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Motivation

Let M be a manifold, H € Q’C‘,H(I\/I) define
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Higher Courant algebroid.
Q1: Which is the definition of a Higher Courant algebroid?

Q2: Are those the only examples? TM <« A Lie algebroid.

Q3: What are Higher Dirac structures?
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Severa-Roytenberg correspondence

Classical object Graded geometry
Courant algebroids = Degree 2 symplectic Q-manifolds.

Dirac structures = Lagrangian Q-submanifolds.
In particular:
T}_IM = (T*[2]T[1]M, Wean, Q)
(A@A*,<',‘>,,0, [[7]) = (T*[2]A[1]7 Wean, Q)

Use the RHS to define Higher Courant and Higher Dirac

There is a correspondence between:

Higher Courant algebroids = Graded cotangent bundles
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Let A— M be a vector bundle.

Higher Courant algebroid: ( T*[k]A[1], wean, @) symplectic Q-man.
Higher Dirac structure: Lagrangian Q-submanifold.

Recall:

Degree k Symplectic @-manifold <+ (M, w, Q) then Q@ = Xy with
0Ot st {0,0}=0.

Problem: It was difficult to describe T*[k]A[1] in classical terms.
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Geometrization functor

Theorem [Bursztyn, C, Mehta]

There is an equivalence of categories:

» Coalgebra bundles.

» Graded manifolds.

Claim: To give a geometric description of a k-manifold is enough
to identify O' =TE; for i = 1,- - - k and know the maps
OOl C O fori+j < k.
The k-manifold T*[k]A[1] is equivalent to the algebra bundle
(E, m) where for k > 2,

> £ = NA* if1<i<k-—2.

> B 1 =ADANLA

> Ei = Der(A) @ NFA*

The symplectic form is codified in (-,-) : Ex—1 @ Ex—1 — Ex—_2 and
the Atiyah alg structure of Der(A).
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We classify all the Q-structures.

» For k = 3, it was studied by lkeda, Uchino and Griiztmann
and they are the same as
7€ XYA[L]), 7 € Sym?A*, H € A\*A* satisfying:

{r,7} +{m,H} =0, {r,H} =0 and {7r,7}=0.

» For k > 3, they are the same as 7 € X1(A[1]) and
H e NFHLA* satisfying:

{r,7} =0 and {7, H}=0.

So A— M is a Lie algebroid and dcgH =0
Prop: The Q's are equivalent iff 7 = 7/ and H = H' + d1mf5.
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Proposition [-]

V induces an isomorphism between the @-manifolds

T*[k + 1A[L], {6+ H,-} = (A < (T*M — A*)[k])[l], dee
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In the case when N = M and without the first condition this was
defined by Hagiwara under the name of Nambu-Dirac structures.
There are other definitions for Higher Dirac Structures: Wade,
Zabzine, Zambon, Bi-Sheng, Bursztyn-Martinez-Rubio.



Applications
ldea |

Use the theory of symplectic @-manifolds to study
higher Courant and higher Dirac.
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| Lie n-groupoids

Degree n Q-manifolds = Lie n-algebroids (Bonavolonta-Poncin)
So

Degree n Q-manifolds
Let (A — M, p,[,-]) be a Lie algebroid and [H] € H+1(A).
Assume A integrates to G = M and VE([H]) = [H].

Integration | . .
i~ Lie n-groupoids.

Integration
The higher Courant algebroid (A @ AK2A* (-2, o, [, -]H)
integrates to G Xy (T*M — A*)[K]

Canonical integration?
Shifted sympelctic form?
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Il Actions
g Lie n-algebra «~ (g[1], dce) is a Q-manifold.

A Hamiltonian action g ~ (M, {-,-}, Q) is a pair of Ls,-morphism,
the action W and the comoment map J s.t.

(%(M% ['7 ‘]7 [Q7 ])

v Define:

-— i k

g Ham CorsT = D) k=i OJT*g[l] ©OR"
J with bracket {','}can"_ {7}

(OM[n]) {'7 '}’ Q)

Then 05,0 € Cirsr. A comoment map J : § — O[] defines
also a degree 1 element 6. The element © = 0 + 05 + 0 satisfy

(0,0} =0.

Under favourable hypothesis H%(CgrsT,{©,}) = Oum,.,
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111 Prequantum bundle
(M, w, Q) deg k symplectic Q-manifold.

A prequantum bundle is an R[k]-principal Q-bundle £ — M with
connection A whose curvature is w.

Prop. If kK > 1 then a preguantum bundle is given by:
» L = M x R[k] (local coordinates {x',£})

> Q=Q+04
» A= )\—d¢
Examples:

» For a Poisson manifold: (L, CA),A) is the Jacobi Lie algebroid
with the contact 1-form.

» For a quadratic Lie algebra: (L, (3, A) is the string Lie
2-algebra.

» For a Courant algebroid ? Higher Courant 7
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IV AKSZ Topological o-models

Alexandrov, Kontsevich, Schwarz, Zaboronsky

Y d-dimensional manifold,

Geometric data = { (M,wrr = dApm, 0) d — 1 symplectic Q-manifold.

» Fields: Fgy = {¢ € Maps(T[1]X, M)|¢(T[1]0X) C B}.

v

Action: S : Fgy — R given by S = fT[l]z iz evi A + evo.

v

Symplectic form: wgy = fT[I]z ev¥wpy of degree —1.

v

Possible boundary conditions: ®(T[1]0X) C L for some
L C M Lagrangian Q-submanifold.

O e#5(®) “Do” .

v

Path integral: (O> = fd)EEBvC]:BV

» Gauge fixing: Lpy Lagrangian submanifold of (Fgv,wsy).
When = T*[k]g[1] we obtain BF theory!!!



Thanks !!



