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Motivation

Let M be a manifold, H ∈ Ωk+1
cl (M) define

Tk−1
H M ≡ (TM ⊕ ∧k−1T ∗M, 〈·, ·〉, p1, J·, ·KH)

〈X + α,Y + β〉 = iXβ + iYα
p1(X + α) = X

JX + α,Y + βKH = [X ,Y ] + LXβ − iY dα + iX iYH

Higher Courant algebroid.

Q1: Which is the definition of a Higher Courant algebroid?

Q2: Are those the only examples? TM ↔ A Lie algebroid.

Q3: What are Higher Dirac structures?
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Severa-Roytenberg correspondence

Classical object Graded geometry

Courant algebroids 
 Degree 2 symplectic Q-manifolds.

Dirac structures 
 Lagrangian Q-submanifolds.

In particular:

T1
HM 
 (T ∗[2]T [1]M, ωcan, Q)

(A⊕ A∗, 〈·, ·〉, ρ, J·, ·K) 
 (T ∗[2]A[1], ωcan, Q)

Use the RHS to define Higher Courant and Higher Dirac

Idea

There is a correspondence between:

Higher Courant algebroids 
 Graded cotangent bundles
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Definition

Definition

Let A→ M be a vector bundle.

Higher Courant algebroid: (T ∗[k]A[1], ωcan,Q) symplectic Q-man.

Higher Dirac structure: Lagrangian Q-submanifold.

Recall:

Degree k Symplectic Q-manifold ↔ (M, ω,Q) then Q = Xθ with

θ ∈ Ok+1
M s.t. {θ, θ} = 0.

Problem: It was difficult to describe T ∗[k]A[1] in classical terms.
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Geometrization functor

Theorem [Bursztyn, C, Mehta]

There is an equivalence of categories:

I Coalgebra bundles.

I Graded manifolds.

Claim: To give a geometric description of a k-manifold is enough
to identify Oi = ΓEi for i = 1, · · · k and know the maps
Oi · Oj ⊆ Oi+j for i + j < k .

The k-manifold T ∗[k]A[1] is equivalent to the algebra bundle
(E ,m) where for k > 2,

I Ei = ∧iA∗ if 1 ≤ i ≤ k − 2.

I Ek−1 = A⊕ ∧k−1A∗

I Ek = Der(A)⊕ ∧kA∗

The symplectic form is codified in 〈·, ·〉 : Ek−1 ⊕ Ek−1 → Ek−2 and
the Atiyah alg structure of Der(A).
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Q-Structure

We classify all the Q-structures.

I For k = 3, it was studied by Ikeda, Uchino and Grüztmann
and they are the same as
τ ∈ X1(A[1]), π ∈ Sym2A∗, H ∈ ∧4A∗ satisfying:

{τ, τ}+ {π,H} = 0, {τ,H} = 0 and {τ, π} = 0.

I For k > 3, they are the same as τ ∈ X1(A[1]) and
H ∈ ∧k+1A∗ satisfying:

{τ, τ} = 0 and {τ,H} = 0.

So A→ M is a Lie algebroid and dCEH = 0

Prop: The Q’s are equivalent iff τ ∼= τ ′ and H = H ′ + dTMβ.



Q-Structure

We classify all the Q-structures.

I For k = 3, it was studied by Ikeda, Uchino and Grüztmann
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Semi-Direct products
Sheng-Zhu

Let (A→ M, [·, ·], ρ) be a Lie algebroid, H ∈ ∧k+1A∗ with

dAH = 0 and (T ∗M
ρ−→ A∗,∇T∗M∇A∗

,K ) the coadjoint
representation up to homotopy for some ∇ TM-connection on A.

Proposition

For k > 2, AnH (T ∗M → A∗)[k − 1] is a Lk -algebroid, with
L−k+1 = T ∗M, L−k+2 = A∗ and L0 = A and brackets

ρ = ρ `1 = ρ∗

`2(a, a′) = [a, a′] `2(a, α) = ∇A∗
a α `2(a, ω) = ∇T∗M

a ω
`3(a, a′, α) = K (a, a′)(α) `k(a1, · · · , ak) = iak · · · ia1H

`k+1(a1, · · · , ak+1) = d(iak+1
· · · ia1H)−

∑
〈D(ai ), iaK+1

· · · ia1H〉

Proposition [-]

∇ induces an isomorphism between the Q-manifolds

T ∗[k + 1]A[1], {θ + H, ·} ∼=
(
AnH (T ∗M → A∗)[k]

)
[1], dCE
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Lagrangian Q-submanifolds

Theorem [-] Definition of higher Dirac structure

For k > 2 Lagrangian Q-submanifolds of (T ∗[k]A[1], {·, ·},Q) are
the same as a L→ N subvector bundle of A⊕ ∧k−1A∗ → M
satisfying:

I p1(L) ⊆ A is a subbundle.

I 〈L, L〉 ⊆ Ann(p1(L)) ∧
∧k−3 A∗

I L ∩
∧k−1 A∗ = Ann(p1(L)) ∧

∧k−2 A∗

I ρ(p1(L)) ⊆ TN

I JL, LK ⊆ L

In the case when N = M and without the first condition this was
defined by Hagiwara under the name of Nambu-Dirac structures.
There are other definitions for Higher Dirac Structures: Wade,
Zabzine, Zambon, Bi-Sheng, Bursztyn-Martinez-Rubio.
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Applications
Idea

Use the theory of symplectic Q-manifolds to study
higher Courant and higher Dirac.



I Lie n-groupoids

Degree n Q-manifolds 
 Lie n-algebroids (Bonavolonta-Poncin)

So

Degree n Q-manifolds
Integration
 Lie n-groupoids.

Let (A→ M, ρ, [·, ·]) be a Lie algebroid and [H] ∈ Hk+1(A).

Assume A integrates to G ⇒ M and VE ([H]) = [H].

Integration

The higher Courant algebroid (A⊕ ∧k−1A∗, 〈·, ·〉, ρ, J·, ·KH)
integrates to G nH (T ∗M → A∗)[k]

Canonical integration?
Shifted sympelctic form?
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II Actions

ḡ Lie n-algebra ! (ḡ[1], dCE ) is a Q-manifold.

A Hamiltonian action ḡ y (M, {·, ·},Q) is a pair of L∞-morphism,
the action Ψ and the comoment map J s.t.

(X(M), [·, ·], [Q, ·])

ḡ

Ψ
77

J ''
(OM[n], {·, ·},Q)

Ham

OO
Define:

C i
BRST =

⊕
j+k=i O

j
T∗ḡ[1] ⊗O

k+n
M

with bracket {·, ·}can + {·, ·}

Then θḡ, θ ∈ C 1
BRST . A comoment map J : ḡ→ OM[n] defines

also a degree 1 element θJ . The element Θ = θ + θḡ + θJ satisfy

{Θ,Θ} = 0.

Under favourable hypothesis H0(CBRST , {Θ, ·}) = OMred
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III Prequantum bundle

(M, ω,Q) deg k symplectic Q-manifold.

A prequantum bundle is an R[k]-principal Q-bundle L →M with
connection A whose curvature is ω.

Prop. If k ≥ 1 then a preguantum bundle is given by:

I L =M× R[k] (local coordinates {x i , ξ})
I Q̂ = Q + θ ∂∂ξ
I A = λ− dξ

Examples:

I For a Poisson manifold: (L, Q̂,A) is the Jacobi Lie algebroid
with the contact 1-form.

I For a quadratic Lie algebra: (L, Q̂,A) is the string Lie
2-algebra.

I For a Courant algebroid ? Higher Courant ?
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IV AKSZ Topological σ-models
Alexandrov, Kontsevich, Schwarz, Zaboronsky

Geometric data =

{
Σ d-dimensional manifold,
(M, ωM = dλM, θ) d − 1 symplectic Q-manifold.

I Fields: FBV =

{φ ∈

Maps(T [1]Σ,M)

|φ(T [1]∂Σ) ⊂ B}.

I Action: S : FBV → R given by S =
∫
T [1]Σ i

d̂Σ
ev∗λM + ev∗θ.

I Symplectic form: ωBV =
∫
T [1]Σ ev∗ωM of degree −1.

I Possible boundary conditions: Φ(T [1]∂Σ) ⊆ L for some
L ⊂M Lagrangian Q-submanifold.

I Path integral: 〈O〉 =
∫

Φ∈LBV⊂FBV
O e

i
~S(Φ) “DΦ”.

I Gauge fixing: LBV Lagrangian submanifold of (FBV , ωBV ).

When = T ∗[k]g[1] we obtain BF theory!!!
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T [1]Σ ev∗ωM of degree −1.

I Possible boundary conditions: Φ(T [1]∂Σ) ⊆ L for some
L ⊂M Lagrangian Q-submanifold.

I Path integral: 〈O〉 =
∫

Φ∈LBV⊂FBV
O e

i
~S(Φ) “DΦ”.

I Gauge fixing: LBV Lagrangian submanifold of (FBV , ωBV ).

When = T ∗[k]g[1] we obtain BF theory!!!
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Thanks !!


