Higher Dirac as Lagrangian Q-submanifolds

Miquel Cueca Ten
Georg-August-Universität
Göttingen, Germany

October 26, 2021

Motivation

Let M be a manifold, $H \in \Omega_{c l}^{k+1}(M)$ define

$$
\begin{aligned}
\mathbb{T}_{H}^{k-1} M & \equiv\left(T M \oplus \wedge^{k-1} T^{*} M,\langle\cdot, \cdot\rangle, p_{1}, \llbracket \cdot, \cdot \rrbracket_{H}\right) \\
\langle X+\alpha, Y+\beta\rangle & =i_{X} \beta+i_{Y} \alpha \\
p_{1}(X+\alpha) & =X \\
\llbracket X+\alpha, Y+\beta \rrbracket H & =[X, Y]+\mathcal{L}_{X} \beta-i_{Y} d \alpha+i_{X} i_{Y} H
\end{aligned}
$$

Higher Courant algebroid.

Motivation

Let M be a manifold, $H \in \Omega_{c l}^{k+1}(M)$ define

$$
\begin{aligned}
\mathbb{T}_{H}^{k-1} M & \equiv\left(T M \oplus \wedge^{k-1} T^{*} M,\langle\cdot, \cdot\rangle, p_{1}, \llbracket \cdot, \cdot \rrbracket_{H}\right) \\
\langle X+\alpha, Y+\beta\rangle & =i_{X} \beta+i_{Y} \alpha \\
p_{1}(X+\alpha) & =X \\
\llbracket X+\alpha, Y+\beta \rrbracket H & =[X, Y]+\mathcal{L}_{X} \beta-i_{Y} d \alpha+i_{X} i_{Y} H
\end{aligned}
$$

Higher Courant algebroid.

Q1: Which is the definition of a Higher Courant algebroid?
Q2: Are those the only examples? $T M \leftrightarrow A$ Lie algebroid.
Q3: What are Higher Dirac structures?

Severa-Roytenberg correspondence

Classical object		Graded geometry
Courant algebroids	\rightleftharpoons	Degree 2 symplectic Q-manifolds.
Dirac structures	\rightleftharpoons	Lagrangian Q-submanifolds.

Severa-Roytenberg correspondence

Classical object		Graded geometry
Courant algebroids	\rightleftharpoons	Degree 2 symplectic Q-manifolds.
Dirac structures	\rightleftharpoons	Lagrangian Q-submanifolds.

In particular:

$$
\begin{array}{ccc}
\mathbb{T}_{H}^{1} M & \rightleftharpoons & \left(T^{*}[2] T[1] M, \omega_{\text {can }}, Q\right) \\
\left(A \oplus A^{*},\langle\cdot, \cdot\rangle, \rho, \mathbb{C}, \cdot \mathbb{\square}\right) & \rightleftharpoons & \left(T^{*}[2] A[1], \omega_{\text {can }}, Q\right)
\end{array}
$$

Severa-Roytenberg correspondence

$$
\begin{array}{clcc}
\text { Classical object } & & \text { Graded geometry } \\
\hline \text { Courant algebroids } & \rightleftharpoons & \text { Degree } 2 \text { symplectic Q-manifolds. } \\
\text { Dirac structures } & \rightleftharpoons & \text { Lagrangian Q-submanifolds. }
\end{array}
$$

In particular:

$$
\begin{array}{ccc}
\mathbb{T}_{H}^{1} M & \rightleftharpoons & \left(T^{*}[2] T[1] M, \omega_{c a n}, Q\right) \\
\left(A \oplus A^{*},\langle\cdot, \cdot\rangle, \rho, \llbracket \cdot, \cdot \rrbracket\right) & \rightleftharpoons & \left(T^{*}[2] A[1], \omega_{c a n}, Q\right)
\end{array}
$$

Use the RHS to define Higher Courant and Higher Dirac

Idea

There is a correspondence between:
Higher Courant algebroids \rightleftharpoons Graded cotangent bundles

Definition

Definition

Let $A \rightarrow M$ be a vector bundle.
Higher Courant algebroid: $\left(T^{*}[k] A[1], \omega_{c a n}, Q\right)$ symplectic Q-man.
Higher Dirac structure: Lagrangian Q-submanifold.

Definition

Definition

Let $A \rightarrow M$ be a vector bundle.
Higher Courant algebroid: $\left(T^{*}[k] A[1], \omega_{c a n}, Q\right)$ symplectic Q-man.
Higher Dirac structure: Lagrangian Q-submanifold.
Recall:
Degree k Symplectic Q-manifold $\leftrightarrow(\mathcal{M}, \omega, Q)$ then $Q=X_{\theta}$ with

$$
\theta \in \mathcal{O}_{\mathcal{M}}^{k+1} \quad \text { s.t. } \quad\{\theta, \theta\}=0
$$

Definition

Definition

Let $A \rightarrow M$ be a vector bundle.
Higher Courant algebroid: $\left(T^{*}[k] A[1], \omega_{c a n}, Q\right)$ symplectic Q-man.
Higher Dirac structure: Lagrangian Q-submanifold.
Recall:
Degree k Symplectic Q-manifold $\leftrightarrow(\mathcal{M}, \omega, Q)$ then $Q=X_{\theta}$ with

$$
\theta \in \mathcal{O}_{\mathcal{M}}^{k+1} \quad \text { s.t. } \quad\{\theta, \theta\}=0
$$

Problem: It was difficult to describe $T^{*}[k] A[1]$ in classical terms.

Geometrization functor

Theorem [Bursztyn, C, Mehta]

There is an equivalence of categories:

- Coalgebra bundles.
- Graded manifolds.

Claim: To give a geometric description of a k-manifold is enough to identify $\mathcal{O}^{i}=\Gamma E_{i}$ for $i=1, \cdots k$ and know the maps $\mathcal{O}^{i} \cdot \mathcal{O}^{j} \subseteq \mathcal{O}^{i+j}$ for $i+j<k$.

Geometrization functor

Theorem [Bursztyn, C, Mehta]

There is an equivalence of categories:

- Coalgebra bundles.
- Graded manifolds.

Claim: To give a geometric description of a k-manifold is enough to identify $\mathcal{O}^{i}=\Gamma E_{i}$ for $i=1, \cdots k$ and know the maps $\mathcal{O}^{i} \cdot \mathcal{O}^{j} \subseteq \mathcal{O}^{i+j}$ for $i+j<k$.

The k-manifold $T^{*}[k] A[1]$ is equivalent to the algebra bundle (E, m) where for $k>2$,

- $E_{i}=\wedge^{i} A^{*} \quad$ if $1 \leq i \leq k-2$.
- $E_{k-1}=A \oplus \wedge^{k-1} A^{*}$
- $E_{k}=\operatorname{Der}(A) \oplus \wedge^{k} A^{*}$

Geometrization functor

Theorem [Bursztyn, C, Mehta]

There is an equivalence of categories:

- Coalgebra bundles.
- Graded manifolds.

Claim: To give a geometric description of a k-manifold is enough to identify $\mathcal{O}^{i}=\Gamma E_{i}$ for $i=1, \cdots k$ and know the maps $\mathcal{O}^{i} \cdot \mathcal{O}^{j} \subseteq \mathcal{O}^{i+j}$ for $i+j<k$.

The k-manifold $T^{*}[k] A[1]$ is equivalent to the algebra bundle (E, m) where for $k>2$,

$$
\begin{aligned}
& \text { - } E_{i}=\wedge^{i} A^{*} \quad \text { if } 1 \leq i \leq k-2 . \\
& \text { E } E_{k-1}=A \oplus \wedge^{k-1} A^{*} \\
& \text { E } E_{k}=\operatorname{Der}(A) \oplus \wedge^{k} A^{*}
\end{aligned}
$$

The symplectic form is codified in $\langle\cdot, \cdot\rangle: E_{k-1} \oplus E_{k-1} \rightarrow E_{k-2}$ and the Atiyah alg structure of $\operatorname{Der}(A)$.

Q-Structure

We classify all the Q-structures.

Q-Structure

We classify all the Q-structures.

- For $k=3$, it was studied by Ikeda, Uchino and Grüztmann and they are the same as $\tau \in \mathfrak{X}^{1}(A[1]), \pi \in$ Sym $^{2} A^{*}, H \in \wedge^{4} A^{*}$ satisfying:

$$
\{\tau, \tau\}+\{\pi, H\}=0, \quad\{\tau, H\}=0 \quad \text { and } \quad\{\tau, \pi\}=0
$$

Q-Structure

We classify all the Q-structures.

- For $k=3$, it was studied by Ikeda, Uchino and Grüztmann and they are the same as
$\tau \in \mathfrak{X}^{1}(A[1]), \pi \in \operatorname{Sym}^{2} A^{*}, H \in \wedge^{4} A^{*}$ satisfying:

$$
\{\tau, \tau\}+\{\pi, H\}=0, \quad\{\tau, H\}=0 \quad \text { and } \quad\{\tau, \pi\}=0
$$

- For $k>3$, they are the same as $\tau \in \mathfrak{X}^{1}(A[1])$ and $H \in \wedge^{k+1} A^{*}$ satisfying:

$$
\{\tau, \tau\}=0 \quad \text { and } \quad\{\tau, H\}=0
$$

So $A \rightarrow M$ is a Lie algebroid and $d_{C E} H=0$
Prop: The Q 's are equivalent iff $\tau \cong \tau^{\prime}$ and $H=H^{\prime}+d_{T M} \beta$.

Semi-Direct products

Sheng-Zhu

Let $(A \rightarrow M,[\cdot, \cdot], \rho)$ be a Lie algebroid, $H \in \wedge^{k+1} A^{*}$ with $d_{A} H=0$ and $\left(T^{*} M \xrightarrow{\rho} A^{*}, \nabla^{T^{*} M} \nabla^{A^{*}}, K\right)$ the coadjoint representation up to homotopy for some $\nabla T M$-connection on A.

Semi-Direct products

Sheng-Zhu

Let $(A \rightarrow M,[\cdot, \cdot], \rho)$ be a Lie algebroid, $H \in \wedge^{k+1} A^{*}$ with $d_{A} H=0$ and $\left(T^{*} M \xrightarrow{\rho} A^{*}, \nabla^{T^{*} M} \nabla^{A^{*}}, K\right)$ the coadjoint representation up to homotopy for some $\nabla T M$-connection on A.

Proposition

For $k>2, A \ltimes_{H}\left(T^{*} M \rightarrow A^{*}\right)[k-1]$ is a L_{k}-algebroid, with $L_{-k+1}=T^{*} M, L_{-k+2}=A^{*}$ and $L_{0}=A$ and brackets

Semi-Direct products

Sheng-Zhu

Let $(A \rightarrow M,[\cdot, \cdot], \rho)$ be a Lie algebroid, $H \in \wedge^{k+1} A^{*}$ with $d_{A} H=0$ and $\left(T^{*} M \xrightarrow{\rho} A^{*}, \nabla^{T^{*} M} \nabla^{A^{*}}, K\right)$ the coadjoint representation up to homotopy for some $\nabla T M$-connection on A.

Proposition

For $k>2, A \ltimes_{H}\left(T^{*} M \rightarrow A^{*}\right)[k-1]$ is a L_{k}-algebroid, with $L_{-k+1}=T^{*} M, L_{-k+2}=A^{*}$ and $L_{0}=A$ and brackets

$$
\begin{gathered}
\rho=\rho \quad \ell_{1}=\rho^{*} \\
\ell_{2}\left(a, a^{\prime}\right)=\left[a, a^{\prime}\right] \quad \ell_{2}(a, \alpha)=\nabla_{a}^{A^{*}} \alpha \quad \ell_{2}(a, \omega)=\nabla_{a}^{T^{*} M_{\omega}} \\
\ell_{3}\left(a, a^{\prime}, \alpha\right)=K\left(a, a^{\prime}\right)(\alpha) \quad \ell_{k}\left(a_{1}, \cdots, a_{k}\right)=i_{a_{k}} \cdots i_{a_{1}} H \\
\ell_{k+1}\left(a_{1}, \cdots, a_{k+1}\right)=d\left(i_{a_{k+1}} \cdots i_{a_{1}} H\right)-\sum\left\langle D\left(a_{i}\right), i_{a_{K+1}} \cdots i_{a_{1}} H\right\rangle
\end{gathered}
$$

Semi-Direct products

Sheng-Zhu

Let $(A \rightarrow M,[\cdot, \cdot], \rho)$ be a Lie algebroid, $H \in \wedge^{k+1} A^{*}$ with $d_{A} H=0$ and $\left(T^{*} M \xrightarrow{\rho} A^{*}, \nabla^{T^{*} M} \nabla^{A^{*}}, K\right)$ the coadjoint representation up to homotopy for some $\nabla T M$-connection on A.

Proposition

For $k>2, A \ltimes_{H}\left(T^{*} M \rightarrow A^{*}\right)[k-1]$ is a L_{k}-algebroid, with $L_{-k+1}=T^{*} M, L_{-k+2}=A^{*}$ and $L_{0}=A$ and brackets

$$
\begin{gathered}
\rho=\rho \quad \ell_{1}=\rho^{*} \\
\ell_{2}\left(a, a^{\prime}\right)=\left[a, a^{\prime}\right] \quad \ell_{2}(a, \alpha)=\nabla_{a}^{A^{*}} \alpha \quad \ell_{2}(a, \omega)=\nabla_{a}^{T^{*} M} \omega \\
\ell_{3}\left(a, a^{\prime}, \alpha\right)=K\left(a, a^{\prime}\right)(\alpha) \quad \ell_{k}\left(a_{1}, \cdots, a_{k}\right)=i_{a_{k}} \cdots i_{a_{1}} H \\
\ell_{k+1}\left(a_{1}, \cdots, a_{k+1}\right)=d\left(i_{a_{k+1}} \cdots i_{a_{1}} H\right)-\sum\left\langle D\left(a_{i}\right), i_{a_{K+1}} \cdots i_{a_{1}} H\right\rangle
\end{gathered}
$$

Proposition [-]

∇ induces an isomorphism between the Q-manifolds

$$
T^{*}[k+1] A[1], \quad\{\theta+H, \cdot\} \cong\left(A \ltimes_{H}\left(T^{*} M \rightarrow A^{*}\right)[k]\right)[1], d_{C E}
$$

Lagrangian Q-submanifolds

Theorem [-] Definition of higher Dirac structure

For $k>2$ Lagrangian Q-submanifolds of $\left(T^{*}[k] A[1],\{\cdot, \cdot\}, Q\right)$ are the same as a $L \rightarrow N$ subvector bundle of $A \oplus \wedge^{k-1} A^{*} \rightarrow M$ satisfying:

- $p_{1}(L) \subseteq A$ is a subbundle.
- $\langle L, L\rangle \subseteq A n n\left(p_{1}(L)\right) \wedge \wedge^{k-3} A^{*}$
- $L \cap \bigwedge^{k-1} A^{*}=\operatorname{Ann}\left(p_{1}(L)\right) \wedge \bigwedge^{k-2} A^{*}$
- $\rho\left(p_{1}(L)\right) \subseteq T N$
- $\llbracket L, L \rrbracket \subseteq L$

Lagrangian Q-submanifolds

Theorem [-] Definition of higher Dirac structure

For $k>2$ Lagrangian Q-submanifolds of $\left(T^{*}[k] A[1],\{\cdot, \cdot\}, Q\right)$ are the same as a $L \rightarrow N$ subvector bundle of $A \oplus \wedge^{k-1} A^{*} \rightarrow M$ satisfying:

- $p_{1}(L) \subseteq A$ is a subbundle.
- $\langle L, L\rangle \subseteq A n n\left(p_{1}(L)\right) \wedge \bigwedge^{k-3} A^{*}$
- $L \cap \bigwedge^{k-1} A^{*}=A n n\left(p_{1}(L)\right) \wedge \bigwedge^{k-2} A^{*}$
- $\rho\left(p_{1}(L)\right) \subseteq T N$
- $\llbracket L, L \rrbracket \subseteq L$

In the case when $N=M$ and without the first condition this was defined by Hagiwara under the name of Nambu-Dirac structures. There are other definitions for Higher Dirac Structures: Wade, Zabzine, Zambon, Bi-Sheng, Bursztyn-Martinez-Rubio.

Applications

Idea

Use the theory of symplectic Q-manifolds to study higher Courant and higher Dirac.

I Lie n-groupoids

Degree $n Q$-manifolds \rightleftharpoons Lie n-algebroids (Bonavolonta-Poncin)

I Lie n-groupoids

Degree $n Q$-manifolds \rightleftharpoons Lie n-algebroids (Bonavolonta-Poncin)
So
Degree $n Q$-manifolds $\stackrel{\text { Integration }}{\leadsto}$ Lie n-groupoids.

I Lie n-groupoids

Degree $n Q$-manifolds \rightleftharpoons Lie n-algebroids (Bonavolonta-Poncin)
So
Degree $n Q$-manifolds $\stackrel{\text { Integration }}{\sim}$ Lie n-groupoids.
Let $(A \rightarrow M, \rho,[\cdot, \cdot])$ be a Lie algebroid and $[H] \in H^{k+1}(A)$.
Assume A integrates to $G \rightrightarrows M$ and $V E([\mathcal{H}])=[H]$.

Integration

The higher Courant algebroid $\left(A \oplus \wedge^{k-1} A^{*},\langle\cdot, \cdot\rangle, \rho, \llbracket \cdot, \cdot \rrbracket_{H}\right)$ integrates to $G \ltimes_{\mathcal{H}}\left(T^{*} M \rightarrow A^{*}\right)[k]$

I Lie n-groupoids

Degree $n Q$-manifolds \rightleftharpoons Lie n-algebroids (Bonavolonta-Poncin)
So
Degree $n Q$-manifolds $\stackrel{\text { Integration }}{\sim}$ Lie n-groupoids.
Let $(A \rightarrow M, \rho,[\cdot, \cdot])$ be a Lie algebroid and $[H] \in H^{k+1}(A)$.
Assume A integrates to $G \rightrightarrows M$ and $V E([\mathcal{H}])=[H]$.

Integration

The higher Courant algebroid $\left(A \oplus \wedge^{k-1} A^{*},\langle\cdot, \cdot\rangle, \rho, \llbracket \cdot, \cdot \rrbracket_{H}\right)$ integrates to $G \ltimes_{\mathcal{H}}\left(T^{*} M \rightarrow A^{*}\right)[k]$

Canonical integration?
Shifted sympelctic form?

II Actions

$\overline{\mathfrak{g}}$ Lie n-algebra $\leadsto\left(\overline{\mathfrak{g}}[1], d_{C E}\right)$ is a Q-manifold.

II Actions

$\overline{\mathfrak{g}}$ Lie n-algebra $\leadsto\left(\overline{\mathfrak{g}}[1], d_{C E}\right)$ is a Q-manifold.
A Hamiltonian action $\overline{\mathfrak{g}} \curvearrowright(\mathcal{M},\{\cdot, \cdot\}, Q)$ is a pair of L_{∞}-morphism, the action Ψ and the comoment map J s.t.

II Actions

$\overline{\mathfrak{g}}$ Lie n-algebra $\leadsto\left(\overline{\mathfrak{g}}[1], d_{C E}\right)$ is a Q-manifold.
A Hamiltonian action $\overline{\mathfrak{g}} \curvearrowright(\mathcal{M},\{\cdot, \cdot\}, Q)$ is a pair of L_{∞}-morphism, the action Ψ and the comoment map J s.t.

Define:
$C_{B R S T}^{i}=\bigoplus_{j+k=i} \mathcal{O}_{T^{*} \mathrm{~g}[1]}^{j} \otimes \mathcal{O}_{\mathcal{M}}^{k+n}$ with bracket $\{\cdot, \cdot\}_{\text {can }}+\{\cdot, \cdot\}$

II Actions

$\overline{\mathfrak{g}}$ Lie n-algebra $\leadsto\left(\overline{\mathfrak{g}}[1], d_{C E}\right)$ is a Q-manifold.
A Hamiltonian action $\overline{\mathfrak{g}} \curvearrowright(\mathcal{M},\{\cdot, \cdot\}, Q)$ is a pair of L_{∞}-morphism, the action Ψ and the comoment map J s.t.

Define:
$C_{B R S T}^{i}=\bigoplus_{j+k=i} \mathcal{O}_{T^{*} \mathfrak{\mathfrak { g }}[1]}^{j} \otimes \mathcal{O}_{\mathcal{M}}^{k+n}$ with bracket $\{\cdot, \cdot\}_{\text {can }}+\{\cdot, \cdot\}$

Then $\theta_{\overline{\mathfrak{g}}}, \theta \in C_{B R S T}^{1}$. A comoment map $J: \overline{\mathfrak{g}} \rightarrow \mathcal{O}_{\mathcal{M}}[n]$ defines also a degree 1 element θ_{J}. The element $\Theta=\theta+\theta_{\overline{\mathfrak{g}}}+\theta_{J}$ satisfy

$$
\{\Theta, \Theta\}=0
$$

Under favourable hypothesis $H^{0}\left(C_{B R S T},\{\Theta, \cdot\}\right)=\mathcal{O}_{\mathcal{M}_{\text {red }}}$

III Prequantum bundle

$(\mathcal{M}, \omega, Q) \operatorname{deg} k$ symplectic Q-manifold.
A prequantum bundle is an $\mathbb{R}[k]$-principal Q-bundle $\mathcal{L} \rightarrow \mathcal{M}$ with connection A whose curvature is ω.

III Prequantum bundle

$(\mathcal{M}, \omega, Q) \operatorname{deg} k$ symplectic Q-manifold.
A prequantum bundle is an $\mathbb{R}[k]$-principal Q-bundle $\mathcal{L} \rightarrow \mathcal{M}$ with connection A whose curvature is ω.

Prop. If $k \geq 1$ then a preguantum bundle is given by:

- $\mathcal{L}=\mathcal{M} \times \mathbb{R}[k]$ (local coordinates $\left\{x^{i}, \xi\right\}$)
- $\widehat{Q}=Q+\theta \frac{\partial}{\partial \xi}$
- $A=\lambda-d \xi$

III Prequantum bundle

$(\mathcal{M}, \omega, Q) \operatorname{deg} k$ symplectic Q-manifold.
A prequantum bundle is an $\mathbb{R}[k]$-principal Q-bundle $\mathcal{L} \rightarrow \mathcal{M}$ with connection A whose curvature is ω.

Prop. If $k \geq 1$ then a preguantum bundle is given by:

- $\mathcal{L}=\mathcal{M} \times \mathbb{R}[k]$ (local coordinates $\left\{x^{i}, \xi\right\}$)
- $\widehat{Q}=Q+\theta \frac{\partial}{\partial \xi}$
- $A=\lambda-d \xi$

Examples:

- For a Poisson manifold: $(\mathcal{L}, \widehat{Q}, A)$ is the Jacobi Lie algebroid with the contact 1-form.

III Prequantum bundle

(\mathcal{M}, ω, Q) deg k symplectic Q-manifold.
A prequantum bundle is an $\mathbb{R}[k]$-principal Q-bundle $\mathcal{L} \rightarrow \mathcal{M}$ with connection A whose curvature is ω.

Prop. If $k \geq 1$ then a preguantum bundle is given by:

- $\mathcal{L}=\mathcal{M} \times \mathbb{R}[k]$ (local coordinates $\left\{x^{i}, \xi\right\}$)
- $\widehat{Q}=Q+\theta \frac{\partial}{\partial \xi}$
- $A=\lambda-d \xi$

Examples:

- For a Poisson manifold: $(\mathcal{L}, \widehat{Q}, A)$ is the Jacobi Lie algebroid with the contact 1-form.
- For a quadratic Lie algebra: $(\mathcal{L}, \widehat{Q}, A)$ is the string Lie 2-algebra.

III Prequantum bundle

(\mathcal{M}, ω, Q) deg k symplectic Q-manifold.
A prequantum bundle is an $\mathbb{R}[k]$-principal Q-bundle $\mathcal{L} \rightarrow \mathcal{M}$ with connection A whose curvature is ω.

Prop. If $k \geq 1$ then a preguantum bundle is given by:

- $\mathcal{L}=\mathcal{M} \times \mathbb{R}[k]$ (local coordinates $\left\{x^{i}, \xi\right\}$)
- $\widehat{Q}=Q+\theta \frac{\partial}{\partial \xi}$
- $A=\lambda-d \xi$

Examples:

- For a Poisson manifold: $(\mathcal{L}, \widehat{Q}, A)$ is the Jacobi Lie algebroid with the contact 1-form.
- For a quadratic Lie algebra: $(\mathcal{L}, \widehat{Q}, A)$ is the string Lie 2-algebra.
- For a Courant algebroid ? Higher Courant ?

IV AKSZ Topological σ-models

Alexandrov, Kontsevich, Schwarz, Zaboronsky

Geometric data $=\left\{\begin{array}{l}\sum d \text {-dimensional manifold, } \\ \left(\mathcal{M}, \omega_{\mathcal{M}}=d \lambda_{\mathcal{M}}, \theta\right) d-1 \text { symplectic } Q \text {-manifold. }\end{array}\right.$

IV AKSZ Topological σ-models

Alexandrov, Kontsevich, Schwarz, Zaboronsky

Geometric data $=\left\{\begin{array}{l}\sum d \text {-dimensional manifold, } \\ \left(\mathcal{M}, \omega_{\mathcal{M}}=d \lambda_{\mathcal{M}}, \theta\right) d-1 \text { symplectic } Q \text {-manifold. }\end{array}\right.$

- Fields: $\mathcal{F}_{B V}=\operatorname{Maps}(T[1] \Sigma, \mathcal{M})$
- Action: $S: \mathcal{F}_{B V} \rightarrow \mathbb{R}$ given by $S=\int_{T[1] \Sigma} i_{\hat{d}_{\Sigma}} e v^{*} \lambda_{\mathcal{M}}+e v^{*} \theta$.
- Symplectic form: $\omega_{B V}=\int_{T[1] \Sigma} e v^{*} \omega_{\mathcal{M}}$ of degree -1 .

IV AKSZ Topological σ-models

Alexandrov, Kontsevich, Schwarz, Zaboronsky

Geometric data $=\left\{\begin{array}{l}\sum d \text {-dimensional manifold }, \\ \left(\mathcal{M}, \omega_{\mathcal{M}}=d \lambda_{\mathcal{M}}, \theta\right) d-1 \text { symplectic } Q \text {-manifold. }\end{array}\right.$

- Fields: $\mathcal{F}_{B V}=\{\phi \in \operatorname{Maps}(T[1] \Sigma, \mathcal{M}) \mid \phi(T[1] \partial \Sigma) \subset \mathcal{B}\}$.
- Action: $S: \mathcal{F}_{B V} \rightarrow \mathbb{R}$ given by $S=\int_{T[1] \Sigma} i_{\hat{d}_{\Sigma}} e v^{*} \lambda_{\mathcal{M}}+e v^{*} \theta$.
- Symplectic form: $\omega_{B V}=\int_{T[1] \Sigma} e v^{*} \omega_{\mathcal{M}}$ of degree -1 .
- Possible boundary conditions: $\Phi(T[1] \partial \Sigma) \subseteq \mathcal{L}$ for some $\mathcal{L} \subset \mathcal{M}$ Lagrangian Q-submanifold.

IV AKSZ Topological σ-models

Alexandrov, Kontsevich, Schwarz, Zaboronsky

Geometric data $=\left\{\begin{array}{l}\sum d \text {-dimensional manifold, } \\ \left(\mathcal{M}, \omega_{\mathcal{M}}=d \lambda_{\mathcal{M}}, \theta\right) d-1 \text { symplectic } Q \text {-manifold. }\end{array}\right.$

- Fields: $\mathcal{F}_{B V}=\{\phi \in \operatorname{Maps}(T[1] \Sigma, \mathcal{M}) \mid \phi(T[1] \partial \Sigma) \subset \mathcal{B}\}$.
- Action: $S: \mathcal{F}_{B V} \rightarrow \mathbb{R}$ given by $S=\int_{T[1] \Sigma} i_{\widehat{d}_{\Sigma}} e v^{*} \lambda_{\mathcal{M}}+e v^{*} \theta$.
- Symplectic form: $\omega_{B V}=\int_{T[1] \Sigma} e v^{*} \omega_{\mathcal{M}}$ of degree -1 .
- Possible boundary conditions: $\Phi(T[1] \partial \Sigma) \subseteq \mathcal{L}$ for some $\mathcal{L} \subset \mathcal{M}$ Lagrangian Q-submanifold.
- Path integral: $\langle\mathcal{O}\rangle=\int_{\Phi \in \mathcal{L}_{B V} \subset \mathcal{F}_{B V}} \mathcal{O} e^{\frac{i}{\hbar} S(\Phi)}$ " $\mathcal{D} \Phi^{\prime}$.
- Gauge fixing: $\mathcal{L}_{B V}$ Lagrangian submanifold of $\left(\mathcal{F}_{B V}, \omega_{B V}\right)$.

IV AKSZ Topological σ-models

Alexandrov, Kontsevich, Schwarz, Zaboronsky

Geometric data $=\left\{\begin{array}{l}\sum d \text {-dimensional manifold, } \\ \left(\mathcal{M}, \omega_{\mathcal{M}}=d \lambda_{\mathcal{M}}, \theta\right) d-1 \text { symplectic } Q \text {-manifold. }\end{array}\right.$

- Fields: $\mathcal{F}_{B V}=\{\phi \in \operatorname{Maps}(T[1] \Sigma, \mathcal{M}) \mid \phi(T[1] \partial \Sigma) \subset \mathcal{B}\}$.
- Action: $S: \mathcal{F}_{B V} \rightarrow \mathbb{R}$ given by $S=\int_{T[1] \Sigma} i_{\widehat{d}_{\Sigma}} e v^{*} \lambda_{\mathcal{M}}+e v^{*} \theta$.
- Symplectic form: $\omega_{B V}=\int_{T[1] \Sigma} e v^{*} \omega_{\mathcal{M}}$ of degree -1 .
- Possible boundary conditions: $\Phi(T[1] \partial \Sigma) \subseteq \mathcal{L}$ for some $\mathcal{L} \subset \mathcal{M}$ Lagrangian Q-submanifold.
- Path integral: $\langle\mathcal{O}\rangle=\int_{\Phi \in \mathcal{L}_{B V} \subset \mathcal{F}_{B V}} \mathcal{O} e^{\frac{i}{\hbar} \mathcal{S}(\Phi)}$ " $\mathcal{D} \Phi$ ".
- Gauge fixing: $\mathcal{L}_{B V}$ Lagrangian submanifold of $\left(\mathcal{F}_{B V}, \omega_{B V}\right)$. When $=T^{*}[k] \mathfrak{g}[1]$ we obtain BF theory!!!

Thanks !!

