

VI Congreso de Jóvenes Investigadores

Real Sociedad Matemática Española

León, Febrero de 2023

An interior regularity result for the MEMS problem

Renzo Bruera *

In this talk we present an interior regularity result for the class of stable solutions to a semilinear elliptic equation with a singular nonlinearity. More precisely, given a bounded open set $\Omega \subset \mathbb{R}^n$, we consider the problem

(1)
$$\begin{cases} -\Delta u = f(u) & \text{in } \Omega \\ 0 < u < 1 & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

where the nonlinearity $f\in C^1((0,1))$ is assumed to be positive, nondecreasing, and to satisfy $f(1)=+\infty$ and $\int_0^1 f(t)dt=+\infty$. The model nonlinearities for this problem are the powers, i.e., $f(t)=(1-t)^{-p}$ for p>1. For p=2 and

n=2 this equation models the deflection of a dielectric elastic membrane in a microelectromechanical system (MEMS).

A solution u to problem (1) is said to be stable if the following inequality holds:

(2)
$$\int f'(u)\xi^2 \le \int |\nabla \xi|^2, \quad \forall \xi \in C_c^{\infty}(\Omega).$$

Under a Crandall-Rabinowitz type assumption on f, we are able to prove that u<1 in Ω up to the optimal dimension n=6, and as a consequence, u is smooth in Ω (in contrast to singular solutions, which attain the value 1 somewhere in Ω).

^{*}Departament de Matemàtiques, Universitat Politècnica de Catalunya, Avinguda Diagonal, 647, 08028 Barcelona. Email: renzo.bruera@upc.edu