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    Abstract  

 
This paper focuses on testing the stability of the unconditional 

variance when the stochastic processes may have heavy-tailed 

distributions. Finite sample distributions that depend both on the 

effective sample size and the tail index are approximated using 

Extreme Value distributions and summarized using response 

surfaces. A modification of the Iterative Cumulative Sum of 

Squares (ICSS) algorithm to detect the presence of multiple 

structural breaks is suggested, adapting the algorithm to the tail 

index of the underlying distribution of the process. We apply the 

algorithm to eighty absolute log-exchange rate returns, finding 

evidence of (i) infinite variance in about a third of the cases, (ii) 

finite changing unconditional variance for another third of the time 

series - totalling about one hundred structural breaks - and (iii) 

finite constant unconditional variance for the remaining third of the 

time series. 
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Abstract

This paper focuses on testing the stability of the unconditional variance when the stochastic

processes may have heavy-tailed distributions. Finite sample distributions that depend both on

the e¤ective sample size and the tail index are approximated using Extreme Value distributions

and summarized using response surfaces. A modi�cation of the Iterative Cumulative Sum of

Squares (ICSS) algorithm to detect the presence of multiple structural breaks is suggested,

adapting the algorithm to the tail index of the underlying distribution of the process. We

apply the algorithm to eighty absolute log-exchange rate returns, �nding evidence of (i) in�nite

variance in about a third of the cases, (ii) �nite changing unconditional variance for another

third of the time series �totalling about one hundred structural breaks �and (iii) �nite constant

unconditional variance for the remaining third of the time series.

Keywords: CUMSUMQ test, Unconditional variance, Multiple structural changes, Heavy tails,
Generalized Extreme Value distribution

JEL Codes: C12, C22

1 Introduction

Testing for constant unconditional variance in time series has been considered a relevant issue,

specially in �nancial time series analysis. Formal procedures based on CUMSUMQ-type statistics

have been proposed, among others, by Inclan and Tiao (1994), Loretan and Phillips (1994), Andreou
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and Ghysels (2002), Ho and Wan (2002), Sansó et al. (2004), Deng and Perron (2008), Kapetanios

(2009), Han et al. (2010), Xu (2013, 2015), Jentsch and Rao (2015), the last one for multivariate

time series.

Loretan and Phillips (1994) show that the asymptotic distribution of CUMSUMQ-type test

statistics depends on the index of tail thickness (�) of the distribution of the innovations. If

� � 4 and the fourth order moment of the innovations exists, the limit distribution is a standard
Brownian bridge on [0,1]. If 2 � � < 4, the limit distribution depends on functionals of Lévy

processes. Finally, when � < 2 the unconditional variance is not �nite and, then, it does not make

sense to test for its constancy. Moreover, when � � 2, Loretan and Phillips (1994) reveal that the
statistic to test for constant variance is inconsistent. Hence, there is a discontinuity in the limit

distribution of CUMSUMQ-type statistics depending on �.

Inclan and Tiao (1994) proposed an algorithm � the so-called Iterative Cumulative Sum of

Squares, ICSS hereafter �for detecting several changes in the unconditional variance. This algo-

rithm is based on a CUMSUMQ test statistic that in the limit converges to the supremum of a

Brownian bridge under the assumption that the innovations are Gaussian independent. Sansó et

al. (2004) suggested implementing the ICSS algorithm using a modi�ed CUMSUMQ statistic that

uses a non-parametric estimation of the long-run fourth order moment. The modi�ed statistic is

robust to non-Gaussianity and to some persistence in the conditional variance. Notwithstanding,

the existence of the fourth order moment is still required in order to get a Brownian bridge as a

limit distribution. Sansó et al. (2004) also considered the fact that the ICSS algorithm is computed

with varying sample sizes so that the use of asymptotic critical values may distort the results. To

avoid this limitation, they suggested the use of sample-size adapted critical values summarized in

a response surface.

The ICSS algorithm, which relies on the CUMSUMQ test as a statistic to decide if there are

structural breaks in the variance, has been extensively applied in empirical �nance, specially to

check the constancy of the unconditional volatility, an analysis that is carried out before the con-

ditional variance is modelled. Some recent examples include Kartsonakis-Mademlis and Dritsakis

(2020), Malik (2021), Apostolakis et al. (2022), Ngene and Mungai (2022), Sou¤argi and Boubaker

(2022), Cevik et al. (2023) and Luo et al. (2023), among others.

The aim of the paper is twofold. First, we show that when � = 4 the CUMSUMQ test can

be written as a sequence of independent rescaled maximums of Brownian excursions, which can be

shown to belong to the maximal domain of attraction of the Gumbel distribution. Based on this

result, we use the Generalized Extreme Value (GEV) distribution to approximate the distribution of

the CUMSUMQ statistic for di¤erent sample sizes and values of the tail index. This approximation

allows us to compute p-values and any desired quantile. Monte Carlo experiments evidence good

�nite sample properties of this approximation. Second, we propose an automatic procedure �the

so-called Modi�ed ICSS (MICSS) �to test the null hypothesis of constant unconditional variance

against the alternative hypothesis of multiple unknown structural breaks. The proposal is based,

�rst, on the ICSS algorithm of Inclan and Tiao (1994) and, second, on the results of Loretan and
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Phillips (1994), which provides a uni�ed framework that considers the speci�c value of the tail index

when performing the statistical inference. In this procedure, the critical values used in each step are

adapted both to the sample size and to the index of tail thickness �. Finally, the MICSS algorithm

is applied to eighty daily absolute log-exchange rate returns, �nding evidence of (i) in�nite variance

in about one third of the time series, (ii) constant �nite unconditional variance for another third of

the time series, and (iii) changing unconditional variance for the remaining third of the time series.

To ease empirical implementations, an R library to compute the algorithm is available from the

authors upon request.

The structure of the paper is as follows. In Section 2 we describe the details concerning the

stochastic processes of interest, present the test statistic and its limiting distribution. Section 3

proposes the GEV approximation that allows us to adapt the implementation of the CUSUMQ

statistic to the sample size and tail index. Section 4 details the iterative algorithm that is used

to detect multiple structural changes in unconditional variance and details the sequential testing

procedure that is applied. Section 5 estimates response surfaces to approximate the percentiles of

interest and p-values of the CUSUMQ statistic, while Section 6 conducts Monte Carlo simulations

to assess the �nite sample performance of the approach. Section 7 illustrates the implementation of

the procedure analysing the evolution of daily exchange rates for eighty currencies. Finally, Section

8 concludes.

2 Preliminaries

We shall make use of the same assumptions of Loretan and Phillips (1994).

Assumption A1:

1. f"tgTt=1 is an iid sequence of innovations whose tail behaviour is of the asymptotic Pareto-Lévy
form

P (" > x) = pC�x�� (1 + o (1)) ; x > 0

P (" > �x) = qC�x�� (1 + o (1)) ; x > 0;

as x!1, p � 0 and q � 0 satisfy p+ q = 1, C > 0 is a scale dispersion parameter and � is
the maximal moment exponent of the distribution.1

2. Centering condition: If � > 1, we require E (") = 0. If � = 1, then " =d �".

3. The observed time series is generated by

yt =

1X
j=0

�j"t�j ; (1)

1Absolute moments of " of order less than � are �nite, while all higher-order moments are in�nite.
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with �j satisfying the summability condition
P1
j=1 j j�j j

c for 0 < c � � and c � 1.2

As shown by Loretan and Phillips (1994), it is convenient to approximate (1) by a �nite AR(k)

process

yt = �+
kX
j=1

�jyt�j + "t; (2)

with all characteristic roots of the autoregressive polynomial lying inside the unit circle. Then, the

ordinary least-squares (OLS) estimated residuals "̂t from (2) are used to compute the CUSUMQ-

type statistic of the form

�T (r) = T
�1=2!̂

�1=2
4

�
S[rT ] �

[rT ]

T
ST

�
;

where, throughout this paper, [�] denotes the integer part, r 2 [0; 1], St =
Pt
j=1 "̂

2
j and !̂4 is a

consistent estimator of the long-run fourth order moment of "̂t. The paper suggests estimating

!4 using the proposal in Andrews and Monahan (1992) with the boundary rule of Sul, Phillips

and Choi (2005) and the Bartlett window, although other consistent estimators available in the

literature might be used.

The null hypothesis of constant unconditional variance can be tested using the statistic given

by

�T = sup
r2[0;1]

j�T (r)j : (3)

Proposition 3 and subsequent discussion in Loretan and Phillips (1994) establish that, under As-

sumption A1, if � � 4, then �T ) supr2[0;1] jB (r)j, and if 2 < � < 4, then

�T ) sup
r2[0;1]

������U�=2 (r)� rU�=2 (1)qR 1
0

�
dU�=2

�2
������ ; (4)

where ) stands for weak convergence on D[0; 1], the space of CADLAG functions on the [0; 1]

interval, B (r) = W (r) � rW (1) is a standard Brownian bridge, W (r) is a standard Brownian

motion and U�=2 (r) is a stable-Lévy process on r 2 [0; 1].
Let us now consider the asymptotic behaviour of the �T statistic under the alternative hypothesis

of changing unconditional variance. In this case, the parameter C in Assumption A1 is not constant

over time, that is,

Ha : C
(1) 6= C(2); (5)

where C(1) is the value of parameter C for the �rst fraction of the sample, t = 1; :::; [uT ], u 2 (0; 1),
and C(2) is that of the second part of the sample, t = [�T ] + 1; :::; T , � 2 (0; 1), with u < �. If

� > 2, (5) implies that the variance is not constant. Proposition 4 in Loretan and Phillips (1994)

establishes that under Assumption A1 and (5):

2Stationary ARMA processes ful�l this condition.
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1. If � � 4, then �T = Op
�
T 1=2

�
;

2. If 2 < � < 4, then �T = Op
�
T 1�2=�

�
;

3. If � � 2, then �T = Op (1).

From (4), it follows that the parameter � plays a key role in the inference on the constancy of

the unconditional variance. If � � 4, the limit distribution of �T under the null hypothesis is based
on a Brownian bridge, whereas under the alternative hypothesis �T diverges at the rate Op

�
T 1=2

�
.

When 2 < � < 4, the limiting distribution of the �T test statistic under the null hypothesis is

given by a standardized stable-Lévy bridge, whereas under the alternative hypothesis �T diverges

at an Op
�
T 1�2=�

�
rate �i.e., a slower rate than in the former case. Finally, for � � 2, the test is

inconsistent. Furthermore, note that when � < 2 the limiting distribution has not a �nite variance

and, hence, it does not make sense to test for its constancy.

Therefore, and to properly use �T , it is very important to determine the value of the tail index

�. Hill (1975) and Hall (1990) propose to estimate the upper tail using

�̂(u)s = �

0@ln "̂T�s � 1
s

sX
j=1

ln "̂T�j+1

1A�1 ; (6)

where "̂1 � "̂2 � � � � � "̂T are the sorted OLS estimated residuals. It is worth noting that, given

that we are working with the squares of (zero mean) stochastic processes, we are only interested in

the upper tail of the distribution and do not need to care about the skewness of the distribution.

Therefore, the estimator given in (6) is computed using the absolute values of the stochastic process,

which is denoted as �̂H . We have also considered the regression-based tail index estimator proposed

by Nicolau and Rodrigues (2019) �henceforth, �̂NR �which is shown to have better �nite sample

properties than the estimators in Hill (1975) and Hall (1990). Finally, we propose the use of t-ratio

test statistics to test (i) the null hypothesis that H0 : � � 4 against the alternative hypothesis

that Ha : � < 4 �hereinafter, the t-ratio test statistic associated with this hypotheses is denoted

as '��4 �and (ii) the null hypothesis that H0 : � � 2 against the alternative hypothesis that

Ha : � > 2 �hereafter, '��2 refers to the t-ratio test statistic associated to this hypotheses.

3 Generalized Extreme Value approximation of the CUSUMQ

statistic

The limit distribution of the �T statistic is related to random extremes, which suggests that the

natural candidate under which the limiting distribution is embedded is the GEV class of distri-

butions, which is the only non-degenerate max-stable distribution �note that the GEV class of

distributions has as particular cases the Gumbel, Weibull and Fréchet distributions. It is also known

as a von-Mises family of distributions of maxima. Although results concerning the GEV limit dis-

tribution of maxima are obtained for sequences of random variables, and not for random functions,
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actually it is well known that, for a standard Brownian bridge, Pr
�
supr2[0;1]B (r) > u

�
= e�2u

2
,

which corresponds to a Rayleigh distribution with scale parameter � = 0:5, which in turn is a

Weibull distribution with shape parameter  = 2. Hence, here is an example of the supremum of

a random functional converging to a GEV. Further, in �nite sample the statistic is computed as

�T = max fv1; : : : ; vT g, where vt = T�1=2 jwtj, wt = !̂�1=24

�
St � t

T ST
�
, and it is well known that,

for iid sequences of random variables X1; : : : ; XT , there exist sequences faT g and fbT g, aT > 0,

bT 2 R, such that
max (X1; :::; XT )� bT

aT

d! G;

if and only if G is max-stable �see, for instance, Nair et al. (2022), Theorem 7.5 �which in turn

is a GEV distribution, and where d! denotes convergence in distribution. This implies that, for

large samples, max (X1; :::; XT ) � aTG+ bT . Unfortunately, fvtgTt=1 is not iid in general, although
the following proposition shows that it is possible to write the supremum of the absolute value of a

Brownian bridge as the sequence of independent variables, and that these variables belong to the

maximal domain of attraction of the Gumbel distribution �i.e., a GEV distribution. To reach this

result, we shall make use of Brownian excursions, that is, processes de�ned as Bext := (Xt : 0 � t �
1 j Xt > 0 for 0 < t < 1 and X1 = 0), where Xt is a Brownian motion.

Proposition 1 Let 0 < t1 < � � � < tn < T be the time periods in which wt = !̂�1=24

�
St � t

T ST
�
,

St =
Pt
j=1 "̂

2
j , t = f1; :::; Tg, crosses zero. Then:

1. T�1=2n �
q

2
�R where R is a random variable with a standard Rayleigh distribution.

2. For large T , the expected number of zero-crossings is E (n) = T 1=2:

3. We may write supr jBtj = sup
�q

t1
TM

+
1 ;
q

t2�t1
T M+

2 ; :::;
q

tn�tn�1
T M+

n ;
q

T�tn
T M+

n+1

�
; where

Bt is a standard Brownian bridge and M+
i , i = 1; :::; n+1, denote a sequence of independent

maximums of Brownian excursions.

4. M+
i , i = 1; :::; n+ 1, belong to the maximal domain of attraction of the Gumbel distribution.

The proof is given in the appendix. As can be seen, the (expected) number of times that the

Brownian bridge wt crosses zero is of order of magnitude O(T 1=2) and a Brownian excursion is

generated every time that this Brownian bridge crosses zero �note that these Brownian excursions

are mutually independent. Moreover, the distribution of the supremum of Brownian excursions

belongs to the maximal domain of attraction of the Gumbel distribution. Furthermore, Corollary

3.2 in Durrett and Iglehart (1977) proofs that E
�
M+
i

�
=
p
�=2. Finally, note that the previous

results apply to any statistic that converges to a Brownian bridge, not just the ones built as in this

case.

Hence, when � = 4, the statistic �T = supr2[0;1] j�T (r)j can be written as a sequence of
independent maximums of Brownian excursions. When 2 < � < 4 the third result of the previous
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proposition will have the form

sup
t

��L�=2 (t)�� = sup
 r

t1
T
M+
�=2;1;

r
t2 � t1
T

M+
�=2;2; :::;

r
tn � tn�1

T
M+
�=2;n;

r
T � tn
T

M+
�=2;n+1

!

where L�=2 (r) := U�=2 (r)�rU�=2 (1), andM+
�=2;i, i = 1; :::; n+1, denote a sequence of uncorrelated

maximums of Levy excursions, de�ned in a similar way as a Brownian excursion, but using stable-

Lévy processes. Based on these results, we conjecture that the GEV distributions could provide a

reasonable approximation to the supremum of the absolute value of a Brownian bridge, i.e.,

�T � GEV (�T ; �T ; T ) ; (7)

where � is the location parameter, � > 0 is the scale parameter and  is the shape parameter of the

GEV distribution. In particular, the cumulative distribution function of GEV (�T ; �T ; T ) when

 6= 0 is given by

F (x) = exp

(
�
�
1 + 

�
x� �
�

���1=)
; (8)

for 1 +  (x� �) =� > 0. For  > 0, the cumulative distribution function of GEV (�T ; �T ; T )

corresponds to the Fréchet distribution, for  < 0 it is the Weibull and, �nally, when  = 0 it

belongs to the Gumbel family

F (x) = exp

�
� exp

�
�x� �

�

��
;

for �1 < x < 1. In Section 5 we use this result to approximate critical values and p-values for
given T and �.

4 The MICSS algorithm

The MICSS algorithm that is suggested in this paper is based on the ICSS algorithm of Inclan

and Tiao (1994) with some previous steps added to determine the index of tail thickness � and,

according to it, the distribution to be used in each step. The implementation of the algorithm

makes extensive use of response surfaces that are computed in Section 5 to approximate the critical

values for given T and �. The algorithm consists of the following steps:

Algorithm 1 MICSS algorithm

1. Estimate (2) by OLS and obtain the estimated residuals "̂t.

2. Estimate �̂H or �̂NR.

3. Test the null hypothesis H0 : � � 4 against the alternative hypothesis Ha : � < 4 with statistic
'��4. If the null hypothesis is not rejected, set �̂ = 4 and proceed to step 5.
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4. Test the null hypothesis H0 : � � 2 against the alternative hypothesis Ha : � > 2 with statistic
'��2. If the null hypothesis is not rejected, we can conclude that the unconditional variance

is not �nite and stop here. Otherwise, proceed to step 5.

5. Run the ICSS algorithm of Inclan and Tiao (1994), but using the �T statistic and the GEV

approximation, which depends both on T and �̂, to compute the critical values and p-values

for the �T statistic.

To obtain better approximations when applying the statistics that have been proposed in this

paper, the next section considers the computation of critical values adapted to T and �, which are

summarized with the estimation of response surfaces to calculate the corresponding critical values

and p-values.

5 Response surfaces for critical values and p-values

Let us �rst describe the data generating process (DGP) that is used to simulate the distribution of

the �T statistic, from which critical values and p-values are computed. Provided that �T is de�ned

upon the squared residuals and, hence, the asymmetry of the distribution is of no concern here,

the random variable et, t = 1; : : : ; T , is generated as follows:

1. The �-stable distribution is de�ned for � 2 (0; 2] and since we need values for �0 2 (2; 4], we
follow Chambers et al. (1976) and generate ut, t = 1; : : : ; T , as an �-stable distribution with

� = �0=2.

2. Then, we set et = sign (ut)
p
jutj, to which the ICSS algorithm is applied.

The computation of �T requires a consistent estimation of the long-run fourth order moment

� i.e., an estimator of the long-run variance of the squared residuals. As mentioned above, we

follow the proposal in Andrews and Monahan (1992) with the Bartlett window and the bound-

ary rule de�ned in Sul, Phillips and Choi (2005). The order of the autoregressive model of

the prewhitening step is selected by the Bayesian information criterion (BIC) allowing for up to

kmax =
h
12 (T=100)1=4

i
lags. The design of the Monte Carlo experiment has speci�ed twenty-nine

�nite sample values T 2 f26, 28, 30, 32, 35, 40, 45, 50, 55, 60, 65, 70, 80, 90, 100, 110, 120, 140, 160,
180, 200, 300, 400, 500, 600, 700, 800, 900, 1000g, twenty values of � 2 f2.1, 2.2,..., 3.9, 4g, and
40,000 replications are conducted for each pair of T and � values �this amounts 580 experiments.

With the 40,000 observations of �T computed for each experiment for given � and T , and

considering (7), we have estimated a GEV distribution of the type given in (8) and stored the

three estimated values of parameters of the GEV distribution.3 Let us denote by �̂ (T; �) the

location parameter, by �̂ (T; �) the scale parameter and by ̂ (T; �) for the shape parameter of the

3We have used the R package �evd��see Stephenson (2022).
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estimated GEV distribution. With the 580 di¤erent estimates of each parameter, we have �tted

response surfaces of the form

�̂ (Ti; �i) = �1 + �1
1

Ti
+ �2

1

T 2i
+ �3

1

T 3i
+ �k

1

kmax;i
+ �k;T

kmax;i
Ti

(9)

+��;1�i + ��;2�
2
i + ��;3�

3
i + ��;T

�

Ti
+ �i

where � 2 f�; �; g. Note that the previous expression tends to �1 + ��;1�i + ��;2�
2
i + ��;3�

3
i

as T ! 1, which could be considered the corresponding value of the asymptotic distribution. In
this way, we are able to compute the location, scale and shape parameter for any given T and

� 2 [2:1; 4], which can be used to approximate either the desired quantiles �xp, p 2 (0; 1) �to get
critical values

xp =

(
�+ �



�
(� ln p)� � 1

�
 6= 0

�� � ln (� ln p)  = 0
;

or the cumulative probability function given by (8) that will deliver the corresponding p-value.

6 Monte Carlo simulation experiments

Throughout this section, the long-run variance of the squared residuals is estimated as described

above. We �rst check the accuracy of the GEV approximation to the empirical distribution of �T
that has been suggested in the paper. Next, we focus on the empirical size and power of �T . The

nominal size is set at the 5% signi�cance level.

6.1 The GEV approximation

The stochastic process et is simulated according to the DGP described in 5. Figure 1 shows the

empirical and the estimated GEV-based densities of �T for � = 3:5 and T = 100.4 As can be

seen, the estimated GEV-based density smooths the empirical one. A formal analysis to compare

both density functions can be performed by computing the Kolmogorov-Smirnov statistic. The

empirical distributions of �T for the pairs of values (�; T ) 2 f(4; 100); (3:5; 100); (2:75; 200)g are
generated using 500 replications, which are compared with the GEV-based ones. After conducting

this exercise 500 times, and using the p-value of the Kolmogorov-Smirnov statistic, it is possible

to compute the number of times that the null hypothesis is rejected at the 1%, 2.5%, 5% and 10%

signi�cance levels. The empirical rejection frequencies of the null hypothesis of the Kolmogorov-

Smirnov statistic are close to the nominal ones �see Table 1. Similar results for other values of �

and T have been obtained, which evidences that the approximation of the empirical distributions

using GEV distributions is adequate.

Next, three response surfaces of the form (9) were �tted to the estimated values �̂ (T; �) for the

4The estimated parameters are �̂(100; 3:5) = 0:717 for the location (0:718 when using the response surfaces),
�̂(100; 3:5) = 0:211 for the scale (0.210 for the response surfaces) and ̂(100; 3:5) = 0:101 for the shape (0.101).
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location, �̂ (T; �) for the scale and ̂ (T; �) for the shape parameters. For the location and scale

parameter, the R2 are above 0.995. For the shape parameter, R2 = 0:986. Figure 2 depicts the

densities of the distributions resulting from the response surfaces for T = 30 (small sample) and

T = 900 (large sample) and � 2 f2:1; 4g � i.e., the two limit cases considered in the simulation
experiments. For small T , the right tail has an important amount of probability, which tends to

concentrate around the mode of the distribution as T increases. It is worth noting that the right

tail of the distribution seems to be a¤ected by changes in � only marginally, whereas the e¤ect on

the mode is important.

6.2 Empirical size

We have conducted simulation experiments where sequences of iid observations from an �-stable

distribution for di¤erent values of � 2 f2:4; 2:8; 3:2; 4g and T 2 f50; 75; 100; 200; 300; 500g are
generated as described in Section 5. The analysis uses three di¤erent sets of critical values for

the �T statistic: (i) the ones obtained from the response surface of Sansó et al. (2004) that

assumes � � 4 �denoted as kappa2 in the �gures �(ii) the critical values obtained from the GEV

approximation provided in the present paper for a given � �denoted as kappa3 �and, (iii) the

critical values from the GEV approximation, but imposing � = 4 �denoted as kappa3_a4.

Figure 3 shows how the empirical size varies as T increases with � 2 f2:4; 2:8; 3:2; 4g. For � = 4,
in which case kappa3=kappa3_a4, the empirical size of the tree options almost equals the nominal

one. However, there are mild over-size distortions when T � 100 as � decreases when using critical
values not adapted to �, namely kappa2 and kappa3_a4. This deterioration is more severe for low

values of the tail index �. Figure 4 shows the empirical size as � varies for di¤erent values of T . As

above, rejection frequencies of kappa3 are close to the nominal size. Further, over-size distortions

are observed for the �T statistic for small values of T and � when the computation of the critical

values does not consider the value of �.

6.3 Empirical power

We have conducted a simulation experiment where sequences of iid observations from an �-stable

distribution for di¤erent values of � 2 f2:4; 2:8; 3:2; 4g and T 2 f50; 100; 200; 300g are generated as
described in Section 5. The simulation experiment speci�es one structural break that a¤ects the

variance of the stochastic process in the middle of the sample (� = 0:5). The standard deviation of

the stochastic process for the �rst regime is set at �1 = 1, whereas we consider two magnitudes for

the standard deviation of the stochastic process for the second regime, i.e., �2 2 f1:5; 2g. Figure 5
summarizes the empirical power of �T for �2 = 1:5. For � = 4, the empirical power that is obtained

is similar regardless of the critical value option that is used, although the GEV-based ones report a

slightly higher power. Further, it is worth noting that the empirical power is close to 1 for T > 100.

For � < 4, there is a deterioration of the empirical power of the procedure that uses the critical

values adapted to the value of � with respect to ones that impose � = 4 �namely, kappa2 and

kappa3_a4 �although this might be a consequence of the over-size distortions shown by the latter.
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Note also that the low empirical power that is obtained for � = 2:4 �which shows a slow increase

as T gets large �is an expected consequence since �T = Op
�
T 1�2=�

�
when 2 < � < 4:

Except for small values of T , the empirical power of �T increases with � for a given T . Figure

6 evidences a non-monotonic behaviour of the empirical power as � increases for T = 50, although

this feature disappears as T increases. In general, the performance of kappa3 is encompassed by

kappa2 and kappa3_a4. Similar results are obtained for �2 = 2. Figure 7 shows that there is an

important increase of power as the magnitude of the change in the variance increases, regardless of

�. Figure 8 depicts the empirical power as � varies for di¤erent values of T , which evidences that

the power is reduced for low values of �.

7 Empirical application

To illustrate the procedures developed in this paper, we have analysed daily exchange rates returns

of 80 currencies with respect to the US dollar. The tail properties of exchange rate returns have

been studied by Hols and de Vries (1991), Koedijk et al. (1992), Loretan and Phillips (1994) �

who also studied the stability of the unconditional variance �Ibragimov et al. (2010), Hartmann

et al. (2010), Ibragimov et al. (2013), and Nicolau and Rodrigues (2019), among others. The wide

scope of the study covers the main economies of the planet as well as emerging markets.5 This

data set is similar to that of Nicolau and Rodrigues (2019) although it covers more currencies (they

analysed 74 currencies) and a longer period, from January 1994 to July 2023 (they used the period

January 1999 to May 2016). Not all time series start in January 1994, so that the initial day for

each variable is indicated in Table 2.6 ;7

Table 2 collects the results of applying the MICSS algorithm designed in Section 4 to determine

the tail index of the pre-whitened log-returns of the exchange rates, � lnxi;t, where xi;t is the

nominal exchange rate of a given currency against the US dollar, i = 1; : : : ; 80, t =; : : : ; T . The

analysis has been conducted for both the Hill (1975), �̂H , and the Nicolau and Rodrigues (2019),

�̂NR, estimators, which were computed using the absolute value of the pre-whitened log-returns.

The non-rejection of the null hypothesis that � � 2 is indicated with the symbol 1 in the column

that collects the number of breaks detected by the algorithm. To be speci�c, the null hypothesis

that � � 2 cannot be rejected using both estimators in 29 currencies, namely: Albania, Algeria,

Argentine, Bahrain, Bangladesh, Bolivia, Bulgaria, Ecuador, Egypt, Fiji, Ghana, Indonesia, Kaza-

khstan, Kenya, Malaysia, Malta, Mauritania, Namibia, New Guinea, Nigeria, Oman, Pakistan,

5The currencies/countries considered are: Albania, Algeria, Argentine, Australia, Bahrain, Bangladesh, Bolivia,
Botswana, Brazil, Brunei, Bulgaria, Burundi, Canada, Chile, China, Colombia, Czech, Denmark, Ecuador, Egypt,
Euro, Fiji, Finland, French Guinea, Gambia, Ghana, Hong Kong, Hungary, Iceland, India, Indonesia, Israel, Japan,
Jordan, Kazakhstan, Kenya, Kuwait, Lebanon, Malawi, Malaysia, Mauritania, Mauritius, Mexico, Morocco, Mozam-
bique, Namibia, New Guinea, New Zealand, Nigeria, Norway, Oman, Pakistan, Paraguay, Peru, Philippines, Poland,
Qatar, Romania, Russia, Samoa, Saudi Arabia, Singapore, South Africa, South Korea, Special Drawing Rights (SDR),
Sri Lanka, Sweden, Switzerland, Taiwan, Tanzania, Thailand, Tunisia, Turkey, United Arab Emirates (UAE), Uganda,
Ukraine, United Kingdom, Uruguay, Venezuela, Vietnam, Zambia.

6Not all the series start in January 1999, so that the initial day of each variable is indicated in Table 2.
7We are very grateful to Paulo Rodrigues for providing us with the database.
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Russia, Saudi Arabia, Sri Lanka, Thailand, Turkey, UAE and Venezuela, most of them emerging

economies. Further, the use of �̂NR leads detecting in�nite variance for South Korea, whereas �̂H
also �nds in�nite variance for six additional cases: China, Hong Kong, Jordan, Lebanon, Uruguay

and Zambia. Therefore, we have found evidence of in�nite variance for 35 out of 80 log-exchange

rate returns �for 29 of which the same conclusion is reached regardless of the �̂ estimator that is

used. Hence, more than a third of the log-exchange rate returns would show in�nite variance.

Several countries (11), specially in Africa, show estimated values of the tail index well above 4

with both estimators: Burundi, French Guinea, Gambia, Malawi, Mozambique, Paraguay, Qatar,

Samoa, Tanzania, Uganda and Vietnam. For Denmark, the Euro, Morocco, Sweden and Tunisia,

the null hypothesis that � � 4 cannot be rejected with �̂NR, whereas the opposite is found for

with �̂H . Hence, according to the results with this last estimator, the reaming 35 log-exchange rate

returns have a tail index between 2 and 4.

The log-exchange rate returns with �nite variance and no structural breaks according to the

results that are obtained with both �̂ estimators are 20, namely: Australia, Brazil, Brunei, Burundi,

Canada, Denmark, Euro, Gambia, Hungary, Iceland, Japan, Kuwait, Mexico, Mozambique, New

Zealand, Singapore, Sweden, Taiwan, Tunisia and United Kingdom, mainly though not exclusively

developed countries. Moreover, the MICSS algorithm that is implemented with �̂H does not �nd any

structural break for South Korea, which has in�nite variance according to the MICSS algorithm

that is based on �̂NR � in what follows, MICSS(�̂NR) algorithm. Furthermore, with this last

implementation, no structural breaks have been found for Lebanon, Uruguay and Zambia, where

in�nite variance cannot be rejected when using �̂H �from now on, MICSS(�̂H) algorithm.

For log-exchange rate returns for which evidence of �nite variance is found, the MICSS(�̂H) al-

gorithm detects 25 cases in which the unconditional variance is not constant, whereas MICSS(�̂NR)

detects 28. Overall, it represents about 55% of the cases with �nite variance for the two tail index

estimators that have been considered. All the log-exchange rate returns with structural breaks in

the unconditional variance detected by the MICSS(�̂H) algorithm have also been characterized as

stochastic processes with changing unconditional variance by the MICSS(�̂NR) algorithm. These

are (�gures between parentheses indicate the number of structural breaks): Botswana (2 with �̂H ,

3 with �̂NR), Chile (2), Colombia (2), Czech (1), French Guinea (2), India (6), Israel (3), Malawi

(11), Mauritius (1), Morocco (8 with �̂H , 9 with �̂NR), Norway (1), Paraguay (1), Peru (1), Philip-

pines (8), Poland (2), Qatar (6), Romania (1), Samoa (3), South Africa (2), Special Drawing Rights

(12), Switzerland (2), Tanzania (2), Uganda (6), Ukraine (3 with �̂H , 5 with �̂NR) and Vietnam

(8). Additionally, MICSS(�̂NR) leads detecting structural breaks for China (6), Hong Kong (1)

and Jordan (1), where the hypothesis of non-�nite variance cannot be rejected when using the �̂H
estimator for these three countries.

To sup up, a total of 109 structural breaks in the unconditional variance of the log-exchange

rate returns have been found when using the MICSS(�̂NR) algorithm, and 97 with the MICSS(�̂H)

one. Tables 3 to 7 present detailed results for MICSS(�̂NR), and Figure 9 shows some illustrative

examples. Although most of the changes in the variance of the exchange rate are country speci�c,
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some of them seem to be common to several countries. For example, COVID pandemic represents

the only structural change that has been detected in Norway and Peru, and could also be associated

with some of the structural breaks in China, Israel and Qatar. On the other hand, the invasion of

Ukraine by Russia has implied a structural change in the variance of the log-exchange rate returns

of Ukraine. Moreover, the only structural break in Hong Kong log-exchange rate returns variance

could be related to the 2003 SARS epidemic, during which the territory experienced an important

economic downturn; the one in Jordan could be related to the Israel-Jordan Treaty of Peace signed

on October 26th, 1994; and that of Paraguay to the impeachment proceedings against President

Lugo and the rise of Horacio Cartes as new President in 2013, to mention few cases.

8 Concluding remarks

We have shown that the GEV family of distributions provide accurate approximations to the

distribution of the supremum of the CUMSUMQ test statistic of constant unconditional variance

in �nite samples. Moreover, the distribution of the CUMSUMQ test statistic also depends on the

tail index of the underlying distribution, and the GEV approximation implicitly incorporates this

feature. Response surfaces to approximate the location, scale and shape parameters that de�ne

GEV distributions have been estimated in the paper. These response surfaces allow computing

critical values or p-values for the CUMSUMQ test statistic that is proposed in the paper for any

sample size or tail index within the range 2 < � � 4. The simulation exercise that has been

performed suggests that the CUMSUMQ test statistic shows good size and non-negligible power,

specially for the Gaussian case (� = 4).

The CUMSUMQ statistic can be easily implemented within the ICSS algorithm which tests

the constancy of the unconditional variance for di¤erent portions of the data and, hence, di¤erent

number of observations. The paper proposes a modi�cation of the ICSS algorithm that considers

the tail index of the time series under investigation and, depending on it, adjusts the critical values

to be used in the inference stage. To this end, an R library is available upon request.

We have applied the modi�ed ICSS algorithm to eighty log-exchange rate returns against the

US dollar, �nding evidence of in�nite variance in slightly more than one third of cases. Further,

structural changes have been detected in around a third of cases, totalling about a hundred of

structural breaks. Slightly less than a third of the variables do not present instability in the

unconditional variance.

Finally, it is worth noting that the approach suggested here may also be applied to other

statistics that are computed as sequences of maxima.
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A Mathematical appendix

To proof Proposition 1 we shall make use of the following three lemmas.

Lemma 1 1. Let X be standard a Brownian motion and f(ti�1; ti)gi2I be pairwise disjoint
subintervals of R+. Then, the processes

�
Bis
	
s2[0;ti�ti�1] de�ned by

Bis = Xti�1+s �Xti�1 �
s

ti � ti�1
�
Xti �Xti�1

�
are independent Brownian bridges, and are independent of Xt over the range t 2

R+n
S
i (ti�1; ti).

2. Let X be standard a Brownian bridge on interval [0; T ] and f(ti�1; ti)gi2I be pairwise dis-
joint subintervals of [0; T ]. Then, the processes

�
Bis
	
s2[0;ti�ti�1] de�ned by

Bis = Xti�1+s �Xti�1 �
s

ti � ti�1
�
Xti �Xti�1

�
(10)

are independent Brownian bridges, and are independent of Xt over the range t 2
[0; T ] n

S
i (ti�1; ti).
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Proof. The proof is almost trivial (see also Lemmas 5 and 6 in https://almostsuremath.com/2021
/03/29/brownian-bridges/). As the processes are joint normal, it is su¢ cient that there is zero

covariance between them:

E
�
BisB

i0
s0

�
= E

��
Xti�1+s �Xti�1 �

s

ti � ti�1
(Xti �Xti�1)

�
�
Xti0�1+s0 �Xti0�1 �

s0

ti0 � ti0�1
(Xti0 �Xti0�1)

��
= 0

for i 6= i0 because all the cross-products have zero expectation. For the second results, let Xt =

Yt � t
T YT , where Y is a Brownian motion. Then, substituting in (10)

Bis = Yti�1+s �
ti�1 + s

T
YT � Yti�1 +

ti�1
T
YT �

s

ti � ti�1
(Yti �

ti
T
YT � Yti�1 +

ti�1
T
YT )

= Yti�1+s � Yti�1 �
s

ti � ti�1
(Yti � Yti�1) +

ti�1 � ti�1 � s
T

YT +
s

ti � ti�1
ti � ti�1
T

YT

= Yti�1+s � Yti�1 �
s

ti � ti�1
(Yti � Yti�1)

and result 1 applies.

Lemma 2 Let X be a Brownian motion on [0; 1], Bext = (Xt : 0 � t � 1 j Xt > 0 for 0 < t < 1
and X1 = 0) be a Brownian excursion and M+ = sup0�t�1B

ex
t , then

Pr
�
M+ � u

�
= 1 + 2

1X
k=1

�
1� (2ku)2

�
e�2(ku)

2

:

Proof. See Proposition 3.1 in Durrett and Iglehart (1977).

Lemma 3 The distribution function F with right endpoint xF � 1 belongs to the maximal domain

of attraction of the Gumbel distribution if and only if there exists z < xF ; such that F has

representation

F (x) = c (x) exp

�
�
Z x

z

� (t)

g (t)
dt

�
for x 2 (z; xF ) ; where F (x) = 1 � F (x) is the survival function, limx!xF c (x) = c 2 (0;1),
limx!xF � (x) = 1 and g is a positive absolutely continuous function satisfying limx!xF g

0 (x) = 0.

Proof. Embrechts et al. (2003), Theorem 3.3.26, page 142.

Proof of Proposition 1
Let wt = !̂

�1=2
4

�
St � t

T ST
�
, St =

Pt
j=1 "̂

2
j , and

KT (z) = T
�1=2

TX
t=1

(1 [wt�1 � z; wt > z] + 1 [wt�1 > z;wt � z])
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where 1 [�] is the indicator function that takes value 1 when the conditions between brackets holds
true and zero otherwise, be the normalized number of level crossings of the Brownian bridge wt.

Using García and Sansó�s (2006) Lemmas 3 and 4, when T ! 1, then KT (0)
d! cR, where

c = E jzj =
q

2
� , the expectation of the absolute value of a standard Gaussian distribution, and R

is a random variable with (standard) Rayleigh distribution, so that the �rst result of Proposition

1 is proven. Using this result and the fact that E (R) =
p

�
2 , then, for large T we have that

E (n) = T 1=2cE (R) = T 1=2
q

2
�

p
�
2 = T

1=2 and the second result is proven.

Each time the Brownian bridge crosses zero, there is the start of a new Brownian bridge until

it crosses zero next time. Let 0 < t1 < : : : < tn < T be the moments the Brownian bridge crosses

zero. Then, we may write (10) as Bis = Xti�1+s, s 2 [0; ti � ti�1], where Xti�1+s itself is a Brownian
bridge, witch is independent of Bjr = Xtj�1+r, r 2 [0; tj � tj�1]. Lemma 1 shows that they are
independent and so are their absolute values. That is, fBisgs2[0;ti�ti�1], 0 < t1 < : : : < tn < T ,

is a sequence of independent Brownian bridges and f
��Bis��gs2[0;ti�ti�1], 0 < t1 < : : : < tn < T , is

also and independent sequence. By a scaling argument and the scale invariance of the Brownian

bridge, f((ti� ti�1)=T )�1=2
��Bir��gr2[0;1], i = 1; :::; n+1, is a sequence of n+1 Brownian excursions,

fBexi;rgr2[0;1], with Bexi;r = ((ti � ti�1)=T )�1=2
��Bir��, r 2 [0; 1]. Let M+

i = sup0�r�1B
ex
i;r, and si 2

[0; ti � ti�1] : Then, we may write,

sup
t
jBtj = sup

 s
t1=T

t1=T

��B1s1�� ;
s
(t2 � t1) =T
(t2 � t1) =T

��B2s2�� ; : : : ;
s
(tn � tn�1) =T
(tn � tn�1) =T

��Bnsn�� ;
s
1� tn=T
1� tn=T

���Bn+1sn+1

���!

= sup

 r
t1
T
Bex1;r;

r
t2 � t1
T

Bex2;r; : : : ;

r
tn � tn�1

T
Bexn;r;

r
1� tn

T
Bexn+1;r

!

= sup

 r
t1
T
M+
1 ;

r
t2 � t1
T

M+
2 ; : : : ;

r
tn � tn�1

T
M+
n ;

r
1� tn

T
M+
n+1

!
;

for t 2 [0; T ], and the third result of Proposition 1 is proven.
Finally, using lemma 2 we may write

F (u) = 1� Pr
�
M+
0 � u

�
= �2

1X
k=1

�
1� (2ku)2

�
e�2(ku)

2

:
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For large u

F (u) = 8u2e�2u
2
+ o

�
u2e�2u

2
�

� 8e�2u
2+lnu2

= 8e2 exp
�
lnu� u2

	
= 8e2�(z

2�ln z) exp
�
lnu� u2 +

�
z2 � ln z

�	
= 8e2�(z

2�ln z) exp

�
�
Z u

z

�
2t� 1

t

�
dt

�
= 8e2�(z

2�ln z) exp

�
�
Z u

z
2t

�
1� 1

2t2

�
dt

�
= c exp

�
�
Z u

z

� (t)

g (t)
dt

�

where 0 < z < u < 1, c = 8e2�(z
2�ln z) > 0; � (t) =

�
1� 1

2t2

�
, limt!1 � (t) = 1, g (t) = (2t)�1,

t > 0, is a positive absolutely continuous function with g0 (t) = �1=
�
2t2
�
, and limt!1 g0 (t) = 0.

Thus, according to Lemma 3, F belongs to the maximal domain of attraction of the Gumbel

distribution. �

B Tables and �gures

Table 1: Rejection frequencies of the Kolmogorov-Smirnov test: empirical vs. GEV-based distrib-
utions, T = 100

Nominal size
0.10 0.05 0.025 0.01

� = 4 0.110 0.060 0.030 0.014
� = 3:5 0.094 0.034 0.018 0.010
� = 2:75 0.141 0.080 0.044 0.018
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Table 2: Estimation of the tail index and number of breaks in the unconditional variance for
exchange rates

Hill estimator Nicolau-Rodrigues estimator
Country First obs. �̂H '��4 '��2 Breaks �̂NR '��4 '��2 Breaks

Albania 1998/12/2 1.003 -18.939 -12.599 1 0.927 -54.508 -19.038 1
Algeria 1998/12/2 0.726 -20.687 -16.096 1 0.695 -79.101 -31.229 1
Argentine 1994/1/3 1.350 -18.383 -9.018 1 1.588 -29.908 -5.111 1
Australia 1994/1/3 2.862 -7.897 11.973 0 3.128 -5.493 7.109 0
Bahrain 1994/1/3 1.366 -18.264 -8.797 1 1.524 -31.947 -6.137 1
Bangladesh 1994/1/3 1.131 -19.919 -12.071 1 1.432 -35.224 -7.789 1
Bolivia 1994/1/3 1.442 -17.734 -7.738 1 1.759 -25.055 -2.698 1
Botswana 1994/1/3 2.811 -8.251 11.265 2 3.097 -5.751 6.992 3
Brazil 1994/7/1 2.525 -10.152 7.227 0 2.856 -7.823 5.848 0
Brunei 1994/1/3 2.618 -9.592 8.583 0 2.905 -7.428 6.135 0
Bulgaria 1998/12/2 0.460 -17.022 -14.808 1 0.360 -169.686 -76.439 1
Burundi 1998/12/2 7.193 20.210 65.739 0 7.961 8.502 12.795 0
Canada 1994/1/3 2.943 -7.338 13.090 0 3.470 -3.012 8.343 0
Chile 1994/1/3 2.955 -7.252 13.263 2 3.426 -3.300 8.199 2
China 1994/1/3 1.820 -15.115 -2.499 1 2.306 -14.384 2.600 6
Colombia 1994/1/3 2.708 -8.968 9.832 2 3.121 -5.531 7.052 2
Czech 1994/12/12 3.138 -5.885 15.543 1 3.526 -2.606 8.399 1
Denmark 1994/1/3 3.480 -3.606 20.554 0 4.255 1.180 10.439 0
Ecuador 1994/12/12 0.718 -22.365 -17.471 1 1.006 -56.868 -18.881 1
Egypt 1994/12/9 1.503 -17.042 -6.789 1 1.563 -30.254 -5.425 1
Euro 1994/1/3 3.473 -3.661 20.445 0 4.252 1.165 10.432 0
Fiji 1998/12/2 0.850 -19.939 -14.561 1 0.292 -193.129 -88.973 1
French Guinea 1998/12/2 7.944 24.965 75.248 2 8.713 9.227 13.143 2
Gambia 1998/12/2 9.887 37.264 99.845 0 10.959 10.971 14.124 0
Ghana 1997/5/27 1.473 -16.488 -6.881 1 1.474 -31.807 -6.623 1
Hong Kong 1994/1/3 1.935 -14.334 -0.900 1 2.383 -13.355 3.165 1
Hungary 1994/1/3 3.040 -6.665 14.437 0 3.441 -3.192 8.234 0
Iceland 1997/5/27 2.686 -8.577 8.961 0 2.650 -9.459 4.558 0
India 1994/1/3 2.382 -11.225 5.299 6 2.988 -6.643 6.489 6
Indonesia 1994/1/3 1.497 -17.339 -6.965 1 1.656 -27.783 -4.081 1
Israel 1994/1/3 2.809 -8.271 11.225 3 3.365 -3.717 7.984 3
Japan 1994/1/3 2.908 -7.577 12.613 0 3.399 -3.482 8.108 0
Jordan 1994/1/3 2.021 -13.712 0.289 1 2.233 -15.538 2.048 1
Kazakhstan 1998/12/2 0.752 -18.639 -14.321 1 0.300 -185.933 -85.433 1
Kenya 1997/5/27 1.731 -14.811 -3.506 1 2.025 -17.988 0.225 1
Kuwait 1994/1/3 2.280 -11.940 3.886 0 2.328 -14.180 2.778 0
Lebanon 1994/1/3 1.542 -17.051 -6.354 1 2.284 -14.832 2.452 0
Malawi 1998/12/2 6.845 18.008 61.335 11 6.547 6.487 11.580 11
Notes: 1 indicates that the variance is in�nite.

20



Table 2: Estimation of the tail index and number of breaks in the unconditional variance for
exchange rates (continued)

Hill estimator Nicolau-Rodrigues estimator
Country First obs. b� '��4 '��2 Breaks b� '��4 '��2 Breaks

Malaysia 1994/1/3 1.885 -14.683 -1.599 1 1.973 -20.275 -0.270 1
Mauritania 1997/5/27 1.359 -17.244 -8.373 1 1.581 -28.311 -4.902 1
Mauritius 1997/2/4 2.563 -9.438 7.391 1 2.963 -6.517 6.056 1
Mexico 1994/1/3 2.350 -11.431 4.851 0 2.251 -15.298 2.193 0
Morocco 1994/12/12 3.177 -5.620 16.073 8 3.836 -0.827 9.288 9
Mozambique 1998/12/2 8.792 30.333 85.985 0 10.691 10.584 13.748 0
Namibia 2004/1/13 0.346 -12.257 -11.098 1 0.264 -202.930 -94.289 1
New Guinea 1994/1/3 1.821 -15.114 -2.478 0 2.050 -18.742 0.478 1
New Zealand 1994/1/3 3.090 -6.315 15.137 0 3.315 -4.069 7.814 0
Nigeria 1994/1/3 1.588 -16.744 -5.721 1 1.699 -26.733 -3.499 1
Norway 1994/1/3 3.038 -6.680 14.406 1 3.456 -3.100 8.299 1
Oman 1994/1/3 1.795 -15.288 -2.844 1 1.802 -24.054 -2.172 1
Pakistan 1994/1/3 1.420 -17.911 -8.055 1 1.581 -30.063 -5.208 1
Paraguay 1998/12/2 6.502 15.827 56.952 1 7.189 7.722 12.565 1
Peru 1994/1/3 2.324 -11.632 4.503 1 2.888 -7.592 6.065 1
Philippines 1994/1/3 2.312 -11.707 4.336 8 2.311 -14.424 2.656 8
Poland 1995/1/4 2.846 -7.873 11.548 2 3.250 -4.464 7.437 2
Qatar 1998/12/2 8.606 29.155 83.628 6 10.801 10.897 14.102 6
Romania 1997/5/27 2.742 -8.211 9.693 1 2.974 -6.406 6.084 1
Russia 1996/3/7 1.678 -15.501 -4.299 1 1.689 -25.953 -3.490 1
Samoa 2004/1/13 6.618 14.754 52.046 3 5.712 4.354 9.440 3
Saudi Arabia 1994/1/3 1.209 -19.348 -10.965 1 1.377 -37.401 -8.883 1
Singapore 1994/1/3 2.618 -9.592 8.583 0 2.905 -7.428 6.135 0
South Africa 1994/1/3 3.119 -6.114 15.539 2 3.548 -2.510 8.600 2
South Korea 1994/1/3 2.158 -12.754 2.187 0 2.112 -17.592 1.046 1
SDR 1994/1/3 3.342 -4.569 18.630 12 3.829 -0.879 9.416 12
Sri Lanka 1994/1/3 1.523 -17.181 -6.613 1 1.732 -25.787 -3.045 1
Sweden 1994/1/3 3.314 -4.763 18.241 0 3.740 -1.372 9.163 0
Switzerland 1994/1/3 3.342 -4.569 18.628 2 3.660 -1.831 8.952 2
Taiwan 1994/1/3 2.490 -10.479 6.809 0 2.865 -7.815 5.954 0
Tanzania 1998/12/2 6.914 18.443 62.203 2 7.335 7.615 12.182 2
Thailand 1994/1/3 2.018 -13.753 0.244 1 2.003 -19.631 0.033 1
Tunisia 1997/5/27 3.346 -4.273 17.570 0 3.851 -0.721 8.927 0
Turkey 1994/1/3 2.063 -13.430 0.872 1 2.062 -18.521 0.595 1
UAE 1994/12/12 1.610 -16.288 -5.318 1 1.728 -25.464 -3.049 1
Uganda 1998/12/2 9.107 31.741 88.342 6 5.298 3.748 9.523 6
Ukraine 1998/12/2 3.602 -2.520 20.277 3 2.279 -11.819 1.917 5
UK 1994/1/3 3.277 -5.018 17.731 0 3.536 -2.592 8.572 0
Uruguay 1994/12/2 1.892 -14.374 -1.472 1 2.237 -15.276 2.051 0
Venezuela 1994/1/3 1.094 -20.174 -12.580 1 1.352 -38.649 -9.463 1
Vietnam 1998/12/2 7.740 23.150 71.059 8 7.064 6.933 11.459 8
Zambia 1997/5/27 1.993 -13.102 -0.089 1 2.341 -13.115 2.696 0
Notes: 1 indicates that the variance is in�nite. SDR stands for Special Drawing Rights.
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Table 3: Breaks in the unconditional variance using MICSS(�̂NR)

Botswana
Start End Var �T p-value

1994-01-03 2001-11-28 3:42 � 10�5 2.256 0.002
2001-11-29 2009-11-11 8:32 � 10�5 2.184 0.002
2009-11-12 2016-12-14 3:77 � 10�5 1.627 0.017
2016-12-15 2023-07-14 2:39 � 10�5

Chile
Start End Var �T p-value

1994-01-03 2008-01-04 2:31 � 10�5 1.553 0.024
2008-01-07 2019-10-15 4:66 � 10�5 1.475 0.031
2019-10-16 2023-07-14 9:48 � 10�5

China
Start End Var �T p-value

1994-01-03 1995-05-23 1:27 � 10�7 1.413 0.037
1995-05-24 2005-06-24 3:88 � 10�9 3.230 0.000
2005-06-27 2015-07-15 1:09 � 10�6 2.157 0.003
2015-07-16 2017-08-01 3:62 � 10�6 1.881 0.007
2017-08-02 2020-12-09 7:16 � 10�6 1.867 0.007
2020-12-10 2022-03-24 2:80 � 10�6 2.650 0.001
2022-03-25 2023-07-14 1:54 � 10�5

Colombia
Start End Var �T p-value

1994-01-03 1998-08-17 1:14 � 10�5 1.714 0.012
1998-08-18 2007-07-23 2:93 � 10�5 1.856 0.008
2007-07-24 2023-07-14 6:96 � 10�5

Czech
Start End Var �T p-value

1994-12-12 2012-09-25 3:22 � 10�5 1.545 0.024
2012-09-26 2023-07-14 1:42 � 10�5

French Guinea
Start End Var �T p-value

1998-12-02 2002-03-26 0.151 2.147 0.001
2002-03-27 2005-01-03 0.049 3.094 0.000
2005-01-04 2023-07-14 0.218

Hong Kong
Start End Var �T p-value

1994-01-03 2003-09-18 3:22 � 10�8 1.579 0.021
2003-09-19 2023-07-14 1:42 � 10�7

Israel
Start End Var �T p-value

1994-01-03 2007-04-23 1:35 � 10�5 2.074 0.003
2007-04-24 2009-08-12 6:35 � 10�5 2.902 0.000
2009-08-13 2020-02-25 1:73 � 10�5 1.613 0.018
2020-02-26 2023-07-14 3:95 � 10�5
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Table 4: Breaks in the unconditional variance using MICSS(�̂NR)

India
Start End Var �T p-value

1994-01-03 1995-08-28 1:03 � 10�6 2.447 0.001
1995-08-29 1996-05-08 3:97 � 10�5 1.899 0.006
1996-05-09 1998-08-17 8:44 � 10�6 1.513 0.025
1998-08-18 2004-03-15 1:26 � 10�6 2.137 0.003
2004-03-16 2008-07-15 8:89 � 10�6 2.088 0.003
2008-07-16 2013-12-06 3:26 � 10�5 2.782 0.000
2013-12-09 2023-07-14 9:60 � 10�6

Jordan
Start End Var �T p-value

1994-01-03 1995-01-04 2:75 � 10�6 1.390 0.042
1995-01-05 2023-05-31 5:29 � 10�7

Malawi
Start End Var �T p-value

1998-12-02 2000-06-02 0.204 2.121 0.001
2000-06-05 2001-05-03 0.068 3.587 0.000
2001-05-04 2003-01-03 0.224 3.694 0.000
2003-01-06 2005-02-24 0.102 2.125 0.001
2005-02-25 2006-08-10 0.183 2.315 0.000
2006-08-11 2007-11-30 0.073 2.075 0.001
2007-12-03 2008-08-25 0.175 1.494 0.021
2008-08-26 2011-04-27 0.243 1.693 0.008
2011-04-28 2015-05-11 0.207 2.980 0.000
2015-05-12 2019-08-06 0.089 3.056 0.000
2019-08-07 2021-07-29 0.224 2.581 0.000
2021-07-30 2023-07-14 0.143

Mauritius
Start End Var �T p-value

1997-02-04 2007-12-03 5:15 � 10�6 1.752 0.011
2007-12-04 2023-07-06 2:57 � 10�5

Morocco
Start End Var �T p-value

1994-12-12 2008-01-14 1:89 � 10�5 2.213 0.001
2008-01-15 2009-04-01 6:15 � 10�5 1.528 0.017
2009-04-02 2010-04-29 2:54 � 10�5 1.799 0.004
2010-04-30 2011-11-10 3:92 � 10�5 1.699 0.007
2011-11-11 2012-09-25 2:44 � 10�5 1.585 0.013
2012-09-26 2013-11-06 1:56 � 10�5 2.141 0.001
2013-11-07 2014-10-28 7:81 � 10�6 2.066 0.001
2014-10-29 2016-06-27 2:16 � 10�5 1.782 0.005
2016-06-28 2022-01-25 1:56 � 10�6 2.372 0.000
2022-01-26 2023-07-14 1:89 � 10�5
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Table 5: Breaks in the unconditional variance using MICSS(�̂NR)

Norway
Start End Var �T p-value

1994-01-03 2020-02-27 4:88 � 10�5 2.086 0.003
2020-02-28 2023-07-14 8:96 � 10�5

Paraguay
Start End Var �T p-value

1998-12-02 2013-06-14 0.222 2.399 0.0003
2013-06-17 2023-06-13 0.023

Peru
Start End Var �T p-value

1994-01-03 2020-02-25 8:70 � 10�6 2.072 0.004
2020-02-26 2023-07-14 2:86 � 10�5

Philippines
Start End Var �T p-value

1994-01-03 1997-07-04 1:32 � 10�5 2.527 0.001
1997-07-07 1998-06-17 2:46 � 10�4 2.456 0.001
1998-06-18 2001-08-07 4:78 � 10�5 1.637 0.016
2001-08-08 2007-05-10 6:83 � 10�6 2.941 0.000
2007-05-11 2009-02-25 2:49 � 10�5 1.351 0.046
2009-02-26 2013-09-27 1:27 � 10�5 2.411 0.001
2013-09-30 2021-06-07 6:04 � 10�6 1.433 0.033
2021-06-08 2022-07-19 1:07 � 10�5 1.679 0.015
2022-07-20 2023-07-14 1:98 � 10�5

Poland
Start End Var �T p-value

1995-01-04 2008-08-01 3:60 � 10�5 1.975 0.005
2008-08-04 2012-09-25 1:69 � 10�4 1.716 0.012
2012-09-26 2023-07-14 4:37 � 10�5

Qatar
Start End Var �T p-value

1998-12-02 2007-03-05 0.234 1.885 0.003
2007-03-06 2015-03-18 0.207 2.201 0.001
2015-03-19 2018-06-15 0.144 2.119 0.001
2018-06-18 2019-09-09 0.232 1.768 0.005
2019-09-10 2020-06-02 0.128 1.336 0.046
2020-06-03 2021-12-03 0.200 2.066 0.001
2021-12-06 2023-07-14 0.010

Romania
Start End Var �T p-value

1997-05-27 2017-02-01 5:77 � 10�5 1.482 0.029
2017-02-02 2023-07-14 2:08 � 10�5
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Table 6: Breaks in the unconditional variance using MICSS(�̂NR)

Samoa
Start End Var �T p-value

2004-01-13 2007-06-29 0.170 3.287 0.000
2007-07-02 2014-04-18 0.068 4.538 0.000
2014-04-21 2019-05-30 0.197 3.115 0.000
2019-05-31 2023-07-14 0.127

South Africa
Start End Var �T p-value

1994-01-03 2001-10-11 3:64 � 10�5 2.089 0.003
2001-10-12 2009-12-23 1:45 � 10�4 1.441 0.036
2009-12-24 2023-07-14 9:27 � 10�5

Special Drawing Rights
Start End Var �T p-value

1994-01-03 1996-02-29 1:48 � 10�5 2.301 0.000
1996-03-01 2002-06-17 6:70 � 10�6 2.212 0.001
2002-06-18 2005-11-03 9:72 � 10�6 2.083 0.001
2005-11-04 2008-03-10 5:31 � 10�6 1.827 0.004
2008-03-11 2009-03-19 2:20 � 10�5 1.699 0.007
2009-03-20 2010-09-20 9:13 � 10�6 1.435 0.028
2010-09-21 2011-11-14 1:26 � 10�5 3.235 0.000
2011-11-15 2013-11-06 5:81 � 10�6 2.449 0.000
2013-11-07 2014-12-02 2:55 � 10�6 2.531 0.000
2014-12-03 2017-01-30 8:91 � 10�6 2.853 0.000
2017-01-31 2022-02-22 3:34 � 10�6 1.341 0.048
2022-02-23 2022-11-30 1:01 � 10�5 1.428 0.029
2022-12-01 2023-07-14 5:69 � 10�6

Switzerland
Start End Var �T p-value

1994-01-03 2015-08-26 4:87 � 10�5 1.796 0.008
2015-08-27 2022-02-17 1:88 � 10�5 1.838 0.006
2022-02-18 2023-07-14 3:61 � 10�5

Tanzania
Start End Var �T p-value

1998-12-02 2003-01-27 0.235 4.026 0.000
2003-01-28 2011-10-21 0.083 3.778 0.000
2011-10-24 2023-07-14 0.198
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Table 7: Breaks in the unconditional variance using MICSS(�̂NR)

Ukraine
Start End Var �T p-value

1998-12-02 2003-06-06 0.087 1.332 0.049
2003-06-09 2008-10-20 0.061 2.116 0.003
2008-10-21 2012-04-19 0.108 1.342 0.047
2012-04-20 2015-07-10 0.143 3.218 0.000
2015-07-13 2022-02-16 0.055 2.615 0.001
2022-02-17 2023-07-14 0.205

Uganda
Start End Var �T p-value

1998-12-02 2002-06-04 0.157 3.127 0.000
2002-06-05 2006-02-17 0.050 1.868 0.000
2006-02-20 2011-11-25 0.089 2.574 0.000
2011-11-28 2013-01-29 0.195 2.729 0.000
2013-01-30 2016-11-17 0.091 2.545 0.000
2016-11-18 2018-05-08 0.180 1.624 0.017
2018-05-09 2023-07-14 0.121

Vietnam
Start End Var �T p-value

1998-12-02 2001-04-17 0.225 2.592 0.000
2001-04-18 2003-09-04 0.157 3.330 0.000
2003-09-05 2006-07-06 0.061 1.373 0.042
2006-07-07 2009-11-26 0.095 2.858 0.000
2009-11-27 2011-02-01 0.209 1.758 0.005
2011-02-02 2012-09-27 0.141 2.340 0.000
2012-09-28 2015-07-22 0.212 3.551 0.000
2015-07-23 2021-02-10 0.104 1.447 0.029
2021-02-11 2023-07-14 0.063
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Figure 1: Empirical and GEV-based distributions of the �T statistic for � = 3:5 and T = 100
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Figure 2: Densities of the �T statistic
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Figure 3: Empirical size for given � values

28



2.5 3.0 3.5 4.0

0.
00

0.
10

0.
20

Sig.level=  0.05 ; T=  50

alpha

S
iz

e

kappa2
kappa3
kappa3_a4

2.5 3.0 3.5 4.0

0.
00

0.
10

0.
20

Sig.level=  0.05 ; T=  100

alpha

S
iz

e

kappa2
kappa3
kappa3_a4

2.5 3.0 3.5 4.0

0.
00

0.
10

0.
20

Sig.level=  0.05 ; T=  200

alpha

S
iz

e

kappa2
kappa3
kappa3_a4

2.5 3.0 3.5 4.0

0.
00

0.
10

0.
20

Sig.level = 0.05 ; T = 500

alpha

S
iz

e

kappa2
kappa3
kappa3_a4

Figure 4: Empirical size for �xed values of T
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Figure 5: Empirical power for given � values and �2 = 1:5
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Figure 6: Empirical power for given T values and �2 = 1:5
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Figure 7: Empirical power for given � values and �2 = 2
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Figure 8: Empirical power for given T values and �2 = 2
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Figure 9: Estimated changes in the unconditional variance of exchange rates
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