Project Proposals offered at IN²UB

INDEX

Optoelectronic properties of ZnO-based light-emitting devices ... 3
Electrical study of the resistive switching properties of metal oxide (ZnO-based) compounds... 3
Preparation and study of multifunctional molecules for spintronics ... 3
Study of 3D neuronal cultures alteration by Amyloid-magnetite complex for a better understanding of Alzheimer disease .. 3
Early detection of circulating tumour biomarkers in situ with implantable vascular sensor 4
Therapeutic Applications of Stimulus Triggered Delivery Systems .. 5
Iron oxide nanoparticles for targeted cancer therapy ... 6
Exploring the deconstruction and modification of cellulosic materials by enzymatic assisted interactions. .. 6
Water-soluble gold nanoparticles for the efficient delivery of DNA in cancer gene therapy...... 7
Design and characterization in optical cavities and optomechanical structures................................. 7
Simulation of photonic crystals based on silicon nanopillars .. 7
Development and test of gas nanosensors of gas based on semiconducting oxides 8
Surface-Enhanced Raman Scattering (SERS) biosensors based on self-assembled monolayers of gold nanoparticles .. 8
Understanding the magnetic behavior of single molecule magnets on magnetic surfaces for spintronic applications .. 8
The enigmatic PGE-bearing nanofibers from the Loma Larga Ni-Laterite Deposit (Dominican Republic) - Do they have a geomicrobiological origin? ... 9
Nanosopic origin of the anomalous pressure-dependence of the electrostatic potential of a lipid monolayer. ... 10
Interaction of beta amiloyd fibrils with functionalized nanoparticles .. 10
Computational Study of Protein-Nanoparticle interactions ... 11
Hyperthermic nanocarriers with thermo-controlled drug release properties 12
In-Situ Characterization of resistive-switching operational devices .. 12
Nanomaterials for photocatalytic applications ... 12
Nanomaterials for piezoelectric energy harvesting ... 13
Photoluminescence properties of ZnO/graphene nanomaterials ... 13
Metal nanoparticles for controlled delivery of DNA .. 13
Delivery of Iridium-Based Photosensitizers using Gold Nanoparticles for Photodynamic Therapy of Cancer .. 14
Preparation and, inclusion and redox properties of mixed-valence, water soluble, Prussian Blue Analogues (PBAs). ... 14
Study of the luminescent properties of Gold Nanoparticles functionalized with coumarin ligands. .. 14
Phosphorescent organometallic materials as ideal candidates for OLEDs or biomedicine... 15
Multifunctional magneto-optical nanostructures for bio-applications 15
Iron Gold-Alloy Nanorods With Tunable Structure And Composition 16
Hybrid Inorganic Nanoparticles As Bimodal Therapeutic Agents .. 17
Compositionally-controlled Multinary Quantum Dots for Energy Conversion Technologies..... 18
Inkjet Printing of metal-oxide electronic devices .. 18
Green ZnO inks for inkjet printing ... 18
Novel computational tools to classify EEL spectra according to ELNES 18
Investigation of organic light emitting devices (OLEDs) for blue and white emission 19
Synthesis and study of carbazole-based azochromophores for controlling the order in the solid State. Application to organic thin-film transistors TFTs ... 19
Electric and magnetic control of phonon transport .. 20
Enhanced plasmonic properties in arrays of multifunctional nanostructures 21
Hybrid nanomaterials with enhanced singlet oxygen generation for photodynamic therapy... 21
Light-controlled molecular machines ... 22
Biofunctionalisation of silicon microchips for real-time intracellular sensing 22
Optoelectronic properties of ZnO-based light-emitting devices

Name of the Group: Group of Optoelectronics and Photonics (Faculty of Physics)

Short description of the project: Light emitting devices will be design, fabricated and characterized during the execution of the Master thesis. Oxide semiconductors compatible with silicon technology will be employed as active material, such as SiO2 or ZnO alloyed with nitrogen. The inclusion of rare ions will be also considered as optically active centers. Electroluminescence emission, quantum efficiency and modulation properties of the devices will be studied and modeled. PhD studies are possible after the master thesis.

Contact persons:
Dr. Blas Garrido Fernández, bgarrido@el.ub.edu
Dr. Sergi Hernández Márquez, shernandez@ub.edu

Electrical study of the resistive switching properties of metal oxide (ZnO-based) compounds

Name of the Group: Group of Optoelectronics and Photonics (Faculty of Physics)

Short description of the project: Materials based on silicon and transition metal oxides will be employed for fabricating resistive switching devices (memristors), using a simple metal-oxide-semiconductor (MOS) configuration. The electrical I(V) curves of the devices will be studied by applying a voltage on the top electrode while grounding the bottom contact, sweeping it from negative to positive voltages. The charge transport mechanisms will also be analyzed for the different resistance states (pristine, high resistance and low resistance states), with the aim of obtaining information regarding the mechanism that drives the resistive switching process. PhD studies are possible after the master thesis.

Contact persons:
Dr. Blas Garrido Fernández, bgarrido@el.ub.edu
Dr. Sergi Hernández Márquez, shernandez@ub.edu

Preparation and study of multifunctional molecules for spintronics

Name of the Group: Grup de Magnetisme i Molècules Funcionals (GMMF) (Faculty of Chemistry)
http://www.gmmf-ub.com/
Contact person: Dr. Guillem Aromí (aromi@ub.edu)

Study of 3D neuronal cultures alteration by Amyloid-magnetite complex for a better understanding of Alzheimer disease

Name of the Group: Unitat Bioelèctronica del Laboratori de Nanobioengineria (Faculty of Physics)

Description of the project: Abnormal accumulation of iron in the brain has been observed in Alzheimer’s disease (AD), Parkinson’s disease, Huntington’s disease, and multiple sclerosis [1]. In AD, the binding of iron to monomers, oligomers, or fibrils of amyloid β peptide (Aβ), the main component of the characteristic extracellular plaques formed in the brain, has been proposed
as a mechanism that stabilizes Fe$^{2+}$ and Fe$^{3+}$ ions and favors the formation of free radicals that could provoke the death of neurons by apoptosis [2].

Our research group has focused some effort in revealing the association of magnetite nanoparticles and Aβ in vitro [3], the properties and size of the magnetite nanoparticles formed in the presence of Aβ [4] and the higher toxicity of magnetite-Aβ complex tested in 2D neuronal cultures [5]. But we want to go a step beyond and study neuronal toxicity of this complex in 3D cultures. 3D cultures bring more adequate representations of cell environment and permits cells to grow and interact in all directions, similar to how they would in vivo. This improved cell contacts with their environment let to achieve more realistic cell-cell and cell-matrix interactions, complex transport dynamics, cell migration, differentiation and survival.

Task. 1. Thioflavin test to monitor the Aβ fibrils structure under different concentrations of Fe$^{2+}$ and Fe$^{3+}$ ions
Task. 2. 3D-neuronal cultures fabrication in collaboration with a group expert in this field.
Task. 3. Toxicity test of neuronal cells under different concentration/Aβ fibrillation
Task 4. Different type of immune staining to determine the type of cells affected by the magnetite- Aβ complex.

Requirements;
It is recommended that the applicant has a background in biotechnology or biology, good English skills, strong initiative and curiosity, skillful and good team worker

Contact person: Dr. Mònica Mir, mmir@ub.edu

Early detection of circulating tumour biomarkers in situ with implantable vascular sensor

Name of the Group: Unitat Bioelectrònica del Laboratori de Nanobioengineria (www.ibecbarcelona.eu)
Description of the project: Cancer is the second cause of death in the world. However, the methods for the advanced prognosis of this disease are nonexistent, being the pathological examination the current standard. Once the tumor is detected, invasive tissue extraction is required by solid biopsy to determine the type of cancer. The discovery of biomarkers in the blood of cancer has revolutionized oncological diagnosis, offering an early method of painless and non-invasive cancer detection [1].

The objective of this project is to develop a diagnostic platform through liquid blood biopsy, for the analysis of biomarkers of cancer in circulation, allowing an early prognosis of this disease at low cost, easy to use, portable, non-invasive and painless. This platform, in addition to performing early prognosis, allows monitoring the evolution of the disease, offering the possibility of providing personalized therapy to the patient. This diagnostic platform will be miniaturized to be implanted through a needle into the bloodstream. This system allows on-site detection in real time, accessing the entire concentration of biomarkers in the patient. Nanostructured polymeric structures will be studied to further increase sensitivity in detection.

To avoid the use of animals in the validation of this technology and to have an in vitro system of easy use and low cost, a microfluidic system will be developed to mimic the implantation and the conditions in which the sensor will be found in the branchial artery.

Task. 1. Positively charged polymers for DNA entrapment
Task. 2. Tuning of Polymers porosity for entrapment enhancement
Task. 3. Fluorescent test of the entrapped DNA under batch conditions
Task 4. Microfluidics fabrication and test of the entrapment under in vivo conditions
Task 5. Potentiometric test of the entrapped DNA
Task 6. PCR test for limit of detection improvement of the DNA entrapped

Requirements;

It is recommended that the applicant has good English skills, strong initiative and curiosity, skillful and good team worker

Contact person: Dr. Mònica Mir, +34 934 037 178, mmir@ibecbarcelona.eu

Therapeutic Applications of Stimulus Triggered Delivery Systems

Name of the Group: Resposta Cel··lular als Xenobiòtics (CEREX) (Faculty of Pharmacy and Food Sciences)

Description of the project: The procedure by which a drug is administered has a significant effect on its therapeutic efficacy. Some drugs present an optimum concentration range within maximum benefit, and concentrations above or below this range may be toxic or produce no therapeutic benefit.

In order to minimize the degradation of the drug and its loss of efficiency, our research group develops nanoparticle systems for the encapsulation and controlled release of molecules of therapeutic interest. Among other strategies, these systems are designed based on their
response to endogenous stimuli to facilitate the controlled release of the drug. Encapsulated molecules include nucleic acids, proteins and antitumor drugs, among others.

During the development of these systems it is essential to increase their stability in the biological environment, transport, directionalization and interaction with biological barriers. The evaluation of the biocompatibility and cytotoxicity of the nanoparticles systems is key in the modulation of pathophysiological processes.

Contact person: Dr. M. Carmen Morán Badenas (mcmoranb@ub.edu)

Iron oxide nanoparticles for targeted cancer therapy

Name of the Groups: Grup de Magnetisme i Molècules Funcionals (Faculty of Pharmacy and Food Sciences) http://www.gmmf-ub.com & Grup de Terapia anticancerosa, Immunomodulació i Nutrigenòmica (Faculty of Pharmacy and Food Sciences) http://www.ub.edu/terapiamol/cancer/

Description of the project:

Iron oxide nanoparticles (NPs) can be readily prepared by well-known methods as monodisperse, crystalline nanoparticles. By controlling the conditions, the major phase in these nanoparticles is the magnetic oxide magnetite, Fe₃O₄. The properties of iron oxide NPs make them excellent candidates for medical applications: Fe is an essential element and iron oxides can be readily metabolized or assimilated by the organism, thus iron oxide NPs lack the toxicity often related to heavy metals. The fact that they are magnetic can be exploited for targeting specific sites in the organism using a magnetic field that is not harmful.

Cancer therapy with PPRH hairpins. PolyPurine Reverse Hoogsteen hairpins are a new kind of gene silencing molecules developed in our laboratory. They consist of two strands of DNA linked by 5 thymidines. Each strand of that DNA is formed by polypurines and bind to each other by Hoogsteen bonds. These hairpins bind to polypyrimidine tracks present in the genomic DNA inhibiting transcription and splicing thus causing a decrease in gene expression. Therefore, this genomic tool can be used to decrease the expression of genes that are overexpressed in certain diseases, such as cancer.

In this project you will work in a multidisciplinary environment. The main goal is a preliminary study of the functionalization of iron oxide NPs with a PPRH hairpin in order to obtain hybrid nanoobjects suitable for delivering the hairpin to the target. The final aim is to be able to deliver therapeutic molecules such as PPRHs using Iron oxide NPs for efficient targeted cancer therapy.

Contact persons: Dr. E. Carolina Sañudo esanudo@ub.edu; Dr. Carles Ciudad cciudad@ub.edu

Exploring the deconstruction and modification of cellulosic materials by enzymatic assisted interactions.

Name of the Group: Microbial Enzymes for Industrial and Environmental Applications (http://www.ub.edu/enzimsmicrobians/) (Faculty of Biology)
Description of the project: Nowadays, we are working on the biotransformation of natural polymers like cellulose from plants, including the development of enzymes that catalyse their modification, hydrolysis, and/or synthesis. In addition, we are exploring the potential of bacterial cellulose, as an innovative source for new applications, including its utilization as a platform for anchoring proteins, antimicrobial agents and other functionalization. The project involves the study of cellulases and Lytic polysaccharide monooxygenases in cellulosic materials, to oxidize and functionalize sustainable materials.

Contact person: Dr. Susana V. Valenzuela, (susanavalenzuela@ub.edu)

Water-soluble gold nanoparticles for the efficient delivery of DNA in cancer gene therapy

Name of the Group: Supramolecular Systems in Nanobiomedicine (Faculty of Pharmacy and Food Sciences)

Description of the project: In this project, small, water-soluble GNP will be synthesized and functionalized with appropriate cationic chemical entities that could work as binders of DNA Polypurine Reverse Hoogsteen hairpins (PPRHs), a novel, effective, and stable approach for gene therapy. The functionalized GNP and their complexes with will be characterized using different techniques (UV-VIS spectroscopy, TEM, SEM, DLS, etc.) and cytotoxicity studies of the suitable GNP and their complexes with PPRH will be performed in various kinds of cancer cells for evaluating their therapeutic efficacy.

Contact person: Dr. David Limón Magaña (davidlimon@ub.edu)

Design and characterization in optical cavities and optomechanical structures

Name of the Group: Group of Optoelectronics and Photonics (Faculty of Physics)

Short description of the project: Rare earth-doped glass spherical micro- and nanosphere resonators are structures that show special resonant modes called whispering gallery modes (WGM), which can be used in optical pumping to achieve lasing. On the other hand, optomechanical coupling is taking advantage of the momentum carried by photons to force mechanical motion to an object. In this proposal, optical cavities integrated with silicon technology will be designed, fabricated and tested, in order to understand and exploit the interaction between light in optical cavities and mechanical structures, at the micro- and at the nano-scales.

Contact persons:
Dr. Blas Garrido Fernández, bgarrido@el.ub.edu
Dr. Daniel Navarro Urríos, dnavarro@ub.edu

Simulation of photonic crystals based on silicon nanopillars

Name of the Group: MIND - Nanosystems, Dept. of Electronic and Biomedical Engineering (Faculty of Physics)

Short description of the project: The periodic layouts of dielectric nanostructures can lead to the material behaving as a photonic crystal. Among the possible layout distributions, in this work we propose studying periodic hexagonal structures of silicon nanopillars, simulating the structure by introducing defects and/or other photonic elements (such as resonator rings,
wave guides, etc.) and finally, the deformations of the pillars upon the application of external forces.

Contact persons: Elena Lopez-Aymerich, Dr. Albert Romano-Rodriguez (albert.romano@ub.edu)

Development and test of gas nanosensors of gas based on semiconducting oxides

Name of the Group: MIND-Nanosystems, Dept. of Electronic and Biomedical Engineering (Faculty of Physics)

Short description of the project: The actual society generates high gas emissions that can be harmful both to health and environment. This fact fosters the development of gas sensors that allow monitoring these emissions with the aim of their control. In this work, we propose to manufacture and study the response of gas nanosensors based on nanostructured metal oxides. The student will participate in the manufacturing and characterization of both materials and devices, as well as the study of the response to some gases of interest in health and environment, such as CO and NO2.

Contact persons: Dr. Albert Romano-Rodriguez (albert.romano@ub.edu)

Surface-Enhanced Raman Scattering (SERS) biosensors based on self-assembled monolayers of gold nanoparticles

Name of the Group: Self-Organized Complexity and Self-Assembled Materials. SOC&SAM: http://www.ub.edu/socsam/cms/ (Faculty of Chemistry)

Short description of the project: Nanoparticle self-assembly is a robust and versatile strategy for the development of functional nanostructured materials, offering low-cost and scalable methods that can be fine-tuned for many different specific applications. SERS is an extremely sensitive technique for the detection of analytes, although current devices lack suitable homogeneity and reproducibility. In this project, custom-synthesized gold nanoparticles of different sizes and shapes with be self-assembled as monolayers by means of the Langmuir-Blodgett technique with tunable lateral density of SERS hot-spots. The devices will be tested in microfluidic environments for the in-situ detection of water pollutants.

Contact person: Dr. Jordi Ignés Mullol (jignes@ub.edu)

Understanding the magnetic behavior of single molecule magnets on magnetic surfaces for spintronic applications

Name of the Group: Grup de Magnétisme i Molècules Funcionals. GMMF: http://www.gmmf-ub.com (Faculty of Chemistry).

Short description of the project: Lanthanide single molecule magnets (SMMs) are now on the fast track for implementation of molecular spintronic devices, in particular after discovery of an organometallic SMM that shows hysteresis above liquid nitrogen temperature: an SMM can be operational at a temperature that is technologically easy to achieve, this is an very important breakthrough in the field since up until now all SMMs were only operational at
liquid Helium temperatures (Layfield et al. Science, 2018). For molecular spintronics, SMMs must be manipulated and deposited on surfaces.

In this project you will work in a multidisciplinary environment. The main goal is the synthesis of new lanthanide SMMs and their deposition on surfaces.

Contact person: E. Carolina Sañudo (esanudo@ub.edu).

Multifunctional nanosheets: Lanthanoid MOFs as van der Waals 2D materials

Research group: Grup de Magnetisme i Molècules Funcionals (Facultat de Química)

Websites: GMMF: http://www.gmmf-ub.com

Description of the project:

Two dimensional materials (2D) comprised of neutral Van der Waals stacked metal-organic frameworks (MOFs) are the focus of this project. At GMMF we have prepared a series of Lanthanoid MOFs that are 2D neutral nanosheets stacked into large crystals. This is very much like graphene layers stacked to form graphite. Theoretical calculations show that the Van der Waals forces between the layers of the 2D MOF prepared at GMMF are in the range of the van der Waals forces between graphene layers. This means the material can be easily delaminated into individual 2D nanosheets. González et al, 2021, Angew. Chem. Intl. Ed. Engl., https://doi.org/10.1002/anie.202100507

This is a great project for students that want to pursue a Master and PhD degree.

The student will participate in the synthesis and characterization of the multifunctional properties of the 2D MOFs and the individual nanosheets. The magnetic and luminescent properties make this materials promising for smart inks, new nanostructured materials and spintronic applications.

Contact person: E. Carolina Sañudo (esanudo@ub.edu).

The enigmatic PGE-bearing nanofibers from the Loma Larga Ni-Laterite Deposit (Dominican Republic) - Do they have a geomicrobiological origin?

Name of the Group: Mineral Resources Research Group (Faculty of Earth Sciences)

Short description of the project: Enigmatic fibrous platinum-group minerals (PGM) were found within a chromitite body included in limonite from Ni-laterites in the Dominican Republic. These fibrous PGM have a Ru-Os-Ir-Fe dominated composition and are characterized by fibrous textures with grain-forming fibers which are significantly longer (1–5 µm) than wide (~100 nm). These fibrous PGM show numerous complex textures on its surface which are suggestive for neoformation processes: (i) features suggesting growth of platinum-group elements (PGE)-bearing nanofibers; (ii) occurrence of PGM nanoparticles within film material (biofilm?) associated with PGE-bearing nanofibers; (iii) a Si-rich and crater-like texture hosting PGM nanoparticles and an Ir-rich accumulation of irregular shape; (iv) complex PGM nanoparticles with ragged morphologies, resembling sponge spicules and (v) oval forms (<1 µm in diameter) with included PGM nanoparticles, similar to those observed in experiments with
PGE-reducing bacteria. This study aims to deploy TEM and FIB techniques to characterize these PGM nanofibers to further assess the mobility of PGE linked to bio-weathering processes in tropical soils.

Contact person: Dr. Josep Roqué Rosell (josep.roque@ub.edu)

Nanoscopic origin of the anomalous pressure-dependence of the electrostatic potential of a lipid monolayer.

Name of the Group: Statistical Physics of Nanosystems – Complex Matter Group (Faculty of Physics)

Short description of the project: Phospholipid monolayers are model systems to study how biological membranes interact with biomolecules (e.g., proteins and cholesterol) or nanomaterials. Experiments measure their electrostatic properties, but do not clarify the nanoscopic origin of the anomalous dependence of the surface electrostatic potential with lateral pressure. We propose to study by all-atom simulations the correlation between this anomaly and the local changes in the configuration of the lipids and the hydration water. To gain further insight, we plan to explore the temperature dependence of such electrostatic properties of the membrane and compare our results with current experiments.

Tasks:
1. To reproduce by all-atom molecular dynamics simulations the experimental dependence of the electrostatic potential on the monolayer lateral pressure.
2. To identify the contributions to the electrostatic potential arising from the lipid heads, tail and the hydration water and to find the correlation between the lipids configuration and the electrostatic potential that they generate.
3. To investigate the temperature dependence of the electrostatic properties of the monolayer.

Contact persons:
Dr. Giancarlo Franzese, gfranzese@ub.edu
Dr. Carles Calero, carles.calero@ub.edu

Requirements: Strong motivation, scientific curiosity, enthusiasm for exploring new phenomena with potential applications in nanomedicine.

Interaction of beta amyloid fibrils with functionalized nanoparticles.

Name of the Group: Statistical Physics of Nanosystems – Complex Matter Group (Faculty of Physics)

Short description of the project: Functionalized nanoparticles (NPs) can interact with the β-amyloid (Aβ40) peptides and avoid their self-assembly into toxic oligomers and fibrils, which have been linked to the development of neurodegenerative diseases such as Alzheimer’s disease. In collaboration with synthetic chemists, we plan to investigate how PEGylated gold NPs can prevent the assembly of β-amyloid proteins in solution. By using computer simulations, we will evaluate the interaction energies between β-amyloid and the functionalized NPs under different conditions, for a better design of strategies to avoid the β-amyloid fibrilization.
Tasks: By all-atom molecular dynamics simulations and standard free energy (Umbrella sampling and Metadynamics) calculations we will:

1. Characterize the interaction between Aβ40 peptides with the polymers HS-PEG2100-COOH (negatively-charged) and HS-PEG2100-OMe (non-charged) grafted to the NPs.
2. Characterize the Aβ40-Aβ40 interaction and the competition between Aβ40-Aβ40 and Aβ40-polymer interaction in experimental conditions.
3. Evaluate curvature effects in the interaction of Aβ40 with functionalized AuNPs of different sizes (5, 10 and 15nm) using a coarse-grained model built from previous results.

Contact persons:
Dr. Giancarlo Franzese, gfranzese@ub.edu
Dr. Carles Calero, carles.calero@ub.edu

Requirements:
Strong motivation, scientific curiosity, enthusiasm for exploring new phenomena with potential applications in nanomedicine.

Computational Study of Protein-Nanoparticle interactions.

Name of the Group: Statistical Physics of Nanosystems – Complex Matter Group (Faculty of Physics)

Short description of the project: Biomolecules in contact with nanoparticles (NPs) spontaneously adsorb and form a “protein corona”. The corona composition depends on the time-dependent environmental conditions and determines the NP’s fate within living organisms and its toxicity or its potential medical applications. The process of corona formation is challenging due to the large number of molecules involved and to the large span of relevant time scales ranging from 100 μs to hours. We plan to study by simulations within a multiscale approach the interactions between proteins and NPs. We will calculate the potential of mean forces mediated over different protein-NP relative orientations for silica NPs in a model plasma made of three blood proteins (human serum albumin, transferrin, and fibrinogen) which compete to adsorb on the NP surface, as tested in experiments. The calculations will allow us to develop a model for the systematic prediction and control of protein−NP corona composition based on a hierarchy of equilibrium protein binding constant.

Tasks: By adopting a model for computer simulations calibrated by experimental protein−NP binding affinities, that correctly reproduces experimental data, we will calculate:

1. The potential of mean forces of protein-protein and protein-NP interaction for NPs of different compositions (silica, metal iron oxide, lipid) in a model solution made of one of the following blood proteins: human serum albumin, transferrin, and fibrinogen
2. The protein−NP corona kinetics when the three proteins are competing for the same NP and how the prediction compare with the available experimental data.

Contact persons:
Dr. Giancarlo Franzese, gfranzese@ub.edu

Requirements:
Strong motivation, scientific curiosity, enthusiasm for exploring new phenomena with potential applications in nanomedicine.

Hyperthermic nanocarriers with thermo-controlled drug release properties

Group: nanoBIC (Faculty of Chemistry). **Website:** nanoBIC

Short description of the project: The proposed PhD project is focused on carrying out thermo-release studies of cytotoxic compounds grafted to nanoparticles. It consists in designing and preparing iron-oxide nanoparticles (Fe$_3$O$_4$ NPs) decorated with thermolabile groups, which will be used to release a drug and/or an imaging agent (therapy, diagnosis or theranostics). The main idea is to use the remarkable properties of Fe$_3$O$_4$ nanoparticles, like for instance their ability to cross the blood-brain barrier or/and magnetism, to produce efficient drug nanocarriers. Hence, Fe$_3$O$_4$ NPs will be generated, which will contain specific functional groups aimed at detecting (diagnosis) or/and treating (therapy) cancer. The potential drug or fluorescent molecule will be connected to the NPs through thermolabile groups. The release of the bioactive compound will be achieved through hyperthermia, applying an alternating magnetic field. The heat generated will give rise to a cyclization reaction of the thermosensitive group that will result in a bond cleavage and subsequent liberation of the drug/prodrug or fluorescent agent.

Contact person: Dr. Patrick Gamez, patrick.gamez@ub.edu

In-Situ Characterization of resistive-switching operational devices.

Name of the Group: Laboratory of Electron Nanoscopies (Faculty of Physics)

Short description of the project: An STM sample holder will be used in the TEM to probe in-situ the properties of resistive-switching operational devices

Contact persons: Dr. Sonia Estrade (sestrade@ub.edu); Prof. Francesca Peiró (francesca.peiro@ub.edu)

Nanomaterials for photocatalytic applications

Name of the Group: Group ENPHOCAMAT: ENergy, PHOtonics & CAtalysis MATerials (Faculty of Physics and Faculty of Chemistry) **Website:** Enphocamat

Short description of the project: This project is based on the development of advanced nanomaterials that hold the key to open a new generation of products for clean, renewable and sustainable energy. These breakthroughs will be reached through the control of material properties and understanding of mechanisms and phenomena at the nanoscale and atomic level. The main challenges are to understand how to get new materials capable to obtain fuels such as hydrogen and carbon reduced forms based (i.e. methane, methanol) from the carbon dioxide re-utilization at low-cost and high-efficiency. The high efficiency solar to fuel energy conversion require features that must guarantee the device functionality: i) photon absorption, ii) charge separation and carrier current management, and iii) charge transfer involving catalyst for the expected chemical transformation.

Contact person: Dr. Frank Güell, frank@el.ub.edu
Nanomaterials for piezoelectric energy harvesting

Name of the Group: Group ENPHOCAMAT: ENergy, PHOtonics & CATalisy MATerials (Faculty of Physics). Website: Enphocamat

Short description of the project: This project is based on the development of advanced nanomaterials that hold the key to open a new generation of products for clean, renewable and sustainable energy. These breakthroughs will be reached through the control of material properties and understanding of mechanisms and phenomena at the nanoscale and atomic level. The growth of nanostructures by hydrothermal method for piezoelectric applications will be demonstrated by using piezoresponse atomic force microscope (PFM) and with the support of a piezoelectric test device. This low-cost and fast selective-area synthesis of nanomaterials paves the way to new promising applications, such as bioelectronic applications, energy generation or self-powered sensing.

Contact person: Dr. Frank Güell, frank@el.ub.edu

Photoluminescence properties of ZnO/graphene nanomaterials

Name of the Group: Group ENPHOCAMAT: ENergy, PHOtonics & CATalisy MATerials (Faculty of Physics).

Website: Enphocamat

Short description of the project: This project is based on the development of advanced nanomaterials that hold the key to open a new generation of products for clean, renewable and sustainable energy. Photoluminescent ZnO/Graphene nanomaterials are an emerging class of nanomaterials with unique optical properties. They each, ZnO and carbon nanomaterials, have an advantage of being nontoxic and environmentally friendly. Moreover, ZnO presents photoluminescence emission in the UV and visible region depending on the synthesis routes, shape, size, deep level, and surface defects. When combined with carbon nanomaterials, modification of surface defects in ZnO allows tuning of these photoluminescence properties to produce, for example, white light.

Contact person: Dr. Frank Güell, frank@el.ub.edu

Metal nanoparticles for controlled delivery of DNA

Name of the Group: Nanoscience and Bio-Inorganic Chemistry, nanoBIC (Faculty of Chemistry)

Short description of the project: Gene therapy may allow to treat a disease by inserting a genetic material (e.g. DNA, siRNA) into a patient’s cells, followed by expression and production of a deficient protein; this avoids the use of drugs or surgery. However, a successful delivery of genetic material is limited by their large size, vulnerability against enzymatic degradation and anionic nature. Such features make gene delivery very challenging. Therefore, carriers are commonly required to enhance their entry into cells/tissues.

This project aims at using functionalized metal nanoparticles as carriers for controlled delivery of DNA. To do so, the student will optimize the size and surface functionalization of metal nanoparticles to immobilize and stabilize different structures of DNA, which will be released afterwards upon an external stimulus.
The student will be trained in nanoparticle synthesis and functionalization, and in a wide range of instrumental techniques covering the characterization of nanomaterials and biophysical studies of DNA-nanoparticle interactions.

PhD studies in a similar or related topic will be encouraged in our group for talented students.

Contact person: Dr. Ana Belén Caballero Hernández, ana.caballero@ub.edu

You can also visit us on our group’s website: www.nanobic.eu

Delivery of Iridium-Based Photosensitizers using Gold Nanoparticles for Photodynamic Therapy of Cancer

Name of the Group: Nanoscience and Bio-Inorganic Chemistry, nanoBIC (Faculty of Chemistry)

Short description of the project: This project aims at using gold nanoparticles as carriers for an enhanced delivery of antitumor, photosensitizing iridium compounds. To do so, the student will optimize the surface functionalization of gold nanoparticles to carry a series of Ir(III) compounds. Afterwards, photodynamic activity will be evaluated and the nanoconjugates will be tested using several tumor cell lines.

The student will be trained in nanoparticle synthesis, functionalization, and characterization of nanomaterials. Also, the student will receive basic training in cell culture from cell biologists.

PhD studies in related topics will be encouraged in our group for talented students.

Contact person: Dr. Ana Belén Caballero Hernández, ana.caballero@ub.edu

You can also visit us on our group’s website www.nanobic.eu

Preparation and inclusion and redox properties of mixed-valence, water soluble, Prussian Blue Analogues (PBAs).

Name of the Group: Mecanismes de reacció (MEC). Faculty of Chemistry.

Description of the project: The construction and characteristics of water soluble and chemically resistant cyanido bridged CoIII/FeII cubes will be studied. The assembly reaction will be carried out by a redox-substitution mechanistically driven process from [Fe(CN)6]4- and [CoLCl3] where L represents a tridentate N3 or S3 ligand. The resulting mixed-valence species should present interesting intervalence character and redox properties. Furthermore, as most PBAs, the new cubes are bound to show selective alkaline cation encapsulating properties. Tuning the nature of the tridentate ligand from N3 to S3 should produce an enhanced stability of the magnetically active CoII/FeIII isomer, thus allowing the study of new electron-transfer processes.

Contact person: Dr. Manuel Martínez manel.martinez@qi.ub.es, Dr. Montserrat Ferrer montse.ferrer@qi.ub.es

Study of the luminescent properties of Gold Nanoparticles functionalized with coumarin ligands.

Name of the Group: Supra and Nanostructured Systems (website: SuNS) (Faculty of Chemistry)
Short description of the project: Metal and semiconductor nanoparticles present interesting properties depending on their size and shape. The combination of these properties with the introduction of new groups at the surface of the nanoparticles can produce hybrid materials with new and interesting properties and functions. One example is the use of gold nanoparticles as sensors in light-harvesting systems or as modulators of the fluorescent properties of dyes immobilized in their surface. In this project, we will develop gold nanoparticles functionalized with dyes (coumarine ligands) to obtain new photoluminescent materials that could be use in the field of molecular recognition. PhD studies are possible after the master thesis.

Contact persons:
Dr. Inmaculada Angurell Purroy, inmaculada.angurell@qi.ub.es
Prof. Laura Rodriguez Raurell, laura.rodriguez@qi.ub.es

Phosphorescent organometallic materials as ideal candidates for OLEDs or biomedicine.

Name of the Group: Supra and Nanostructured Systems (website: SuNS) (Faculty of Chemistry)

Short description of the project: The synthesis of organometallic Au(I) or Pt(II) complexes with potentially outstanding luminescence properties will be carried out. In this project, the master Student will perform organic and organometallic synthesis. Especial attention will be paid to the characterization of the emissive properties of the complexes and their precursors in order to select good candidates for biomedical applications and as OLEDs. PhD studies are possible after the master thesis.

Contact persons:
Prof. Laura Rodríguez, laura.rodriguez@qi.ub.es
Dr. Inmaculada Angurell, inmaculada.angurell@qi.ub.es

Multifunctional magneto-optical nanostructures for bio-applications

Name of the Group: Laboratory of Nanostructured and Nanocomposite Materials (LM2N) (Faculty of Chemistry)

Short description of the project: Fe₃O₄ nanoparticles are widely studied as they find many applications in biomedicine due to their non-toxic role in the biological systems. Most of these applications are based on their SPM effect and on their high magnetic susceptibility that leads to high values of saturation magnetization. Magnetic hyperthermia, magnetic resonance imaging and drug delivery are the most common bio-applications. On the other hand, Au nanoparticles exhibit surface plasmon resonance when its frequency oscillation matches with the wavelength of the external irradiation light due to dielectric differences between the particle environment and the particle itself. This property is being also used for bio-applications such as biosensing and optical hyperthermia. In this project hybrid Fe₃O₄-Au nanostructures will be synthesized in order to combine the properties of each material in a single nano-object, aiming at their use for both, in-vitro and in-vivo bio-applications. This is an interdisciplinary project that encompasses chemical synthesis, structural characterization and magneto-optical measurements.

Contact person: Dr. Marta Estrader martaestrader@ub.edu
Iron Gold-Alloy Nanorods With Tunable Structure And Composition

Research groups: Group of Magnetic Nanomaterials; and Laboratory of Nanostructured and Nanocomposite Materials (Faculties of Chemistry and Physics)

Websites: Group of Magnetic Nanomaterials
https://www.researchgate.net/profile/Albert_Figuerola

Short description of the project: Iron gold-alloy nanorods (FeAu NR) are promising, multifunctional materials in health applications, since the rod shape favors a more selective chemical affinity, better biocompatibility and also shows an enhancement of both plasmonic and magnetic response. In addition, from the fundamental point of view, they are ideal model systems to study the new magnetic-plasmonic phenomena associated with the so-called particle-like behavior. The physical and chemical features of FeAu NR can be accurately tuned with the control of the rod shape and composition. For instance, FeAu NR behave as paramagnets when the Fe content is within 0.1-9.9% but they become ferromagnetic when the Fe total content increases above 10%. Besides, it has been seen that the optical response of FeAu NR enhances with the increase of Fe composition. Moreover, modulating the ratio length/width one can tune with precision the position of the plasmon bands, from visible (VIS) up to near-infrared (NIR). As a result of this great variability of possibilities, FeAu NR are promising tools for biomedical applications, being very attractive in sensing, thermotherapy and imaging (see Figure 1). However, there is a lack of chemical methods capable of obtaining FeAu NR with a good control over the rod structure and composition. Consequently, the choice of a suitable synthesis method, where one can get control of the structure, crystallinity and composition, is of key importance to make progress in the fundamental understanding and in the reproducibility of the results.

Within this framework, we propose to obtain FeAu NR with a good control of the structure and alloy composition by the thermal decomposition method using organometallic precursors in a controlled atmosphere. Next, to explore the insights of the coupling phenomena between iron and gold by advanced structural and magnetic characterization techniques. Finally, determine the efficiency of FeAu NR as MRI contrast agents.

Contact person: Xavier Batlle. xavierbatlle@ub.edu, Albert Figuerola, albert.figuerola@ub.edu
Hybrid Inorganic Nanoparticles As Bimodal Therapeutic Agents

Name of the Group: Laboratory of Nanostructured and Nanocomposite Materials, LM2N *(Faculty of Chemistry; Inorganic Chemistry Section)*

Short description of the project: Nanotechnology is gaining an increasing role in the therapy and diagnosis fields. In this Master thesis the synthesis and characterization of new nanostructured bimodal therapeutic agents is pursued through the design of appropriate inorganic hybrid nanoparticles. This goal will be achieved by the presence of both a magnetic and a semiconductor domain sharing an interface within the nanoparticle. Each of the domains would accomplish its therapeutic role under the effect of a specific external stimulus such as light or magnetic field. Colloidal synthetic strategies will be used for the synthesis of these size and shape controlled hybrid nanoparticles, and a wide variety of structural, morphological, chemical and physical characterization techniques will be employed to assess the suitability of the samples obtained.

Contact persons:

Dr. Albert Figuerola, albert.figuerola@ub.edu

Dr. Marta Estrader, martaestrader@ub.edu
Compositionally-controlled Multinary Quantum Dots for Energy Conversion Technologies

Name of the Group: Laboratory of Nanostructured and Nanocomposite Materials, LM2N (Faculty of Chemistry; Inorganic Chemistry Section)

Short description of the project: The use of semiconductor nanocrystals with quantum properties in energy conversion technologies has attracted a great interest in the recent years. The use of ternary or quaternary semiconductors offers a new way to control physical properties by means of chemical composition tuning. This Master thesis is dedicated to the development of new colloidal bottom-up synthetic strategies for the preparation of size and shape-controlled semiconductor nanocrystals made by at least three different elements in an attempt to improve the performance of future optoelectronic and thermoelectric devices. A wide variety of structural, morphological, chemical and physical characterization techniques will be employed to assess the suitability of the samples obtained.

Contact persons:
Dr. Albert Figuerola, albert.figuerola@ub.edu

Inkjet Printing of metal-oxide electronic devices

Name of the Group: Systems for Instrumentation & Communications (Faculty of Physics)

Short description of the project: The aim of this project is to design, fabricate and characterize some electronic devices such as diodes, thin-film transistors, light emitting diodes or photodetectors. The main fabrication technique will be inkjet printing, a cheap, versatile, safe and sustainable direct-write technology useful for a variety of materials. Among the oxide semiconductors compatible with it, ZnO will be preferred, but other alloys such as ITO, SnO2, etc. are not excluded.

Contact person: Anna Vilà, anna.vila@ub.edu

Green ZnO inks for inkjet printing

Name of the Group: Systems for Instrumentation & Communications (Faculty of Physics)

Short description of the project: ZnO is the metal oxide most used in printed electronics. However, many of the mixtures used in the printing ink are hazardous and can cause danger for their users. This project intends to investigate alternative inks non-hazardous, non-toxic, ecolologic and bio-compatible to inkjet print ZnO. Extrapolation to other metal oxides will be considered.

Contact person: Anna Vilà, anna.vila@ub.edu

Novel computational tools to classify EEL spectra according to ELNES
Name of the Group: Laboratory of Electron Nanoscopy (LENS) from the group MIND (Micro-nanotechnologies and Nanoscopy for Electrophotonic Devices) (web) (Faculty of Physics)

Description: The object of this Masters Thesis is the application of novel computational tools based on artificial intelligence to the classification of electron energy loss (EEL) spectra according to ELNES; in particular, focusing on the O K edge in transition metal oxides.

Requirements: Being familiar with programming in Python

Contact: Sonia Estradé (sestrade@ub.edu); Daniel del Pozo

Investigation of organic light emitting devices (OLEDs) for blue and white emission

Name of The Group: Organic Materials. (Dept. Química Inorgànica i Orgànica. Faculty of Chemistry)

Proposal: Study of new organic blue-luminescent materials. Spin coating and vacuum deposition will be considered for the preparation of their thin films for emission measurements. The study will include the analysis of different hosts and their effect in the quantum yield and in the efficiency of the organic light emitting devices fabricated.

Person of contact: Dra. Dolores Velasco. dvelasco@ub.edu

Synthesis and study of carbazole-based azochromophores for controlling the order in the solid State. Application to organic thin-film transistors TFTs.

Name of The Group: Organic Materials (Dept. Química Inorgànica i Orgànica. Faculty of Chemistry).

Proposal: In this master thesis the student will fabricate and characterize organic devices. In particular, thin-film transistors will be fabricated using small-molecules as organic semiconductors or organic dielectric, whose geometry and properties could be modified by light. The electrical performance of the devices will be determined and correlated with the structural and optical properties of the organic molecules. X-Ray and AFM techniques will be used for their characterization.

Person of contact: Dra. Dolores Velasco. dvelasco@ub.edu
Electric and magnetic control of phonon transport

Research groups: Group of Magnetic Nanomaterials (Faculty of Physics)
Websites: Group of Magnetic Nanomaterials

Description of the project:
Many of the major technological breakthroughs occurring in the last few decades rely on our effective capability to control and manipulate two elementary particles: electrons (both charge and spin) and photons. In particular, they are responsible for the current semiconductor technology, information storage devices, wireless communication, optical fibers, etc. In the rapid pace of these technological advancements, phonons, quasiparticles accounting for elementary vibration modes of the lattice, have lagged far behind, relegated to second place, mainly because of the difficulty in manipulating them. However, if similar degree of control over phonons—such as the technology-readiness over electrons—were possible, a radically new range of applications and research directions could be unfolded. First, since phonons are the main heat carriers in solids, their control would allow channeling the heat flow—and, thus, the thermal energy—at will, propelling new possibilities for thermal energy management and harvesting. Second, it might build up a completely new technology for logic, data storage devices and computing mechanisms utilizing phonons: the so-called phononics.

The main objective of the project is the realization of functional solid-state phononic devices such as an active phonon barrier depicted in the figure above that could reversibly allow (state ON) or inhibit (state OFF) the phonon propagation using an external stimulus (an electric field, for instance). Moreover, the two phononic states (ON/OFF) should be robust and stable once the external stimulus is removed in order to make viable a binary code using phonons.

Contact person: Eric Langenberg (eric.langenberg@ub.edu), Xavier Batlle (xavierbatlle@ub.edu)
Enhanced plasmonic properties in arrays of multifunctional nanostructures

Research groups: Group of Magnetic Nanomaterials (Faculty of Physics)

Websites: [Group of Magnetic Nanomaterials](#)

Research on:
- Optical response of ordered plasmonic nanostructures manufactured by electron beam lithography or nanoimprinting
- Perfect optical absorbers in the visible and near-infrared
- Experiments and numerical simulations
- Highly-sensitive sensor platforms
- Chiral molecular recognition
- Magnetoplasmonics

Contact: Arantxa Fraile Rodríguez (arantxa.fraile@ub.edu)
Xavier Batlle (xavierbatlle@ub.edu)
Amilcar Labarta (amilcar.labarta@ub.edu)

Hybrid nanostructures with enhanced singlet oxygen generation for photodynamic therapy

Name of the Group: Supramolecular Systems in Nanobiomedicine (Faculty of Pharmacy)

Short description of the project: Photodynamic therapy (PDT) is a therapeutical strategy for cancer, where photosensitizer drugs (PS) are administered, and then activated with focalized light to produce singlet oxygen (SO) in the tumour, inducing the death of cancer cells. However, PS are distributed across the body, leading to important side effects after sun exposure. Incorporation of PS onto nanostructured materials will improve their safety and efficacy. Preliminary work indicates that encapsulation or conjugation of PS in the materials enhances their capability of generating SO and the overall efficiency of the PDT process. This project will involve the preparation of different PS and their immobilization onto water soluble nano and microparticles functionalized with specific antibodies as deliverers to cancer cells. Assessment of their potential in PDT will be done by analysis of singlet oxygen production. There is the possibility of continuity towards a doctoral thesis.

Contact persons:

Dra. Ma Lluïsa Pérez-García, mlperez@ub.edu
Dr David Limón, davidlimon@ub.edu
Light-controlled molecular machines

Name of the Group: Supramolecular Systems in Nanobiomedicine (Faculty of Pharmacy)

Short description of the project: Artificial molecular motors, where molecules can travel across microscopic materials in the presence of an external stimulus, have great implications in many aspects of science. However, a controlled transport of molecules across supramolecular systems has yet to be achieved. Based on preliminary experiments, we intend to design a purely supramolecular system where a molecular “traveller” moves along a “path” over several microns when irradiated with visible light. Real time imaging of the motion using total internal reflection fluorescence microscopy will be used to observe molecules move along fibres upon irradiation. There is the possibility of continuity towards a doctoral thesis.

Contact persons:

Dra. Ma Lluïsa Pérez-García, mlperez@ub.edu
Dr David Limón, davidlimon@ub.edu

Biofunctionalisation of silicon microchips for real-time intracellular sensing

Name of the Group: Supramolecular Systems in Nanobiomedicine (Faculty of Pharmacy)

Short description of the project: The present project will involve the bio-functionalisation of silicon microparticles with synthetic organic moieties designed to interact with biological material and sense its function. The overall objective is to prepare cellular sensors to monitor different cellular parameters, such as the presence of different peptides and proteins involved in apoptosis with implications in cancer. In order to succeed in this complex project a highly interdisciplinary approach is necessary, and the research is integrated within a coordinated project that aims to find functional microchips to study, tag and act on living cells. There is the possibility of continuity towards a doctoral thesis.

Contact persons:

Dra. Ma Lluïsa Pérez-García, mlperez@ub.edu
Dr David Limón, davidlimon@ub.edu