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For details on the results which I will present, see:

V. Cortés, L. David: T -duality for transitive Courant algebroids,
arxiv:2101.07184 (2021) (68 pages).

V. Cortés, L. David: Generalized connections, spinors and integrability of
generalized structures on Courant algebroids, Moscow Math J, 21 (4),
(2021), pag. 695 – 736.
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T -dual exact Courant algebroids

Let π : M → B and π̃ : M̃ → B be principal T k -bundles, H ∈ Ω3(M) and
H̃ ∈ Ω3(M̃) closed T k -invariant 3-forms. We denote by (TM,H) and
(TM̃, H̃) the corresponding exact Courant algebroids.

Definition

The exact Courant algebroids (TM,H) and (TM̃, H̃) are called T-dual if
there is a T 2k -invariant 2-form F on

N = M ×B M̃ = {(m, m̃) ∈ M × M̃, π(m) = π̃(m̃)}

such that:
i) π∗NH − π̃∗NH̃ = dF where πN : N → M and π̃N : N → M̃ are natural
projections;
ii) F |Ker (d π̃N)×Ker (dπN) is non-degenerate at any point.
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Theorem (Bouwknegt, Hannabuss, Mathai, 2004)

Let π : M → B be a principal T k -bundle and H ∈ Ω3(M) a closed
T k -invariant 3-form which represents an integral cohomology class and
satisfies H|Λ2Ker dπ = 0. Then (TM,H) admits a T-dual.

Theorem (Bouwknegt, Evslin, Mathai, 2004)

If (TM,H) and (TM̃, H̃) are T -dual then there is an isomorphism

τ : ΩT k (M)→ ΩT k (M̃)

which satisfies τ ◦ dH = dH̃ ◦ τ , where dHω := dω + H ∧ ω for any
ω ∈ Ω(M). It is given by

τ(ω) =

∫
T k

eF ∧ π∗ω.
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Theorem (Cavalcani, Gualtieri, 2010)

If (TM,H) and (TM̃, H̃) are T -dual then there is a canonical isomorphism
of Courant algebroids

ρ : (TM/T k , [·, ·]H)→ (TM̃/T k , [·, ·]H̃)

compatible with τ :

τ ◦ γu = γρ(u) ◦ τ, ∀u ∈ ΓT k (TM).
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Standard Courant algebroids

Definition

i) A vector bundle G → M endowed with a tensor field [·, ·] ∈ Γ(∧2G∗ ⊗ G)
satisfying the Jacobi identity is called a Lie algebra bundle if in a
neighborhood of every point p ∈ M the tensor field has constant
coefficients with respect to some local frame.
ii) A bundle of quadratic Lie algebras is a Lie algebra bundle (G, [·, ·])
endowed with a metric 〈·, ·〉 ∈ Γ(Sym2G∗) of neutral signature, which is
ad-invariant:

〈[u, v ],w〉+ 〈v , [u,w ]〉 = 0, ∀u, v ,w ∈ G.
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Theorem (Chen, Stiénon, Xu, 2013)

Any transitive Courant algebroid E is isomorphic to a Courant algebroid
with underlying bundle TM ⊕ G ⊕ T ∗M, where (G, 〈·, ·〉G , [·, ·]G) is a
bundle of quadratic Lie algebras, with anchor the natural projection to TM
scalar product

〈ξ + r1 + X , η + r2 + Y 〉 =
1

2
(η(Y ) + ξ(X )) + 〈r1, r2〉G ,

and Dorfmann bracket defined by (∇,R,H), where ∇ is a connection on
the vector bundle G, R ∈ Ω2(M,G) and H ∈ Ω3(M), such that ∇
preserves 〈·, ·〉G and [·, ·]G , the following relations hold

d∇R = 0, (1)

dH = 〈R ∧ R〉G (2)

and the curvature R∇ of ∇ is given by R∇(X ,Y )r = [R(X ,Y ), r ]G , for
any X ,Y ∈ X(M) and r ∈ Γ(G).
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A Courant algebroid of the form E = TM ⊕ G ⊕ T ∗M as above will be
called standard.

The Dirac generating operator for standard Courant
algebroids
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Let E = TM ⊕ G ⊕ T ∗M be a standard Courant algebroid and SG an
irreducible Cl(G)-bundle. Consider the canonical weighted spinor bundle
defined by

S := Λ(T ∗M)⊗̂SG , (3)

where SG := SG ⊗ |det S∗G |1/r . It is an irreducible spinor bundle of E , with
Clifford action

γX+r+ξ(ω ⊗ s) = (iXω + ξ ∧ ω)⊗ s + (−1)|ω|ω ⊗ (r · s), (4)

for any X ∈ TM, r ∈ G, ξ ∈ T ∗M, ω ∈ Λ(T ∗M) and s ∈ SG .
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Theorem

The canonical Dirac generating operator /d : Γ(S)→ Γ(S) is given by

/d(ω ⊗ s) = (dω − H ∧ ω)⊗ s +∇SG (s) ∧ ω

+
1

4
(−1)|ω|+1ω ⊗ (CGs) + (−1)|ω|+1R̄E (ω ⊗ s), (5)

where ω ∈ Ω(M) and s ∈ Γ(SG). Above CG ∈ Γ(Λ3G∗) ⊂ Γ(Cl(G)) is the
Cartan form CG(u, v ,w) := 〈[u, v ]G ,w〉G which acts on s by Clifford
multiplication, ∇SG is a connection on SG induced by a connection ∇SG on
SG compatible with ∇,

∇SG (s) ∧ ω =
∑
i

αi ∧ ω ⊗ (∇SGXi
s)

and

R̄E (ω ⊗ s) =
1

2

∑
i ,j ,k

〈R(Xi ,Xj), rk〉G(αi ∧ αj ∧ ω)⊗ (r̃ks),

where (rk) is a local frame of G and (r̃k) the metrically dual frame.
Liana David (IMAR) Generalized connections, spinors and T -duality November 7, 2021 10 / 30



Proposition

Let IE : E1 → E2 be an isomorphism of standard Courant algebroids, Si
irreducible Cl(Ei )-bundles and Si = Si ⊗ |detT ∗M|1/2 their canonical
weighted spinor bundles. Then for any U ⊂ M open and sufficiently small,
there is a unique (up to multiplication by ±1) isomorphism

IS|U : S1|U → S2|U

such that
IS|U ◦ γu = γIE (u) ◦ IS|U .

Moreover, /dE2
◦ IS|U = IS|U ◦ /dE1

.
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Pullback and pushforward on spinors

Let f : M → N be a submersion and EN = TN ⊕ G ⊕ T ∗N a standard
Courant algebroid, defined by a bundle of quadratic Lie algebras
(G, [·, ·]G , 〈·, ·〉G) and data (∇,R,H).

Lemma

The data
(f ∗G, [·, ·]f ∗G := f ∗[·, ·]G , 〈·, ·〉f ∗G := f ∗〈·, ·〉G)

together with (f ∗∇, f ∗R, f ∗H) defines a standard Courant algebroid on M,
denoted by f !EN = EM . It is called the pullback Courant algebroid.
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We fix an irreducible Cl(G)-bundle SG . Then Sf ∗G := f ∗SG is an irreducible
Cl(f ∗G)-bundle. We consider the canonical weighted spinor bundles

SN = Λ(T ∗N)⊗̂SG , SM = Λ(T ∗M)⊗̂f ∗SG .

Definition

The natural map

f ∗ : Γ(SN) =Ω(N,SG)→ Γ(SM) = Ω(M, f ∗SG),

ω ⊗ s → f ∗(ω)⊗ f ∗(s) (6)

is called the pullback on spinors.

Liana David (IMAR) Generalized connections, spinors and T -duality November 7, 2021 13 / 30



Definition

In the above setting, assume that f has compact oriented fibers. The
pushforward on spinors is the map

f∗ : Γ(SM)→ Γ(SN)

by

f∗(ω ⊗ f ∗s) = (−1)r |s|+nr+ r(r−1)
2 (f∗ω)⊗ s, (7)

where n and r are the dimensions of N and the fibers of f , ω ∈ Ω(M) and
s ∈ Γ(SG) is homogeneous of degree s.

Theorem

The canonical Dirac generating operators are compatible with the pullback
and pushforward on spinors, i.e.

/dM ◦ π∗ = π∗ ◦ /dN , /dN ◦ π∗ = π∗ ◦ /dM .
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Actions on Courant algebroids
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Assume that
E = TM ⊕ G ⊕ T ∗M (8)

is a standard Courant algebroid, defined by a quadratic Lie algebra bundle
(G, [·, ·]G , 〈·, ·〉G) and data (∇,R,H). Let g be a Lie algebra acting on M
by an infinitesimal action

ψ : g→ X(M), a 7→ ψ(a) = Xa,

assumed to be free. This means that the fundamental vector fields Xa are
non-vanishing, for all a ∈ g \ {0}. We define

∇Ψ
Xa(p)r := (Ψ(a)(r)) (p), ∀a ∈ g, r ∈ Γ(G), p ∈ M,

which is a partial connection on G.
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Lemma

There is a one to one correspondence between actions Ψ : g→ Der(E )
which lift ψ and preserve the factors TM, G, T ∗M of E and partial
connections ∇Ψ on G such that the following conditions are satisfied:
i) ∇Ψ is flat and preserves [·, ·]G and 〈·, ·〉G ;
ii) H and R are invariant, i.e. for any a ∈ g,

LXaH = 0, LΨ(a)R = 0 (9)

where

(LΨ(a)R)(X ,Y ) := ∇Ψ
Xa

(R(X ,Y ))− R(LXaX ,Y )− R(X ,LXaY ) (10)

for any X ,Y ∈ X(M);
iii) for any a ∈ g, the endomorphism Aa := ∇Ψ

Xa
−∇Xa of G satisfies

(∇XAa)(r) = [R(Xa,X ), r ]G , ∀X ∈ X(M), r ∈ Γ(G). (11)
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If the above conditions are satisfied, the corresponding action Ψ acts
naturally (by Lie derivative) on the subbundle TM ⊕ T ∗M of E , i.e.

Ψ(a)(ξ + X ) = LXa(ξ + X ), X ∈ X(M), ξ ∈ Ω1(M), (12)

and on G by
Ψ(a)(r) = ∇Ψ

Xa
r , r ∈ Γ(G). (13)
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A class of T k-actions

Assume that M is the total space of a principal T k -bundle π : M → B and
let ψ : tk → X(M) be the vertical paralellism. Let H be a connection on
π, with connection form θ =

∑k
i=1 θiei , where (ei ) is a basis of tk .

We obtain a Courant algebroid E = TM ⊕ T ∗M ⊕ R with an action of tk

from the following data:
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• a quadratic Lie algebra bundle (GB , 〈·, ·〉GB , [·, ·]GB ), whose adjoint action
is an isomorphism;

• a connection ∇B on GB , which preserves 〈·, ·〉GB and [·, ·]GB ;

• sections rBi ∈ Γ(GB), 2-forms H i ,B
(2) ∈ Ω2(B) (1 ≤ i ≤ k) and a 3-form

HB
(3) ∈ Ω3(B) such that

Ki := H i ,B
(2) + 2〈rB , rBi 〉GB − 〈r

B
i , r

B
j 〉GB (dθj)

B (14)

is closed and
dHB

(3) = 〈rB ∧ rB〉GB −Ki ∧ dθi . (15)
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Above
R∇

B
(X ,Y ) = adrB(X ,Y )

for rB ∈ Ω2(B,GB).

Liana David (IMAR) Generalized connections, spinors and T -duality November 7, 2021 21 / 30



Action on spinors

Let E = TM ⊕ G ⊕ T ∗M be a standard Courant algebroid over a manifold
M and Ψ : g→ Der(E ) an action on E , which lifts an action
ψ : g 7→ X(M), a 7→ Xa of g on M and leaves the factors TM, G and
T ∗M invariant.

Let S := Λ(T ∗M)⊗̂SG be a canonical weighted spinor bundle of E .

Definition

The map ΨS : g→ End Γ(S) defined by

ΨS(a)(ω ⊗ s) = (LXaω)⊗ s + ω ⊗∇Ψ,SG
Xa

s, (16)

for any a ∈ g, ω ∈ Ω(M) and s ∈ Γ(SG) is called the action on spinors
defined by Ψ.

Theorem

The Dirac generating operator maps invariant spinors to invariant spinors.
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Pullback actions
Let f : M → N be a submersion and

ψM : g→ X(M), a 7→ XM
a

ψN : g→ X(N), a→ XN
a

be f -related infinitesimal actions, i.e. XN
a ◦ f = dfXM

a for all a ∈ g.

Definition

Let EN := T ∗N ⊕ G ⊕ TN be a standard Courant algebroid and
ΨN : g→ Der(EN) be an action given by

ΨN(a)(ξ + r + X ) := LXN
a
ξ +∇Ψ

XN
a
r + LXN

a
X , (17)

where ξ ∈ Ω1(N), r ∈ Γ(G) and X ∈ X(N). Then

ΨM(ξ + r + X ) := LXM
a
ξ + (f ∗∇Ψ)XM

a
r + LXM

a
X , (18)

where ξ ∈ Ω1(M), r ∈ Γ(f ∗G) and X ∈ X(M) is an action of f !EN , called
pullback action.

Lemma

In the setting of the above definition, the pullback and push forward on
spinors map invariant spinors to invariant spinors.
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T -duality for transitive Courant algebroids

Let π : M → B and π̃ : M̃ → B be principal bundles over the same
manifold B with structure group the k-dimensional torus T k . We denote
the structure group of π̃ by T̃ k and its Lie algebra by t̃k . We assume that
M, M̃ and B are oriented. Let

Lie (T k) = tk 3 a 7→ ψM(a) := XM
a , t̃k 3 ã 7→ ψM̃(ã) := X M̃

ã ,

be the vertical paralellism of π and π̃. We denote by

N := M ×B M̃ := {(m, m̃) ∈ M × M̃ | π(m) = π̃(m̃)}

the fiber product of M and M̃ and by πN : N → M and π̃N : N → M̃ the
natural projections. The actions of T k on M and T̃ k on M̃ induce
naturally an action of T 2k = T k × T̃ k on N. We denote by XN

a , XN
ã the

fundamental vector fields, a ∈ Lie (T k), ã ∈ Lie (T̃ k).
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Let E and Ẽ be standard Courant algebroids over M and M̃, and assume
they come with actions

Ψ : tk → Der(E ), Ψ̃ : t̃k → Der(Ẽ ),

which lift ψM and ψM̃ and preserve the decompositions
E = TM ⊕ G ⊕ T ∗N and Ẽ = TM̃ ⊕ G̃ ⊕ T ∗M̃.
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Definition

The Courant algebroids E and Ẽ are T -dual if there is an invariant fiber
preserving Courant algebroid isomorphism F : π!

NE → π̃!
N Ẽ such that the

following non-degeneracy condition is satisfied. If F is defined by (β,Φ,K ),
where β ∈ Ω2(N), Φ ∈ Ω1(N, π̃∗N G̃) and K ∈ Isom(π∗NG, π̃∗N G̃), then

β − Φ∗Φ : Ker (dπN)×Ker (d π̃N)→ R (19)

is non-degenerate.

Liana David (IMAR) Generalized connections, spinors and T -duality November 7, 2021 26 / 30



Assume that E and Ẽ are T -dual standard Courant algebroids and let

F : π!
NE → π̃!

N Ẽ

be an invariant isomorphism as above. Let

SE = Λ(T ∗M)⊗̂SG , SẼ = Λ(T ∗M̃)⊗̂SG̃ ,
Sπ!

NE
= Λ(T ∗N)⊗̂π∗N(SG), Sπ̃N Ẽ = Λ(T ∗N)⊗̂π̃∗N(SG̃),

be canonical weighted spinor bundles of E , Ẽ , π!
NE and π̃!

N Ẽ respectively.
Assume that FS : Γ(Sπ!

NE
)→ Γ(Sπ̃!

N Ẽ
) is globally defined.
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Theorem

i) The map
τ := (π̃N)! ◦ FS ◦ π!

N : Γ(SE )→ Γ(SẼ ) (20)

intertwines the canonical Dirac generating operators of E and Ẽ and maps
invariant spinors to invariant spinors.
ii) There is an isomorphism ρ : Γtk (E )→ Γt̃k (Ẽ ) of C∞(B)-modules which
preserves Courant brackets, scalar products and is compatible with τ , i.e.

τ(γus) = γρ(u)τ(s), [ρ(u), ρ(v)]Ẽ = ρ[u, v ]E , 〈ρ(u), ρ(v)〉Ẽ = 〈u, v〉E ,
(21)

for any u, v ∈ Γtk (E ) and s ∈ Γtk (SE ).
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Let (E ,Ψ) be a standard Courant algebroid over the total space of a
principal T k -bundle π : M → B, with action Ψ : tk → Der(E ), which
belongs to the class constructed before. Let (e i ) be the dual basis of (ei )
and T̃ k the dual torus of T k .

Theorem

Assume that the closed forms Ki represent integral cohomology classes in
H2(B,R) and let π̃ : M̃ → B be a principal T̃ k -bundle with connection
form θ̃ =

∑k
i=1 θ̃ie

i , such that d θ̃i = Ki for any i . Then E admits a
T-dual Ẽ over M̃.
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Thank you for your attention!
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