Higher Dirac as Lagrangian Q-submanifolds

Miquel Cueca Ten

Georg-August-Universität Göttingen, Germany

October 26, 2021

Motivation

Let *M* be a manifold, $H \in \Omega_{cl}^{k+1}(M)$ define

$$\mathbb{T}_{H}^{k-1}M \equiv (TM \oplus \wedge^{k-1}T^{*}M, \langle \cdot, \cdot \rangle, p_{1}, \llbracket \cdot, \cdot \rrbracket_{H})$$

$$\langle X + \alpha, Y + \beta \rangle = i_{X}\beta + i_{Y}\alpha$$

$$p_{1}(X + \alpha) = X$$

$$\llbracket X + \alpha, Y + \beta \rrbracket_{H} = [X, Y] + \mathcal{L}_{X}\beta - i_{Y}d\alpha + i_{X}i_{Y}H$$

Higher Courant algebroid.

Motivation

Let *M* be a manifold, $H \in \Omega_{cl}^{k+1}(M)$ define

$$\begin{split} \mathbb{T}_{H}^{k-1}M &\equiv (TM \oplus \wedge^{k-1}T^{*}M, \langle \cdot, \cdot \rangle, p_{1}, \llbracket \cdot, \cdot \rrbracket_{H}) \\ \langle X + \alpha, Y + \beta \rangle &= i_{X}\beta + i_{Y}\alpha \\ p_{1}(X + \alpha) &= X \\ \llbracket X + \alpha, Y + \beta \rrbracket_{H} &= [X, Y] + \mathcal{L}_{X}\beta - i_{Y}d\alpha + i_{X}i_{Y}H \end{split}$$

Higher Courant algebroid.

Q1: Which is the definition of a Higher Courant algebroid? **Q2:** Are those the only examples? $TM \leftrightarrow A$ Lie algebroid. **Q3:** What are Higher Dirac structures?

Severa-Roytenberg correspondence

Classical object		Graded geometry
Courant algebroids	\rightleftharpoons	Degree 2 symplectic Q-manifolds.
Dirac structures	\rightleftharpoons	Lagrangian Q-submanifolds.

Severa-Roytenberg correspondence

Classical object		Graded geometry
Courant algebroids	$\stackrel{\longrightarrow}{\longrightarrow}$	Degree 2 symplectic Q-manifolds.
Dirac structures	\rightleftharpoons	Lagrangian Q-submanifolds.
In particular:		
$\mathbb{T}^1_H M$	\rightleftharpoons	$(T^*[2]T[1]M, \omega_{can}, Q)$
$({oldsymbol A} \oplus {oldsymbol A}^*, \langle \cdot, \cdot angle, ho, \llbracket \cdot, \cdot rbracket)$	\rightarrow	$(T^*[2]A[1], \omega_{can}, Q)$

Severa-Roytenberg correspondence

Classical object		Graded geometry
Courant algebroids	\rightleftharpoons	Degree 2 symplectic Q-manifolds.
Dirac structures	\rightleftharpoons	Lagrangian Q-submanifolds.
In particular:		
$\mathbb{T}^1_H M$	\rightleftharpoons	$(T^*[2]T[1]M, \omega_{can}, Q)$
$(A \oplus A^*, \langle \cdot, \cdot angle, ho, \llbracket \cdot, \cdot rbrace)$	\rightleftharpoons	$(T^*[2]A[1], \omega_{can}, Q)$

Use the RHS to define Higher Courant and Higher Dirac

Idea

There is a correspondence between:

Higher Courant algebroids \rightleftharpoons Graded cotangent bundles

Definition

Definition

Let $A \rightarrow M$ be a vector bundle.

Higher Courant algebroid: $(T^*[k]A[1], \omega_{can}, Q)$ symplectic *Q*-man.

Higher Dirac structure: Lagrangian Q-submanifold.

Definition

Definition

Let $A \rightarrow M$ be a vector bundle.

Higher Courant algebroid: $(T^*[k]A[1], \omega_{can}, Q)$ symplectic *Q*-man.

Higher Dirac structure: Lagrangian Q-submanifold.

Recall:

Degree k Symplectic Q-manifold $\leftrightarrow (\mathcal{M}, \omega, Q)$ then $Q = X_{\theta}$ with

$$heta \in \mathcal{O}_{\mathcal{M}}^{k+1}$$
 s.t. $\{ heta, heta\} = 0.$

Definition

Definition

Let $A \rightarrow M$ be a vector bundle.

Higher Courant algebroid: $(T^*[k]A[1], \omega_{can}, Q)$ symplectic *Q*-man.

Higher Dirac structure: Lagrangian Q-submanifold.

Recall:

Degree k Symplectic Q-manifold $\leftrightarrow (\mathcal{M}, \omega, Q)$ then $Q = X_{\theta}$ with

$$heta \in \mathcal{O}_{\mathcal{M}}^{k+1}$$
 s.t. $\{ heta, heta\} = 0.$

Problem: It was difficult to describe $T^*[k]A[1]$ in classical terms.

Geometrization functor

Theorem [Bursztyn, C, Mehta]

There is an equivalence of categories:

- Coalgebra bundles.
- Graded manifolds.

Claim: To give a geometric description of a *k*-manifold is enough to identify $\mathcal{O}^i = \Gamma E_i$ for $i = 1, \dots, k$ and know the maps $\mathcal{O}^i \cdot \mathcal{O}^j \subseteq \mathcal{O}^{i+j}$ for i+j < k.

Geometrization functor

Theorem [Bursztyn, C, Mehta]

There is an equivalence of categories:

- Coalgebra bundles.
- Graded manifolds.

Claim: To give a geometric description of a *k*-manifold is enough to identify $\mathcal{O}^i = \Gamma E_i$ for $i = 1, \dots, k$ and know the maps $\mathcal{O}^i \cdot \mathcal{O}^j \subseteq \mathcal{O}^{i+j}$ for i+j < k.

The k-manifold $T^*[k]A[1]$ is equivalent to the algebra bundle (E, m) where for k > 2,

•
$$E_i = \wedge^i A^*$$
 if $1 \le i \le k - 2$.
• $E_{k-1} = A \oplus \wedge^{k-1} A^*$
• $E_k = Der(A) \oplus \wedge^k A^*$

Geometrization functor

Theorem [Bursztyn, C, Mehta]

There is an equivalence of categories:

- Coalgebra bundles.
- Graded manifolds.

Claim: To give a geometric description of a *k*-manifold is enough to identify $\mathcal{O}^i = \Gamma E_i$ for $i = 1, \dots, k$ and know the maps $\mathcal{O}^i \cdot \mathcal{O}^j \subseteq \mathcal{O}^{i+j}$ for i+j < k.

The k-manifold $T^*[k]A[1]$ is equivalent to the algebra bundle (E, m) where for k > 2,

- $E_i = \wedge^i A^*$ if $1 \le i \le k 2$. • $E_{k-1} = A \oplus \wedge^{k-1} A^*$
- $E_k = Der(A) \oplus \wedge^k A^*$

The symplectic form is codified in $\langle \cdot, \cdot \rangle : E_{k-1} \oplus E_{k-1} \to E_{k-2}$ and the Atiyah alg structure of Der(A).

Q-Structure

We classify all the Q-structures.

Q-Structure

We classify all the Q-structures.

 For k = 3, it was studied by Ikeda, Uchino and Grüztmann and they are the same as τ ∈ 𝔅¹(A[1]), π ∈ Sym²A*, H ∈ ∧⁴A* satisfying:

 $\{\tau,\tau\}+\{\pi,H\}=0, \quad \{\tau,H\}=0 \text{ and } \{\tau,\pi\}=0.$

Q-Structure

We classify all the Q-structures.

For k = 3, it was studied by Ikeda, Uchino and Grüztmann and they are the same as τ ∈ X¹(A[1]), π ∈ Sym²A*, H ∈ ∧⁴A* satisfying:
 {τ, τ} + {π, H} = 0, {τ, H} = 0 and {τ, π} = 0.

For k > 3, they are the same as τ ∈ X¹(A[1]) and H ∈ ∧^{k+1}A* satisfying:

$$\{\tau,\tau\}=0$$
 and $\{\tau,H\}=0.$

So $A \to M$ is a Lie algebroid and $d_{CE}H = 0$ **Prop:** The Q's are equivalent iff $\tau \cong \tau'$ and $H = H' + d_{TM}\beta$.

Sheng-Zhu

Let $(A \to M, [\cdot, \cdot], \rho)$ be a Lie algebroid, $H \in \wedge^{k+1}A^*$ with $d_A H = 0$ and $(T^*M \xrightarrow{\rho} A^*, \nabla^{T^*M} \nabla^{A^*}, K)$ the coadjoint representation up to homotopy for some ∇ *TM*-connection on *A*.

Sheng-Zhu

Let $(A \to M, [\cdot, \cdot], \rho)$ be a Lie algebroid, $H \in \wedge^{k+1}A^*$ with $d_A H = 0$ and $(T^*M \xrightarrow{\rho} A^*, \nabla^{T^*M} \nabla^{A^*}, K)$ the coadjoint representation up to homotopy for some ∇ *TM*-connection on *A*.

Proposition

For k > 2, $A \ltimes_{H} (T^*M \to A^*)[k-1]$ is a L_k -algebroid, with $L_{-k+1} = T^*M$, $L_{-k+2} = A^*$ and $L_0 = A$ and brackets

Sheng-Zhu

Let $(A \to M, [\cdot, \cdot], \rho)$ be a Lie algebroid, $H \in \wedge^{k+1}A^*$ with $d_A H = 0$ and $(T^*M \xrightarrow{\rho} A^*, \nabla^{T^*M} \nabla^{A^*}, K)$ the coadjoint representation up to homotopy for some ∇ *TM*-connection on *A*.

Proposition

For k > 2, $A \ltimes_H (T^*M \to A^*)[k-1]$ is a L_k -algebroid, with $L_{-k+1} = T^*M$, $L_{-k+2} = A^*$ and $L_0 = A$ and brackets $\rho = \rho$ $\ell_1 = \rho^*$ $\ell_2(a, a') = [a, a']$ $\ell_2(a, \alpha) = \nabla_a^{A^*} \alpha$ $\ell_2(a, \omega) = \nabla_a^{T^*M} \omega$ $\ell_3(a, a', \alpha) = K(a, a')(\alpha)$ $\ell_k(a_1, \cdots, a_k) = i_{a_k} \cdots i_{a_1} H$ $\ell_{k+1}(a_1, \cdots, a_{k+1}) = d(i_{a_{k+1}} \cdots i_{a_1} H) - \sum \langle D(a_i), i_{a_{K+1}} \cdots i_{a_1} H \rangle$

Sheng-Zhu

Let $(A \to M, [\cdot, \cdot], \rho)$ be a Lie algebroid, $H \in \wedge^{k+1}A^*$ with $d_A H = 0$ and $(T^*M \xrightarrow{\rho} A^*, \nabla^{T^*M} \nabla^{A^*}, K)$ the coadjoint representation up to homotopy for some ∇ *TM*-connection on *A*.

Proposition

For
$$k > 2$$
, $A \ltimes_{H} (T^{*}M \to A^{*})[k-1]$ is a L_{k} -algebroid, with
 $L_{-k+1} = T^{*}M$, $L_{-k+2} = A^{*}$ and $L_{0} = A$ and brackets
 $\rho = \rho$ $\ell_{1} = \rho^{*}$
 $\ell_{2}(a, a') = [a, a']$ $\ell_{2}(a, \alpha) = \nabla_{a}^{A^{*}}\alpha$ $\ell_{2}(a, \omega) = \nabla_{a}^{T^{*}M}\omega$
 $\ell_{3}(a, a', \alpha) = K(a, a')(\alpha)$ $\ell_{k}(a_{1}, \cdots, a_{k}) = i_{a_{k}} \cdots i_{a_{1}}H$
 $\ell_{k+1}(a_{1}, \cdots, a_{k+1}) = d(i_{a_{k+1}} \cdots i_{a_{1}}H) - \sum \langle D(a_{i}), i_{a_{K+1}} \cdots i_{a_{1}}H \rangle$

Proposition [-]

abla induces an isomorphism between the Q-manifolds

$$\mathcal{T}^*[k+1]A[1], \ \{ heta+H,\cdot\}\cong \left(A\ltimes_H(\mathcal{T}^*M o A^*)[k]
ight)[1], \ d_{CE}$$

Lagrangian Q-submanifolds

Theorem [-] Definition of higher Dirac structure

For k > 2 Lagrangian *Q*-submanifolds of $(T^*[k]A[1], \{\cdot, \cdot\}, Q)$ are the same as a $L \to N$ subvector bundle of $A \oplus \wedge^{k-1}A^* \to M$ satisfying:

• $p_1(L) \subseteq A$ is a subbundle.

•
$$\langle L,L\rangle \subseteq Ann(p_1(L)) \wedge \bigwedge^{k-3} A^*$$

•
$$L \cap \bigwedge^{k-1} A^* = Ann(p_1(L)) \land \bigwedge^{k-2} A^*$$

•
$$\rho(p_1(L)) \subseteq TN$$

 $\blacktriangleright \llbracket L, L \rrbracket \subseteq L$

Lagrangian Q-submanifolds

Theorem [-] Definition of higher Dirac structure

For k > 2 Lagrangian *Q*-submanifolds of $(T^*[k]A[1], \{\cdot, \cdot\}, Q)$ are the same as a $L \to N$ subvector bundle of $A \oplus \wedge^{k-1}A^* \to M$ satisfying:

• $p_1(L) \subseteq A$ is a subbundle.

•
$$\langle L,L\rangle \subseteq Ann(p_1(L)) \wedge \bigwedge^{k-3} A^*$$

$$\blacktriangleright L \cap \bigwedge^{k-1} A^* = Ann(p_1(L)) \land \bigwedge^{k-2} A^*$$

- $\rho(p_1(L)) \subseteq TN$
- $\blacktriangleright \llbracket L, L \rrbracket \subseteq L$

In the case when N = M and without the first condition this was defined by Hagiwara under the name of Nambu-Dirac structures. There are other definitions for Higher Dirac Structures: Wade, Zabzine, Zambon, Bi-Sheng, Bursztyn-Martinez-Rubio.

Applications

Idea

Use the theory of symplectic *Q*-manifolds to study higher Courant and higher Dirac.

Degree *n Q*-manifolds \rightleftharpoons Lie *n*-algebroids (Bonavolonta-Poncin)

Degree n Q-manifolds \rightleftharpoons Lie n-algebroids (Bonavolonta-Poncin) So Degree n Q-manifolds $\stackrel{Integration}{\leadsto}$ Lie n-groupoids.

Degree $n \ Q$ -manifolds \Rightarrow Lie n-algebroids (Bonavolonta-Poncin) So

Degree *n Q*-manifolds $\xrightarrow{Integration}$ Lie *n*-groupoids.

Let $(A \rightarrow M, \rho, [\cdot, \cdot])$ be a Lie algebroid and $[H] \in H^{k+1}(A)$.

Assume A integrates to $G \rightrightarrows M$ and $VE([\mathcal{H}]) = [H]$.

Integration

The higher Courant algebroid $(A \oplus \wedge^{k-1}A^*, \langle \cdot, \cdot \rangle, \rho, \llbracket \cdot, \cdot \rrbracket_H)$ integrates to $G \ltimes_{\mathcal{H}} (T^*M \to A^*)[k]$

Degree $n \ Q$ -manifolds \Rightarrow Lie n-algebroids (Bonavolonta-Poncin) So

Degree *n* Q-manifolds $\xrightarrow{Integration}$ Lie *n*-groupoids.

Let $(A \rightarrow M, \rho, [\cdot, \cdot])$ be a Lie algebroid and $[H] \in H^{k+1}(A)$.

Assume A integrates to $G \rightrightarrows M$ and $VE([\mathcal{H}]) = [H]$.

Integration

The higher Courant algebroid $(A \oplus \wedge^{k-1}A^*, \langle \cdot, \cdot \rangle, \rho, \llbracket \cdot, \cdot \rrbracket_H)$ integrates to $G \ltimes_{\mathcal{H}} (T^*M \to A^*)[k]$

Canonical integration? Shifted sympelctic form?

 $\bar{\mathfrak{g}}$ Lie *n*-algebra $\iff (\bar{\mathfrak{g}}[1], d_{CE})$ is a *Q*-manifold.

 $\bar{\mathfrak{g}}$ Lie *n*-algebra $\iff (\bar{\mathfrak{g}}[1], d_{CE})$ is a *Q*-manifold.

A Hamiltonian action $\overline{\mathfrak{g}} \curvearrowright (\mathcal{M}, \{\cdot, \cdot\}, Q)$ is a pair of L_{∞} -morphism, the action Ψ and the comment map J s.t.

 $\bar{\mathfrak{g}}$ Lie *n*-algebra $\iff (\bar{\mathfrak{g}}[1], d_{CE})$ is a *Q*-manifold.

A Hamiltonian action $\overline{\mathfrak{g}} \curvearrowright (\mathcal{M}, \{\cdot, \cdot\}, Q)$ is a pair of L_{∞} -morphism, the action Ψ and the comment map J s.t.

 $\bar{\mathfrak{g}}$ Lie *n*-algebra $\iff (\bar{\mathfrak{g}}[1], d_{CE})$ is a *Q*-manifold.

A Hamiltonian action $\overline{\mathfrak{g}} \curvearrowright (\mathcal{M}, \{\cdot, \cdot\}, Q)$ is a pair of L_{∞} -morphism, the action Ψ and the comment map J s.t.

Then $\theta_{\bar{\mathfrak{g}}}, \theta \in C^1_{BRST}$. A comoment map $J : \bar{\mathfrak{g}} \to \mathcal{O}_{\mathcal{M}}[n]$ defines also a degree 1 element θ_J . The element $\Theta = \theta + \theta_{\bar{\mathfrak{g}}} + \theta_J$ satisfy

$$\{\Theta,\Theta\}=0.$$

Under favourable hypothesis $H^0(\mathcal{C}_{BRST}, \{\Theta, \cdot\}) = \mathcal{O}_{\mathcal{M}_{red}}$

 (\mathcal{M}, ω, Q) deg k symplectic Q-manifold.

A prequantum bundle is an $\mathbb{R}[k]$ -principal Q-bundle $\mathcal{L} \to \mathcal{M}$ with connection A whose curvature is ω .

 (\mathcal{M}, ω, Q) deg k symplectic Q-manifold.

A prequantum bundle is an $\mathbb{R}[k]$ -principal Q-bundle $\mathcal{L} \to \mathcal{M}$ with connection A whose curvature is ω .

Prop. If $k \ge 1$ then a preguantum bundle is given by:

 (\mathcal{M}, ω, Q) deg k symplectic Q-manifold.

A prequantum bundle is an $\mathbb{R}[k]$ -principal Q-bundle $\mathcal{L} \to \mathcal{M}$ with connection A whose curvature is ω .

Prop. If $k \ge 1$ then a preguantum bundle is given by:

$$\mathcal{L} = \mathcal{M} \times \mathbb{R}[k] \text{ (local coordinates } \{x^i, \xi\})$$

$$\widehat{Q} = Q + \theta \frac{\partial}{\partial \xi}$$

$$\mathcal{A} = \lambda - d\xi$$

Examples:

► For a Poisson manifold: (L, Q, A) is the Jacobi Lie algebroid with the contact 1-form.

 (\mathcal{M}, ω, Q) deg k symplectic Q-manifold.

A prequantum bundle is an $\mathbb{R}[k]$ -principal Q-bundle $\mathcal{L} \to \mathcal{M}$ with connection A whose curvature is ω .

Prop. If $k \ge 1$ then a preguantum bundle is given by:

$$\mathcal{L} = \mathcal{M} \times \mathbb{R}[k] \text{ (local coordinates } \{x^i, \xi\}\text{)}$$

$$\widehat{Q} = Q + \theta \frac{\partial}{\partial \xi}$$

$$A = \lambda - d\xi$$

Examples:

- ► For a Poisson manifold: (L, Q, A) is the Jacobi Lie algebroid with the contact 1-form.
- ► For a quadratic Lie algebra: (L, Q, A) is the string Lie 2-algebra.

 (\mathcal{M}, ω, Q) deg k symplectic Q-manifold.

A prequantum bundle is an $\mathbb{R}[k]$ -principal Q-bundle $\mathcal{L} \to \mathcal{M}$ with connection A whose curvature is ω .

Prop. If $k \ge 1$ then a preguantum bundle is given by:

$$\mathcal{L} = \mathcal{M} \times \mathbb{R}[k] \text{ (local coordinates } \{x^i, \xi\}\text{)}$$

$$\widehat{Q} = Q + \theta \frac{\partial}{\partial \xi}$$

$$A = \lambda - d\xi$$

Examples:

- ► For a Poisson manifold: (L, Q, A) is the Jacobi Lie algebroid with the contact 1-form.
- ► For a quadratic Lie algebra: (L, Q, A) is the string Lie 2-algebra.
- ► For a Courant algebroid ? Higher Courant ?

Alexandrov, Kontsevich, Schwarz, Zaboronsky

$$\begin{array}{l} \mbox{Geometric data} = \left\{ \begin{array}{l} \Sigma \quad d\mbox{-dimensional manifold}, \\ \left(\mathcal{M}, \omega_{\mathcal{M}} = d\lambda_{\mathcal{M}}, \theta \right) \ d\mbox{-1 symplectic } Q\mbox{-manifold}. \end{array} \right. \end{array}$$

Alexandrov, Kontsevich, Schwarz, Zaboronsky

 $\begin{array}{l} \mbox{Geometric data} = \left\{ \begin{array}{l} \Sigma \quad d\mbox{-dimensional manifold}, \\ \left(\mathcal{M}, \omega_{\mathcal{M}} = d\lambda_{\mathcal{M}}, \theta \right) \ d\mbox{-}1 \ \mbox{symplectic Q-manifold}. \end{array} \right. \end{array}$

- Fields: $\mathcal{F}_{BV} = Maps(T[1]\Sigma, \mathcal{M})$
- Action: $S : \mathcal{F}_{BV} \to \mathbb{R}$ given by $S = \int_{\mathcal{T}[1]\Sigma} i_{\widehat{d}_{\Sigma}} ev^* \lambda_{\mathcal{M}} + ev^* \theta$.
- Symplectic form: $\omega_{BV} = \int_{\mathcal{T}[1]\Sigma} ev^* \omega_{\mathcal{M}}$ of degree -1.

Alexandrov, Kontsevich, Schwarz, Zaboronsky

 $\begin{array}{l} \mbox{Geometric data} = \left\{ \begin{array}{l} \Sigma \quad d\mbox{-dimensional manifold}, \\ \left(\mathcal{M}, \omega_{\mathcal{M}} = d\lambda_{\mathcal{M}}, \theta \right) \ d\mbox{-}1 \ \mbox{symplectic Q-manifold}. \end{array} \right. \end{array}$

- ► Fields: $\mathcal{F}_{BV} = \{\phi \in Maps(T[1]\Sigma, \mathcal{M}) | \phi(T[1]\partial\Sigma) \subset \mathcal{B}\}.$
- Action: $S : \mathcal{F}_{BV} \to \mathbb{R}$ given by $S = \int_{\mathcal{T}[1]\Sigma} i_{\widehat{d_{\Sigma}}} ev^* \lambda_{\mathcal{M}} + ev^* \theta$.
- Symplectic form: $\omega_{BV} = \int_{\mathcal{T}[1]\Sigma} ev^* \omega_{\mathcal{M}}$ of degree -1.
- Possible boundary conditions: Φ(T[1]∂Σ) ⊆ L for some L ⊂ M Lagrangian Q-submanifold.

Alexandrov, Kontsevich, Schwarz, Zaboronsky

 $\begin{array}{l} \mbox{Geometric data} = \left\{ \begin{array}{l} \Sigma \quad d\mbox{-dimensional manifold}, \\ \left(\mathcal{M}, \omega_{\mathcal{M}} = d\lambda_{\mathcal{M}}, \theta \right) \ d\mbox{-}1 \ \mbox{symplectic Q-manifold}. \end{array} \right. \end{array}$

- ► Fields: $\mathcal{F}_{BV} = \{\phi \in Maps(T[1]\Sigma, \mathcal{M}) | \phi(T[1]\partial\Sigma) \subset \mathcal{B}\}.$
- Action: $S : \mathcal{F}_{BV} \to \mathbb{R}$ given by $S = \int_{\mathcal{T}[1]\Sigma} i_{\widehat{d}_{\Sigma}} ev^* \lambda_{\mathcal{M}} + ev^* \theta$.
- Symplectic form: $\omega_{BV} = \int_{\mathcal{T}[1]\Sigma} ev^* \omega_{\mathcal{M}}$ of degree -1.
- Possible boundary conditions: Φ(T[1]∂Σ) ⊆ L for some L ⊂ M Lagrangian Q-submanifold.
- ▶ Path integral: $\langle \mathcal{O} \rangle = \int_{\Phi \in \mathcal{L}_{BV} \subset \mathcal{F}_{BV}} \mathcal{O} \ e^{\frac{i}{\hbar}S(\Phi)} \ "\mathcal{D}\Phi".$
- Gauge fixing: \mathcal{L}_{BV} Lagrangian submanifold of $(\mathcal{F}_{BV}, \omega_{BV})$.

Alexandrov, Kontsevich, Schwarz, Zaboronsky

 $\begin{array}{l} \mbox{Geometric data} = \left\{ \begin{array}{l} \Sigma \quad d\mbox{-dimensional manifold}, \\ \left(\mathcal{M}, \omega_{\mathcal{M}} = d\lambda_{\mathcal{M}}, \theta \right) \ d\mbox{-}1 \ \mbox{symplectic Q-manifold}. \end{array} \right. \end{array}$

- ► Fields: $\mathcal{F}_{BV} = \{\phi \in Maps(T[1]\Sigma, \mathcal{M}) | \phi(T[1]\partial\Sigma) \subset \mathcal{B}\}.$
- Action: $S : \mathcal{F}_{BV} \to \mathbb{R}$ given by $S = \int_{\mathcal{T}[1]\Sigma} i_{\widehat{d_{\Sigma}}} ev^* \lambda_{\mathcal{M}} + ev^* \theta$.
- Symplectic form: $\omega_{BV} = \int_{\mathcal{T}[1]\Sigma} ev^* \omega_{\mathcal{M}}$ of degree -1.
- Possible boundary conditions: Φ(T[1]∂Σ) ⊆ L for some L ⊂ M Lagrangian Q-submanifold.

▶ Path integral:
$$\langle \mathcal{O} \rangle = \int_{\Phi \in \mathcal{L}_{BV} \subset \mathcal{F}_{BV}} \mathcal{O} \ e^{\frac{i}{\hbar} S(\Phi)} \ "D\Phi".$$

• Gauge fixing: \mathcal{L}_{BV} Lagrangian submanifold of $(\mathcal{F}_{BV}, \omega_{BV})$. When $= \mathcal{T}^*[k]\mathfrak{g}[1]$ we obtain BF theory!!!

Thanks !!