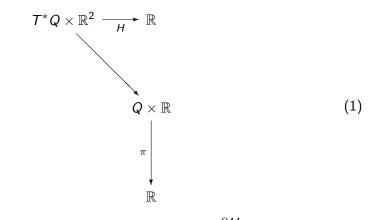
From mechanics to weakly-Lagrangian condition of higher Dirac structures

Nicolás Martínez Alba Universidad Nacional de Colombia, Bogotá

ONEW on Higher Dirac structures

time-depending Hamiltonian...a geometrical point of view



A suitable Hamiltonian in this setting is H so that $\frac{\partial H}{\partial s_2} = 0$ Solution of equation of motion are $\sigma : \mathbb{R} \to T^*Q \times \mathbb{R}^2$ that is section of the canonical projection

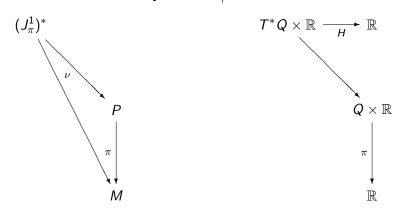
Nicolás Martínez Alba Universidad Nacional

two issues...

This is a suitable setting for **classical field theories** in the dual of a dual jet bundle condition $\frac{\partial H}{\partial s_2} = 0$ says that the dinamic lives on $T^*Q \times R$ as Poisson manifold

two issues...

This is a suitable setting for **classical field theories** in the dual of a dual jet bundle



condition $\frac{\partial H}{\partial s_2} = 0$ says

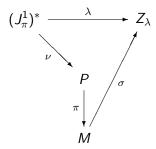
as Poisson manifold

that the dinamic lives on $T^*Q \times R$

how could we include both in just one geometrical setting?

weakly-Lagrangian

A solution



 $\begin{array}{rll} \mbox{Hamiltonian:} & \mbox{sections of } \lambda \\ \mbox{Solution of eq. of motion:} & \mbox{sections } \sigma \mbox{ but in } (J^1_{\pi})^* \\ & \mbox{geometry:} & -? \end{array}$

(2)

geometry of Z_{λ}

 $\begin{array}{ccc} \mathbb{R} \curvearrowright T^*(Q \times \mathbb{R}) \\ \text{preserving the} & \Rightarrow T^*Q \times \mathbb{R} \text{ is Poisson} \\ \\ \hline \mathbb{R} \curvearrowright (J^1_{\pi})^* \\ \text{preserving the} & \Rightarrow Z_{\lambda} \text{ is multi-Poisson} \\ \\ \text{multisymplectic form} \end{array}$

Finally, this geometry recovers the solution of the equation of motion

[M. Thm 5.3.1]

 $\sigma: M \to Z_{\lambda}$ is solution of equation of motion in CFT if and only if for all $\alpha \in \Gamma(S_{\lambda})$ the following equation holds

$$trace(i_{\bar{\sigma}(\cdot)}\alpha) = -(d\mathcal{H}_h)(P_\lambda(\alpha)) \circ s\sigma$$
(3)

where $\bar{\sigma}$ and \mathcal{H}_h comes from horizontal lifting of the section σ and the hamiltonian $h: Z_\lambda \to (J^1_\pi)^*$.

What about the higher-Dirac setting?

- Image: multi-Poisson should fit on higher-Dirac structures
- Annihilator condition is a key ingrdiente....but is not compatible with the lagrangian condition

weakly-Lagrangian condition:

A subbundle L of $TM \oplus \wedge^k T^*M$ is called weakly-Lagrangian if

 $L^{\perp} \cap (L + TM)$

Higher-Dirac structures:

A subbundle *L* of $TM \oplus \wedge^k T^*M$ is called Higher-Dirac structure if (i) is weakly-Lagrangian (ii)involutive under the bracket

$$[X \oplus \alpha, Y \oplus \beta] = [X, Y] \oplus L_X \beta - i_Y d\alpha$$

Integration by pre-multi-symplectic groupoids

[Bursztyn,M.,Rubio, Thm 5.3]

integrable Higher-Dirac structures over M are in one-to-one correspondence with Lie groupoids $\mathcal{G} \rightrightarrows M$ with $\omega \in \Omega^{k+1}(\mathcal{G})$ closed, multiplicative so that

(a)
$$(\ker(\omega) \cap \ker(dt) \cap \ker(ds))|_g = \{0\},\$$

(b)
$$d_g t(\ker(\omega) \cap \ker(ds)) = (\ker(\omega) \cap TM)|_{t(g)}$$
.

2 Foliation

Integration by pre-multi-symplectic groupoids

2 Foliation

[Bursztyn, M., Rubio, Thm 4.2 and Thm 4.10]

Higher-Dirac structures over M are in one-to-one correspondence with a triple (E, A, ε) so that on each leave \mathcal{O} of the foliation pf the respective Lie algebroid we have

(a)
$$E \leq TM$$
 (b) $A \leq \operatorname{Ann}(E)$
(c) $\varepsilon : E \to \wedge^{k} T^{*}M/A$ (d) $L_{\Gamma(E)}\Gamma(A|_{\mathcal{O}}) \subset \Gamma(A|_{\mathcal{O}})$
(e) $\varepsilon_{\mathcal{O}}(\operatorname{pr}_{2}(L)^{\circ}) = \{0\}$ (f) $\varepsilon_{\mathcal{O}}$ is δ -closed

where $(\Omega_{sk}^{\cdot}(\mathcal{O}, \wedge^{k}T^{*}M/A), \delta)$ is differential complex.

Some facts for HD(cont.):

Note that this works also for higher-Dirac $L \leq TM \oplus T^*M \otimes E$ taking values on a vector bundle E

 Vertical foliation, {*O*} and {*O*_λ}, of the geometric setting of CFT are endowed with *E*-valued Dirac structures

[M.Prop 5.2.6]

The restriction $\lambda : \mathcal{O} \to \mathcal{O}_{\lambda}$ is forward-higher-dirac map

poly-Poisson-sigma-model needs the condition S⁰ = {0} to obtain poly-symplectic groupoid that integrates the poly-Poisson structure (via reduction), indeed a key part of the construction is

[Contreras, M., Prop 4.6]

For poly-Poisson (M, S, P) we get path(S) is poly-symplectic submanifold of $\oplus T^*path(M)$

< □ > < 同 > < 回 > < 回 > < 回 >