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The interpretation of a Thurstonian model for paired comparisons where the utili-
ties’ covariance matrix is unrestricted proved to be difficult due to the comparative
nature of the data. We show that under a suitable constraint the utilities’ correla-
tion matrix can be estimated, yielding a readily interpretable solution. This set of
identification constraints can recover any true utilities’ covariance matrix, but it
is not unique. Indeed, we show how to transform the estimated correlation matrix
into alternative correlation matrices that are equally consistent with the data but
may be more consistent with substantive theory. Also, we show how researchers
can investigate the sample size needed to estimate a particular model by exploit-
ing the simulation capabilities of a popular structural equation modeling statistical
package.

Paired comparison experiments continue to be the most widely used tools for
investigating choice behavior. Thurstone proposed in 1927 a model for paired
comparisons data that remains to date the most influential model for choice mod-
eling. Thurstone’s model is characterized by three assumptions: (a) whenever a
pair of stimuli is presented to a respondent it elicits a continuous preference
(utility function, or in Thurstone’s terminology, discriminal process) for each
stimulus; (b) within a pair, the stimulus whose preference is larger will be pre-
ferred by the respondent; (c) the continuous preferences are normally distributed
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in the population. Since what Thurstone referred to as discriminal processes are
in modern statistical terms latent variables, it seems possible to encompass this
model within a more familiar structural equations modeling framework. To do
so, we have to consider the sampling scheme used to gather the paired compar-
isons data.

Different sampling schemes can be used to gather paired comparisons data
(Bock & Jones, 1968). The most popular approach is what these authors referred
to as multiple judgment sampling. In this sampling scheme, all possible pairs of
stimuli are presented to each respondent who is asked to choose one stimulus
within each pair. Since each observed paired comparison is a binary variable and
with n stimuli there are Qn D .n

2
/ D n.n�1/

2
paired comparisons, in a multiple

judgment experiment for n stimuli there are 2 Qn possible patterns of binary paired
comparisons. Therefore, Thurstone’s model attempts to model these response
patterns using n latent variables. This is because in his model there is one
latent variable for each stimulus. These latent variables are continuous latent

preferences (CLPs), discriminal processes, or utilities, and we use the three
terms interchangeably in this article.

Of the possible 2 Qn patterns, nŠ are transitive, meaning that given the binary
patterns one can rank order the stimuli, and the rest intransitive. Maydeu-Olivares
(1999) showed that Thurstone’s model assigns a zero probability to all intran-
sitive patterns. Takane must have been aware of this, as in 1987 he proposed
adding a vector of pair specific random errors to Thurstone’s model. This ex-
tension of Thurstone’s model is a proper model for multiple judgment paired
comparisons as it assigns non-zero probabilities to all paired comparisons pat-
terns. Takane’s (1987) crucial contribution was largely programmatic, and he
provided neither identification restrictions nor empirical examples. Yet, it trig-
gered a renewed interest in the field (Böckenholt, 2001a,b, 2004; Böckenholt &
Dillon, 1997; Böckenholt & Tsai, 2001; Maydeu-Olivares, 2001, 2002, 2003,
2004; Maydeu-Olivares & Böckenholt, 2005; Tsai, 2000, 2003; Tsai & Böck-
enholt, 2001, 2002; Tsai & Wu, 2004).

Most applications of Thurstonian models have focused on the Case V and
Case III special cases of the model. In the Case III model the continuous latent
preferences are assumed to be independent. In the Case V model the CLPs
are further assumed to have a common variance. Yet, it is possible to estimate
models that do not assume that the CLPs are independent, such as models with
unrestricted and factor-analytic covariance structures (Tsai & Böckenholt, 2001;
Maydeu-Olivares & Böckenholt, 2005). Indeed, in this paper we focus on a
Thurstonian model where the covariance structure of the CLPs is unrestricted.
The unrestricted model is the most general model within the class of Thurstonian
models and it plays a crucial role in paired comparison modeling (Maydeu-
Olivares & Böckenholt, 2005). Should the unrestricted model provide a poor fit
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to the data,1 then a model outside this class of models (or a Thurstonian model
with latent classes) should be considered.

Thurstonian models for paired comparisons with correlated continuous la-
tent preferences (discriminal processes) such as the unrestricted model have not
been considered until recently. This is because to estimate these models by max-
imum likelihood it is necessary to evaluate high dimensional multivariate normal
integrals (since the models involve binary observed variables and normally dis-
tributed CLPs). Yet, Thurstonian models are closely related to factor models for
binary data (Maydeu-Olivares, 2001; Maydeu-Olivares & Böckenholt, 2005).
Factor models for binary data can be estimated very efficiently using a multi-
stage procedure that involves estimating in a first stage tetrachoric correlations
among the binary variables. These multi-stage procedures are implemented in
several statistical packages for structural equation modeling (SEM) such as Lis-
rel (Jöreskog & Sörbom, 2001), Mplus (Muthén & Muthén, 2001), and EQS
(Bentler, 2004).

Recently, Maydeu-Olivares and Böckenholt (2005) have shown how to em-
bed Thurstonian models for paired comparison data within a SEM framework
including the classical Case V and Case III models, the unrestricted model, as
well as models with a factor-analytic covariance structures. They also provide
details on how to estimate these models using Mplus (Muthén & Muthén, 2001).
In this paper, we extend Maydeu-Olivares and Böckenholt’s results along three
directions: (a) we provide a set of identified parameters for the unrestricted
Thurstonian model that, unlike previous proposals, can be easily interpreted,
(b) we show how the obtained solution can be transformed to explore the full
array of solutions that is consistent with the data, and (c) we show how re-
searchers can investigate the accuracy of the results obtained in an application
by exploiting the simulation capabilities of Mplus.

Due to the comparative nature of paired comparisons data, the specification of
identification restrictions for Thurstonian models, as well as the interpretation of
the identified parameters, is not a trivial task. See Tsai (2003) for a thorough but
technical discussion of this topic, and Steiger (2002) for a less technical overview
of the problems that may arise when introducing identification constraints in
structural equation models in general. For most Thurstonian models although a
readily interpretable set of identified parameters can be found (Maydeu-Olivares
& Böckenholt, 2005), yet no readily interpretable set of identified parameters had
been given for the unrestricted model. In this paper we show how under suitable
identification constraints, the correlation matrix among the continuous latent
preferences can be estimated, leading to a solution that is readily interpretable.

1If multiple groups are available, researchers should first consider fitting a model with a separate
covariance structure for each group.
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In many important ways the problem of estimating an unrestricted Thursto-
nian model is analogous to the problem of estimating an unrestricted (a.k.a.
exploratory) factor model for binary data. In the same way that the solution of
an unrestricted factor model can be rotated to explore alternative solutions that
may be more consistent with substantive theory, the solution of an unrestricted
Thurstonian model can be transformed to explore alternative solutions that may
be more consistent with substantive theory.

Also, in any application it is important to investigate the accuracy of the
results obtained. This is particularly important in paired comparisons experi-
ments as the number of binary variables to be modeled grows very fast when
the number of stimuli to be compared increases. For instance, if a full paired
comparisons design is used, there are 21 binary variables to be modeled when
seven stimuli are compared. But when the number of stimuli is 10, the num-
ber of binary variables is 45. Yet, most often only small samples are typically
collected in paired comparison experiments. Furthermore, n latent variables are
used to model the data within a Thurstonian framework. Maydeu-Olivares (2003)
reports a small simulation study where as few as 100 observations sufficed to es-
timate and test some Thurstonian models for seven stimuli. Larger samples were
needed to accurately estimate other Thurstonian models for the same number of
stimuli. The simulation focused on one of the many different special cases in
Thurstone’s model. Most importantly, as a reviewer of this manuscript pointed
out, it is questionable to present results from one point in the parameter space
and draw generalized conclusions from them. The multistage estimation proce-
dures are so computationally efficient that it is possible to perform a simulation
study to investigate the accuracy of the parameter estimates, standard errors and
goodness of fit tests obtained in any particular application.

The remaining of this paper is organized as follows. First, the Thurstonian
unrestricted model for paired comparisons model is discussed following Takane
(1987). In this section, we show how the correlation matrix among the contin-
uous latent preferences can be estimated, thus leading to a readily interpretable
set of parameter estimates. We also show in this section how to transform the es-
timated solution into alternative correlation matrices among the CLPs that yield
an equivalent fit. This enables researchers to search for equivalent solutions that
may be more consistent with substantive theory. In the next section we briefly
describe the multistage procedures used in structural equation modeling with
binary dependent variables. In this section we go beyond Maydeu-Olivares and
Böckenholt (2005) by discussing not only how to test the structural restrictions
imposed by the model on the thresholds and tetrachoric correlations, but also
how to test the overall restrictions imposed by the model (i.e, the structural
restrictions and the dichotomized multivariate normality assumption). We con-
clude with an application where we briefly review how Thurstonian models can
be estimated using Mplus following Maydeu-Olivares and Böckenholt (2005).
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In this section we extend their work by showing how to make use of the simu-
lation capabilities of Mplus to investigate the accuracy of the results obtained in
any given application, and we illustrate how to identify an alternative solution
that may be more consistent with substantive theory.

THURSTONIAN MODELS AS STRUCTURAL EQUATION

MODELS WITH BINARY DEPENDENT VARIABLES

In this section Thurstone’s (1927) original model is briefly described first. Then,
Takane’s (1987) extension of the model is introduced. The latter is better suited
for modeling multiple judgment paired comparisons data. The section concludes
with a discussion of the identification of the unrestricted Thurstonian model.

Thurstonian Models

Consider a set of n stimuli and a random sample of N individuals from the
population we wish to investigate. In a multiple judgment paired comparison
experiment Qn pairs of stimuli are constructed and each pair is presented to each
individual in the sample. We shall denote by yk the outcome of each paired
comparison. Thus, for each subject we let

yk D
(

1 if stimulus i is chosen

0 if stimulus i 0 is chosen
k D 1; : : : ; Qn (1)

where k � .i; i 0/, (i < i 0 � n). Now, let ti denote a subject’s unobserved con-
tinuous latent preference for stimulus i . According to Thurstone’s (1927) model:
(a) the preferences t D .t1; : : : ; tn/0 are normally distributed in the population,
and (b) a subject will choose stimulus i if ti � ti 0 , otherwise s/he will choose
stimulus i 0.

Thurstone (1927) proposed performing the following linear transformation
on the set of unobserved preferences

y�
k D ti � ti 0 (2)

Then, (b) may be alternatively expressed as

yk D
(

1 if y�
k � 0

0 if y�
k < 0

(3)

In matrix notation, Thurstonian models can be expressed as follows: Let t �
N.�t ; †t /, where �t and †t contain the n means of the unobserved preferences
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and corresponding (co)variances among the preferences, respectively. Also, y� D
At. A is a Qn � n design matrix where each column corresponds to one of the
stimuli, and each row to one of the paired comparisons. For example, when
n D 4, A is

A D

2

6

6

6

6

6

6

4

1 �1 0 0

1 0 �1 0

1 0 0 �1

0 1 �1 0

0 1 0 �1

0 0 1 �1

3

7

7

7

7

7

7

5

(4)

Therefore the mean and covariance matrix of y� are �y� D A�t , and †y� D
A†t A

0, respectively. Notice that the variables t are latent variables. Also, the
variables y� are not observed and are multinormally distributed. Only the binary
variables y are observed which under the model are obtained by dichotomizing
y� using Equation (3).

Maydeu-Olivares (1999) pointed out that because A is always of rank n � 1

(its columns add up to zero), †y� has rank n � 1 in these models. This in turn
implies that Thurstonian models assign zero probabilities to all intransitive paired
comparison patterns. Thus, Thurstonian models are better suited for ranking data
(which by design are transitive) than for multiple judgment paired comparisons
data.

Takane (1987) proposed adding a random error ek to each paired comparison
in expression (2). The addition of these errors enables the model to account
for intransitivities that may be observed in the paired comparisons and yields
a model that assigns non-zero probabilities to all binary paired comparisons
patterns. With the addition of these pair specific errors, we write

y� D At C e: (5)

The errors e are assumed normally distributed, independent of each other, and
independent of the continuous latent preferences t. We may write these assump-
tions as

�

t

e

�

� N

��

�t

0

�

;

�

†t 0

0 �2

��

(6)

where �2 is a diagonal matrix with diagonal element ¨2
1; : : : ; ¨2

Qn
containing the

variances of the random errors e. From Equations (5) and (6), the mean vector
and covariance matrix of the unobserved variables y� are

�y� D A�t and †y� D A†t A
0 C �2: (7)
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Under the model, the binary paired comparisons are obtained by dichotomizing
the multivariate normal variables y� using Equation (3). Yet, dichotomizing the
multivariate normal distribution of y� with mean and covariance structure using
Equation (7) is equivalent to dichotomizing a Qn-dimensional vector of random
variables, say z�, which is multivariate normal with mean zero and correlation
structure

Pz� D D†y� D D D.A†t A
0 C �2/D (8)

using

yk D
(

1 if z�
k � £k

0 if z�
k < £k

: (9)

In Equation (8), D D .Diag.†y�//� 1
2 is a diagonal matrix containing the inverse

of the standard deviations of y� under the model. Further, the vector of thresholds
£ D .£1; : : : ; £ Qn/0 in (9) has the following structure under the model:

£ D �D�y� D �DA�t : (10)

As a result of this equivalence, estimating a Thurstonian model for paired com-
parisons is equivalent to estimating a structural equation model for dichotomous
variables where the matrix of tetrachoric correlations is structured as in Equa-
tion (8) and the thresholds are structured as in Equation (10).

Equations (8) and (10) define in fact a class of models as �t and †t can be
restricted in various ways. For an overview of restricted Thurstonian models, see
Takane (1987) and Maydeu-Olivares and Böckenholt (2005). The present paper
focuses on the unrestricted Thurstone-Takane model where the mean vector �t

and the covariance matrix †t are left unrestricted.

Identification of the Unrestricted Thurstonian Model

Consider a Thurstonian model for paired comparisons data where †t is sym-
metric positive definite matrix. For n � 3, it follows from Tsai (2003) that nC2

constraints must be introduced to identify this model. Because of the compara-
tive nature of the data, one constraint needs to be imposed among the elements
of �t . Also, n constraints need to be imposed on the elements of †t such that
one constraint is imposed among the elements in each of the rows (columns) of
this matrix. These location constraints are needed because A is of rank n � 1.
An additional constraint must be introduced among the elements of †t to set
the scale for the remaining parameters.
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Maydeu-Olivares and Böckenholt (2005) gave one set of identification con-
straints that satisfies these requirements. They suggested: (1) fix the mean pref-
erence for one of the stimuli, say �n D 0; (2) fix all the covariances involving
the last stimuli to 0; and (3) fix the variance of the preferences for the first and
last stimuli to 1. For example, when n D 4 �t and †t are to be specified as

�t D

0

B

B

@

�1

�2

�3

0�

1

C

C

A

; †t D

0

B

B

@

1� ¢21 ¢31 0�

¢21 ¢2
2 ¢32 0�

¢31 ¢32 ¢2
3 0�

0� 0� 0� 1�

1

C

C

A

; (11)

where the parameters fixed for identification are marked with an asterisk. The
interpretation of the estimated means relative to a fixed one presents no particular
problems. However, interpreting variances and covariances relative to other fixed
variances and covariances is rather cumbersome.

An equivalent way to identify the parameters of the covariance structure
that avoids the interpretation problem in Equation (11) is obtained as follows:
First, all the diagonal elements of †t are set equal to one (i.e., ¢2

i D 1; 8i ).
This set of constraints is convenient from an applied perspective because †t

becomes a correlation matrix, Pt , which facilitates the interpretation. Yet, an
additional linear constraint must be enforced among the elements of Pt , such
as

Pn
iD2 ¡i1 D 1 (i.e., ¡21 C ¡31 C � � � C ¡n1 D 1).2 With this constraint we

obtain parameter estimates and standard errors for all the elements in Pt , the
correlation matrix between the continuous latent preferences.3 Also, Pt is at
least non-negative definite and therefore its elements ¡i i 0 are at least admissible,
that is, they are bounded between �1 and 1 (see Appendix 1).

Thus, given the identification constraints, the elements of Pt , ¡i i 0 , can be
interpreted as follows. A positive correlation implies that strong preferences for
stimuli i are associated with strong preferences for stimuli i 0. In contrast, when
the correlation in negative strong preferences for stimuli i are associated with
weak preferences for stimuli i 0. In many applications it is important to be able
to estimate these correlations as they suggest which stimuli can act as substitutes
for other stimuli.

Analogy with Exploratory Factor Analysis

In many ways, the problems of identifying and estimating an unrestricted Thursto-
nian model for paired comparisons data is similar to the problems of identify-

2A simpler constraint is ¡n1 D 0, see Appendix 1.
3A similar constraint can be enforced among the means, say

P

n

iD1 �i D 0, instead of using
�n D 0.
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ing and estimating an unrestricted factor model for binary data with n factors,
where n is the number of stimuli being compared. Thus, in the Thurstonian
unrestricted model (a) the contrast matrix A is analogous to the factor loadings
matrix, (b) the means of the continuous latent preferences �t . are analogous
to the factor means, (c) the matrix of correlations among the preferences Pt is
analogous to the matrix of inter-factor correlations, and (d) the diagonal ma-
trix �2 containing the variances of the pair specific errors is analogous to the
diagonal matrix containing the variances of the unique factors.

The easiest way to obtain a set of identified parameters in an unrestricted
factor model is to (a) set the factors to be uncorrelated, and (b) set the upper
triangular part of the factor loading matrix equal to zero (McDonald, 1999:
p. 181). The factor means are not identified in an unrestricted factor model and
they are set to zero. In an unrestricted Thurstonian model the ‘factor means’ �t .
can be estimated because the ‘factor loadings matrix’ A is a matrix of contrast.
To identify the Thurstonian model, we fix one of the ‘factor means’ to zero, and
we impose a linear constraint among the ‘inter-factor correlations’.

For an unrestricted factor model with estimated matrices of factor loadings
ƒ and inter-factor correlations ˆ, it is well known that alternative solutions
with Qƒ and Q̂ that yield an equivalent fit can be obtained by rotating the axes.
Analogously, for an unrestricted Thurstonian model with estimated matrices of
preferences means �t , preferences intercorrelations Pt , and pair specific error
variances �2, applied researchers can obtain alternative solutions that yield an

equivalent fit with matrices Q�t , QPt , and Q�2
using the equation

Q�t D
p

c�t ;
QPt D cPt C .1 � c/110; Q�2 D c�2; (12)

where c is any positive constant such that QPt is a correlation matrix (i.e., it is
non-negative definite). This is proved in Appendix 2.

Thus, just as when fitting an unrestricted factor analysis, the applied re-
searcher that fits an unrestricted Thurstonian model must bear in mind that the
solution obtained is not the only one that is consistent with the data. Other so-
lutions exist that will yield the same fit to the data. For the unrestricted factor
model, applied researchers often use rotation algorithms (e.g., Varimax, Oblimin)
to aid explore alternative solutions that may be more consistent with substan-
tive theory. Exploring alternative solutions that may be more consistent with
substantive theory is easier for the unrestricted Thurstonian model as applied
researchers just need to plug in different values of c in Equation (12). How-
ever, even though this equation plays the same role as factor rotation in factor
analysis, it is not a rotation. Also, just as in factor analysis it is possible to
incorporate any substantive knowledge into the model and resort to confirma-
tory factor analysis, in Thurstonian modeling the applied researcher may wish
to incorporate any substantive knowledge into the model, and estimate a model



332 MAYDEU-OLIVARES AND HERNÁNDEZ

where some elements of the parameter matrices �t , Pt , and �2 are fixed at a
priori values, or where some parameters are set equal to other parameters in the
model.

SEM ESTIMATION OF THURSTONIAN MODELS FOR

PAIRED COMPARISONS DATA

Among the most popular statistical packages for structural equation modeling,
EQS (Bentler, 2004), Lisrel (Jöreskog & Sörbom, 2001) and Mplus (Muthén &
Muthén, 2001) implement multistage procedures for estimating structural equa-
tion models with binary dependent variables. In these methods, first the thresh-
olds and tetrachoric correlations are estimated from the univariate and bivariate
margins of the contingency table. In a second stage, the structural parameters
are estimated from the estimated thresholds and tetrachoric correlations. In this
section, the estimation of Thurstonian models for paired comparisons data is
described.

Let pk and pkk0 be the sample counterpart of  k D Pr.yk D 1/ and  kk0 D
Pr.yk D 1; yk0 D 1/, respectively, and let ˆn.�/ denote a n-variate standard
normal distribution function. Then, first each element of £ is estimated separately
using O£k D �ˆ�1

1 .pk/. Next, each tetrachoric correlation is estimated separately
given the first stage estimates using O¡kk0 D ˆ�1

2 .pkk0 j �O£k; �O£k0/. This method
for estimating the tetrachoric correlations is equivalent to those implemented in
Lisrel and Mplus, but not in EQS.

Then, letting › D .£0; ¡0/0, the model parameters ™ are estimated by mini-
mizing

F D . O› � ›.™//0 OW. O› � ›.™// (13)

where OW D O„�1
(weighted least squares, WLS: Muthén, 1978), OW D .Diag

. O„//�1 (diagonally weighted least squares, DWLS: Muthén, du Toit, & Spisic,
1997), or OW D I (unweighted least squares, ULS: Muthén, 1993), and „ denotes
the asymptotic covariance (Acov) matrix of

p
N . O› � ›/.

Standard errors for the parameter estimates are obtained using Acov. O™/ D
1
N

H„H0, where H D .�0W�/�1�0W, and � D @›
@™0 (Muthén, 1993). WLS

estimation is known to perform poorly in small samples (Muthén, 1993). Also,
ULS performs better than DWLS estimation in small samples (Maydeu-Olivares,
2001). Thus, in this paper ULS will be employed.

Goodness of fit tests of the restrictions imposed by the model on the thresh-
olds and tetrachoric correlations for the DWLS and ULS estimators can be
obtained (Muthén, 1993; Satorra & Bentler, 1994) by scaling T WD N OF by its
mean or adjusting it by its mean and variance so that it approximates a chi-square
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distribution using Ts D r
TrŒM�

T , and Ta D TrŒM�

TrŒM2�
T , where M D W.I � �H/„.

Ts and Ta, denote the scaled (for mean) and adjusted (for mean and variance) test
statistics. Ts is referred to a chi-square distribution with r D Qn. QnC1/

2
� q degrees

of freedom, where q is the number of mathematically independent parameters

in ™. Ta is referred to a chi-square distribution with d D .TrŒM�/2

TrŒM2�
degrees of

freedom.
It is important to bear in mind, however, that these test statistics do not assess

how well the model reproduces the data. Rather, they assess how well the model
reproduces the estimated thresholds and tetrachoric correlations. These statistics
are computed under a dichotomized multivariate normality assumption. Muthén
and Hofacker (1988) proposed a test of dichotomized normality for triplets of
variables. However, this test is not implemented in Mplus, Lisrel, nor EQS. Most
importantly, it is not clear what to conclude if the assumption of dichotomized
normality is tenable for some triplets of variables, but not for all of them. Rather
than testing separately the dichotomized multivariate normality underlying the
use of tetrachoric correlations, and testing the structural restrictions imposed by
the model on the tetrachoric correlations, Maydeu-Olivares (2001) proposed a
test of the overall restrictions (structural and distributional) imposed by a SEM
model on the dichotomous data. Let p be the Qn. QnC1/

2
vector of first and second

order proportions, and let   be its corresponding probabilities. Furthermore, let
.p �  . O™// be the vector of residual univariate and bivariate proportions under
the model. Then, goodness of fit tests of the overall restrictions imposed by the
model on the first and second order marginals of the contingency table  .™/

can be obtained by scaling QT D N.p �  . O™//0.p �  . O™// using QTs D r

TrŒ QM�
QT ,

and QTa D TrŒ QM�

TrŒ QM2�
QT , where QM D .I � Q��H Q��1

/�.I � Q��H Q��1
/0, � denotes

the asymptotic covariance matrix of
p

N .p �  /, and Q� D @ 
@›0

. QTs and QTa are

to be referred to a chi-square distribution with r and d D .TrŒ QM�/2

TrŒ QM2�
degrees of

freedom, respectively. A small simulation study reported in Maydeu-Olivares
(2001) revealed that for some models the mean and variance adjusted statistic
yields accurate Type I error rates in models with 21 variables with as few as
100 observations.

AN APPLICATION: MODELING PREFERENCES

FOR CELEBRITIES

Kroeger (1992) replicated a classical experiment by Rumelhart and Greeno
(1971) in which college students were presented with pairs of celebrities and they
were asked to select the celebrity with whom they would rather spend an hour of
conversation. Here we shall analyze a subset of Kroeger’s data consisting of the



334 MAYDEU-OLIVARES AND HERNÁNDEZ

females’ responses (96 subjects) to the paired comparisons involving the set of
former U.S. first ladies (Barbara Bush, Nancy Reagan, and Hillary Clinton) and
athletes (Bonnie Blair, Jackee Joyner-Kersee, and Jennifer Capriati). Because
no prior knowledge is available, we shall estimate an unrestricted Thurstonian
model.

When a single population is involved, Mplus but not current versions4 of
Lisrel and EQS can estimate single population models for categorical dependent
variables with mean or threshold structures (as required for Thurstonian model-
ing of paired comparisons). Consequently, Mplus will be used in this example.
The Mplus input file used in this example is provided in Appendix 3.

Fitting an Unrestricted Thurstonian Model

Estimating a Thurstonian unrestricted model for paired comparisons data is sim-
ilar to estimating a factor model for binary data with n factors, where n is the
number of stimuli being compared. Thus, to estimate the Thurstonian unre-
stricted model the factor loadings must be fixed constants, those of the contrast
matrix A. Also, the factor means are estimated. This is mean vector of the stimuli
preferences �t . Finally, the variances of the unique factors are estimated. This
is the diagonal matrix �2 containing the variances of the pair specific errors.
To identify the model, one of the factor means is fixed to zero. Also, the factor
variances are fixed to 1, so that the correlations among the preferences for the
stimuli are estimated. This is the matrix Pt . Finally, a linear constraint needs
to be imposed among the inter-factor correlations. See Appendix 3 for details
on how to implement this constraint in Mplus. For this example, we fixed the
mean of the last stimuli to zero, and imposed the constraint that the inter-factor
correlations involving the first stimuli added to one.

For ULS estimation, only the mean and variance corrected statistic for testing
the restrictions imposed by the model on the thresholds and tetrachoric corre-
lations is available in Mplus. We obtained Ta D 43:28 on 32 df,5 p D 0:09.
It appears as if the structural restrictions imposed by this model be reasonable.
However, an improper solution is obtained as the estimates for two of the di-
agonal elements of �2 are negative. This is most likely due to the sample size
being too small to estimate this model.

As an alternative, we considered a model where the variances of the pair
specific errors are equal for all pairs, �2 D ¨2I. This restriction constraints

4At the time of this writing, the current versions of Mplus, Lisrel and EQS are 3.12, 8.7, and
6.1, respectively.

5When mean and variance corrections are used, the number of degrees of freedom is estimated.
This is a real number, which in Mplus is rounded to the nearest integer. For this model, the difference
between the number of simple statistics and the number of estimated parameters is 86. This is highly
constrained model.



ESTIMATION OF THURSTONE’S MODEL 335

the expected number of intransitivities to be approximately equal for all pairs
(Maydeu-Olivares & Böckenholt, 2005). For this model, which has 14 parame-
ters less than the previous model, we obtained Ta D 44:57 on 33 df, p D 0:09.
Also, the estimate of the common variance of the pair specific errors is a proper
value, 0.24. The more restricted model is clearly to be preferred. Finally, using
the test statistic proposed by Maydeu-Olivares (2001) evaluated at the Mplus
estimates for this model we can also assess whether the model reproduces
the data. We obtained QTs D 124:62 on 100 df, p D 0:05, and QTa D 20:05

on 16.09 df, p D 0:22. The model reproduces well the paired comparisons
patterns.

The estimates and standard errors for the parameters of this model are shown
in Table 1. Taking into account the estimated standard errors, the ordering of
the mean preferences for these celebrities under this model is {Hillary Clinton,
Jackee Joyner D Barbara Bush D Jennifer Capriati, and Bonnie Blair D Nancy
Reagan}. Yet, preferences for the most preferred celebrity, Hillary Clinton, are
not significantly correlated with preferences for any other celebrity. On the other
hand, preferences for Bonnie Blair are significantly and positively related to
preferences for all the other celebrities (but Hillary Clinton). In addition, women
that express their preference for Barbara Bush are significantly more likely to
prefer Jennifer Capriati as well.

TABLE 1

Parameter Estimates and Standard Errors for an Unrestricted Covariance Structure Model

Assuming �2 D ¨2
I Applied to the Celebrities Data

P t

Barbara

Bush

Nancy

Reagan

Hillary

Clinton

Bonnie

Blair

Jackee

Joyner

Jennifer

Capriati

Barbara Bush 1
(fixed)

Nancy Reagan 0.74 1
(0.09) (fixed)

Hillary Clinton �0.22 �0.37 1
(0.24) (0.29) (fixed)

Bonnie Blair 0.24 0.35 �0.19 1
(0.12) (0.14) (0.28) (fixed)

Jackee Joyner �0.01 0.04 �0.47 0.37 1
(0.16) (0.18) (0.32) (0.16) (fixed)

Jennifer Capriati 0.26 0.21 �0.56 0.44 0.32 1
(0.13) (0.19) (0.33) (0.15) (0.20) (fixed)

�t 0.09 �0.28 0.43 �0.27 0.16 0
(0.15) (0.15) (0.20) (0.13) (0.14) (fixed)

N D 96; ¡21 C ¡31 C � � � C ¡n1 D 1; standard errors in parentheses; correlations in bold are
significant at ’ D 0:05; Ö2 D 0:26 (0.06).
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Transformation of the Solution

Just as an unrestricted factor model can be rotated to explore alternative solutions
that may be more consistent with substantive theory, the unrestricted Thurstonian
model can be transformed to explore alternative solutions that may be more
consistent with substantive theory. To transform the solution shown in Table 1
we just need to search through the set of solutions given in Equation (12). In this
example, we believe that stronger preferences for Hillary Clinton are associated
with weaker preferences for Nancy Reagan. Consequently we shall transform
the solution to achieve the maximum negative correlation between these two
stimuli. Assigning values greater than 1 to c in Equation (12) the correlation
between Nancy Reagan and Hillary Clinton becomes increasingly negative. The
maximum value that c can take in this application resulting in a positive definite
transformed QPt is 1.10. When c takes this value, the correlation between the
preferences for Nancy Reagan and Hillary Clinton becomes �0.51, this is the
largest negative correlation for these two stimuli that results in a proper model.
Now, we can obtain standard errors for this transformed solution by simply re-
estimating the model using the code given in Appendix 3 where the constraint
Pn

iD2 ¡i1 D 1 used to obtain the initial solution is replaced by the constraint
corr(Nancy Reagan, Hillary Clinton) D �0.51. The results of this transformed
solution are given in Table 2. This solution yields the same goodness of fit as
the solution presented in Table 1, but is slightly easier to interpret. According
to the solution, for this population of female college students the most preferred
celebrity to spend an hour of conversation with is Hillary Clinton (as it has
the highest mean preference). The least preferred ones are Bonnie Blair and
Nancy Reagan. Mean preferences for the remaining celebrities are roughly equal
and in between these extremes. We also observe two significant associations in
Table 2. Students who prefer to spend an hour of conversation with Nancy
Reagan as more likely to prefer an hour of conversation with Barbara Bush,
and students who prefer to spend an hour with Hillary Clinton are less likely to
prefer spending an hour with Jennifer Capriati.

Accuracy of the Results

The small sample size (96) relative to the number of binary paired comparisons
modeled (15) casts doubts on the reliability of these results. The Monte Carlo ca-
pabilities of Mplus can be used to address this concern since a simulation study
can be performed using as true parameter values the estimated parameters of the
model. Using the Mplus input file provided in Appendix 4, we performed a sim-
ulation study to investigate the accuracy of the parameter estimates, standard er-
rors, and goodness of fit tests obtained in our initial model where

Pn
iD2 ¡i1 D 1.

The simulation of 1000 samples of size 96 took 56 seconds on a 3 Mz machine.
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TABLE 2

Estimated Parameter and Standard Errors for the Transformed Solution

P t

Barbara

Bush

Nancy

Reagan

Hillary

Clinton

Bonnie

Blair

Jackee

Joyner

Jennifer

Capriati

Barbara Bush 1
(fixed)

Nancy Reagan 0.71 1
(0.11) (fixed)

Hillary Clinton �0.35 �0.51 1
(0.18) (fixed) (fixed)

Bonnie Blair 0.16 0.28 �0.19 1
(0.26) (0.22) (0.28) (fixed)

Jackee Joyner �0.12 �0.05 �0.62 0.31 1
(0.36) (0.31) (0.38) (0.25) (fixed)

Jennifer Capriati 0.18 0.13 �0.72 0.38 0.25 1
(0.27) (0.39) (0.33) (0.21) (0.30) (fixed)

�t 0.09 �0.29 0.46 �0.28 0.17 0
(0.15) (0.16) (0.21) (0.15) (0.15) (fixed)

The solution was transformed so that the correlation between preferences for Nancy Reagan
and Hillary Clinton was maximally negative; standard errors in parentheses; correlations in bold are
significant at ’ D 0:05; Ö2 D 0:28 (0.09).

All replications converged. The bias of the parameter estimates, x O™
� ™0, ranged

from �0.02 to 0.01 with an average of 0. The bias of the standard errors,
x

SE.O™/
� sdO™

, ranged from �0.01 to 0.01, with an average of 0. The coverage
of the 95% confidence intervals for the parameter estimates ranged from 0.92
to 0.96, with an average or 0.94. Clearly, the parameter estimates and standard
errors we have obtained in our small sample application are to be trusted. As for
the behavior of the test statistic implemented in Mplus, the empirical rejection
rates at ’ D f0:01; 0:05; 0:10; 0:20g across the 1000 replications were {0.01,
0.03, 0.09, 0.18}. The p-values yielded by the test statistic are reliable. The
model indeed reproduces the estimated thresholds and tetrachoric correlations.

DISCUSSION AND CONCLUSIONS

Maydeu-Olivares and Böckenholt (2005) have recently shown how to embed the
class of Thurstonian models for paired comparison data within a SEM frame-
work. They also provide details on how to estimate these models using Mplus.
Yet, the comparative nature of paired comparisons data causes problems of
parameter interpretation in these models. For the Case V, Case III, as well
as Thurstonian factor analytic models Maydeu-Olivares and Böckenholt (2005)
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show how to suitably identify these models to obtain interpretable parameters.
Yet, the interpretation of the parameters of the unrestricted Thurstonian model
proved difficult. This model plays a crucial role in Thurstonian modeling, as
it is the most general model within this class. In this paper, we have extended
Maydeu-Olivares and Böckenholt (2005) results by providing a set of identifica-
tion restrictions for this model that yield an easily interpretable solution. Thus,
we have shown that the correlations among the continuous latent preferences
can be estimated, if one constraint is imposed among them. With this constraint,
the correlation matrix of the CLPs is at least non-negative definitive. Given the
close connection between Thurstonian models for paired comparisons and rank-
ing data (see Maydeu-Olivares and Böckenholt, 2005), this specification of the
unrestricted Thurstonian model can also be applied to ranking data.

The solution obtained is not the only one that is consistent with the data.
Alternative solutions can be obtained by transforming the solution initially ob-
tained that yield an equivalent fit to the data. A formula has been provided that
enables searching for alternative solutions that may be more consistent with
substantive theory.

Also, we have shown in this paper how applied researchers can use Mplus’
simulation capabilities to investigate the accuracy of the parameter estimates,
standard errors, and goodness of fit tests obtained using this program for their
particular application. Unfortunately, researchers can currently test with Mplus
only the restrictions imposed by their structural models on the estimated thresh-
olds and tetrachoric correlations. This test need not be meaningful if the as-
sumption of categorized normality does not hold. It is possible to test the over-
all restrictions imposed by Thurstonian models on the observed binary data
(Maydeu-Olivares, 2001) and existing evidence suggest that these tests perform
as well as the structural restrictions tests in small samples. However, the tests
of the overall restrictions are yet to be implemented in Mplus.

To sum up, framing the analysis of paired comparisons data within a structural
equation modeling framework enables applied researchers to conveniently and
reliably estimate and test the full array of Thurstonian models. It is hoped that
the widespread availability of software to estimate structural equation modeling
will encourage further use of these experimental designs in applications.
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APPENDIX 1

Identification of the Unrestricted Thurstonian Model

To identify †t Maydeu-Olivares and Böckenholt (2005) used the following n

constraints ¢n1 D 0; : : : ; ¢n;n�1 D 0, ¢nn D 1. In contrast, here we use the n

constraints ¢i i D 1; 8i so that a correlation matrix Pt is estimated. Letting ¡i i 0 be
an element of Pt and ¢i i 0 be a parameter in Maydeu-Olivares and Böckenholt’s
†t , the relationship between both parameterizations is

¡i i 0 D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

1 � ¢i 0i 0

2
if i D n

2 C 2¢i i 0 � ¢i i � ¢i 0i 0

2
otherwise

: (14)

The inverse relationship is

¢i i 0 D

8

<

:

2 � ¡ni 0 if i D i 0

¡i i 0 � ¡ni � ¡ni 0 otherwise
: (15)

To show that Pt is indeed a correlation matrix, notice that we can decompose
it using a Cholesky decomposition as Pt D CC0, where C is a lower triangular
matrix whose diagonal elements are constrained such that Pt has ones along its
diagonal. Dudgeon, Bell and Pattison (2003) have recently provided details on
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how to construct such matrices C. For instance, for n D 4,

C D

0

B

B

B

B

B

@

1 0 0 0

c21

q

1 � c2
21 0 0

c31 c32

q

1 � c2
31 � c2

32 0

c41 c42 c43

q

1 � c2
41 � c2

42 � c2
43

1

C

C

C

C

C

A

: (16)

This decomposition ensures that Pt is at least non-negative definite and therefore
that its elements at least admissible (Dudgeon et al., 2003; Searle, 1982: p. 208).

To identify the model, Maydeu-Olivares and Böckenholt’s introduce the ad-
ditional constraint ¢11 D 1. Similarly, in our present parameterization, one ad-
ditional constraint among the elements of Pt needs to be introduced. Using
Equation (14) Maydeu-Olivares and Böckenholt’s constraint ¢11 D 1 is equiv-
alent to ¡n1 D 0 when Pt is estimated. Here, rather than using the constraint
¡n1 D 0 we use instead the constraint

Pn
iD2 ¡i1 D 1 (i.e.,

Pn
iD2 ci1 D 1) as

with this constraint we can obtain parameter estimates and standard errors for
all the elements in Pt .

We could identify the model by fixing one element of the diagonal matrix
�2 instead of introducing one constraint among the elements of Pt . Fixing one
element of �2 is risky, though. To illustrate, suppose for ease of exposition and
without loss of generality that �2 D ¨2I. For some choices of fixed ¨2 and
some ‘true’ †t and ¨2 this alternative set of identification restrictions would
break down. That is, if Pt is estimated without using Pt D CC0, OPt may become
negative definite. Alternatively, if Pt is estimated using Pt D CC0 we may
not reproduce the true model exactly. To see this, suppose the true model is

†t D
0

@

1 :6 :4
:6 1 :3
:4 :3 1

1

A (a positive definite matrix), and ¨2 D :1. If we were to

estimate this model setting ¢i i D 1; 8i , and ¨2 D 1, we would most likely

obtain a negative definite O†t as a model with †t D
0

@

1 �3 �5
�3 1 �6
�5 �6 1

1

A (a negative

definite matrix), and ¨2 D 1 is equivalent to the generating model—i.e., it has
the same matrix of tetrachoric correlations Pz� . Tsai (2003) discusses in detail
the problem of equivalent models in Thurstonian paired comparison models.

APPENDIX 2

Proof of Equation (12)

Tsai (2003) has provided a rule that can be applied to find the full set of models
that are equivalent to a given estimated model. Suppose a Thurstonian model
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for paired comparisons has been estimated. For this specific model, we denote
the covariance matrix of the continuous latent preferences as †t and the error
covariance matrix as �2. Both matrices must be positive definite. Then, any

other model with †2 and Q�2
of the form

Q†t D c†t C d10 C 1d0; and Q�2 D c�2; (17)

is equivalent to the estimated model (Tsai, 2003; Corollary 1). That is, it yields
the same fit to the data. In Equation (17) c is a positive constant and d is an

n � 1 vector of constants. These constants are arbitrary as long as Q†t and Q�2

are positive definite.
Here, the estimated model is a correlation matrix, that is, †t D Pt , and we

use (17) to find the set of alternative correlation matrices QPt that are equally
consistent with the data. Thus, we write

QPt D cPt C d10 C 1d0; and Q�2 D c�2: (18)

The first of these equations yields for the diagonal elements the relationship
1 D c C 2di ) di D 1�c

2
, i D 1; : : : ; n. That is, for (18) to hold d D .1�c

2
/1.

Substituting into Equation (18) we obtain QPt D cPt C .1�c
2

/110 C .1�c
2

/110 D
cPt C .1 � c/110.

The relationship among the mean vectors can be obtained as follows. Again
from Tsai (2003, section 4), two equivalent models should also satisfy

QDt A Q�t D DtA�t (19)

where A is the design matrix and D D .Diag.APt A0 C �2//� 1
2 , QD D .Diag

.A QPt A0 C Q�2
//� 1

2 . From QPt D cPt C .1 � c/110 it is then easy to verify that

QD D .Diag.A QPt A0 C Q�2
//� 1

2 D .Diag.c.APt A0 C �2///� 1
2 D 1p

c
D

and so

QDA Q�t D DA�t ) Dt A Q�t D Dt A.
p

c�t/ ) A Q�t D A.
p

c�t /

If we fix the last component of the mean vector to 0, this implies Q�t Dp
c�t as requested.
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APPENDIX 3

Mplus Input File for Modeling the Preferences for

Celebrities

TITLE: ULS estimation for first ladies and sportwomen

(females resp only);

DATA: FILE IS ‘ladies sport.dat’;

! the data contains 96 observations on 15 binary variables

VARIABLE:

NAMES ARE

y12 y13 y14 y15 y16

y23 y24 y25 y26

y34 y35 y36

y45 y46

y56;

! it is convenient to assign names that reflect the paired

comparisons

CATEGORICAL = y12-y56;

! variables are declared as categorical

ANALYSIS:

TYPE = MEANSTRUCTURE;

! thresholds and tetrachoric correlations are modeled

ESTIMATOR = ULS;

! ULS estimation, mean and variance corrected test

statistic

PARAMETERIZATION = THETA;

! it enables modeling factor variances with categorical

dependent vars

MODEL:

f1 BY y12-y16@1;

f2 by y23-y26@1;

f3 by y34-y36@1;

f4 BY y45-y46@1;

f5 by y56-y56@1;
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f2 by y12@-1;

f3 by y13@-1 y23@-1;

f4 by y14@-1 y24@-1 y34@-1;

f5 by y15@-1 y25@-1 y35@-1 y45@-1;

f6 by y16@-1 y26@-1 y36@-1 y46@-1 y56@-1;

! fixed factor loadings, this is the A matrix

! the factors are

! f1 = Barbara Bush

! f2 = Nancy Reagan

! f3 = Hillary Clinton

! f4 = Bonnie Blair

! f5 = Jackee Joyner

! f6 = Jennifer Capriati

[y12$1-y56$1@0];

! thresholds fixed to zero

[f1-f5* f6@0];

! factor means free --default is fixed to zero

y12-y56*.2(1);

! error specific variances equal

! for this matrix to be diagonal use instead

! y12-y56*.2;

f1-f6@1;

! factor variances are fixed at 1

f2 with f3-f6;

f3 with f4-f6;

f4 with f6*;

f5 with f6*;

! all factors are intercorrelated

f1 with f2* (p1);

f1 with f3* (p2);

f1 with f4* (p3);

f1 with f5* (p4);

f1 with f6 (p5);

! factor intercorrelations with first stimuli
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MODEL CONSTRAINT:

p5 = 1 - p1 - p2 - p3 -p4;

! enforces constraint that the sum of factor

! inter-correlations with first stimuli = 1

OUTPUT: TECH1;

! use this to verify that the A matrix is properly set up

SAVEDATA: ESTIMATES=estimates.dat;

! save estimates for Monte Carlos simulation

APPENDIX 4

Mplus Input File for Monte Carlo Simulation

TITLE: simulation for first ladies and sportwomen data,

ULS estimation;

MONTECARLO:

NAMES ARE y12 y13 y14 y15 y16 y23 y24 y25 y26 y34 y35

y36 y45 y46 y56 ;

NOBS=96;

! same sample size as in the application is used

NREPS = 1000;

! 1000 replications are requested

SEED = 4553;

GENERATE = y12-y56(1);

! multivariate normal data is generated

! each variable is categorized using one threshold

CATEGORICAL = y12-y56;

! the data is analyzed as categorical

POPULATION = estimates.dat;

COVERAGE = estimates.dat;

! the estimated parameter values from the application

! are used as true parameter values to generate the data

MODEL POPULATION:

! same model as in the application

f1 BY y12-y16@1;

f2 by y23-y26@1;
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f3 by y34-y36@1;

f4 BY y45-y46@1;

f5 by y56-y56@1;

f2 by y12@-1;

f3 by y13@-1 y23@-1;

f4 by y14@-1 y24@-1 y34@-1;

f5 by y15@-1 y25@-1 y35@-1 y45@-1;

f6 by y16@-1 y26@-1 y36@-1 y46@-1 y56@-1;

f1-f6@1;

[y12$1-y56$1@0];

[f1-f5* f6@0];

y12-y56*.2(1);

f1 with f2-f6*;

f2 with f3-f6*;

f3 with f4-f6*;

f4 with f5-f6*;

f5 with f6*;

! the inter-factor correlation matrix is left unconstrained

ANALYSIS:

TYPE = MEANSTRUCTURE;

ESTIMATOR = ULS;

! ULS estimation, mean and variance corrected test statistic

PARAMETERIZATION = THETA;

MODEL:

! same model as in the application

f1 BY y12-y16@1;

f2 by y23-y26@1;

f3 by y34-y36@1;

f4 BY y45-y46@1;

f5 by y56-y56@1;

f2 by y12@-1;

f3 by y13@-1 y23@-1;

f4 by y14@-1 y24@-1 y34@-1;

f5 by y15@-1 y25@-1 y35@-1 y45@-1;

f6 by y16@-1 y26@-1 y36@-1 y46@-1 y56@-1;
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f1-f6@1;

[y12$1-y56$1@0];

[f1-f5* f6@0];

y12-y56*.2(1);

f2 with f3-f6;

f3 with f4-f6;

f4 with f6*;

f5 with f6*;

f1 with f2* (p1);

f1 with f3* (p2);

f1 with f4* (p3);

f1 with f5* (p4);

f1 with f6 (p5);

MODEL CONSTRAINT:

p5 = 1 - p1 - p2 - p3 -p4;


