

Higher analogues of Dirac structures and embeddings

Marco Zambon

October 25, 2021

Outline

1 Higher analogues of Dirac structures

2 Observables

Terminology

Fix $p \ge 1$. Consider the "higher Courant algebroid"

 $(E^p, \langle \cdot, \cdot \rangle, pr_{TM}, \llbracket \cdot, \cdot \rrbracket)$

with

$$E^{p} := TM \oplus \wedge^{p} T^{*}M$$
$$\langle \cdot, \cdot \rangle \colon E^{p} \times E^{p} \to \wedge^{p-1} T^{*}M$$
$$\llbracket X + \alpha, Y + \beta \rrbracket = [X, Y] + \mathcal{L}_{X}\beta - \iota_{Y}d\alpha.$$

Definition

1) $L \subset E^p$ is isotropic if

$$\langle L,L\rangle=0.$$

2) $L \subset E^p$ is Lagrangian if

$$L = L^{\perp} := \{ e \in E^p : \langle e, L \rangle = 0 \}.$$

Examples: forms and distributions

Proposition

Let $\omega \in \Omega^{p+1}(M)$ and S an integrable distribution on M, such that

 $d\omega|_{\wedge^3 S \otimes \wedge^{p-1} TM} = 0.$

Then

$$L := \{ X - \iota_X \omega + \alpha : X \in S, \alpha \in \wedge^p S^\circ \}$$

is an isotropic, involutive subbundle of E^p .

When L as above is Lagrangian, the converse holds.

Example:

For $\omega \in \Omega^{p+1}(M)$: $graph(\omega)$ is involutive iff $d\omega = 0$.

Remark:

When $p \ge 2$, Lagrangian subbundles of E^p are quite rigid (get restrictions on the pointwise rank of $S := pr_{TM}(L)$.)

Examples: multivector fields

Proposition

Let $\pi \in \Gamma(\wedge^{p+1}TM)$ be either

- a Poisson bivector field,
- a dim(M)-multivector field, or
- $\pi = 0.$

Then

$$graph(\pi) := \{\iota_{\alpha}\pi + \alpha : \alpha \in \wedge^{p}T^{*}M\}$$

is an isotropic involutive subbundle of E^p .

All isotropic involutive subbundles that project isomorphically onto $\wedge^p T^*M$ are of the above form, and are Lagrangian.

Remark:

Graphs to Nambu-Poisson multivector fields are not isotropic in general.

L_∞ -algebras

Definition

An L_{∞} -algebra is a graded vector space $V = \bigoplus_{i \in \mathbb{Z}} V_i$ endowed with a sequence of multi-brackets $(n \ge 1)$

 $l_n \colon \wedge^n V \to V$

of degree 2 - n, satisfying higher Jacobi identities (quadratic relations).

- $l_1 =: d$ makes V into a cochain complex
- l₂ does not satisfy the (graded) Jacobi identity

The binary bracket of hamiltonian forms

Let $p \ge 1$. Let L be a isotropic, involutive subbundle of $E^p = TM \oplus \wedge^p T^*M$.

Definition

1) $\alpha \in \Omega^{p-1}(M)$ is Hamiltonian if there exists a smooth vector field X_{α} such that

 $X_{\alpha} + d\alpha \in \Gamma(L).$

2) We define a bracket $\{\cdot,\cdot\}$ on $\Omega_{ham}^{p-1}(M,L)$ by

 $\{\alpha,\beta\}:=\iota_{X_{\alpha}}d\beta,$

where X_{α} is any Hamiltonian vector field for α .

An L_{∞} -algebra for involutive isotropic subbundles

Theorem

There is an L_{∞} -algebra structure on the complex

$$C^{\infty}(M) \xrightarrow{d} \dots \xrightarrow{d} \Omega^{p-2}(M) \xrightarrow{d} \Omega^{p-1}_{ham}(M,L).$$

The only non-vanishing multibrackets are:

• de Rham differential d

٢

$$l_k(\alpha_1,\ldots,\alpha_k) = \pm \iota_{X_{\alpha_k}}\ldots \iota_{X_{\alpha_3}}\{\alpha_1,\alpha_2\}$$

for $\alpha_1, \ldots, \alpha_k \in \Omega_{ham}^{p-1}(M, L)$ and $k = 2, \ldots, p+1$.

Notation: $L_{\infty}(M, L)$, the "observables".

Variation: Replace $\Omega_{ham}^{p-1}(M,L)$ by

 $\{(X,\alpha): X + d\alpha \in \Gamma(L)\} \subset \mathfrak{X}(M) \oplus \Omega_{ham}^{p-1}(M,L).$

Notation: $Ham_{\infty}(M,L)$, the "observables with choice of hamiltonian v.f."

An L_{∞} -algebra for "higher Courant algebroids"

Theorem

For any manifold M, integer $p \ge 1$ and $H \in \Omega^{p+1}_{closed}(M)$, there is a canonical L_{∞} -algebra structure on the complex

$$C^{\infty}(M) \xrightarrow{d} \cdots \xrightarrow{d} \Omega^{p-2}(M) \xrightarrow{0 \oplus d} \underbrace{\chi(M) \oplus \Omega^{p-1}(M)}_{=\Gamma(E_{H}^{p-1})}$$

Notation: $L_{\infty}(M, E_H^{p-1})$.

Remark

The theorem follows from [Getzler].

The *n*-th multibracket involves the Bernoulli number B_{n-1} . Hence it i zero for n = 4, 6, 8, ...

The case of Courant algebroids

Example: For p = 2 due to [Roytenberg-Weinstein]. Explicitly, the L_{∞} -algebra is on the complex

$$C^{\infty}(M) \xrightarrow{d} \Gamma(TM \oplus T^*M)$$

with:

• The binary bracket is the *H*-twisted Courant bracket $[\![\cdot,\cdot]\!]_{Cou,H}$ on $\Gamma(E^1)$ and

$$[e,f] := \frac{1}{2} \langle e, df \rangle$$

The trinary bracket is

$$[e_1, e_2, e_3] := -\frac{1}{6} \left(\langle [\![e_1, e_2]\!]_{Cou, H}, e_3 \rangle + c.p. \right).$$

An embedding of L_{∞} -algebras

Let $\omega \in \Omega^{p+1}(M)$ be closed.

Expected result

There is a canonical L_∞ -embedding

$$Ham_{\infty}(M,\omega) \to L_{\infty}(E^{p-1},\omega),$$

whose first component is the inclusion.

Remark:

For ω non-degenerate this was proven

- p = 2: by ^[Rogers]
- $p \leq 5$: by [Miti-Zambon]
- for all p: unpublished preprint [Ritter-Sämann] (no explicit formulae)

The symplectic case (p = 1)

Example:

Let ω be a symplectic form on M. Then $Ham_{\infty}(M, \omega) = L_{\infty}(M, \omega) = C^{\infty}(M, \omega)$. Have Lie algebra embedding

$$C^{\infty}(M,\omega) \to \Gamma(TM \oplus \mathbb{R})_{\omega}, \ f \mapsto (X_f, f).$$
 (1)

Geometric interpretation: prequantization

Assume $\frac{1}{2\pi}[\omega] \in H^2(M,\mathbb{Z})$ is integral. Have S^1 -bundle $\pi \colon P \to M$. Using a connection θ s.t. $d\theta = \pi^* \omega$, get

• Lie algebra embedding

$$C^\infty(M,\omega)\to \mathfrak{X}(P)^{S^1}, \ f\mapsto X_f^{\mathsf{lift}}+\pi^*f\cdot E.$$

Isomorphism between sections of Lie algebroids

$$\mathfrak{X}(P)^{S^1} = \Gamma(TP/S^1) \cong_{\theta} \Gamma(TM \oplus \mathbb{R})_{\omega}.$$

The composition is (1), and is independent of the choice of θ .

References

A. Miti and M. Zambon

Observables on multsymplectic manifolds and higher Courant algebroids In progress

C.L. Rogers

 L_{∞} -algebras from multisymplectic geometry Lett. Math. Phys. 100 (2012), 29-50

M. Zambon

 L_{∞} -algebras and higher analogues of Dirac structures and Courant alaebroids

J. Symplectic Geom. 10 (2012), 563-599

Thank you for your attention