̄o and ¯̄T o denote the scaled (for mean) and adjusted (for mean and variance) test statistics.
The former is referred to a chi-square distribution with ro degrees of freedom, whereas the latter
is referred to a chi-square distribution with do = Tr(Mo)2/(TrM2

o/ro) degrees of freedom.
In closing this section we note that the overall residuals eo can be decomposed, asymp-

totically, as a linear function of the distributional residuals ed and of the structural residuals
es ,

eo

a= ed + 	es . (34)

This is shown in Appendix 1. In Appendix 1 it is also shown that

Acov(Td, Ts) = 2Tr[(I − 	G)′(I − 	G)�
.

G′(I − 	̃H)′W(I − 	̃H)G�
.

], (35)

Acov(To, Ts) = 2Tr[(I − 		̃HG)′(I − 		̃HG)�
.

G′(I − 	̃H)′W(I − 	̃H)G�
.
], (36)

Acov(Td, Ts) = 2Tr[(I − 		̃HG)′(I − 		̃HG)�
.

(I − 	G)′(I − 	G)�
.

]. (37)

Thus, when the model holds the overall, distributional, and structural test statistics are asymptot-
ically correlated because of their common dependency on the asymptotic covariance matrix of
the bivariate proportions.

5. Computational Aspects

The asymptotic covariance matrix of the bivariate marginal proportions p. 2,�
.
, is of di-

mension K2[p(p − 1)/2]. Clearly, the size of this matrix grows very rapidly for increasing p

and K . Thus, it is important to consider how to compute the asymptotic covariance matrix
of the sample thresholds and polychoric correlations and the traces required for the proposed
distributional and overall goodness-of-fit tests without having to store into memory �

.
. In this

section, we show how to estimate the elements of the asymptotic covariance matrix of the sam-
ple thresholds and polychoric correlations efficiently for very large models and how to obtain
tests of the distributional restrictions as a by-product with very little additional computation.
The approach employed here relies heavily on Jöreskog (1994). Additional research is needed
to manage the computation of the overall tests within available computer memory for large
models.

5.1. Asymptotic Covariance Matrix of Sample Thresholds and Polychoric Correlations

Akin to (10) we have
√

N (τ̂ i − τ i)
a= B(i)

11

√
N (p. i − π

.
i), (38)

where B(i)
11 = (	(i)′

11 Di	
(i)
11)−1	

(i)′
11 Di , Di = Diag(π.i)−1, and 	

(i)
11 = ∂π

.
i/∂τ ′

i . Also, akin to (13),
we have

√
N (ρ̂ii ′ − ρii ′)

a= G(ii ′)
2

√
N (p. ii ′ − π

.
ii ′ ), (39)

G(ii ′)
2 = B(ii ′)

22

(
I − 	

(i)
21B(i)

11T1 − 	
(i ′)
21 B(i ′)

11 T2
)
, (40)

where B(ii ′)
22 = (	(ii ′)′

22 Dii ′	
(ii ′)
22 )−1	

(ii ′)′

22 Dii ′ , Dii ′ = Diag(π.ii ′)−1, 	
(ii ′)
22 = ∂π

.
ii ′/∂ρii ′ , and 	

(i)
21 =

∂π
.
ii ′/∂τ ′

i .
Then, letting (i, i ′) be any two variables (not necessarily distinct), the asymptotic variances

and covariances among the estimated thresholds can be obtained using

NAcov(τ̂ i , τ̂ i ′ ) = B(i)
11(Cii ′ − π iπ i ′)B

(i ′)′

11 , (41)



ALBERT MAYDEU-OLIVARES 65

where Cii ′ is a K × K table of bivariate probabilities. Similarly, letting (i, i ′, j ) be any three
variables such that i 	= i ′, the asymptotic covariances between the estimated thresholds and
polychoric correlations can be obtained using

NAcov(ρ̂ii ′ , τ̂ j ) = G(ii ′)
2 (Cii ′j − π ii ′π j )B(j )′

11 , (42)

where Cii ′j is a K2 × K table of trivariate probabilities. Finally, letting (i, i ′, j, j ′) be any four
variables such that i 	= i ′ and j 	= j ′, the asymptotic variances and covariances between the
estimated polychoric correlations can be obtained using

NAcov(ρ̂ii ′ , ρ̂jj ′ ) = G(ii ′)
2 (Cii ′jj ′ − π ii ′π jj ′ )G(jj ′)′

2 , (43)

where Cii ′jj ′ is a K2 × K2 table of four-way probabilities.
Note that the two- and three-way probability tables can be obtained from the four-way

probability tables by using T1 and T2 matrices as needed. Also, in (41) to (43) it is possible
to use the following simplification: Since 	′

11D1π
.
1 = 0, 	′

11D1Tπ
.
2 = 0 and hence B11Tπ

.
2 = 0.

Similarly, B22π
.
2 = 0. Hence,

Gπ
.
2 = 0, (44)

and � = G�̃G′, �22 = G2�̃G′
2. Thus, for instance, the term −π ii ′π jj ′ can be dropped from (43).

To compute �̂ we store into memory all estimated (K − 1) × KB(i)
11 matrices, and all

1 ×K vectors G(ii ′)
22 . We consistently estimate B(i)

11 and G(ii ′)
22 by evaluating all derivative ma-

trices and all univariate and bivariate probabilities at κ̂ . Also, we consistently estimate the
four-way probability tables by using four-way sample proportions. The four-way contingency
tables need not be stored in memory. We compute them one at a time from the raw data.
By using these consistent estimates our asymptotic covariance matrix for the polychoric cor-
relations equals Jöreskog’s (1994) as implemented in PRELIS/LISREL (Jöreskog & Sörbom,
2001).

5.2. Tests of the Distributional Restrictions Imposed by the Model

Akin to (26) we have
√

N (p. ii ′ − π
.

ii ′(κ̂))
a= (I − 	(ii ′)G(ii ′))√N (p. ii ′ − π

.
ii ′ ), (45)

where

	(ii ′) =
(
	

(ii ′)
21 |	(ii ′)

22

)
, G(ii ′) =

[
G(ii ′)

1

G(ii ′)
2

]
., 	

(ii ′)
21 =

(
	

(i)
21|	(i ′)

21

)
, and G(ii ′)

1 =
[

B(i)
11T1

B(i ′)
11 T2

]
.

Now, to obtain T̄d and ¯̄T d , we need Tr(Vd ) and Tr(V2
d ) where Vd is a symmetric matrix structured

in blocks, each of dimension K2 × K2. These blocks can be obtained akin to (27) using (45) as

V(ll′)
d = (I − 	(l)G(l))(Cll′ − π lπ l′)(I − 	(l′)G(l′))′, (46)

where, to simplify the notation, we let l := (i, j ) ; i = 2, . . . , p; j = 1, · · · , i − 1. Then,

Tr(Vd ) =
∑

l

Tr
(

V(l)
d

)
, Tr(V2

d ) =
∑

l

Tr
(

V(ll)2

d

)
+
∑
l 	=l′

2Tr
(

V(ll′)′

d V(ll′)
d

)
, (47)

where (46) is consistently estimated by evaluating all derivative matrices and univariate and
bivariate probabilities at κ̂ , and by estimating the four-way probability tables by using four-way
sample proportions. Very little additional computation is involved to obtain these tests and in our
implementation we compute them in a single loop while obtaining the asymptotic covariance
matrix of the estimated thresholds and polychoric correlations.
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6. Small Sample Behavior

The small sample behavior of the parameter estimates, standard errors, and tests of the
structural restrictions has been investigated, for instance, by Muthén (1993) and Muthén et al.
(1997) under conditions of correct model specification. These simulation studies reveal that the
asymptotically optimal WLS has a poorer small sample behavior than ULS or DWLS due to the
instability of the four-way proportions in small samples (Muthén, 1993). Furthermore, when ULS
or DWLS is employed no weight matrix needs to be inverted in the third stage of the estimation
process. Thus, larger models can be handled by ULS and DWLS than by WLS. In the binary
case, Maydeu-Olivares (2001) has shown that the small sample behavior of ULS and DWLS is
very similar.

In this section we investigate the small sample behavior of the parameter estimates, standard
errors, and goodness-of-fit tests by means of a small simulation study, not only under conditions of
correct model specification, but also under conditions of structural or/and distributional misspec-
ification. A standard multivariate normal (MVN) density with p = 12 variables was considered,
where each variable is categorized into K = 3 categories using the thresholds τ i = (−0.5, 0.5)′.
A three factor correlation structure model was assumed, Pz∗ = Off(
�
′), with


 =




0.7 0.6 0.5 0.4 0 0 0 0 0 0 0 0

0 0 0 0 0.7 0.6 0.5 0.4 0 0 0 0

0 0 0 0 0 0 0 0 0.7 0.6 0.5 0.4




′

,

� =


 1 0.3 0.4

0.3 1 0.5

0.4 0.5 1


 .

ULS was used in the third stage of the estimation procedure. Two sample sizes, N = 200
and N = 1000, and four conditions were considered:

1) Correctly specified model. Data was generated from the model just described.
2) Distributionally misspecified model. Data was generated as in 1) except that a multi-

variate t (MVT) distribution was used instead of an MVN distribution. Two degrees
of distributional misspecification were used: small (MVT with 10 df) and mild (MVT
with 1 df).

3) Structurally misspecified model. Data was generated as in 1) but a one factor model
was estimated.

4) Distributionally and structurally misspecified model. Data was generated as in 2) but
a one factor model was estimated. Only small distributional misspecifications were
considered in this case.

To illustrate the degree of distributional misspecification a standard normal density is plotted in
Figure 1 against a t distribution with 1 and 10 degrees of freedom. As can be seen in this figure
the difference between a N (0, 1) and a t(10) density is rather small. Even in the case of the t(1)
density, the misspecification is not severe as it is still a symmetric distribution.

6.1. Goodness-of-Fit Tests

We shall first examine the small sample behavior of the goodness-of-fit tests. The mean
and variance of the tests statistics under consideration, as well as empirical rejection rates in the
critical region α = {1%, 5%, 10%, 20%}, are provided in Tables 1 to 3.

Table 1 contains the results for the tests of the structural restrictions. As can be seen in
this table, when the structural model is correctly specified, reasonably accurate Type I errors
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FIGURE 1.
Univariate density plots.

can be obtained with a small sample size (N = 200) even in the presence of small distributional
misspecifications. With mild distributional misspecifications, MVT(1), the p-values of the struc-
tural tests are slightly too small. On the other hand, when the structural model is misspecified,
the structural tests are very powerful. Almost invariably they reject the model even with a small
sample size.

Table 2 contains the results for the tests of the distributional restrictions. In this case, when
the data arise from a categorized MVN density, the Type I errors are accurate only with the mean
and variance adjusted statistic and the larger sample size (N = 1000). For the smaller sample
size (N = 200) reasonably accurate Type I errors can be obtained by the heuristic procedure
of averaging the p-values of T̄ and ¯̄T . The empirical rejection rates for the heuristic procedure
at α = {1%, 5%, 10%, 20%} are {0.5, 4.5, 10.5, 22.0}. On the other hand, the distributional
tests are reasonably powerful in detecting distributionally misspecified models. When the data
arise from an MVT(1)—a mild distributional misspecification—the tests proposed here reject
the MVN distributional model every time even when N = 200. Even when the data arise from a
MVT(10)—a very small distributional misspecification—the distributional tests have some power
although only with large sample sizes.

Finally, Table 3 contains the results for the tests of the overall restrictions. In this case when
the model is correctly specified the Type I errors are accurate only with the mean and variance
adjusted statistic and the larger sample size. With the smaller sample size the mean scaled statistic
T̄ over-rejects the model and the mean and variance statistic ¯̄T under-rejects the model. Again,
the heuristic procedure of averaging the p-values of T̄ and ¯̄T can be used to obtain reasonably
accurate Type I errors. In this case, the empirical rejection rates for the heuristic procedure at
α = {1%, 5%, 10%, 20%} are {0.6, 4.1, 10.2, 22.1}. Now, when the structural model is correctly
specified, the overall tests have reasonable power to detect minor distributional misspecifications,
and are very powerful to detect mild distributional misspecifications (they reject the model every
time). Also, when the structural model is misspecified, the tests reject the model every time even
when there is no distributional misspecification. With the smaller sample size, the overall tests
retain some power to detect structural and distributional misspecification. In particular, the overall
tests reject the model more often when there is structural and distributional misspecification than
when there is only structural misspecification or only distributional misspecification.

6.2. Parameter Estimates and Standard Errors

In Table 4 we provide a summary of the parameter estimates and standard errors obtained in
conditions 1) and 2) above. More specifically, results are shown for correctly specified structural
models when data arise by categorizing an MVN distribution, an MVT(10) distribution, and an
MVT(1) distribution.
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TABLE 2.
Simulation results across 1000 replications: Goodness-of-fit tests of the distributional restrictions.

Distribution Multivariate normal Multivariate t (10 df) Multivariate t (1 df)

N 200 1000 200 1000 200 1000

Stat. T̄ ¯̄T T̄ ¯̄T T̄ ¯̄T T̄ ¯̄T T̄ ¯̄T T̄ ¯̄T
mean 201.1 93.7 199.7 148.9 207.8 96.3 244.0 180.1 706.6 247.9 2716 1399

variance 489.2 100.0 469.6 250.2 533.1 104.2 818.4 423.8 17009 1227 77688 10879

Reject. rates
1% 2.5 0.2 1.7 0.7 3.6 0.9 43.6 32.8 100.0 100.0 100.0 100.0
5% 9.4 2.4 8.0 4.8 15.8 3.0 66.2 57.6 100.0 100.0 100.0 100.0
10% 16.1 6.7 13.8 10.3 24.6 11.2 75.4 71.1 100.0 100.0 100.0 100.0
20% 25.6 17.7 24.9 21.7 36.1 25.7 85.2 82.5 100.0 100.0 100.0 100.0

Notes: df = 198; T̄ and ¯̄T denote the mean scaled and mean and variance adjusted statistics, respectively.

As can be seen in this table, when the distributional assumptions hold, a sample size of 200
observations suffices to obtain accurate parameter estimates as there is no consistent bias in the
parameter estimates. The median absolute relative bias is less than 1%. Also, 200 observations
suffice to obtain accurate standard errors because, although we observe a consistent downward
bias, the median absolute relative bias is 4.7% and it does not exceed 7% in any case. Of course,
when N = 1000, we obtain more accurate parameter estimates and standard errors. In this
case there is no consistent bias either in the parameter estimates or in the standard errors, and
the relative bias of the standard errors does not exceed 5% (median = 1.7%). Here we define
parameter and standard error relative bias as (x̄θ̂ − θ0)/θ0 and (x̄SE(θ̂ ) − sdθ̂ )/sdθ̂ , respectively.

What is most remarkable is how robust is the sequential estimator to small and mild distri-
butional misspecification, particularly in large sample sizes. When the data arise by categorizing
an MVT(10) the median absolute relative bias of the parameter estimates and standard errors is
only 1.2 and 5.1% when N = 200 and less than 1 and 1.7% when N = 1000. Even when the data
arise by categorizing an MVT(1) the median absolute relative bias of the parameter estimates and
standard errors is 1.6 and 8.7% when N = 200 and 1 and 4% when N = 1000. In fact, the results
in terms of parameter estimates and standard errors obtained with an MVT(1) and N = 1000
are not much worse than those obtained with an MVN distribution and N = 200. In closing, we
note that whenever the median absolute bias was larger than 2% the relative bias was consistently
negative for parameter estimates and standard errors (underestimation) and positive for factor
correlations (overestimation). Whenever the median was smaller than 2% no consistent trend in
the bias was observed.

7. Applications

We now provide two applications where a covariance structure is assumed. In the first
example, the variables consist of five categories, in the second example the data is binary.

7.1. Life Orientation Test

The Life Orientation Test (LOT) (Scheier & Carver, 1985), is an eight-item questionnaire
designed to measure optimism and pessimism where each item consists of five categories. Chang,
D’Zurilla, and Maydeu-Olivares (1994) fitted the following covariance structure model to this
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questionnaire: � (θ) = 


′ + �, where � is a diagonal matrix,


′ =
[
λ11 · · · λ41 0 · · · 0

0 · · · 0 λ52 · · · λ82

]
, and 
 =

[
1 ψ21

ψ21 1

]
.

The clusters correspond to the positively and to the negatively worded items of the question-
naire, respectively. That is, the factors measure optimism and pessimism, respectively. Since
this covariance structure is scale invariant and no restrictions are imposed on the thresholds,
θ ′=(λ11, . . . , λ82, ψ21) can be estimated in the third stage by minimizing a discrepancy function
of the polychoric correlations only where, for identification purposes, � = I − Diag(


′), see
Maydeu-Olivares and Hernández (2000).

Chang et al. (1994) used WLS and found that this model reproduced well the polychoric
matrix. We shall reanalyze their data here which consists of 389 observations. Using ULS in the
third stage we find that the model reproduces well the polychoric matrix T̄s = 25.4 on 14 df,
p = .15 and ¯̄T s = 15.4 on 11.5 df, p = .19. However, using the standard procedure of testing
categorized bivariate normality for each pair of variables using a likelihoood ratio statistic, G2, we
find that for 15 out of 28 pairs of variables the null hypotheses of categorized bivariate normality
is rejected at α = .01. Thus, it is not clear what to conclude about the distributional assumptions
of the model, nor about its overall fit.

However, our tests of the distributional assumptions reveal that the hypothesis of joint
categorized multivariate normality is to be rejected: T̄d = 1070.9 on 420 df, p < .01 and ¯̄T d =
252.1 on 98.9 df, p < .01. Not surprisingly, overall, the model fails to fit the bivariate tables:
T̄o = 1112.1 on 439 df, p < 0.01 and ¯̄T o = 253.8 on 100.2 df, p < .01. Thus, the model does
not reproduce well the contingency table because the distributional restrictions do not hold.

7.2. LSAT 6 Data

These data, consisting of 1000 observations on five binary variables, were originally reported
in Bock and Lieberman (1970). The data have been reanalyzed repeatedly in the literature using
a variety of full and limited information methods (see McDonald & Mok, 1995). A one factor
model fits well the 25 contingency table. Bock and Lieberman (1970) report a likelihood ratio
statistic G2 = 21.28 on 21 df, p = .44, and we computed Pearson’s statistic using their parameter
estimates obtaining X2 = 18.03, p = .65.

We fitted a one factor model to these data using ULS in the third stage. The structural
tests yielded T̄s = 4.67 on 5 df, p = .46 and ¯̄T s = 4.31 on 4.6 df, p = .45, so the model fits
the tetrachoric correlations well. Now, when all the variables are binary, it is not possible to
perform the proposed tests of categorized normality as there are no degrees of freedom avail-
able for testing. A test of trivariate dichotomized normality has been proposed by Muthén and
Hofacker (1988). However, it is not clear what to conclude if the hypothesis of dichotomized
normality is rejected for some but not all triplets. To overcome this limitation one can per-
form a test of the overall restrictions on the bivariate marginals. We obtained T̄o = 3.95 on 5
df, p = .56 and ¯̄T o = 3.55 on 4.50 df, p = .56, which is similar to Bock and Lieberman’s
results.

8. Conclusions

We have presented a unified framework for the sequential estimation of discretized mul-
tivariate normal structural models and their testing using asymptotic theory for sample pro-
portions. In particular, we have proposed tests for the distributional as well as for the overall
restrictions imposed by these models on the bivariate margins of the contingency table. Also,
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we have shown how the overall restrictions imposed by the model on the bivariate margins
can be decomposed asymptotically as a linear function of the distributional and the structural
restrictions.

The proposed tests are simply mean and mean and variance corrections to the asymptotic
distribution of a test statistic consisting of the sum of squared distributional and overall residuals.
We have shown that the proposed distributional tests can be computed very efficiently for very
large models. On the other hand, further research is needed to compute efficiently the proposed
overall tests as n and K become large. As an alternative to the moment corrected statistics
proposed here, one could consider the use of a generalized Wald test (Moore, 1977), that is, a
quadratic form using a generalized inverse of a consistent estimate of the asymptotic covariance
matrix of the distributional or overall residuals as weight matrix. Such statistics would be asymp-
totically chi-square distributed but they require more computation than the statistics proposed
here, and they are likely to suffer from poor small sample performance (see Satorra & Bentler,
1994).

Using a categorized multivariate t framework we have investigated the behavior of the
parameter estimates, standard errors, and goodness-of-fit tests under conditions of correct model
specification as well as distributional and/or structural misspecification. Our results suggest that
good parameter estimates, standard errors, and empirical Type I errors for the structural tests can
be obtained with reasonably small sample sizes when the model is correctly specified. Larger
sample sizes may be needed to obtain reasonable Type I errors for the distributional and overall
tests. This was expected, as the number of degrees of freedom in these tests is very large.
Also, the behavior of the structural, distributional, and overall tests under distributional and/or
structural misspecification was found to be adequate. Only small samples are needed to correctly
reject mildly distributionally misspecified models. Larger samples are needed to detect small
distributional misspecifications.

Furthermore, the parameter estimates, standard errors, and structural tests can be very robust
in situations of correct structural specification but small and mild in distributional misspecification.
The results of the simulation study suggest that meaningful inferences about the dimensional
structure of categorical data can be drawn even when the distributional (and overall) tests reject the
model. Clearly, further studies are needed to investigate exactly under what type of distributional
misspecification these procedures are robust. Also, a test of the joint distributional assumptions,
when all the observed variables are dichotomous, is needed.

We have not considered in this paper structured MVN models in which some but not all the
variables are categorized. Neither have we considered multivariate ordinal probit models where
one assumes categorized multivariate normality conditional on a set of exogonous variables.
Estimation and structural inferences for these models have been considered by Muthén (1984),
Muthén and Satorra (1995), Muthén et al. (1997), Küsters (1987), and Bermann (1993). It is not
clear how one can test the distributional assumptions in these complex situations. Clearly, more
work is also needed in this area

Appendix 1. Proofs of Key Results

Proof of Equation (12):
A first-order expansion of π

.
2(ρ, τ̂ ) around τ = τ 0 yields π

.
2(ρ, τ̂ )

a=π
.
2 (ρ, τ ) + 	21(τ̂ − τ ), where

	21 = ∂π
.
2/∂τ ′. Thus,

√
N (π.2(ρ, τ̂ ) − π

.
2(ρ, τ ))

a= 	21

√
N (τ̂ − τ ). Now, by (11),

√
N (π.2(ρ, τ̂ ) −

π
.
2(ρ, τ ))

a= 	21B11T
√

N (p. 2 − π
.
2(ρ, τ )). Equation (12) follows by noting that

√
N (p. 2 − π

.
2(ρ, τ̂ )) =

√
N (p. 2 − π

.
2(ρ, τ )) −

√
N (π.2(ρ, τ̂ ) − π

.
2(ρ, τ )). �
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Proof of Equation (26):

A first-order expansion of π
.
2(κ̂) around κ = κ0 yields π

.
2(κ̂)

a= π
.
2(κ) + 	(κ̂ − κ), where 	 =

∂π
.
2/∂κ ′ = ( 	21 | 	22 ). Coupling this with (14),

√
N (π.2(κ̂) − π

.
2(κ))

a= 	G
√

N (p. 2 − π
.

2)
Equation (26) follows by noting that

√
Ned :=

√
N (p. 2 − π

.
2(κ̂)) =

√
N ( p. 2 − π

.
2(κ)) −

√
N (π.2(κ̂) − π

.
2(κ)). �

Proof of Equation 30:

A first-order expansion of π
.
2(θ̂) around θ = θ0 yields π

.
2(θ̂ )

a= π
.
2(θ ) + ∂π

.
2/∂θ ′(θ̂ − θ ), where

∂π
.
2/∂θ ′ = 		̃. Now, again using (14),

√
N (π.2(θ̂) − π

.
2(θ))

a= 		̃G
√

N (p. 2 − π
.
2). Equation (30)

follows by noting that
√

Neo :=
√

N (p. 2 − π
.
2(θ̂)) =

√
N ( ṗ2 − π

.
2(θ )) −

√
N (π.2(θ̂) − π

.
2(θ)). �

Proof of Equation (34):

By (21) and (14),
√

Nes

a=(I − 	̃H)G
√

N (p. 2 − π
.
2). (48)

Now, from (30), eo

a=(I − 		̃HG)(p. 2 − π
.
2). Thus, eo

a=(p. 2 − π
.
2) + 		̃HG(p. 2 − π

.
2). Now,

adding and subtracting 	G(p. 2 − π
.
2) to this equation and rearranging terms, eo

a=(I − 	G)(π.2 −
p. 2) + 	(I − 	̃H)G(p. 2 − π

.
2), and (34) follows immediately from (26) and (48). �

Proof of Equations (35), (36) and (37):

Let e := (p. 2 − π
.

2) and A = (I − 	G)′(I − 	G). Then, from (26), Td

a= Ne′Ae. Also, from (48)
W1/2

√
Nes

a= W1/2(I − 	̃H)G
√

Ne. Then, letting B = G′(I − 	̃H)′W(I − 	̃H)G, Ts

a= Ne′Be.
Finally, letting C = (I − 		̃HG)′(I − 		̃HG), To

a= Ne′Ce. Equations (35), (36), and (37) then
follow from Theorem 3.2d.4 in Mathai and Provost (1992). �

Appendix 2. Derivatives Involved in 	11,	21, and 	22

To obtain the derivatives involved in 	11 = ∂π1/∂τ ′ we note that (2) can be rewritten as

πik = �1(τik+1 ) − �1(τik ), (49)

where �p(•) denotes a p-variate standard normal distribution function and, since τi0 = −∞,
τiK = ∞,

�1(τi0 ) = 0, �1(τiK ) = 1. (50)

Then, the elements of 	11 can be obtained using (49) and (50) with

∂�1
(
τik

)
∂τik

= φ1(τik ). (51)

We also note that because of (49), (4) has a closed form solution

τ̂ ik = �−1

(
k∑

c=1

pic

)
, k = 1, ..., K − 1.
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Now, to obtain the derivatives involved in 	21 = ∂π
.
2/∂τ ′ and 	22 = ∂π

.
2/∂ρ ′ we first note

that (3) can be rewritten as

πiki
′
k′ = �2

(
τik+1 , τi ′

k′+1
, ρii ′

)− �2
(
τik , τi ′

k′+1
, ρii ′

)− �2
(
τik+1 , τi ′

k′ , ρii ′
)+ �2

(
τik , τi ′

k′ , ρii ′
)

(52)

(Olsson, 1979, Equation 4), where �2 (•) is a bivariate standard normal distribution function with
parameter ρii ′ . Again, since τi0 = −∞, τiK = ∞,

�2
(
τik , τi ′K , ρii ′

) = �1
(
τik

)
, �2

(
τiK , τi ′K , ρii ′

) = 1, �2
(
τi0 , τi ′

k′ , ρii ′
) = 0,

�2
(
τiK , τi ′

k′ , ρii ′
) = �1

(
τi ′k

)
, �2

(
τi0 , τi ′0 , ρii ′

) = 0, �2
(
τik , τi ′0 , ρii ′

) = 0.
(53)

Then, the elements of 	21 can be obtained using (50) through (53), and

∂�2
(
τik , τi ′

k′ , ρii ′
)

∂τik

= φ1
(
τik

)
�1


τi ′

k′ − ρii ′τik√
1 − ρ2

ii ′


 (54)

(Olsson, 1979, Equation 12). Finally, the elements of 	22 can also be obtained using (50) through
(53), and

∂�2
(
τik , τi ′

k′ , ρii ′
)

∂ρii ′
= φ2

(
τik , τi ′

k′ : ρii ′
)

(55)

(Muthén, 1978, Equation 18), a bivariate standard normal density function with parameter ρii ′

evaluated at
(
τik , τi ′

k′

)
.

Appendix 3. The Asymptotic Covariance Matrix of Sample Thresholds and Polychoric
Correlations in Some Special Cases

We shall first show that when K = 2 the expression of the asymptotic covariance of sample
thresholds and tetrachoric correlations (16) reduces to that given by Muthén (1978). First we note
that for each pair of categorical variables (yi, yi ′ ) there are three mathematically independent
probabilities, say π̈i = Pr(yi = 1), π̈i ′ = Pr(yi ′ = 1), and π̈ii ′ = Pr[(yi = 1) ∩ Pr(yi ′ = 1)]. Let
π̈1 = (π̈1, . . . , π̈n)′, π̈2 = (π̈21, π̈31, . . . , π̈nn−1)′, and π̈ = (π̈1, π̈2)′, with sample counterparts
p̈ = (p̈1, p̈2)′. Muthén (1978) estimates each threshold and tetrachoric correlation separately using

τ̂i = −�−1
1 (p̈i) , (56)

ρ̂ii ′ = �−1
2 (p̈ii ′ |−τ̂i ,−τ̂i ′ ) , (57)

where �1(•) and �2(•) denote univariate and bivariate standard normal distribution functions.
Since the relationship between (τi, τi ′ , ρii ′ ) and (π̈i , π̈i ′ , π̈ii ′ ) is one-to-one, using (56) and (57) is
equivalent to employing (4) and (5) (Hamdan, 1970). Now,

π
.
2 = c + Cπ̈ = (C1 | C2

) ( π̈1

π̈2

)
, (58)

illustrated here, for n = 2,


π00

π01

π10

π11


 =




1
0
0
0


+




−1 −1 1
0 1 −1
1 0 −1
0 0 1




 π̈i

π̈i ′

π̈ii ′


 =




1 − π̈i − π̈i ′ + π̈ii ′

π̈i ′ − π̈ii ′

π̈i − π̈ii ′

π̈ii ′


 .
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Now, by (14) and (58),
√

N (κ̂ − κ)
a= GC

√
N (p̈ − π̈). Furthermore, it is easy to verify that

GC =




(
∂π̈1

∂τ ′

)−1

0

−
(

∂π̈2

∂ρ ′

)−1
∂π̈2

∂τ ′
∂π̈1

∂τ ′

(
∂π̈2

∂ρ ′

)−1


 =




∂π̈1

∂τ ′ 0

∂π̈2

∂τ ′
∂π̈2

∂ρ ′




−1

=
(

∂π̈

∂κ ′

)−1

= G̈−1.

(59)

Hence, in the binary case (16) reduces to Muthén’s (1978) expression for the covariance matrix
of the sample thresholds and tetrachoric correlations

� = G̈−1�̈G̈−1′ (60)

where �̈ denotes the covariance matrix of
√

N (p̈ − π̈).
Christoffersson and Gunsjö (1983) and Jöreskog (1994) have provided expressions for

the asymptotic covariance matrix of the sample polychoric correlations which are algebraically
equivalent (Jöreskog, 1994, p. 386; Christoffersson & Gunsjö, 1996, p. 173). We shall now show
that (17) equals their expression for the asymptotic covariance matrix of the sample polychoric
correlations. To do so, we simply apply Jöreskog’s (1994) Proposition 5 to the vector of all
estimated polychoric correlations instead of to a single correlation as in Jöreskog’s Equation 12,
obtaining

√
N (ρ̂ − ρ (θ ))

a= (	′
22D2	22

)−1
	′

22D2

√
N (p. 2 − π

.
2)

− (	′
22D2	22

)−1
	′

22D2	21

√
N (τ̂ − τ ) . (61)

Thus,
√

N (ρ̂ − ρ (θ ))
a= B22

√
N (p. 2 − π

.
2) − B22	21

√
N (τ̂ − τ ) and, using (11), we readily ob-

tain (13). Finally, Christoffersson and Gunsjö’s (1983) formulas are a direct application to the
case n > 2 of Olsson’s (1979) results. Hence, (16) reduces to Olsson’s in the bivariate case.
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